
CoreBASIC Reference Guide

Version: 3.1

© 2014 Rowley Associates Limited

CoreBASIC Reference Guide

2

CoreBASIC Reference Guide Contents

3

Contents
CrossWorks CoreBASIC Library .. 17

Setting up a SolderCore ... 19

Unpacking your SolderCore ... 20

SolderCore anatomy .. 21

Power up! ... 22

Contact SolderCore .. 23

Fire up CoreBASIC .. 25

Selecting and preparing microSD cards ... 26

Setting up a Raspberry Pi .. 27

CoreBASIC User Guide ... 29

Starting out with CoreBASIC .. 30

Calculator mode .. 31

Making mistakes ... 34

Your first program .. 35

More on mistakes ... 37

Using variables ... 39

Saving your programs .. 41

Loading examples .. 42

Listing directories ... 43

Watchdog protection .. 44

Time and date ... 47

Debunking common misconceptions .. 48

CoreBASIC Language Reference ... 51

CoreBASIC Reference Guide Contents

4

Change history ... 53

Keywords by function ... 64

Write and edit programs ... 65

Load and save programs ... 66

Build loops and decision structures ... 67

Define and call procedures and subroutines ... 68

Device input and output ... 69

Calculate with numbers ... 70

Manipulate and transform strings .. 71

Display graphics and text ... 72

Manipulate and transform arrays .. 73

Complex numbers .. 75

Mathematical functions ... 76

Linear systems and matrices ... 77

Keywords, A to Z ... 78

$constant .. 83

$ATTR ... 86

$CWD .. 87

$DOWN .. 88

$LEFT .. 89

$RIGHT ... 90

$UP .. 91

%constant .. 92

%COLOR .. 94

%E .. 95

%FALSE .. 96

%HEIGHT ... 97

%I ... 98

%IN .. 99

%OUT ... 100

%PI .. 101

%TRUE ... 102

%WIDTH .. 103

' ... 104

+ ... 105

- ... 107

* .. 109

/ ... 111

\ ... 113

^ ... 114

& ... 115

CoreBASIC Reference Guide Contents

5

: ... 117

< ... 118

<= .. 120

<> .. 122

= ... 124

> ... 126

>= .. 128

[...] .. 130

| ... 131

ABS .. 132

ACS .. 133

ACSH ... 134

AND ... 135

AND THEN .. 136

ARG ... 137

AS ... 138

ASC .. 139

ASN ... 140

ASNH .. 141

ATN ... 142

ATN2 ... 143

ATNH .. 144

AUTO .. 145

BASE64$.. 146

BGET ... 147

BGET$... 148

BLUE% ... 149

BYE .. 150

CALL .. 151

CASE ... ENDCASE .. 152

CATALOG .. 155

CD .. 156

CEIL ... 157

CHAIN ... 158

CHDIR ... 159

CHECK .. 160

CHR ... 161

CINT .. 162

CIRCLE .. 164

CIS .. 165

CLG .. 166

CoreBASIC Reference Guide Contents

6

CLOSE ... 167

CLS .. 168

CMPLX ... 169

CNJ .. 170

CON ... 171

COL .. 172

COLOR ... 173

COLOR$... 174

CORE ... 175

COS ... 176

COSH .. 177

CREDITS ... 178

CROSS .. 179

CRUNCH .. 180

CVF .. 182

CVI ... 183

CVU ... 184

DATA .. 185

DATE$.. 186

DATE% ... 187

DAY% ... 188

DEBUG ... 189

DEFPROC ... ENDPROC .. 190

DEG ... 191

DELETE ... 192

DELETE$.. 194

DET .. 195

DFT .. 196

DIM .. 197

DIR ... 198

DNS ... 199

DOT ... 200

DRAW ... 201

DUMP ... 202

EDIT ... 203

EJECT .. 204

ELSE .. 205

END ... 206

ENDCASE .. 207

ENDIF ... 208

ENDPROC .. 209

CoreBASIC Reference Guide Contents

7

EOF .. 210

EQV ... 211

ERROR .. 212

EXAMPLE .. 213

EXAMPLE CATALOG ... 214

EXAMPLE LOAD ... 215

EXIT ... 216

EXIT FOR ... 217

EXIT REPEAT .. 218

EXIT WHILE .. 219

EXP .. 220

EXPAND ... 221

EXT .. 222

EXT() ... 223

FALSE ... 224

FILL .. 225

FIRMWARE ... 226

FIRMWARE CATALOG .. 227

FIRMWARE CHECK .. 228

FIRMWARE GET .. 229

FIRMWARE KILL ... 230

FIRMWARE RUN ... 231

FIRMWARE SAVE ... 232

FIX .. 233

FLT ... 234

FLUSH .. 235

FOR ... NEXT ... 236

FOR EACH ... NEXT .. 238

FONT ... 239

FONT CATALOG ... 240

GEN ... 241

GET .. 242

GET$... 243

GOTO .. 244

GFX .. 245

GOSUB ... 247

GREEN% .. 248

HELP ... 249

HEX .. 251

HIGH ... 252

HISTORY .. 253

CoreBASIC Reference Guide Contents

8

HISTORY LIST .. 254

HISTORY KILL .. 255

HISTORY OFF .. 256

HISTORY ON .. 257

HISTORY PICK ... 258

HOUR% .. 259

I2C ... 260

IDFT ... 261

IDN .. 263

IF ... THEN ... 264

IFF .. 267

IM ... 268

IMP .. 269

IN .. 270

INF ... 271

INK ... 272

INNER ... 273

INPUT ... 274

INPUT$... 276

INSERT$... 277

INSTALL ... 278

INSTALL CATALOG ... 279

INSTALL LIST ... 280

INSTR .. 281

INT ... 282

INV ... 283

IP$.. 285

JOIN .. 286

URI$.. 288

JUSTIFY$... 289

KILL ... 290

LCASE ... 291

LEFT .. 292

LEN .. 293

LET ... 294

LINE ... 295

LIST .. 296

LIST USING ... 298

LOCK ... 299

LOG ... 300

LOG10 .. 301

CoreBASIC Reference Guide Contents

9

LOG2 ... 302

LOAD .. 303

LTRIM ... 304

MAIL ... 305

MAT ... 306

MAT LET .. 307

MAT PRINT ... 308

MAT() .. 309

MATCH ... 310

MAX .. 311

MAX() ... 312

MEMORY ... 313

MERGE ... 314

MERGE() .. 315

MID .. 316

MIN .. 317

MIN() ... 318

MINUTE% ... 319

MKDIR .. 320

MKDIR() ... 321

MKF ... 322

MKI .. 323

MOD .. 324

MODULES ... 325

MONTH% .. 326

MORE .. 327

MORSE$... 328

MOUNT .. 329

MOVE ... 330

$NAME ... 331

NAME ... 332

NAN ... 333

NET .. 334

NEW .. 335

NEWS .. 336

NEXT ... 337

NOT ... 338

NUMBER$... 339

OPEN .. 341

OR .. 342

OR ELSE ... 343

CoreBASIC Reference Guide Contents

10

ORIGIN ... 344

OTHERWISE ... 345

PAPER ... 346

PAUSE .. 347

PI .. 348

PICK ... 349

PIN ... 350

PIN CATALOG ... 352

PIN LIST ... 355

PIN() .. 357

PLOT ... 358

PRINT .. 359

PTR .. 361

PTR() ... 362

QUAT .. 363

RAD ... 364

RANDOMIZE .. 365

RAVEL ... 366

RE ... 367

READ ... 368

READ$.. 370

REBOOT ... 371

RECTANGLE ... 372

RECYCLE .. 373

RED% .. 374

REDUCE ... 375

REM ... 376

RENAME .. 377

RENUMBER ... 378

REPEAT ... UNTIL .. 380

REPEAT$.. 381

REPORT .. 382

REPORT() ... 383

RESTORE ... 384

RETURN ... 386

REVERSE .. 387

REVERSE() ... 388

RGB ... 389

RIGHT ... 390

RMDIR .. 391

RMDIR() ... 392

CoreBASIC Reference Guide Contents

11

RND ... 393

ROT .. 394

ROW .. 395

RTRIM ... 396

RUN ... 397

RUN() .. 398

SAMPLE ... 400

SAVE ... 402

SAVE AUTO .. 403

SECOND% .. 404

SELECT ... 405

SHA1$.. 406

SGN ... 407

SHUFFLE .. 409

SIN ... 410

SINH .. 411

SOCKET .. 412

SORT ... 413

SPI .. 414

SPLIT ... 415

SPC .. 416

SPOKEN$... 417

SQR .. 418

STEP .. 419

STOP ... 420

STR .. 421

STRING$.. 422

SUBST$.. 423

SUM .. 424

SYSTEM ... 425

TAB .. 426

TAN ... 427

TANH .. 428

THEN ... 429

TIME$... 430

TIMER ... 431

TO .. 432

TRIM .. 433

TRN .. 434

TRUE ... 436

TRUTH .. 437

CoreBASIC Reference Guide Contents

12

TRY .. 438

UCASE .. 440

UNLOCK .. 441

UNTIL .. 442

URI$.. 288

UTF .. 443

VAL .. 444

VDU ... 446

VERSION .. 447

WAIT ... 448

WATCHDOG .. 449

WATCHDOG() .. 450

WATCHDOG REBOOT .. 451

WATCHDOG RESTORE .. 452

WATCHDOG TIMER .. 453

WATCHDOG THROW ... 454

WEB ... 455

WEND ... 457

WHEN ... 458

WHILE ... WEND .. 459

XOR ... 460

YEAR% ... 461

ZER .. 462

Miscellaneous information ... 463

Command line keystrokes .. 464

Visual editor keystrokes .. 465

CoreBASIC Keyboard codes ... 466

CoreBASIC Driver Reference ... 469

Drivers by function .. 470

Accelerometers .. 473

Gyroscopes .. 475

Magnetometers ... 477

Inertial measurement units ... 478

Parallel buses ... 479

Temperature sensors .. 480

Pressure sensors ... 481

Light sensors .. 482

Graphic displays .. 483

Character displays .. 484

Joysticks and joypads ... 485

Drivers by vendor ... 487

CoreBASIC Reference Guide Contents

13

Adafruit TFT Touch Shield .. 490

AHRS Driver .. 491

AirSensor 128GLCD ... 493

AirSensor 192GLCD ... 494

AMS TSL2561 Driver ... 495

Analog Devices ADIS16400 Driver .. 496

Analog Devices ADT7410 Driver ... 498

Analog Devices ADXL345 Driver ... 499

Analog Devices ADXL362 Driver ... 501

ANSI Graphics Driver .. 503

Asahi Kasei AK8975 Driver ... 504

Atmel ATAVRSBIN1 Driver .. 505

Atmel ATAVRSBIN2 Driver .. 508

Bosch Sensortec BMA150 Driver ... 511

Bosch Sensortec BMA250 Driver ... 513

Bosch Sensortec BMM150 Driver .. 515

Bosch Sensortec BMP085 Driver ... 516

Bosch Sensortec SMB380 Driver .. 518

Extended User Memory ... 520

Freedom Board Accelerometer .. 522

Freedom Board CPU .. 524

Freescale MAG3110 Driver ... 526

Freescale MMA8451Q Driver ... 528

Freescale MMA8491Q Driver ... 530

Freescale MPL115A1 Driver ... 532

Freescale MPL115A2 Driver ... 534

Freescale MPL3115A2 Driver .. 535

FTP Server .. 536

Gravitech 7-Segment Shield .. 537

Hitachi HD44780 Driver ... 539

Honeywell HIH6130 Driver ... 541

Honeywell HMC5843 Driver .. 542

Honeywell HMC5883L Driver .. 543

Honeywell HMC6343 Driver .. 545

Honeywell HMC6352 Driver .. 546

HTTP Server .. 547

Intersil ISL29023 Driver ... 548

InvenSense IMU-3000 Driver ... 550

InvenSense ITG-3200 Driver .. 552

InvenSense MPU-6000 Driver ... 554

InvenSense MPU-6050 Driver ... 558

CoreBASIC Reference Guide Contents

14

InvenSense MPU-6050EVB Driver ... 561

InvenSense MPU-9150 Driver ... 565

ITead Studio Colors Shield ... 568

ITead Studio ITDB02-2.2 LCD Module ... 569

ITead Studio ITDB02-2.4D LCD Module .. 571

ITead Studio ITDB02-2.4E LCD Module .. 572

ITead Studio ITDB02-2.8 LCD Module ... 574

ITead Studio ITDB02-3.2S LCD Module .. 575

ITead Studio ITDB02-3.2WD LCD Module ... 576

ITead Studio ITDB02-4.3 LCD Module ... 577

ITead Studio ITDB02-5.0 LCD Module ... 578

Jee Labs LCD Plug .. 579

Jimmie Rodgers LoL Shield .. 581

Kionix KXP84 Driver .. 584

Kionix KXTF9 Driver .. 586

Linear Technology LTC2309 Driver .. 588

Linear Technology LTC6904 Driver .. 589

Liquidware Input Shield .. 590

Matrix Keyboard Driver ... 592

MaxDetect DHT and RHT Driver .. 594

Maxim DS1340 driver ... 595

Maxim MAX6675 Driver .. 597

Microchip MCP23008 Driver .. 598

Microchip MCP23016 Driver .. 601

Microchip MCP23017 Driver .. 603

Microchip MCP342x Driver .. 605

Microchip MCP4725 Driver .. 607

Microchip TC77 Driver ... 608

Modkit MotoProto Shield ... 609

National Semiconductor LM75 Driver ... 611

Nintendo Classic Controller ... 612

Nintendo Nunchuk Controller .. 615

NuElectronics 3310 LCD Shield .. 618

NMEA Parser ... 619

NuElectronics TFT LCD Shield ... 621

NXP PCF8575 Driver .. 622

Parallel Bus Driver .. 624

Raspberry Pi CPU .. 626

Seeed Studio 96x16 OLED Brick .. 628

Seeed Studio 96x96 OLED Twig .. 629

Seeed Studio 128x64 OLED Twig .. 630

CoreBASIC Reference Guide Contents

15

Seeed Studio TFT Touch Shield ... 631

Sensirion SHT1x Driver .. 632

Sensirion SHT2x Driver .. 635

Silicon Labs Si7005 .. 637

Software I2C Bus Driver ... 638

Software SPI Bus Driver ... 639

SolderCore Arcade Shield ... 640

SolderCore CoreMPU Driver .. 642

SolderCore CPU ... 645

SolderCore Graphics Shield ... 648

SolderCore LCD Shield ... 650

SolderCore Network .. 652

SolderCore Motor Shield ... 654

SolderCore SenseCore Shield .. 655

SolderCore Servo Shield .. 657

SparkFun Ardumoto Shield ... 658

SparkFun Color LCD Shield .. 659

SparkFun El Escudo ... 660

SparkFun e-Paper Breakout ... 661

SparkFun IMU-3000 Combo .. 664

SparkFun Joystick Shield .. 667

SparkFun MIDI Shield ... 669

SparkFun OLED Carrier .. 671

SparkFun RingCoder Breakout ... 672

SparkFun Spectrum Shield ... 674

SparkFun Touch Shield .. 675

SparkFun VoiceBox Shield ... 676

SPI Device Driver .. 677

STMicroelectronics LIS302DL Driver .. 678

STMicroelectronics LIS331DLH Driver ... 680

STMicroelectronics LIS331HH Driver ... 682

STMicroelectronics LIS3DSH Driver .. 684

STMicroelectronics LIS3LV02DL Driver ... 686

STMicroelectronics LPS331AP .. 688

STMicroelectronics LSM303DLH Driver .. 689

System UART Driver .. 690

Texas Instruments TMP100 Driver .. 694

Texas Instruments TMP102 Driver .. 695

VTI SCA3000 Driver ... 696

Watterott electronic mSD Shield ... 698

Watterott electronic S65 Shield ... 699

CoreBASIC Reference Guide Contents

16

Xterm Graphics Driver .. 700

SolderCore Reference .. 701

Arduino-style header pinout ... 702

Boot sequence .. 703

Benchmarking CoreBASIC ... 705

The SolderCore bootloader .. 707

Stellaris port mapping .. 709

A historical perspective... .. 711

XMOS Firmware Development ... 712

Preparing a factory image release .. 713

Generating a fimware upgrade release .. 715

Example programs .. 717

Timing methods .. 719

Removing noise ... 721

Deinterlacing samples .. 722

Median filtering ... 723

Monte Carlo simulation ... 724

Parsing GPS sentences ... 726

Calibrating touch screens ... 729

Four-parameter calibration of a compass for hard iron effects ... 730

Digital spirit level .. 732

Reading an MPL115A1 pressure sensor using SPI ... 733

Drawing the flag of the United Kingdom .. 735

Downloading firmware using CoreBASIC .. 736

Bouncing lines .. 737

ITead Studio LCDs .. 738

Conway's Game Of Life .. 741

Hangman .. 742

Sign a Twitter request with an OAuth signature .. 743

Additional Information ... 745

CoreBASIC development history ... 746

Who did all this? ... 748

CoreBASIC Reference Guide CrossWorks CoreBASIC Library

17

CrossWorks CoreBASIC Library
About the CrossWorks CoreBASIC Library

The CrossWorks CoreBASIC Library is an application that makes extensive use of the software components in the

CrossWorks Target Library.

The components that CoreBASIC Library uses are:

• CrossWorks Platform Library: provides base platform services.

• CrossWorks Device Library: provides drivers for common digital sensors, such as accelerometers,

gyroscopes, magnetometers, and so on.

• CrossWorks Shield Library: provides drivers for a range of Arduino-style shields.

• CrossWorks Graphics Library: is a library of simple graphics functions for readily-available LCD controllers.

Architecture

The CrossWorks CoreBASIC Library is one part of the CrossWorks Target Library. Many of the low-level functions

provided by the target library are built using features of the CrossWorks Tasking Library for multi-threaded

operation.

Delivery format

The CrossWorks CoreBASIC Library is delivered in source form.

License

The source files in this package are not public domain and are not open source. They represent a substantial

investment undertaken by Rowley Associates to assist CrossWorks customers in prototyping solutions using

well-written, tested drivers.

CoreBASIC Reference Guide CrossWorks CoreBASIC Library

18

Should you wish to incorporate CoreBASIC in a product, you will need to purchase a Commercial Use license for

CoreBASIC.

Feedback

This facility is a work in progress and may undergo rapid change. If you have comments, observations,

suggestions, or problems, please feel free to air them on the CrossWorks Target and Platform API discussion

forum.

https://rowley.zendesk.com/forums/21762187-the-crossworks-target-and-platform-api

CoreBASIC Reference Guide CrossWorks CoreBASIC Library

19

Setting up a SolderCore
The SolderCore is a small printed circuit board containing a programmable microcontroller. After unpacking

your SolderCore and attaching it to your network, you can be up and programming in a few minutes.

However, the SolderCore Project is much broader than this one product. The project's objective is to simplify the

construction of physical computing systems, to excite hackers and makers, and to rekindle the enthusiasm for

computing, especially in children, that the 1980s microcontroller revolution started.

Set up SolderCore

Unpacking your
SolderCore
Sounds boring, but be careful
not to zap your shiny new
SolderCore before using it!

SolderCore anatomy
Hammering square pegs into
round holes is bad. Get familiar
with what goes where on
SolderCore.

Power up!
There's more to this than
plugging in and crossing
fingers. Keep the smoke in the
chips, where it belongs…

Contact SolderCore
Get SolderCore onto your LAN
and set sail for the Internet!

Fire up CoreBASIC
Start interacting with CoreBASIC
over the network!

Who did all this?
Learn about the team behind
SolderCore and CoreBASIC.

CoreBASIC Reference Guide CrossWorks CoreBASIC Library

20

Unpacking your SolderCore
Your SolderCore is packaged inside a cardboard box to protect it from knocks during shipping. On opening the

box you'll find that the SolderCore is enclosed in a static shielding bag to prevent damage from electrostatic

discharges (ESD).

Much like the shock you receive when walking over a carpet and touching something metal, or taking a

polyester fleece off over a cotton shirt, ESD can happen when you pick up a component when working at your

bench or desk.

ESD may cause components you touch to no longer work properly. ESD can happen without you even feeling a

shock! It might damage a small part of your SolderCore, and in the extreme, could cause the whole of the your

SolderCore to malfunction.

Preventing ESD

You should take precautions to make sure that you don't inadvertently damage the SolderCore by ESD. The best

method of preventing ESD is to use an ESD wrist strap or use a grounding mat or table. However, because most

customers don't have these, here are some hints on reducing the chances of ESD damage:

• sitting down: Be aware that sitting on a chair can build up electrostatic charge from rubbing together

your clothing and seat cover.

• clothes: Don't wear any clothing that conducts a lot of electrical charge, such as a wool sweater, when

handling electronics.

• weather: During dry weather, static charge does not dissipate very easily, so on dry days it's more likely

that you'll damage your SolderCore by ESD.

• jewelry: It's a good idea to remove rings, watches, and chains when tinkering with electronics. Gold

and silver are excellent conductors of electricity and wearing such items only increases the chances of

shorting contacts when handling SolderCore and its accessories.

Next...

SolderCore anatomy

CoreBASIC Reference Guide CrossWorks CoreBASIC Library

21

SolderCore anatomy
The first thing to notice about the SolderCore is that it has no keyboard and no display, just some connectors.

This is because the SolderCore is designed to control external hardware which you plug into it. You can add LCD

displays, sensors, motor drivers, whatever you want.

The SolderCore has the same physical layout as the very popular Arduino range of boards.

SolderCore is fitted with the following connectors:

• a barrel jack to provide power to the SolderCore using an external supply.

• an RJ45 socket that uses standard twisted pair cable to connect SolderCore to a local area network (LAN)

and, through a router, to the Internet.

• Single in-line connectors along two edges of the PCB for interfacing other digital and analog electronics.

• A push-eject microSD connector for mass storage on readily available microSD cards.

• a microUSB connector to provide auxiliary power to SolderCore and for interfacing USB devices.

• a button to reset the SolderCore, and anthing else attached to the reset signal.

In addition, SolderCore has some unpopulated connectors and sites:

• An 10-way Cortex JTAG header which you can use to completely erase CoreBASIC and program the

SolderCore on-the-metal using C.

• a two-pin connector for a secondary I2C bus.

• on the reverse, two SOIC-8 sites for additional storage devices.

These features are not directly supported by CoreBASIC; however, using C you have complete control over

devices attached to these sites.

Next...

The following section will walk you through setting up the SolderCore so you can start programming!

Power up!

CoreBASIC Reference Guide CrossWorks CoreBASIC Library

22

Power up!
To power SolderCore, you have two options:

• Connect 6V DC, center positive, to the barrel jack;

• Connect a standard phone charging cable to the microUSB connector.

Which one you choose usually comes down to convenience and environment. If you're using a laptop, powering

SolderCore using a USB port and a charging cable is pretty convenient; if you have SolderCore on the bench,

powering it from a bench power supply or wall wart makes sense.

Apply power...

Before attaching any power, make sure that your SolderCore is on a flat surface and is not in contact with

anything metal to avoid shorts, sparks, and fireworks.

When you apply power, two green LEDs close to the barrel jack indicate the health of the 3V3 and 5V supplies.

If you power SolderCore using the the barrel jack and the power LEDs do not illuminate when you plug in the

connector, unplug and use a voltmeter to check the polarity of your supply: the center pin of the connector must

be positive. If you are using a wall wart, the polarity of the connector is usually shown on the plastic case—this

Wikipedia page has an excellent explanation of the symbols:

http://en.wikipedia.org/wiki/Polarity_symbols

A SolderCore with no accessories or shields installed requires approximately 200 mA, so your external supply

must be capable of providing that. If it isn't, the LEDs will not illuminate and the regulators will not power up the

SolderCore.

Next...

Once you have the power on and the supplies are healthy, it's time to move on to networking!

Contact SolderCore

http://en.wikipedia.org/wiki/Polarity_symbols

CoreBASIC Reference Guide CrossWorks CoreBASIC Library

23

Contact SolderCore
You interact with the SolderCore over a LAN using the standard twisted pair RJ45 connector. The first thing you

should do is connect your SolderCore to a router with a network cable.

If you look at the SolderCore's network socket, you will see that it has a green and a yellow LED. The green LED

indicates a good link and will illuminate when both ends of the cable are connected to compatible network

equipment. The yellow LED indicates network activity: it momentarily pulses when network packets arrive at the

SolderCore.

Finding SolderCore on the LAN

Using your SolderCore requires that you know a little about your network and the ability to run a few tools from

the command line.

On the back of your SolderCore you will find a label inscribed with six letters and numbers, like this:

This is the serial number and network name of your SolderCore. Each SolderCore's serial number is unique and

forms part of the default network name for the SolderCore.

By default, the SolderCore is set up to request its IP address using DHCP. That is, it will communicate with your

router to determine how to set itself up on your LAN. DHCP is the modern way to assign addresses to network

equipment on a LAN and home routers have this capability already built into them.

So, let's say that the SolderCore's serial number is 0000be. The leading zeros are important here: the serial

number is exactly six characters long. When the SolderCore registers itself on the network, it will use the

network name core-xxxxxx. xxxxxx is the serial number. So, in this case, the SolderCore's network name will be

core-0000be as printed on the label.

First, we must open a command line window to test out the network connection.

To open a command window using Windows 7:

• Choose Start > All Programs > Accessories > Command Prompt

Now you should be be able to ping the SolderCore and see that it responds:

C:\Users\Paul> ping core-0000be

Pinging core-0000be.rowley.co.uk [10.0.0.25] with 32 bytes of data:
Reply from 10.0.0.25: bytes=32 time<1ms TTL=64
Reply from 10.0.0.25: bytes=32 time<1ms TTL=64
Reply from 10.0.0.25: bytes=32 time<1ms TTL=64
Reply from 10.0.0.25: bytes=32 time<1ms TTL=64

Ping statistics for 10.0.0.25:

CoreBASIC Reference Guide CrossWorks CoreBASIC Library

24

 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\Users\Paul>

To open a command window using Mac OS X:

• In the finder, choose Go > Utilities.

• Double-click the Terminal application.

Now you should be be able to ping the SolderCore and see that it responds:

pauls-macbook-pro:~ plc$ ping core-0000be
PING core-0000be.rowley.co.uk (10.0.0.25): 56 data bytes
64 bytes from 10.0.0.25: icmp_seq=0 ttl=64 time=0.695 ms
64 bytes from 10.0.0.25: icmp_seq=1 ttl=64 time=0.866 ms
64 bytes from 10.0.0.25: icmp_seq=2 ttl=64 time=0.840 ms
64 bytes from 10.0.0.25: icmp_seq=3 ttl=64 time=0.854 ms
64 bytes from 10.0.0.25: icmp_seq=4 ttl=64 time=0.847 ms
64 bytes from 10.0.0.25: icmp_seq=5 ttl=64 time=0.754 ms ^C
--- core-0000be.rowley.co.uk ping statistics ---
6 packets transmitted, 6 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.695/0.809/0.866/0.063 ms
pauls-macbook-pro:~ plc$

The ping request will continue to be sent until you type Ctrl+C.

Next...

Once you have this working, your SolderCore is registered on the network and is successfully communicating

with the PC. Now you need to start a Telnet session.

Fire up CoreBASIC

CoreBASIC Reference Guide CrossWorks CoreBASIC Library

25

Fire up CoreBASIC
On Windows 7, Telnet is not automatically installed. To make Telnet available:

• Choose Start > Control Panel.

• Click Programs.

• Click Turn Windows Features on or off.

Make sure that the Telnet Client feature is checked:

Start telnet!

Now, start telnet from the command line using telnet Core-0000be and substituting your serial number in

the command line. You should see something like this:

Next...

Selecting and preparing microSD cards

CoreBASIC Reference Guide CrossWorks CoreBASIC Library

26

Selecting and preparing microSD cards
SolderCore uses the microSD cards to store programs and data permanently. Before you can use a microSD card

with SolderCore, you must make sure that it is formatted correctly. This section advises you about the SD card to

select and how to prepare it for use with SolderCore.

Manufacturers

Always purchase your microSD cards from a reputable distributor. Fake SD cards are scattered around the

Internet on bargain-value sites, and they do not work very well!

During testing of SolderCore and its mass storage drivers, we collected nearly 100 microSD cards and for testing

from suppliers far and wide. Of those, we had a few obvious fakes and destruction testing reveals that they are

not very durable and will lose their contents easily. A few just didn't work at all.

We would highly recommend that you purchase a SanDisk microSD card from a reputable supplier with a

storage capacity of 2 GB. These cards are robust and compliant and we have yet to find a genuine SanDisk card

that does not work in SolderCore.

Preparing you card

To prepare your card to work with SolderCore, place it into a microSD to SD adapter, and then insert that in your

PC. It shows up in the Windows Explorer:

Right-click on removable media and select Format.

Note: Make sure to select "FAT" for the file system, not "FAT32".

Go ahead and format the card.

Now create a folder named SYS at the root of the file system. This will hold system files that SolderCore will

write.

Cards that don't work

Some microSD cards do not comply with the SD specification as published by the SD Card Association (SDA).

That is, they may well work in cameras and mobile devices, but do not when used with SolderCore. These cards

should offer features for small, embedded devices, but to cut costs such features are simply not implemented.

We have a number of cards which fail to comply in different ways, and they simply will not work with SolderCore.

We cannot emphasize strongly enough: purchase a card that is known to work! A SanDisk 2 GB card is an

excellent choice.

If you do purchase a card that doesn't work, please let us know the manufacturer make a model: we can then try

to source the card and diagnose why it doesn't work.

CoreBASIC Reference Guide CrossWorks CoreBASIC Library

27

Setting up a Raspberry Pi
In this section you'll prepare your Raspberry Pi to run CoreBASIC.

What you will need

To use Arduino shields on your Raspberry Pi, you'll need to connect a Libelium Raspberry Pi to Arduino shields

connection bridge. This takes the signals from the Raspberry Pi's GPIO connector and converts them into an

Arduino footprint. Note that not all shields are compatible with the bridge installed: some shields work at the

wrong voltage, some shields require digital I/O on the analog connectors, and some require general-purpose I/O

on the I2C connector.

Installing CoreBASIC

…to write.

http://www.cooking-hacks.com/index.php/documentation/tutorials/raspberry-pi-to-arduino-shields-connection-bridge
http://www.cooking-hacks.com/index.php/documentation/tutorials/raspberry-pi-to-arduino-shields-connection-bridge

CoreBASIC Reference Guide CrossWorks CoreBASIC Library

28

CoreBASIC Reference Guide CoreBASIC User Guide

29

CoreBASIC User Guide

CoreBASIC Reference Guide CoreBASIC User Guide

30

Starting out with CoreBASIC
In this section we'll take a look at some of the features of CoreBASIC. We'll assume that you've read through the

previous sections and have set up your CoreBASIC device ready for use.

The building blocks of CoreBASIC are statements, operators, and identifiers:

• statements command CoreBASIC to do something, such as print a number or load a program.

• operators work on numbers and strings of characters to perform calculations or manipulate strings.

• identifiers are defined by you, the programmer, to store the data that you need in your program.

CoreBASIC Reference Guide CoreBASIC User Guide

31

Calculator mode
When CoreBASIC starts, it signs on with a banner and waits for commands from you. CoreBASIC asks you for a

command with a simple greater than prompt:

> _

Here, the underscore indicates the position of the insertion point, which is usually a flashing vertical line or block

on the screen. When you type on the keyboard, what you type appears at the insertion point. So, why not try it

out? Type PRINT 12+6 and press Enter or Return (visually indicated by '#'):

> PRINT 12+7
19
> _

This commands CoreBASIC to print out the result of a calculation, in this case adding 12 and 7 together. The

prompt reappears immediately and CoreBASIC is ready for another command.

You don't need to type in capitals, you can use lowercase letters:

> print 12+7
19
> _

All examples in this manual use lowercase letters for user input because it's easier to read than all-capitals, and

will most likely be the letter case you use.

You might like to try some more calculations with CoreBASIC. For instance, CoreBASIC understands - to mean

subtract, * to mean multiply, and / to mean divide:

> print 12*7
84
> print 12/7
1.71429
> _

When CoreBASIC is waiting for a command, it is in calculator mode; in some literature you might also find this

called immediate mode because everything you type is executed immediately when you press Enter.

CoreBASIC understands the standard mathematical rules that you learn at school: multiplication is done before

addition, for example. (See Wikipedia: Order of operators.) Testing this out:

> print 5+3*4
17
> _

CoreBASIC worked this out by calculating 3×4 first, which is 12, and then calculating 5+12 to arrive at the answer

17.

http://en.wikipedia.org/wiki/Order_of_operations

CoreBASIC Reference Guide CoreBASIC User Guide

32

When you become proficient with CoreBASIC, you'll find that you rely heavily on PRINT. Because PRINT is

so often used in CoreBASIC programs, there's a shorthand for it: you can use ? wherever you'd use a PRINT

command:

> ? 5+3*4
17
> _

You can print things other than numbers: CoreBASIC knows about strings made from a sequence of characters:

> print "I'm sorry, Dave. I'm afraid I can't do that."
I'm sorry, Dave. I'm afraid I can't do that.
> _

The string to print is enclosed by quotation marks. If you want to include a quotation mark in the string, you

need to double them up:

> print """More human than human"" is our motto."
"More human than human" is our motto.
> _

You might wonder why you'd want to enter a command that simply echoes what you type? While this might not

seem immediately useful in calculator mode, you'll discover that you use this again and again when starting to

write programs in CoreBASIC.

To finish off this section, there are some other features of PRINT that are worth mentioning. You can print more

than one item at a time if you separate them with a comma:

> print 1/2, 1/3
0.5 0.333333
> _

The comma starts printing in a new field, and each field spans eight characters. Each comma advances the print

position to the next field, even if there is nothing to print:

> print 1/2,, 1/3
0.5 0.333333
> _

To print items next to each other, separate them with a semicolon:

> print 1/2; 1/3
0.50.333333
> _

Unfortunately, the two numbers run together and the result is rather confusing. You might like to print a space

between the two numbers, using a string, like this:

> print 1/2; " "; 1/3
0.5 0.333333
> _

CoreBASIC Reference Guide CoreBASIC User Guide

33

This section touches a few of the ways that PRINT can format its output. There are additional features in

CoreBASIC to exercise precise control of output format, but for many programs these simple formatting controls

are enough.

CoreBASIC Reference Guide CoreBASIC User Guide

34

Making mistakes
You will make mistakes when typing commands into CoreBASIC. Most likely you'll misspell a command or forget

some punctuation, and when you do, CoreBASIC tells you about it:

> prunt 1/2
?expected '='
> _

CoreBASIC responds to problems by printing an error, starting with a question mark, and continuing with

CoreBASIC's best diagnosis of the problem. Sometimes this message is spot-on, and at other times it might be a

rather vague "syntax error" when CoreBASIC can't understand what you're asking it to do. If you happen to catch

the right bracket on your keyboard when reaching for Enter, you'll get this:

> print 1/2]
?syntax error
> _

Don't worry about making mistakes like this, they're not going to do any harm, and CoreBASIC simply forgets the

mistakes you make and moves on. However, if you spot a mistake you've made while typing, you can correct it

using the cursor keys. CoreBASIC's command line editor understands the following keystrokes:

Completion

Enter Send line to CoreBASIC.

Moving

Left Move insertion point back one position.

Right Move insertion point forward one position.

Home or Ctrl+A Move insertion point to start of the line.

End or Ctrl+E Move insertion point to end of the line.

Editing

Backspace or Ctrl+H Delete character before insertion point.

Delete or Ctrl+G Delete character after insertion point.

Ctrl+K Delete from insertion point to end of line.

Ctrl+U Delete entire line.

Typing a printable character (letter, digit, punctuation, or symbol) inserts that character at the insertion point,

moving the remainder of the line forward. Pressing Enter will send the entire line to CoreBASIC, irrespective of

where the insertion point is on the line.

CoreBASIC Reference Guide CoreBASIC User Guide

35

Your first program
Up to now you have typed in commands that CoreBASIC executes immediately. The main feature of a computer

is its ability to run stored programs at high speed. So, let's get down and try it out! Type in:

> 10 print "This is my first program!"
> _

Notice that CoreBASIC doesn't do any printing after pressing Enter. Instead, the PRINT instruction is stored in

CoreBASIC's memory, ready to be executed when commanded to do so—the 10 is a line number that you can

ignore for the moment.

Finish off the program by entering:

> 20 end
> _

This stores a second program instruction telling CoreBASIC to end the program.

To have CoreBASIC show the program you've just typed in, type LIST:

> list
 10 PRINT "This is my first program!"
 20 END
> _

If your program doesn't look like this, don't worry, see More on mistakes to correct it.

The listing displays the stored program in line-number order. Line numbers are simply a way of setting the order

of program instructions when entering them from the command line and are part of the heritage of the BASIC

language. (Note that CoreBASIC has a built-in full screen editor to make editing programs much simpler, just like

using a text editor or word processor on a personal computer, which we'll cover later.)

To run the program you've just entered, type RUN:

> run
This is my first program!
> _

Excellent! CoreBASIC executed the stored instructions when you said RUN. You can run the program a second

time using another RUN:

> run
This is my first program!
> _

What CoreBASIC does, when instructed to run the program, is to execute each program line in sequence,

starting at the lowest-numbered program line, and continuing until told to stop. The small program you entered,

when run, starts at line 10 and prints to the screen. Once that program line is complete, execution continues

CoreBASIC Reference Guide CoreBASIC User Guide

36

to program line 20, and this line instructs CoreBASIC to stop executing (that's what END does) and return to

calculator mode.

In fact, it's not strictly necessary to store an END instruction as "running off the end of a program", without

further program lines to execute, returns CoreBASIC to calculator mode.

See also

PRINT, LIST, RUN

CoreBASIC Reference Guide CoreBASIC User Guide

37

More on mistakes
We touched on how to edit lines as you type them in, but what happens if you've already entered a program line

and you know it's wrong? How do you go about correcting it?

Let's start out with a badly-typed program:

> list
 20 END
 29 END
 100 PRUNT "This is my first program!"
> _

The first option you have is to use NEW, which erases the entire program, and start typing it in again with the

hope that you enter it perfectly on the second, or perhaps third, attempt. If you had to enter a long program

without any mistakes each time you'd simply give up programming as worthless exercise!

There is a much better way to proceed, and that is to correct the mistakes that you've made by editing the

program in memory.

In the program, line 29 shouldn't be there. To delete a program line from memory, type the line number only

and press Return:

> 29
> list
 20 END
 100 PRUNT "This is my first program!"
> _

Fantastic, we're starting to clean up the program. Now, line 100 should really be line 10, but typing all that

again is a chore. To recall the line so you can edit it with standard editing keys, use EDIT and the program line

number you'd like to edit, in this case, 100:

> edit 100
100 PRUNT "This is my first program!"

After using EDIT, the line is recalled from memory and is presented for editing with the insertion point on the

instruction. Now use the the standard editing keys to correct the program line number from 100 to 10 and

change PRUNT to PRINT:

> edit 100
10 PRINT "This is my first program!"

Press Return to finish editing. It doesn't matter where the insertion point is on the line, the entire line of text,

with everything beyond the insertion point, is passed to CoreBASIC for processing.

Use LIST to see how we're getting along:

> list
 10 PRINT "This is my first program!"

CoreBASIC Reference Guide CoreBASIC User Guide

38

 20 END
 100 PRUNT "This is my first program!"
> _

What? Line 100 is still there! Why is that, wasn't it edited to be line 10? Well, no, it is simply because EDIT brings

in the line to be edited, but doesn't immediately delete it from memory. When you edited the line number, you

didn't edit it in memory, it was just like typing in a new line.

To finalize the corrections, kill line 100 and, behold, a perfect program:

> 100
> list
 10 PRINT "This is my first program!"
 20 END
> _

There are other utility commands for editing a program, such as DELETE and RENUMBER, and also a full screen

editor which you can bring up with EDIT on its own. If you're curious, take a moment to look at the reference

material for the editing commands to see what else you can do.

See also

EDIT

CoreBASIC Reference Guide CoreBASIC User Guide

39

Using variables
Now you've experienced a little of CoreBASIC, it's time to move on to how to store data. You've already seen

some data that CoreBASIC can work with: you've used numbers for calculation and strings of characters to print

messages. This data was use momentarily and then thrown away. To store data inside CoreBASIC, you assign it to

a variable:

> let x = 3.14
> print x
3.14
> _

In this example, the LET statement assigns the number 3.14 to the variable x. Once assigned, CoreBASIC

remembers the value and you can recall it at any time using the assigned variable name. Variable names

are made using a combination of letters, digits, and underscores; creating meaningful names for variables is

something that you'll get the hang of over time. These examples confine themselves to using single letters for

names.

You can assign the results of calculations to variables, just like simple numbers:

> let r = 12
> let a = x * r * r
> print a
452.16
> _

Because assignment is so common in CoreBASIC programs, you can drop the LET from assignments and

CoreBASIC will assume it's there:

> v = 4/3 * 3.14 * r * r * r
> print v
7234.56
> _

So, it's time to put what you've seen in these last few sections to use! We've almost seen enough of CoreBASIC to

make a useful program, and the one missing element follows naturally.

Let's start with a new program. If you have followed along, then CoreBASIC still contains your stored program:

> list
 10 PRINT "This is my first program!"
 20 END
> _

To clear out that program and start a new one, use NEW:

> new
> list
> _

Here's the program you should type in:

CoreBASIC Reference Guide CoreBASIC User Guide

40

> 10 print "Please type in the radius"
> 20 input r
> 30 p = 3.14159
> 40 print "Circumferenace of a circle: "; 2 * p * r
> 50 print "Area of a circle: "; pi * r * r
> 60 print "Volume of a sphere: "; 4/3 * p * r * r * r
> 70 end
> _

You've met all of this before apart from INPUT which, as it suggests, asks you for input.

Before running the program, check for potential problems using CHECK.

> check
> _

If all is well, CHECK is silent and the program contains no syntax errors that CoreBASIC can spot. The program

may not do what you want it to do when you run it, of course, and RUN automatically performs a CHECK before

running a program.

If you're unlucky enough for CHECK to tell you that there is a mistake, you can use the program editing

commands covered earlier to fix it up.

Now, run the program:

> run
Please type in the radius
R? _

CoreBASIC is now running the INPUT statement and asking you to type in a number to store into the variable R.

Let's say that the radius is 10:

> run
Please type in the radius
R? 10
Circumferenace of a circle: 62.8318
Area of a circle: 314.159
Volume of a sphere: 4188.79
> _

You can run this program again and provide another radius measurement to try out.

See also

LET, INPUT, CHECK

CoreBASIC Reference Guide CoreBASIC User Guide

41

Saving your programs
Now that you've typed in your program, it would be a shame to lose it. The SolderCore has a microSD card slot

that you can use for permanent storage of your programs; see Selecting and preparing microSD cards for

details of how to prepare a microSD card for SolderCore to use.

When you reset SolderCore, any microSD card inserted into the holder is mounted as removable device "/c". To

save your program to the microSD card, use SAVE and a file name:

> save "circle.bas"
> _

If the file does not exist, it is created. Any existing file with the same name is overwritten. CoreBASIC does check

that folder names you use are correct and exist, that you can create the file, and that the permissions of any

existing file allow you to overwrite it.

You load a saved program with LOAD:

> new
> list
> load "circle.bas"
> list
> _

See also

SAVE, LOAD

CoreBASIC Reference Guide CoreBASIC User Guide

42

Loading examples
This manual is packed with examples. All nontrivial examples are stored online and are accessible through a

network connection to the Internet. In the manual you'll see references to loading these examples, like this:

You can load this into CoreBASIC using EXAMPLE "welcome" or |welcome.

This tells you how to load the example from the Internet. So, try loading the Welcome application:

> example "welcome"
Connecting to www.soldercore.com (192.232.216.121)...
Loading welcome.bas from network...
Program loaded and ready. Type RUN to execute.
> run
Welcome to CoreBASIC on the SolderCore!
For more information, visit http://www.soldercore.com/
> list
 10 ' Welcome program for CoreBASIC.
 20 '
 30 PRINT "Welcome to CoreBASIC on the "; CORE.NAME; "!"
 40 PRINT "For more information, visit http://www.soldercore.com/"
 50 '
 60 END
> _

If you're curious about the examples that are stored online, you can list them using EXAMPLE CATALOG, which

you can abbreviate to EXAMPLE:

> example
Connecting to www.soldercore.com (192.232.216.121)...
Requesting /examples/ from network...

Index of /examples

 * Parent Directory
 * 3d-cube-1.bas
 * 3d-function-plot.bas
 * bouncing-lines.bas
 * charlcd.bas
 * colors-shield-message.bas
 * compass-demo.bas
 ?
 * welcome.bas

Apache Server at www.soldercore.com Port 80
> _

See also

EXAMPLE LOAD, EXAMPLE CATALOG

CoreBASIC Reference Guide CoreBASIC User Guide

43

Listing directories
You can list the contents of a mounted microSD card using DIR:

> dir
Directory of: /c/*.*

12/05/12 11:26 <DIR> sys
01/01/12 00:00 144 work.bas
01/01/12 00:00 1,913 crc.bas
01/01/12 00:00 2,499 union.bas
01/01/12 00:00 194 analog.bas
01/01/12 00:00 13,291 trek.bas
01/01/12 00:00 1,986 calib.bas
01/01/12 00:00 227 blinky.bas
01/01/12 00:00 157 !run.bas
01/01/12 00:00 2,580 flag.bas
01/01/12 00:00 538 air.bas
01/01/12 00:00 88 ansi.bas
01/01/12 00:00 102 test.bas
01/01/12 00:00 910 cam.bas
01/01/12 00:00 <DIR> www

> _

If you want to see the contents of a specific folder, use DIR with a folder name:

> dir /c/sys

Directory of: /c/sys/*.*

12/05/12 11:26 <DIR> .
12/05/12 11:26 <DIR> ..
01/01/12 00:00 896 history.log
01/01/12 00:00 491,520 core.fw
01/01/12 00:00 113 !network.bas
01/01/12 00:00 84 !boot.bas
> _

CoreBASIC Reference Guide CoreBASIC User Guide

44

Watchdog protection
Many microcontrollers provide an integrated watchdog to recover from software (and some hardware) faults. If

you deploy your application in the field, over long periods, the probability is that at some point your application

will stop responding and may require a hardware reboot.

CoreBASIC supports integrated hardware watchdogs with the WATCHDOG keyword.

A typical scenario

Most applications have a main loop that cycles doing some work, such as gather and log sensor measurements,

and then pause before the next measurement. If anything happens to the software such that it locks up, you will

stop gathering and logging data which may well be critical in an application that needs to log over months, or

even years.

To protect against this, you can configure the watchdog to reboot the microcontroller and start running your

program again if a lock-up is detected.

Preparing the watchdog

Assume your application logs data every ten seconds by repeatedly measuring sensor data and writing that to

a microSD card or to a cloud-based service such as Xively. To protect against failure, you could configure the

watchdog to time out after 20 seconds, and in your main loop, service (or ‘kick’) the watchdog to reset it. If your

main loop fails to service the watchdog within 20 seconds, the microcontroller will reset.

WATCHDOG TIMER sets the watchdog timeout in seconds—see WATCHDOG TIMER for exact details.

WATCHDOG TIMER does not start the watchdog running, you do that separately.

Ensuring the watchdog times out

When testing your code, it's not that convenient if the watchdog times out and resets the microcontroller, so

CoreBASIC enables you to start the watchdog in debug mode using WATCHDOG THROW. In debug mode, the

hardware watchdog is still configured but rather than resetting the microcontroller, it generates an interrupt

that's passed through the CoreBASIC interpreter and causes your program to stop with a watchdog timeout

error. If this happens, you know that your timeout is too short, or that your application has locked up, and the

microcontroller would have been reset.

Here's an example of setting up the watchdog in debug mode, not servicing it, and waiting for it to time out:

***../examples/watchdog-timeout-demo.bas not found ***

You can load this into CoreBASIC using EXAMPLE "watchdog-timeout-demo" or |watchdog-

timeout-demo.

Running this, you see:

CoreBASIC Reference Guide CoreBASIC User Guide

45

> run

Watchdog configured to go kaboom in five seconds.

ten: 4.9987 seconds remaining
nine: 3.98871 seconds remaining
eight: 2.97875 seconds remaining
seven: 1.96874 seconds remaining
six: 0.958748 seconds remaining

?watchdog timeout in 210: PAUSE 1
> _

Servicing the watchdog

To service the watchdog and reset the interval, you use WATCHDOG RESTORE. You'd normally use this as part

of the main loop, resetting the watchdog when the scheduled task is complete. A modification of the previous

program services the watchdog to prevent it from timing out:

***../examples/watchdog-service-demo.bas not found ***

You can load this into CoreBASIC using EXAMPLE "watchdog-service-demo" or |watchdog-

service-demo.

Running this, you see:

> run

Watchdog configured to time out after five seconds.

ten: 4.99868 seconds remaining
nine: 3.99211 seconds remaining
eight: 2.98211 seconds remaining
seven: 4.99965 seconds remaining
six: 3.98963 seconds remaining
five: 2.97967 seconds remaining
four: 4.99966 seconds remaining
three: 3.98967 seconds remaining
two: 2.97967 seconds remaining
one: 4.99967 seconds remaining

Watchdog is still active!
> _

This program does not stop with a watchdog timeout, it continues to run because the watchdog is services.

When the watchdog is serviced, the timer is reset, and you can see that the remaining time remaining is reset in

the output above.

Deploying

Once you are satisfied your application meets its deadlines, you can deploy it to the field with the watchdog

configured in protection mode. You replace WATCHDOG THROW with WATCHDOG REBOOT to configure the

watchdog to reboot, rather than throw an error, when it times out.

CoreBASIC Reference Guide CoreBASIC User Guide

46

Using the first example again, with WATCHDOG REBOOT:

> run

Watchdog configured to go kaboom in five seconds.

ten: 4.9987 seconds remaining
nine: 3.98871 seconds remaining
eight: 2.97875 seconds remaining
seven: 1.96874 seconds remaining
six: 0.958748 seconds remaining

Connection to host lost.

C:\Users\Paul> _

CoreBASIC Reference Guide CoreBASIC User Guide

47

Time and date
CoreBASIC has a number of functions to manipulate time and date as well as functions that read and update the

current time and date maintained by CoreBASIC.

At its simplest, the current time and date are accessible using TIME$ and DATE$:

> print date$, time$
2013/01/23 23:54:33
> _

TIME$ and DATE$ make it easy to print the time and date for log messages, or to confirm the time and date set

on the SolderCore.

How the date gets set

When CoreBASIC starts, it has no knowledge of the current calendar time, so initializes its time and date to 1

January 1970. (We'll see why this is so a little later.) When a network connection becomes available, because a

LAN cable is plugged in, CoreBASIC sends a request to the network to ask an available Internet time server for

the current time and date. When the time server responds, and the response is valid, the current time and date

is set from the server's response. So, as long as you have a network connection which can access a correctly

configured time server, you should always be able to have the core time set correctly.

If you're running CoreBASIC on something other than a SolderCore, such as a Raspberry Pi or on a PC under

Windows or Linux, CoreBASIC's time and date is queried from the operating system rather than by pinging a

time server directly.

How the time is stored

The time of day clock CORE.TIME increments once per second. The format of CORE.TIME happens to be Unix

or POSIX time, which is the number of elapsed seconds since midnight UTC, 1 January 1970 and is the standard

way of representing time in CoreBASIC. See Unix time - Wikipedia, the free encyclopedia.

Other sources for time and date

There are a number of sources that you can use to initialize CoreBASIC's time of day:

• Manually setting the time and date by direct assignment to CORE.TIME. Manually setting the core time

this way enables you to test your application with a known time and date.

• From the time delivered by a network time server using NTP. This is the default way of initializing the time

when you have the CoreBASIC system connected to the Internet.

• From the time of day stored in an external real time clock chip (RTC). Usually, real time clock ICs are

battery-backed so that they continue to mark time even when the CoreBASIC system is powered off. This

is an ideal way of maintaining time and date for a system that is not connected to the Internet.

• From the time broadcast by the Global Positioning System (GPS). GPS time is highly accurate, but the

drawback is that the receiver's antenna needs to be in view of a set of satellites and usually positioned

near a window, or even outside, for this to work reliably.

http://en.wikipedia.org/wiki/Unix_time

CoreBASIC Reference Guide CoreBASIC User Guide

48

Debunking common misconceptions
There will always be language wars in computer science. BASIC was designed to help beginners start to

program, but BASIC is the foundation of the Microsoft empire.

Here we'll deal with a few common misconceptions about BASIC and its implementation.

BASIC is slow

BASIC isn't slow; an implementation of BASIC may be slow, but there are many BASIC compilers in the world and

they produce top-notch code which out-performs C in some cases. And there is no reason for a BASIC interpreter

to be any slower than a interpreted eLua, Python, or Perl: it all comes down to the design and implementation of

the interpreter, not the source language.

For concrete proof of SolderCore's performance, see Benchmarking CoreBASIC.

BASIC is bad: syntax errors are caught at run time

Not in CoreBASIC: the CoreBASIC interpreter checks the structure and syntax of your program before execution

begins. For some less-capable BASIC interpreters, syntax checking happens when executing a program, and it's

really frustrating finding syntax errors only when your program runs! Because CoreBASIC pre-flight checks your

program before running, the execution engine doesn't syntax check each statement every time it's executed,

over and over again. The benefit? Your program runs at blistering speed!

Short variable names speed up your program

Not in CoreBASIC: all variables are accessed in constant time, irrespective of the length of their name. For some

less-capable BASIC interpreters, it is true that shorter variable names lead to faster programs.

It's faster to GOTO a line at the start of the program than at the end

Not in CoreBASIC: all GOTO and GOSUB statements execute in constant time, irrespective of whether the target

line is at the start or end of a program. For some less-capable BASIC interpreters, it is true that using GOTO takes

more time to find a line at the end of a program that at the beginning of a program.

BASIC programmers learned to put all their subroutines at the start of a program so that their code ran faster.

You just don't need to do this in CoreBASIC—and besides, you should be using named procedures anyway!

String variables can't hold more than 255 characters

Not in CoreBASIC: all strings can hold up to 65,535 characters. Some BASIC interpreters do limit the number of

characters in a string and that may well be a problem for some applications.

A FOR loop executes at least once

Not in CoreBASIC: if the loop should not execute because the initial value exceeds the final value, the loop body

is skipped. For some less-capable BASIC interpreters, it is true that the loop body is executed at least once, even

if the initial value exceeds the final value.

CoreBASIC Reference Guide CoreBASIC User Guide

49

BASIC freezes for ages when garbage collection kicks in

Not in CoreBASIC: the CoreBASIC garbage collector is extremely fast, taking but a moment to scavenge through

memory. Historically, the simple garbage collector in Microsoft's early interpreted BASIC did suffer this problem,

but Microsoft improved their garbage collector over time.

CoreBASIC offers an excellent two-stage garbage collector which you just won't notice.

Line numbers? Seriously?

Well, yes and no. You can use line numbers to type in old programs and use GOTO and GOSUB, but BASIC has

moved on. CoreBASIC is fully structured and includes user-defined procedures, so you never need to use a line

number.

CoreBASIC Reference Guide CoreBASIC User Guide

50

CoreBASIC Reference Guide CoreBASIC Language Reference

51

CoreBASIC Language Reference
This is the online documentation set for CoreBASIC. CoreBASIC is a programming language for embedded

microcontrollers. It's easy to use, it's powerful, and most of all it's interactive.

Get familiar with CoreBASIC

Change History
Please take a moment to read
the changes in this version of
CoreBASIC.

Keywords by function
The nuts and bolts of the
CoreBASIC language, organized
by task.

Keywords, A to Z
The complete reference to the
CoreBASIC language, from A to
Z.

Drivers by function
An introduction to the
capabilities of the drivers built
into CoreBASIC.

Drivers by vendor
A complete reference to
the hardware capabilities
programmed into CoreBASIC.

Example programs
A collection of examples that
demonstrate how to use
CoreBASIC to develop your own
projects.

Copyright

Copyright © 2004-2014 Rowley Associates Limited. All rights reserved.

No part of this document may be reproduced without the prior written consent of Rowley Associates. This

document may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any

electronic medium or machine-readable form without prior consent, in writing, from Rowley Associates Limited.

Disclaimer

The information contained in this manual is subject to change and does not represent a commitment on

the part of the copyright holder. While the information contained herein is assumed to be accurate, Rowley

CoreBASIC Reference Guide CoreBASIC Language Reference

52

Associates assumes no responsibility for any errors or omissions. In no event shall Rowley Associates, its

employees, its contractors, or the authors of this document be liable for special, direct, indirect, or consequential

damage, losses, costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

Trademarks

CoreBASIC™ and SolderCore™ are trademarks of Rowley Associates Limited. All other product names are

trademarks or registered trademarks of their respective owners.

CoreBASIC Reference Guide CoreBASIC Language Reference

53

Change history
While we have done all we can to test CoreBASIC, this is early in the development cycle and, as such, please

be warned that there will be the inevitable bug. We encourage you to report any bugs to us so they can be

corrected for all CoreBASIC users.

Release 1.3.6 changes

New items:

• Added BOSCH-SENSORTEC-BMA250 driver. See Bosch Sensortec BMA250 Driver.

• Added BOSCH-SENSORTEC-BMM150 driver. See Bosch Sensortec BMM150 Driver.

• Added STMICROELECTRONICS-LIS3DSH driver. See STMicroelectronics LIS3DSH Driver.

• Added STMICROELECTRONICS-LIS3LV02DL driver. See STMicroelectronics LIS3LV02DL Driver.

Release 1.3.5 changes

Major items:

• FAT32 support is preliminary. This needs some real testing on more cards. During the work for FAT32, I

benchmarked a selection of other cards in 1-bit SPI and 4-bit bus mode, and the results are surprising. I

will reiterate what my testing confirms: Please select SanDisk cards for your SolderCore. Genuine Samsung

cards are also pretty good, from the small sample I have.

New items:

• Added READ$. See READ$.

• Added INPUT$. See INPUT$.

Usability improvements:

• Added APPEND mode to OPEN. Although CoreBASIC already supports appending to a stream s by setting

POS s = EXT s after opening, it seems that many users expect some form of integrated "open for append"

mode. So, APPEND is now a valid open mode. See OPEN.

General improvements:

• Fixed long-standing bug where out-of-band data is sometimes parsed using a stale packet interrupt

handler.

• Extended streams system command to dump more information for socket streams.

Release 1.3.4 changes

Usability improvements:

• Added paging option to LIST. See LIST USING.

CoreBASIC Reference Guide CoreBASIC Language Reference

54

• Ctrl+C can interrupt FIRMWARE DOWNLOAD.

• Reinstated automatic flush on PRINT for socket streams. Fair warning, I will revisit auto-flush on streams

over the coming weeks and may well require users to manually flush their streams to guarantee pushing

data to the network.

Release 1.3.3 changes

New items:

• Added RENAME to rename files. See RENAME.

Usability improvements:

• Extended EDIT to load and edit files. See EDIT.

• Improved TCP performance on noisy and busy networks.

Release 1.3.2 changes

Usability improvements:

• Increased default DNS name lookup timeout to three seconds. This prevents timeout errors with slow

DNS lookups where the DNS records are not cached close to the SolderCore.

New items:

• Added ANSI-GRAPHICS driver to provide 8-color graphics capability on a terminal. If no graphics

driver is installed and you request graphics by using a graphics keyword, ANSI-GRAPHICS is installed

by default. This means that all graphics-related demonstrations work out of the box on any CoreBASIC

target. The bouncing line demo, EXAMPLE "bouncing-lines", is particularly nice when run with the

ANSI graphics driver. See ANSI Graphics Driver.

• Added XTERM-GRAPHICS driver to provide 216-color graphics capability on a terminal. This is similar

to the ANSI-GRAPHICS except that XTERM-GRAPHICS uses the 256-color mode of xterm (supporting

a 6x6x6 color cube). This driver requires an xterm-compatible terminal emulator, such as Tera Term. See

Xterm Graphics Driver.

Release 1.3.1 changes

Major items:

• Added hardware watchdog protection capability with WATCHDOG commands. See WATCHDOG and

Watchdog protection.

Usability improvements:

• Added NEWS to display the CoreBASIC release history. See NEWS.

• Enhanced HELP, WEB, NEWS, and EXAMPLE CATALOG to display content one page at a time with the

option to continue or quit.

CoreBASIC Reference Guide CoreBASIC Language Reference

55

• Extended IF to allow cascaded ELSE IF. See IF ... THEN.

• Improved debugger experience when stepping IF statements: the debugger automatically advances

over ELSE and ENDIF tokens rather than requiring an additional step.

Release 1.3.0 changes

Major items:

• Added HTTP-SERVER to serve HTTP requests from the SolderCore. SolderCore gets a web server! See

HTTP Server.

• Added FTP-SERVER which enables upload and download of files with an FTP client such as FileZilla or

Windows FTP. See FTP Server.

• Added EXTENDED-USER-MEMORY driver to extend long variable name storage so you can use lots of

meaningful variable names. See Extended User Memory.

Usability improvements:

• Improved loading speed for large programs.

• Fully implemented a "current folder" capability.

• Added CHDIR and CD. See CHDIR and CD.

• Modified the way DIR works. See DIR.

• Added $CWD. See $CWD.

• Improved CATALOG directory listing. See CATALOG.

• Extended MEMORY to dump more information. See MEMORY.

• Extended INSTALL LIST to show high memory use. See INSTALL LIST.

• Extended PIN LIST to show pin mode, pin speed, and drive strength.

• Extended "DOS wedge" shortcuts.

New hardware support:

• Added FREESCALE-MPL3115A2 driver. See Freescale MPL3115A2 Driver.

• Added FREESCALE-MMA8491Q driver. See Freescale MMA8491Q Driver.

• Added CISECO-LED-MATRIX-SHIELD driver.

• Added AIRSENSOR-128GLCD driver. See AirSensor 128GLCD.

Release 1.2.30 changes (beta)

• Added LINEAR-TECHNOLOGY-LTC2309 driver.

• Added AIRSENSOR-192GLCD driver.

• Added DIRECTION properties for parallel bus drivers.

Release 1.2.29 changes (beta)

• Added CORE.Y and CORE.G properties on the SolderCore to allow configuration and control of the LAN

connector's yellow and green LEDs.

CoreBASIC Reference Guide CoreBASIC Language Reference

56

• Reverted SolderCore LCD driver: some releases shipped with an LCD driver with left-over debugging code

in.

Release 1.2.28 changes (beta)

• Added FREESCALE-MPL115A2 driver.

• Added LOCK and UNLOCK statements.

• Corrected SENSECORE driver to match production variant (thanks to Arthur for bringing this to our

attention). The production SenseCore uses a PCA9655 port expander and the preproduction SenseCore

uses an PCF8575 port expander. You can install a driver for preproduction SenseCores using the specific

driver name SOLDERCORE-SENSECORE-PCF8575 or the common name SENSECORE-PCF8575. The

production SenseCore has specific name SOLDERCORE-SENSECORE-PCA9655 and common names

SENSECORE-PCA9655 and simply SENSECORE.

• Added automatic translation of // to ' for Iain, who finds it hard transitioning from C++ to CoreBASIC.

Release 1.2.27 changes (beta)

• Added much-requested HISTORY command set to record command line history. By default, history

recording is not turned on, you can turn it on in your boot file if needed. Commands are recorded to /

c/sys/history.log so you will need a mounted SD card for command line history to work. Because

the SolderCore keeps appending to the history, if your history grows long, recalling and appending to the

history file may well take some time and reduce interactivity. If you find this happens, just use HISTORY

KILL to clear the history file and restore quick responses.

• When invoking EDIT immediately after an error is reported, the full screen editor places the cursor on the

offending line rather than at the first program line.

• Added $ATTR.

Release 1.2.26 changes (beta)

• Added MICROCHIP-MCP4725 driver.

• ADC resolution increased to 12 bits for greater precision on analog inputs.

• Reverted to use the internal AREF for analog channels.

Release 1.2.25 changes (beta)

• The analog voltage reference defaults to AREF on the header and is not configurable in software. Previous

releases used the internal 3.0V reference, independent of AREF. Note that the SolderCore is shipped with

AREF on the header connected to the analog input reference voltage; you can select the 3V3 rail as as the

reference voltage by moving solder jumper JP4.

Release 1.2.24 changes (beta)

• Added capability of reading A4 and A5 in analog mode when JP1 and JP3 select analog mode for the

header pins. Use pin numbers 20 and 21 when JP1 and JP3 select analog mode.

CoreBASIC Reference Guide CoreBASIC Language Reference

57

• Added $BLINK, $STEADY, $NEGATIVE, $POSITIVE, $BOLD, $REGULAR, and $RESET.

Release 1.2.23 changes (beta)

• Additional User Guide material.

• Ran PC-lint over CoreBASIC sources to clean up any potential issues.

• Added SILICON-LABS-SI7005 driver.

Release 1.2.22 changes (beta)

• Changed the definition of the RESOLUTION property of the BOSCH-SENSORTEC-BMP085 driver.

Release 1.2.21 changes (beta)

• Added ITEAD-STUDIO-ITDB02-4.3 and ITEAD-STUDIO-ITDB02-5.0 drivers.

Release 1.2.20 changes (beta)

• Added ANALOG-DEVICES-ADXL362 driver.

• Added HONEYWELL-HIH6130 driver.

• Added FILL LINE USING capability.

Release 1.2.19 changes (beta)

• Rationalized internal temperature sensor interfaces.

• Added TEXAS-INSTRUMENTS-TMP100 driver.

• Added TEXAS-INSTRUMENTS-TMP102 driver.

• Added ANALOG-DEVICES-ADT7410 driver.

• All temperature sensor drivers now implement a RESOLUTION property.

Release 1.2.18 changes (beta)

• Added STMICROELECTRONICS-LIS331HH driver.

• Added STMICROELECTRONICS-L3G4200D driver.

Release 1.2.17 changes (beta)

• Added ATMEL-ATAVRSBIN1 driver.

• Added ATMEL-ATAVRSBIN2 driver.

• Added BOSCH-SENSORTEC-BMA150 driver.

• EXAMPLE will not automatically append .bas if an extension is already present.

Release 1.2.16 changes (beta)

• Added SOFTWARE-SPI driver.

CoreBASIC Reference Guide CoreBASIC Language Reference

58

• CoreBASIC will now automatically close files and recycle file handles if files are not closed by a user

program. File handles are recycled when the program in memory is changed or saved.

• Added SENSIRION-SHT2X driver. This is Iain's first crack at writing a CoreBASIC driver! But Paul did

clean it up a bit…

• Added KIONIX-KXTF9 driver.

• Added STMICROELECTRONICS-LPS331AP driver.

Release 1.2.15 changes (beta)

• More testing carried out for next release.

• Added MAXIM-MAX6675 driver.

Release 1.2.14 changes (beta)

• Exposed internal formatting modes that CoreBASIC supports by adding LIST USING. Noteworthy is

LIST USING mode two which dumps syntax-highlighted HTML listings for direct inclusion into web

pages.

• Added FREESCALE-MPL115A1 driver.

Release 1.2.13 changes (beta)

• Added BGET and BGET$ to read a stream in binary mode.

• Added a CoreBASIC example that replicates the function of FIRMWARE GET.

• Reduced time between socket creation and connection associated with firmware download such that the

socket is not recycled prematurely.

• Updated DS1340 driver so that DAY property computes the day from the date held in the RTC registers

and does not read the internal RTC day register.

Release 1.2.12 changes (beta)

• Added RAVEL function to ravel an array into a vector.

• Added DFT and IDFT functions from the CoreBASIC DSP module.

Release 1.2.11 changes (beta)

• Added MAXDETECT-DHT11 and MAXDETECT-DHT21 humidity sensor drivers. This will work for RHT03-

compatible devices (DHT21, DHT22, RHT02, AM2301 devices) which use the same protocol but come in

different packaging.

• Added LEFT property to the UART to inquire number of characters remaining to be sent from the output

buffer.

Release 1.2.10 changes (beta)

• Ironed out the final kinks, I hope, with the KS0108 LCD driver started in 1.2.6.

CoreBASIC Reference Guide CoreBASIC Language Reference

59

• Added TIME property to DS1340 driver to read and write the current time and date in a single

transaction.

• Added DAY%, DATE%, MONTH%, YEAR%, HOUR%, MINUTE%, and SECOND% to breakdown time and date of

a standard CoreBASIC time (seconds elapsed since 1 January 1970).

Release 1.2.9 changes (beta)

• Improved CATALOG to color-code files and directories and to inhibit listing system and hidden files.

• Fixed reset of working filename when loading; loading sets the working filename to the file loaded.

• Refined fix for PTR positioning issued in 1.2.8.

Release 1.2.8 changes (beta)

• Improved CoreBASIC start-up time when no SD card is present.

• Fixed bug in mass storage code when moving the current file position by assigning to PTR.

• If the system time is not set, newly created files and directories are given a date of 1 January 2012.

Release 1.2.7 changes (beta)

• Fixed bug introduced into PAUSE by 1.2.6 enhancement.

Release 1.2.6 changes (beta)

• Added SAVE AUTO capability.

• Added CORE.TEMP property to measure SolderCore's die temperature.

• Added CORE.I2C(n) property to access hardware I2C bus n.

• Added CORE.SPI(n) property to access hardware SPI bus n.

• Added USING clause to I2C statement to specify I2C bus to run transaction on.

• Added MOUNT and EJECT to quickly mount and eject SD cards from CoreBASIC.

• Added MICROCHIP-MCP342X ADC driver. Untested at present!

• Added MICROCHIP-MCP23017 port expander driver to support the AirSensor KS0108 LCD on an

MCP23017 port expander.

• NEW now sets the working filename to /c/work.bas so that it is harder to inadvertently save over your

last-saved file.

• PAUSE no longer imposes a maximum wait time; additionally, it now checks for user break-ins every 500

ms.

• Added SOFTWARE-I2C driver to create an I2C bus from a pair of digital I/O signals. The software I2C bus

allows a Sensirion SHT1x humidity sensor to share the bus with I2C-compliant devices.

• All I2C-based drivers which were bound to using the primary I2C bus for communication are now

extended with an optional USING clause. The optional USING can specify the I2C bus that the device is

attached to. Shields where I2C is fixed to the primary I2C bus continue to use the primary I2C bus and do

not support this form of USING.

• Documented additional PIN capabilities that have been in CoreBASIC for some time.

CoreBASIC Reference Guide CoreBASIC Language Reference

60

Release 1.2.5 changes (beta)

• Documented and released NMEA-PARSER driver.

• Added CVF.

• Added $CLS.

• Added MEMORY at Iain's request.

• Added MODULES.

• Removed DATA qualifier from CRUNCH: all uses of CRUNCH now report program size reduction.

Release 1.2.4 changes (beta)

• Added PORT option to SOLDERCORE-UART driver which enables use of both hardware UARTs in

CoreBASIC on the SolderCore.

Release 1.2.3 changes (beta)

• Added SENSIRION-SHT1X driver.

• Added LINEAR-TECHNOLOGY-LTC6904 driver.

• Documented AMS-TSL2561 driver.

Release 1.2.2 changes (beta)

• Added PIN LIST and PIN CATALOG.

• Added INSTALL LIST.

• Added CVI and CVU.

Release 1.2.1 changes (beta)

• Added FREEDOM-ACCELEROMETER driver for the Freedom Board.

• Added MMA8451Q driver.

Release 1.2.0 changes

• CoreBASIC rough-cut release for the Freescale Freedom Board. The Freedom Board has 128 KB of flash

and 12 KB of RAM, but in that space we managed to squeeze full support for the CoreBASIC language, I2C,

SPI, graphics, on-chip editor, and a selection of sensor and shield drivers. Because of space constraints,

we have limited support to the SolderCore shields and sensors. Connect a terminal to the OpenSDA CDC

UART at 115200 baud and press reset for the CoreBASIC experience!

• A known problem on the Freedom Board is that CRUNCH MAX will crash.

• The Freedom Board does not support ANALOG OUTPUT mode yet.

• The Freedom Board does not support ANALOG INPUT mode yet.

• Added FREEDOM-CPU driver for the Freedom Board.

Release 1.1.0 changes

• This is an Internal Testing release.

CoreBASIC Reference Guide CoreBASIC Language Reference

61

• Core internal platform APIs rewritten to make porting CoreBASIC to other hardware easier. A benefit of

this rewrite is that all core GPIO is faster and therefore all GPIO-intensive drivers are faster.

• CoreBASIC port to Raspberry Pi and Panda Board using SDL is now minimally functional. Excellent work,

Jon! The existing port of CoreBASIC running on Windows using Qt will be retired.

Release 1.0.0 changes

• Improved TCP/IP buffer handling.

• Added %WIDTH and %HEIGHT.

Release 0.9.16 changes

• Added %COLOR and COLOR$.

• Added REBOOT.

• Added INSTR.

• Enhanced VDU can now output to channels.

• TCP ports that are not open will simply drop connection requests rather than refuse connections.

• Fixed excess NTP requests being made to the local network with no explicit time server set.

Release 0.9.15 changes

• Added WEB keyword.

• Fixed an issue with the DHCP client when DHCP servers issued 10-year leases to an IP address. Thanks for

the bug report Andreas! http://www.watterott.com/

• Added support for InvenSense MPU-6000 Evaluation Board with AK8975 magnetometer. The

MPU-6000EVB driver integrates the AK8975 which is fully isolated on the auxiliary I2C bus. Electrical

connection does not require anything special, i.e. I2C pass-through is not required for initialization.

• Documented $LEFT, $RIGHT, $UP, $DOWN.

• Added %IN and %OUT.

• Extra documentation for UART and additional polling capabilities.

Release 0.9.14 changes

• Added device support for MPU-6150 and MPU-9150. The type of device, MPU-6050, MPU-6150, or

MPU-9150, and its revision is detected by the INVENSENSE-MPU-6050 driver and automatically set up.

• Added INVENSENSE-MPU-EVB driver to support the InvenSense MPU-6050EVB and MPU-9150EVB

evaluation boards with AK8975 magnetometer.

Release 0.9.13 changes

• Added ITDB02-2.2 driver.

• Added $OFF and $ON.

• Automatically turn the cursor on when returning to the visual editor.

• Corrected a problem in the AHRS driver when fusing gyroscopes and accelerometers on separate devices

(introduced in 0.9.6 firmware).

http://www.watterott.com/

CoreBASIC Reference Guide CoreBASIC Language Reference

62

• Added VERSION to display the installed firmware version The version number continues to be provided

by the CORE.VERSION property.

• Added Conway's Game of Life demos for running on a standard console (no extra hardware required) and

the Jimmie Rodgers LoL Shield. These are easily adapted for other bitmap displays, and it runs brilliantly

on an Arcade Shield or LCD Shield.

• Improved performance of LET when assigning to a multi-dimensional array.

Release 0.9.12 changes

• Added HIGH to retrieve the high bound of a vector.

• Added DOT and CROSS for vector dot and cross products.

• Added ITDB02-2.4E driver which works on both the ITDB02-2.4E LCD module on an ITDB02 shield or

the ITDB02-2.4E shield.

Release 0.9.11 changes

• HMC5883L driver now initializes the magnetometer bandwidth to 75 Hz on installation.

• Added SPI-based MPU-6000 driver. This was tested on an InvenSense MPU-6000 Evaluation Board

connected to a CoreProto rivet plugged into a SenseCore.

• Documented MORSE$.

• Fixed an editor lock-up and prevented Page Down advancing beyond the end of the source text.

• Added alpha ITDB02-4.3 and ITDB02-5.0 drivers; these panels seem to suffer problems when

mounted on the ITDB02 v1.2 shield and must not be considered stable at this time. We are working to

resolve this with ITead Studio.

Release 0.9.10 changes

• Added statement TRY and ERROR for user-supplied error handling.

• Documented SHA1$.

• Streamlined ITDB02 drivers to recover some space in flash.

• ITDB02 2.8" LCD Touch Shield tested and confirmed working with the ITDB02-2.8 driver.

Release 0.9.9 changes

• Added FLUSH to allow programmed push of partial TCP segments.

• CLOSE does not throw an exception on a close of closed channel.

• CLOSE on a socket channel initiates a full close, rather than a half-close, of the open socket.

• Documented URI$, BASE64$, and JUSTIFY$.

Release 0.9.8 changes

• Added @ to index an array or string by a unary expression. X@I is identical to X(I) in all contexts where

I is a unary expression. X@I is a shorthand inspired by the ? and ! operators of BBC Basic. Using @ takes

slightly less program space and executes marginally faster than X(I).

CoreBASIC Reference Guide CoreBASIC Language Reference

63

• Extended QUAT to accept two arguments, a scalar part and a vector part, to construct a quaternion.

• Fixed a bug in WRITE which can cause the token pointer to be off by one in some cases.

Release 0.9.7 changes

• Renamed RPT to REPEAT$ for compatibility with PowerBASIC programs.

• STRING$ added for compatibility with Microsoft BASIC programs.

• Extended CHR to accept string arguments.

• The default I2C address of the CORE-MPU driver is changed from 0xD0 to 0xD2 to match the CoreMPU

production schematics. The default I2C address for the MPU-6050 remains at 0xD0.

• The AT function is renamed to TAB.

• Added property selectors I, J, K to directly access the vector parts of a quaternion, and R to directly

access the scalar part of a quaternion. Assignment to a component part of a quaternion is not supported.

• Added property selector V which returns the vector part of a quaternion a three-element vector, as IM

does.

Release 0.9.6 changes

• SOLDERCORE-GRAPHICS-SHIELD driver added which dynamically installs either the SolderCore

Arcade Shield driver or the SolderCore LCD Shield Driver, depending upon which device is detected as

attached to the SolderCore.

• The default I2C address of the bus expander used by the SOLDERCORE-SENSECORE driver is changed

from 0x46 to 0x42 to match the SenseCore production schematics.

• The SOLDERCORE-LCD-SHIELD and SOLDERCORE-ARCADE-SHIELD drivers have been updated

to work only with firmware versions 133 and later. If you have versions of these shields running pre-

production firmware, please use an XTAG-2 programmer to upgrade the firmware over JTAG rather than

over SPI.

• More microSD cards are supported in CoreBASIC. We still recommend that you use genuine SanDisk cards

in your SolderCore.

• The DELAY statement is removed and all examples are updated to use the equivalent PAUSE statement.

• HELP has been extended to display help for drivers when followed by a string containing a valid driver

name.

• Improved performance of the AHRS driver by using advertised internal interfaces to accelerometers,

gyroscopes, and magnetometers.

• Fixed a problem where CoreBASIC would potentially crash after installing a driver that throws a

CoreBASIC exception.

CoreBASIC Reference Guide CoreBASIC Language Reference

64

Keywords by function
Task Example keywords

Write and edit programs NEW, LIST, EDIT…

Load and save programs LOAD, SAVE, NAME, EXAMPLE…

Build loops and decision structures FOR ... NEXT, WHILE ... WEND, IF ... THEN, CASE ...
ENDCASE…

Define and call procedures and subroutines DEFPROC ... ENDPROC, CALL, GOSUB, RETURN…

Device input and output PRINT, INPUT, GET$…

Manipulate and transform strings LEFT, RIGHT, MID…

Calculate with numbers +, -, *, /, ^ …

Display graphics and text LINE, CIRCLE, DRAW…

Mathematical functions SQR, SIN, COS, TAN, EXP, LOG, ATN2…

Manipulate and transform arrays LEN, SORT, SHUFFLE, GEN…

Linear systems and matrices DIM, MAT, TRN, INV…

Complex numbers %I, CMPLX, RE, IM…

CoreBASIC Reference Guide CoreBASIC Language Reference

65

Write and edit programs
Basics

NEW Start a new program

LIST List program, or part of program, to screen

AUTO Automatically number a program

EDIT Edit part, or all of, your program

Development

DELETE Delete part of a program

RENUMBER Renumber the program

CHECK Check program syntax

MEMORY See how much space your program takes

Transforming programs

CRUNCH Crunch program to reduce memory requirement

CoreBASIC Reference Guide CoreBASIC Language Reference

66

Load and save programs
When developing programs you will want to manage the external media that programs are stored on. You can

do that with the following keywords:

Loading and saving programs

LOAD Load a program from external storage

SAVE Save a program to external storage

NAME Name your program

EXAMPLE Load example programs from the network

MERGE Merge a program from external storage

Listing the contents of your disks

CATALOG Display folder contents

DIR Shorthand for interactive CATALOG.

Managing your storage

KILL Remove a file from external storage

RENAME Rename an existing file

CHDIR Change working folder

MKDIR Create a folder

RMDIR Remove a folder

MOUNT Mount a volume

EJECT Eject a volume

CoreBASIC Reference Guide CoreBASIC Language Reference

67

Build loops and decision structures
Making decisions

IF ... THEN Conditional execution

CASE ... ENDCASE Multi-way branch

IFF Expression "if-else"

Loops

FOR ... NEXT Iterate a fixed number of times

FOR EACH ... NEXT Iterate over an array

REPEAT ... UNTIL Repeat statements while a condition is false

WHILE ... WEND Repeat statements while a condition is false

CoreBASIC Reference Guide CoreBASIC Language Reference

68

Define and call procedures and subroutines
Procedures

DEFPROC Define a named procedure

CALL Call a procedure

Classic subroutines

GOSUB Call a subroutine

RETURN Return from a subroutines

CoreBASIC Reference Guide CoreBASIC Language Reference

69

Device input and output
Simple input and output

PRINT Write formatted data to a file or stream

INPUT Get user input or read from a file or stream

GET, GET$ Wait for a single keystroke

File access

OPEN Open a file for reading or writing

CLOSE Close a file or stream

BGET, BGET$ Read a byte from a file.

File operations

EOF Inquire if at end of file

EXT Set extent of file

EXT() Find extent of file

PTR Set position within file

PTR() Find position within file

CoreBASIC Reference Guide CoreBASIC Language Reference

70

Calculate with numbers
Simple operations

+ Add numbers

- Subtract numbers

* Multiply numbers

/ Divide numbers

^ Exponentiate numbers

MOD Compute remainder after division

\ Integer division

Comparing numbers

=, <> Compare numbers for equality

<, <=, >, >=, Order numbers

MAX Maximum of two numbers

MIN Minimum of two numbers

Operating on numbers

ABS Compute absolute value

SQR Compute square root

SGN Compute sign of a number

INV Reciprocal of a number

Special functions

CEIL Compute smallest integer not greater than…

FIX Floor

FLT Convert to floating

INT Integer part of a number

Miscellaneous functions

RND Generate a random number

CoreBASIC Reference Guide CoreBASIC Language Reference

71

Manipulate and transform strings
Getting part of a string

LEFT Return a number of characters from the left part of a
string

MID Return a number of characters from the middle of a
string

CoreBASIC Reference Guide CoreBASIC Language Reference

72

Display graphics and text
Setting up graphics

ORIGIN Move graphics origin

MOVE Move drawing position

COLOR Select color to draw shapes and text

CLG Clear and initialize graphics display

Simple drawing

LINE Draw lines

CIRCLE Draw or fill a circle

PLOT Plot points

Drawing text

FONT Select font to draw text

DRAW Draw text on graphics display

Colors

RGB Construct a color

RED% Extract red component of a color

GREEN% Extract green component of a color

BLUE% Extract blue component of a color

Predefined colors

%BLACK Black color

%WHITE White color

%RED Red color

%GREEN Green color

%BLUE Blue color

%CYAN Cyan color

%MAGENTA Magenta color

%YELLOW Yellow color

Miscellaneous

GFX Inquire graphics capabilities

CoreBASIC Reference Guide CoreBASIC Language Reference

73

Manipulate and transform arrays
Constructing arrays

[...] Construct array

GEN Create arithmetic progression

CON Create unitary array

ZER Create zero array

DIM Assign zero matrix

Properties of an array

LEN Number of elements in an array

HIGH Upper bound for an array.

Getting part of an array

LEFT Return a number of elements from the left part of an
array

MID Return a number of elements from the middle of an
array

RIGHT Return a number of elements from the right part of an
array

Accessing matrices

COL Extract column of matrix

ROW Extract row of matrix

PICK Pick elements of an array by predicate

SELECT Select elements of array by index

RAVEL Ravel an array to a vector

Inquiring arrays

MAX Return maximum element of an array

MIN Return minimum element of an array

Operating on arrays

SUM Sum all elements of an array

SORT Sort array into ascending order

SHUFFLE Shuffle an array into random order

INNER Compute inner product

REDUCE Reduce an array using a binary operator

MERGE Merge an array into a single string

Generating arrays

EXPAND Expand string to array of ASCII codes

CoreBASIC Reference Guide CoreBASIC Language Reference

74

SAMPLE Sample properties into an array

SPLIT Split string into an array of strings

CoreBASIC Reference Guide CoreBASIC Language Reference

75

Complex numbers
Create complex numbers

%I Imaginary unit and pure imaginary constructor

CMPLX Construct complex number

Extract parts

RE Extract real part

IM Extract imaginary part

Operate on complex numbers

ABS Compute magnitude

SGN Compute signum

ARG Compute argument

CNJ Compute complex conjugate

Conversions

ROT Convert to rotation matrix

CoreBASIC Reference Guide CoreBASIC Language Reference

76

Mathematical functions
Conversion functions

DEG Convert radians to degrees

RAD Convert degrees to radians

Trigonometric functions

SIN Compute sine

COS Compute cosine

TAN Compute tangent

CIS Compute sine and cosine

Inverse trigonometric functions

ASN Compute inverse sine

ACS Compute inverse cosine

ATN Compute inverse tangent

ATN2 Compute inverse tangent with two arguments

Roots, exponentials, and logarithms

SQR Compute square root

LOG Compute natural logarithm

EXP Compute natural exponential

LOG10 Compute base 10 logarithm

LOG2 Compute base 2 logarithm

Hyperbolic functions

SINH Compute hyperbolic sine

COSH Compute hyperbolic cosine

TANH Compute hyperbolic tangent

Inverse hyperbolic functions

ASNH Compute inverse hyperbolic sine

ACSH Compute inverse hyperbolic cosine

ATNH Compute inverse hyperbolic tangent

CoreBASIC Reference Guide CoreBASIC Language Reference

77

Linear systems and matrices
Creating matrices

[...] Construct matrix

IDN Create identity matrix

CON Create unitary matrix

ZER Create zero matrix

Assigning matrices

MAT LET Assign matrix

DIM Assign zero matrix

Accessing matrices

COL Extract column of matrix

ROW Extract row of matrix

Basic matrix functions

+ Add matrices

- Subtract matrices

* Multiply matrices

/ Right divide matrices

\ Left divide matrices

Operating on matrices

TRN Transpose matrix

DET Compute determinant

INV Compute matrix inverse

ROT Compute rotation matrix

CoreBASIC Reference Guide CoreBASIC Language Reference

78

Keywords, A to Z
This section contains a description of the commands and operators that CoreBASIC understands.

Symbols

' + - *

/ : < <=

= <> > >=

[\] ^

|

$

$BEL $BLACK $BLINK $BLUE

$BOLD $BOOT $BS $CLS

$CRLF $CR $CSI $CWD

$DOWN $EOF $ESC $FF

$GREEN $LEFT $LF $NL

$MAGENTA $NEGATIVE $NET $NUL

$OFF $ON $POSITIVE $RED

$REGULAR $RESET $RIGHT $RUN

$STEADY $TAB $UP $VT

$WHITE $WORK $WS $YELLOW

%

%BLACK %BLUE %COLOR %CYAN

%E %FALSE %IN %GREEN

%HEIGHT %I %MAGENTA %OUT

%RED %WHITE %WIDTH %YELLOW

%PI %TRUE

A

ABS ACS ACSH AND

AND THEN ARG AS ASC

ASN ASNH ATN2 ATNH

AUTO

B

CoreBASIC Reference Guide CoreBASIC Language Reference

79

BASE64$ BGET BGET$ BLUE%

BYE

C

CALL CASE CATALOG CD

CEIL CHAIN CHDIR CHECK

CHR CINT CIRCLE CIS

CLG CLOSE CLS CMPLX

CNJ CON COL COLOR

COLOR$ CORE COS COSH

CREDITS CROSS CRUNCH

D

DATA DATE$ DATE% DAY%

DEBUG DEFPROC DEG DELETE

DELETE$ DET DFT DIM

DIR DNS DOT DRAW

DUMP

E

EDIT ELSE EJECT END

ENDCASE ENDIF ENDPROC EOF

EQV ERROR EXAMPLE CATALOG EXAMPLE LOAD

EXIT FOR EXIT REPEAT EXIT WHILE EXP

EXPAND EXT EXT()

F

FALSE FILL FIRMWARE CATALOG FIRMWARE CHECK

FIRMWARE GET FIRMWARE KILL FIRMWARE RUN FIRMWARE SAVE

FIX FLUSH FLT FOR

FONT FONT CATALOG

G

GEN GET GET$ GOTO

GFX GOSUB GREEN%

H

CoreBASIC Reference Guide CoreBASIC Language Reference

80

HELP HEX HIGH HISTORY LIST

HISTORY KILL HISTORY OFF HISTORY ON HISTORY PICK

HOUR%

I

I2C IDFT IDN IF

IFF IM IMP IN

INF INK INNER INPUT

INPUT$ INSERT$ INSTALL INSTALL CATALOG

INSTALL LIST INSTR INT INV

J

JOIN JUSTIFY$

K

KILL

L

LCASE LEFT LEN LET

LIST LIST USING LOCK LOG

LOG10 LOG2 LOAD LTRIM

M

MAIL MAT MAT LET MAT PRINT

MAT() MATCH MAX() MAX

MEMORY MERGE MERGE() MID

MIN MIN() MINUTE% MKDIR

MKDIR() MKF MKI MOD

MODULES MONTH% MORE MOUNT

MOVE

N

NAN $NAME NAME NET

NEW NEWS NEXT NUMBER$

O

OPEN OR OR ELSE ORIGIN

CoreBASIC Reference Guide CoreBASIC Language Reference

81

OTHERWISE

P

PAPER PAUSE PI PICK

PIN PIN CATALOG PIN LIST PIN()

PLOT PRINT

Q

QUAT

R

RAD RANDOMIZE RAVEL RE

READ READ$ REBOOT RECTANGLE

RECYCLE RED% REDUCE REM

RENAME RENUMBER REPEAT REPEAT$

REPORT REPORT() RESTORE RETURN

REVERSE RGB RMDIR RMDIR()

RND ROT ROW RTRIM

RUN RUN()

S

SAMPLE SAVE SAVE AUTO SECOND%

SELECT SGN SHA1$ SHUFFLE

SIN SINH SOCKET SORT

SPLIT SPC SPOKEN$ SQR

STEP STOP STR STRING$

SUBST$ SUM SYSTEM

T

TAB TAN TANH THEN

TIME$ TIMER TO TRIM

TRN TRUE TRUTH TRY

U

UCASE UNLOCK UNTIL URI$

UTF

CoreBASIC Reference Guide CoreBASIC Language Reference

82

V

VAL VDU VERSION

W

WAIT WATCHDOG() WATCHDOG REBOOT WATCHDOG RESTORE

WATCHDOG THROW WATCHDOG TIMER WEND WHEN

WHILE

X

XOR

Y

YEAR%

Z

ZER

CoreBASIC Reference Guide CoreBASIC Language Reference

83

$constant

Synopsis

$name

Predefined string.

Description

$ provides convenient access to some predefined strings. Although these strings can be constructed using INK

and COLOR, for instance, using a predefined name has benefits: it's faster, your stored program is smaller, and

your program reads better.

Predefined ASCII characters

The following provide a convenient way to access single ASCII characters as strings.

Name Description Equivalent to

$NUL null CHR 0

$BEL bell CHR 7

$BS backspace CHR 8

$TAB horizontal tab CHR 9

$LF or $NL line feed CHR 10

$VT vertical tab CHR 11

$FF form feed CHR 12

$CR carriage return CHR 13

$EOF end of file CHR 26

$ESC escape CHR 27

Predefined strings

The following provide names for common strings:

Name Description Equivalent to

$CRLF carriage return, line feed $CR + $LF

$CSI control sequence introducer $ESC + "["

$CLS clear screen, home cursor $CSI + "2J" + $CSI + "H"

$WS whitespace characters " " + $TAB + $CR + $LF +

$VT + $FF

Predefined inks

The following provide a convenient way to change INK:

CoreBASIC Reference Guide CoreBASIC Language Reference

84

Name Description Equivalent to

$BLACK Black ink INK 0

$RED Red ink INK 1

$GREEN Green ink INK 2

$YELLOW Yellow ink INK 3

$BLUE Blue ink INK 4

$MAGENTA Magenta ink INK 5

$CYAN Cyan ink INK 6

$WHITE White ink INK 7

Predefined attributes

The following provide a convenient way to change display attributes:

Name Description Equivalent to

$NEGATIVE Negative display $ATTR(7)

$POSITIVE Positive display $ATTR(27)

$BLINK Blink on $ATTR(5)

$STEADY Blink off $ATTR(25)

$BOLD Bolding on $ATTR(1)

$REGULAR Bolding off $ATTR(22)

$RESET Reset all attributes $ATTR(0)

Note that not all terminal emulators support every attribute, and the way that attributes are rendered may not

always be intuitive. For instance, bold characters are usually displayed not by the type of bolding you see in

print, but are displayed brighter to make them stand out. Blink is particularly difficult for some bitmap-based

terminal emulators, and isn't generally supported by them.

Predefined actions

The following provide a convenient way to control the cursor:

Name Description Equivalent to

$OFF Turn cursor off $CSI + "?25l"

$ON Turn cursor on $CSI + "?25h"

Predefined file names

The following provide a quick way of referring to system files:

Name Expands to Description

CoreBASIC Reference Guide CoreBASIC Language Reference

85

$WORK /c/work.bas User work file name.

$RUN /c/!run.bas CoreBASIC "autoexec" file.

$NET /c/sys/!network.bas Network configuration file.

$BOOT /c/sys/!boot.bas Boot configuration file.

See also

$ATTR

CoreBASIC Reference Guide CoreBASIC Language Reference

86

$ATTR

Syntax

$ATTR(n)

Construct attribute change sequence.

Description

$ATTR(n) returns a string containing VT220 control codes that select attribute n. The string return for

$ATTR(n) is identical to the following CoreBASIC statement:

$CSI + STR(n) + "m"

The attributes supported by a terminal emulator vary; you will need to consult the documentation of the

terminal emulator you use to see which attributes are supported.

CoreBASIC Reference Guide CoreBASIC Language Reference

87

$CWD

Synopsis

$CWD

Current working folder name.

Description

$CWD returns the name of the current working folder.

Example

> print $cwd
/c
> chdir "www"
> print $cwd
/c/www
> chdir "/c/sys/backups"
> print $cwd
/c/sys/backups
> chdir ".."
> print $cwd
/c/sys
> _

See also

CHDIR

CoreBASIC Reference Guide CoreBASIC Language Reference

88

$DOWN

Syntax

$DOWN $DOWN(n)

Move cursor down.

Description

$DOWN returns a string containing control codes to move the cursor down one line. $DOWN(n) returns a string

containing control codes to move the cursor down n lines, where n is constrained to lie in the interval [0, 100].

CoreBASIC Reference Guide CoreBASIC Language Reference

89

$LEFT

Syntax

$LEFT $LEFT(n)

Move cursor left.

Description

$LEFT returns a string containing control codes to move the cursor left one position. $LEFT(n) returns a

string containing control codes to move the cursor left n positions, where n is constrained to lie in the interval [0,

100].

CoreBASIC Reference Guide CoreBASIC Language Reference

90

$RIGHT

Syntax

$RIGHT $RIGHT(n)

Move cursor right.

Description

$RIGHT returns a string containing control codes to move the cursor right one position. $RIGHT(n) returns a

string containing control codes to move the cursor right n positions, where n is constrained to lie in the interval

[0, 100].

CoreBASIC Reference Guide CoreBASIC Language Reference

91

$UP

Syntax

$UP $UP(n)

Move cursor up.

Description

$UP returns a string containing control codes to move the cursor up one line. $UP(n) returns a string

containing control codes to move the cursor up n lines, where n is constrained to lie in the interval [0, 100].

CoreBASIC Reference Guide CoreBASIC Language Reference

92

%constant

Syntax

%name

%name(index)

Predefined constant.

Description

% provides convenient access to the following constants:

Name Description Equivalent to

%E Euler's number, e 2.718281828…

%PI Pi, π. 3.141592653…

%I Imaginary unit, i 1 × i

%FALSE Logical false 0

%TRUE Logical true 1

Corresponding to the predefined character strings, CoreBASIC provides predefined ASCII codes:

Name Description Equivalent to

%NUL null 0

%BEL bell 7

%BS backspace 8

%TAB horizontal tab 9

%LF line feed 10

%VT vertical tab 11

%FF form feed 12

%CR carriage return 13

%EOF end of file 26

%ESC escape 27

% also provides a way to encode colors:

Name Description Equivalent to

%BLACK Black color RGB(0, 0, 0) or 0x000000

%WHITE White color RGB(1, 1, 1) or 0xffffff

%RED Red color RGB(1, 0, 0) or 0xff0000

%GREEN Green color RGB(0, 1, 0) or 0x00ff00

CoreBASIC Reference Guide CoreBASIC Language Reference

93

%BLUE Blue color RGB(0, 0, 1) or 0x0000ff

%CYAN Cyan color RGB(0, 1, 1) or 0x00ffff

%MAGENTA Magenta color RGB(1, 0, 1) or 0xff00ff

%YELLOW Yellow color RGB(1, 1, 0) or 0xffff00

You can select the saturation of the color by using an argument, for example %RED(0.5). 1 specifies that

the color is fully saturated and 0 that it is fully desaturated to black. Hence, RED(0.5) is a dull red at 50%

saturation:

> print hex %red(0.5)
800000
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

94

%COLOR

Synopsis

%COLOR

Current drawing color.

Description

%COLOR returns the drawing color set by the last COLOR statement. If no graphics device is selected, an error is

thrown.

See also

COLOR

CoreBASIC Reference Guide CoreBASIC Language Reference

95

%E

Synopsis

%E

Euler's number.

Description

%E is Euler's number, also knows as Napier's constant.

> print %e
2.71828
> _

See also

EXP

CoreBASIC Reference Guide CoreBASIC Language Reference

96

%FALSE

Synopsis

%FALSE

Boolean false.

Description

%FALSE is a synonym for zero as Boolean values are represented as integers in CoreBASIC.

> print %false | truth %false
0
False
> _

See also

%TRUE

CoreBASIC Reference Guide CoreBASIC Language Reference

97

%HEIGHT

Synopsis

%HEIGHT

Height of Telnet NVT in rows.

Description

%HEIGHT returns the height of the Network Virtual Terminal (NVT) in rows. CoreBASIC negotiates with the

Telnet client using NAWS and indicates the number of negotiated rows in %HEIGHT. If the client does not

support NAWS, the height is defaulted to 25 rows.

CoreBASIC Reference Guide CoreBASIC Language Reference

98

%I

Synopsis

%I

%I(b)

Imaginary unit.

Description

%I evaluates to the complex number i.

> print %i
0+1j
> _

This form is more natural when expressing complex numbers in your program:

> print 4 - 7 * %i
4-7j
> print (3 - 4 * %i) * (-2 + 4 * %i)
10+20j
> print %i * %i
-1
> _

Using %I in this way is marginally more expensive than using CMPLX to construct a complex number.

When %I is used as a function, %I(N), the result is the number N×i:

> print %i(%pi)
0+3.14159j
> print %e ^ %i(%pi) + 1
0+0j
> _

See also

CMPLX

CoreBASIC Reference Guide CoreBASIC Language Reference

99

%IN

Synopsis

%IN

Standard input channel.

Description

%IN evaluates to an integer that is the current input channel.

CoreBASIC Reference Guide CoreBASIC Language Reference

100

%OUT

Synopsis

%OUT

Standard output channel.

Description

%OUT evaluates to an integer that is the current output channel.

To force data remaining in a TCP/IP buffer to be flushed to the network, rather than waiting for a full packet to be

completed, you can use FLUSH %OUT.

See also

FLUSH

CoreBASIC Reference Guide CoreBASIC Language Reference

101

%PI

Synopsis

%PI

Approximation for π.

Description

%PI evaluates to an approximation to π.

> print %pi
3.14159
> _

See also

PI

CoreBASIC Reference Guide CoreBASIC Language Reference

102

%TRUE

Synopsis

%TRUE

Boolean true.

Description

%TRUE is a synonym for 1 as Boolean values are represented as integers in CoreBASIC.

> print %true | truth %true
1
True
> _

See also

%FALSE

CoreBASIC Reference Guide CoreBASIC Language Reference

103

%WIDTH

Synopsis

%WIDTH

Width of Telnet NVT in columns.

Description

%WIDTH returns the width of the Network Virtual Terminal (NVT) in columns. CoreBASIC negotiates with the

Telnet client using NAWS and indicates the number of negotiated columns in %WIDTH. If the client does not

support NAWS, the width is defaulted to 80 columns.

CoreBASIC Reference Guide CoreBASIC Language Reference

104

'

Synopsis

' comment

Comment.

Description

See REM.

CoreBASIC Reference Guide CoreBASIC Language Reference

105

+

Synopsis

x + y

Add.

Description

+ adds y to x. x and y must be compatible; if they are incompatible, CoreBASIC throws an exception. For instance,

CoreBASIC cannot add numbers and strings directly:

> print 1 + "3"
?type mismatch
> _

Numbers

Real and complex numbers are added using standard mathematical rules:

> print 1 + 2
3
> print 2 + cmplx(3, 4)
5+4j
> print cmplx(3, 4) + cmplx(5, 12)
8+16j
> _

Quaternion addition adds corresponding components:

> print quat(1, 2, 3, 4) + quat(3, 4, 5, 6)
4+6i+8j+10k
> _

Strings

CoreBASIC defines addition of strings as concatenation.

> print "Core" + "BASIC"
CoreBASIC
> _

Arrays

Arrays are added element-by-element and a new array is created containing the sum of each pair:

> print [1, 2, 3] + [4, 5, 6]
[5, 7, 9]

CoreBASIC Reference Guide CoreBASIC Language Reference

106

> _

When adding an array and a scalar value, each value in the array is added to the scalar value and a new array is

created containing the sum of each element with the scalar value:

> print [1, 2, 3] + 2
[3, 4, 5]

You can use + to add prefixes or suffixes to an array containing strings:

> mat print "|" + ["Core", "BASIC"] + "|"
|Core|
|BASIC|
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

107

-

Synopsis

x - y

Subtract.

Description

- subtracts y from x. Both x and y must be compatible; if they are incompatible, CoreBASIC throws an exception.

For instance, CoreBASIC cannot subtract strings form numbers directly:

> print 1 - "3"
?type mismatch
> _

Numbers

Real and complex numbers are subtracted using standard mathematical rules:

> print 2 - 1
1
> print 2 - cmplx(3, 4)
-1-2j
> print cmplx(3, 4) - cmplx(5, 12)
-2-8j
> _

Quaternion subtraction subtracts corresponding components:

> print quat(1, 2, 3, 4) - quat(6, 5, 4, 3)
-5-3i-1j+1k
> _

The - operator also works as a prefix to negate a value:

> print - 1
-1
> _

Arrays

Arrays are subtracted element-by-element and a new array is created containing the difference of each pair:

> print [1, 2, 3] - [2, 3, 1]
[-1, -1, 2]
> _

You can subtract a scalar value from an array or an array form a scalar:

CoreBASIC Reference Guide CoreBASIC Language Reference

108

> print [1, 2, 3] - 2
[-1, 0, 1]
> print 2 - [1, 2, 3]
[1, 0, -1]
> _

If arg is an array, negation threads recursively over the elements of the array:

> print -[1, 2, 3]
[-1, -2, -3]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

109

*

Synopsis

x * y

Multiply.

Description

* multiplies x by y. Both x and y must be compatible; if they are incompatible, CoreBASIC throws an exception.

For instance, CoreBASIC cannot multiply strings by numbers directly:

> print "3" * 1
?type mismatch
> _

Numbers

Real and complex numbers are multiplied using standard mathematical rules:

> print 2 * 7
14
> print 2 * cmplx(3, 4)
6+8j
> _

Arrays

Arrays are multiplied element-by-element and a new array is created containing the product of each pair.

> print [1, 2, 3] * [4, 5, 6]
[4, 10, 18]
> _

You can multiply a scalar value by an array:

> print [1, 2, 3] * 2
[2, 4, 6]
> print 2 * [1, 2, 3]
[2, 4, 6]
> _

Matrix mode

In matrix mode, if x and y are both matrices, * computes the matrix product of x and y.

> a = [[1, 2], [3, 4]] ' 2x2 matrix
> mat print a

CoreBASIC Reference Guide CoreBASIC Language Reference

110

1 2
3 4
> p = a*a
> mat print p ' each element is squared
1 4
9 16
> mat p = a*a ' multiplication in matrix mode
> mat print p ' uses standard mathematical matrix multiply
7 10
15 22
> _

See also

DOT, CROSS

CoreBASIC Reference Guide CoreBASIC Language Reference

111

/

Synopsis

x / y

Divide.

Description

/ divides x by y. Both x and y must be compatible; if they are incompatible, CoreBASIC throws an exception. For

instance, CoreBASIC cannot divide strings by numbers directly:

> print "3" / 2
?type mismatch
> _

Numbers

Real and complex numbers are divided using standard mathematical rules:

> print 2 / 7
0.285714
> print 10 / cmplx(3, 4)
1.2-1.6j
> _

Arrays

Arrays are divided element-by-element and a new array is created containing the quotient of each pair.

> print [1, 2, 3] / [4, 5, 6]
[0.25, 0.4, 0.5]
> _

You can divide a scalar value by an array, or an array by a scalar:

> print [1, 2, 3] / 2
[0.5, 1, 1.5]
> print 2 / [1, 2, 3]
[2, 1, 0.666667]
> _

Matrix mode

In matrix mode, if x and y are both matrices, / computes the right matrix quotient of x and y using right matrix

division, x * INV y.

> a = [[1, 2], [3, 4]]

CoreBASIC Reference Guide CoreBASIC Language Reference

112

> b = [[5, 6], [7, 8]]
> mat print a
1 2
3 4
> mat print b
5 6
7 8
> mat print a/b
3 -2
2 -1
> mat print a * inv b ' a/b is a*INV(b)
3 -2
2 -1
> mat print (a/b) * b
1 2
3 4
> mat print a/a ' a matrix divided by itself is the identity matrix
1 0
0 1
> _

See also

\

CoreBASIC Reference Guide CoreBASIC Language Reference

113

\

Synopsis

x \ y

Integer divide; left matrix divide.

Description

\ divides x by y. If x and y are integers, x \ y is the integer part of the quotient. If either x or y are not integers, \ is

equivalent to /.

Matrix mode

In matrix mode, if x and y are both matrices, \ computes the left matrix quotient of x and y using left matrix

division, INV x * y.

> a = [[1, 2], [3, 4]]
> b = [[5, 6], [7, 8]]
> mat print a
1 2
3 4
> mat print b
5 6
7 8
> mat print a \ b
-3 -4
4 5
> mat print inv a * b ' a\b is INV(a) * b
-3 -4
4 5
> mat print a \ a ' a matrix divided by itself is the identity matrix
1 0
0 1
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

114

^

Synopsis

x ^ y

Exponentiate.

Description

^ raises x to the power of y. Both x and y must be compatible; if they are incompatible, CoreBASIC throws an

exception. For instance, CoreBASIC cannot exponentiate strings by numbers:

> print "3" ^ 2
?type mismatch
> _

Numbers

Real and complex numbers are exponentiated using standard mathematical rules:

> print 10 ^ -3
0.001
> print -10 ^ -3
-0.001
> _

Arrays

Arrays are exponentiated element-by-element and a new array is created containing the power of each pair.

> print [1, 2, 3] ^ [4, 5, 6]
[1, 32, 729]
> _

You can exponentiate a scalar value by an array, or an array by a scalar:

> print [1, 2, 3] ^ 2
[1, 4, 9]
> print 2 ^ [1, 2, 3]
[1, 4, 8]
> _

Matrix mode

Exponentiation in matrix mode is not supported.

See also

LOG, EXP

CoreBASIC Reference Guide CoreBASIC Language Reference

115

&

Synopsis

x & y

Join.

Description

& creates a new array by joining the arrays x and y together:

> print [1, 2, 3] & ["Four", "Five", "Six"]
[1, 2, 3, "Four", "Five", "Six"]
> _

You can use this to add an extra row to a matrix:

> list
 10 M = INT(100 * RND CON(4, 3)) ' create a random 4x3 matrix
 20 MAT PRINT "Original matrix:"; M
 30 M = M & [ZER(LEN M(0))] ' add a zero row
 40 MAT PRINT "New matrix:"; M
 50 END
> run
Original matrix:
80 64 80
71 19 92
14 31 98
17 12 45
New matrix:
80 64 80
71 19 92
14 31 98
17 12 45
0 0 0
> _

You can use & to augment a matrix with an additional column by using TRN twice:

> list
 10 M = INT(100 * RND CON(4, 3)) ' create a random 4x3 matrix
 20 MAT PRINT "Original matrix: "; M
 30 M = TRN(TRN M & [ZER(LEN M)]) ' add a zero column
 40 MAT PRINT "New matrix:"; M
 50 END
> run
Original matrix:
64 0 42
6 37 53
87 75 52
76 8 6
New matrix:
64 0 42 0
6 37 53 0

CoreBASIC Reference Guide CoreBASIC Language Reference

116

87 75 52 0
76 8 6 0

See also

TRN, ZER

CoreBASIC Reference Guide CoreBASIC Language Reference

117

:

Synopsis

:

Multi-statement separator.

Description

: enables you to place more than one statement on a line.

> print "Hello" : print "Again"
Hello
Again
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

118

<

Synopsis

x < y

Less than.

Description

< evaluates to true if x is less than y. x and y must be compatible; if they are incompatible, CoreBASIC throws an

exception. For instance, CoreBASIC cannot compare numbers and strings directly:

> print 1 < "3"
?type mismatch
> _

Real numbers

Real numbers are graded as you would expect:

> print 1 < 2 | 2 < 2 | 3 < 2
1
0
0
> _

Complex numbers

Complex numbers are graded according to their complex modulus (magnitude): the number with the greatest

magnitude is graded highest. If both have the same magnitude, the one with the greatest phase angle is graded

highest.

> a = cmplx(3, 4)
> b = cmplx(5, 12)
> print abs a, abs b
5 13
> print a < b
1
> b = cmplx(3, -4)
> print abs a, abs b
5 5
> print arg a, arg b
0.927295 -0.927295
> print a < b
0
> _

Quaternions

An ordering for quaternions isn't defined by CoreBASIC: comparing them will result in a type mismatch error.

CoreBASIC Reference Guide CoreBASIC Language Reference

119

Strings

Strings are graded on a character-by-character basis using each character's ASCII code, and case is significant.

> print "aardvark" < "abacus"
1
> print "aardvark" < "Abacus"
0
> _

Arrays

Arrays are graded element-by-element and a new array is created containing the elementwise comparison of

each pair.

> print [1, 2, 3] < [2, 1, 0]
[1, 0, 0]
> _

When comparing an array with a scalar value, each value in the array is compared to the scalar value and a new

array is created containing the elementwise comparison of each element with the scalar value:

> print [1, 2, 3] < 2
[1, 0, 0]
> print 2 < [1, 2, 3]
[0, 0, 1]
> print "aardvark" < ["abacus", "Abacus"]
[1, 0]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

120

<=

Synopsis

x <= y

Less than or equal to.

Description

<= evaluates to true if x is less than or equal to y. x and y must be compatible; if they are incompatible,

CoreBASIC throws an exception. For instance, CoreBASIC cannot compare numbers and strings directly:

> print 1 <= "3"
?type mismatch
> _

Real numbers

Real numbers are graded as you would expect:

> print 1 <= 2 | 2 <= 2 | 3 <= 2
1
1
0
> _

Complex numbers

Complex numbers are graded according to their complex modulus (magnitude): the number with the greatest

magnitude is graded highest. If both have the same magnitude, the one with the greatest phase angle is graded

highest.

> a = cmplx(3, 4)
> b = cmplx(5, 12)
> print abs a, abs b
5 13
> print a <= b
1
> b = cmplx(3, -4)
> print abs a, abs b
5 5
> print arg a, arg b
0.927295 -0.927295
> print a <= b
0
> _

Quaternions

An ordering for quaternions isn't defined by CoreBASIC: comparing them will result in a type mismatch error.

CoreBASIC Reference Guide CoreBASIC Language Reference

121

Strings

Strings are graded on a character-by-character basis using each character's ASCII code, and case is significant.

> print "aardvark" <= "abacus"
1
> print "aardvark" <= "Abacus"
0
> _

Arrays

Arrays are graded element-by-element and a new array is created containing the elementwise comparison of

each pair.

> print [1, 2, 3] <= [2, 2, 2]
[1, 1, 0]
> _

When comparing an array with a scalar value, each value in the array is compared to the scalar value and a new

array is created containing the elementwise comparison of each element with the scalar value:

> print [1, 2, 3] <= 2
[1, 1, 0]
> print 2 <= [1, 2, 3]
[0, 1, 1]
> print "aardvark" <= ["abacus", "Abacus"]
[1, 0]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

122

<>

Synopsis

x <> y

Inequality.

Description

<> evaluates to true if x is not identical to y. x and y must be compatible; if they are incompatible, CoreBASIC

throws an exception. For instance, CoreBASIC cannot compare numbers and strings directly:

> print 1 <> "3"
?type mismatch
> _

Real numbers

Real numbers are compares as you would expect:

> print 1 <> 1 | 1 <> 2
0
1
> _

Complex numbers

Complex numbers are identical if and only if their corresponding real and imaginary parts are identical:

> print cmplx(1, 2) <> cmplx(1, 2)
0
> print cmplx(1, 2) <> cmplx(1, 999)
1
> print cmplx(1, 2) <> cmplx(999, 2)
1
> _

Strings

Strings are identical if they are the of different lengths or contain different corresponding characters.

> print "aardvark" <> "aardvark"
0
> print "aardvark" <> "abacus"
1
> print "aardvark" <> "aardvark "
1
> _

Arrays

Arrays are graded element-by-element and a new array is created containing the elementwise comparison of

each pair.

CoreBASIC Reference Guide CoreBASIC Language Reference

123

> print [1, 2, 3] <> [2, 2, 2]
[1, 0, 1]
> _

When comparing an array with a scalar value, each value in the array is compared to the scalar value and a new

array is created containing the elementwise comparison of each element with the scalar value:

> print [1, 2, 3] <> 2
[1, 0, 1]
> print 2 <> [1, 2, 3]
[1, 0, 1]
> print "aardvark" <> ["abacus", "Abacus", "aardvark"]
[1, 1, 0]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

124

=

Synopsis

x = y

Equality.

Description

= evaluates to true if x is identical to y. x and y must be compatible; if they are incompatible, CoreBASIC throws

an exception. For instance, CoreBASIC cannot compare numbers and strings directly:

> print 1 = "3"
?type mismatch
> _

Real numbers

Real numbers are compares as you would expect:

> print 1 = 1 | 1 = 2
1
0
> _

Complex numbers

Complex numbers are identical if and only if their corresponding real and imaginary parts are identical:

> print cmplx(1, 2) = cmplx(1, 2)
1
> print cmplx(1, 2) = cmplx(1, 999)
0
> print cmplx(1, 2) = cmplx(999, 2)
0
> _

Strings

Strings are identical if they are the same length and contain the same characters.

> print "aardvark" = "aardvark"
1
> print "aardvark" = "abacus"
0
> print "aardvark" = "aardvark "
0
> _

Arrays

Arrays are graded element-by-element and a new array is created containing the elementwise comparison of

each pair.

CoreBASIC Reference Guide CoreBASIC Language Reference

125

> print [1, 2, 3] = [2, 2, 2]
[0, 1, 0]
> _

When comparing an array with a scalar value, each value in the array is compared to the scalar value and a new

array is created containing the elementwise comparison of each element with the scalar value:

> print [1, 2, 3] = 2
[0, 1, 0]
> print 2 = [1, 2, 3]
[0, 1, 0]
> print "aardvark" = ["abacus", "Abacus", "aardvark"]
[0, 0, 1]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

126

>

Synopsis

x > y

Greater than.

Description

> evaluates to true if x is greater than y. x and y must be compatible; if they are incompatible, CoreBASIC throws

an exception. For instance, CoreBASIC cannot compare numbers and strings directly:

> print 1 > "3"
?type mismatch
> _

Real numbers

Real numbers are graded as you would expect:

> print 1 > 2 | 2 > 2 | 3 > 2
0
0
1
> _

Complex numbers

Complex numbers are graded according to their complex modulus (magnitude): the number with the greatest

magnitude is graded highest. If both have the same magnitude, the one with the greatest phase angle is graded

highest.

> a = cmplx(3, 4)
> b = cmplx(5, 12)
> print abs a, abs b
5 13
> print a > b
0
> b = cmplx(3, -4)
> print abs a, abs b
5 5
> print arg a, arg b
0.927295 -0.927295
> print a > b
1
> _

Quaternions

An ordering for quaternions isn't defined by CoreBASIC: comparing them will result in a type mismatch error.

CoreBASIC Reference Guide CoreBASIC Language Reference

127

Strings

Strings are graded on a character-by-character basis using each character's ASCII code, and case is significant.

> print "aardvark" > "abacus"
0
> print "aardvark" > "Abacus"
1
> _

Arrays

Arrays are graded element-by-element and a new array is created containing the elementwise comparison of

each pair.

> print [1, 2, 3] > [2, 2, 2]
[0, 0, 1]
> _

When comparing an array with a scalar value, each value in the array is compared to the scalar value and a new

array is created containing the elementwise comparison of each element with the scalar value:

> print [1, 2, 3] > 2
[0, 0, 1]
> print 2 > [1, 2, 3]
[1, 0, 0]
> print "aardvark" > ["abacus", "Abacus"]
[0, 1]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

128

>=

Synopsis

x >= y

Greater than or equal to.

Description

> evaluates to true if x is greater than or equal to y. x and y must be compatible; if they are incompatible,

CoreBASIC throws an exception. For instance, CoreBASIC cannot compare numbers and strings directly:

> print 1 >= "3"
?type mismatch
> _

Real numbers

Real numbers are graded as you would expect:

> print 1 >= 2 | 2 >= 2 | 3 >= 2
0
1
1
> _

Complex numbers

Complex numbers are graded according to their complex modulus (magnitude): the number with the greatest

magnitude is graded highest. If both have the same magnitude, the one with the greatest phase angle is graded

highest.

> a = cmplx(3, 4)
> b = cmplx(5, 12)
> print abs a, abs b
5 13
> print a >= b
0
> b = cmplx(3, -4)
> print abs a, abs b
5 5
> print arg a, arg b
0.927295 -0.927295
> print a >= b
1
> _

Quaternions

An ordering for quaternions isn't defined by CoreBASIC: comparing them will result in a type mismatch error.

CoreBASIC Reference Guide CoreBASIC Language Reference

129

Strings

Strings are graded on a character-by-character basis using each character's ASCII code, and case is significant.

> print "aardvark" >= "abacus"
0
> print "aardvark" >= "Abacus"
1
> _

Arrays

Arrays are graded element-by-element and a new array is created containing the elementwise comparison of

each pair.

> print [1, 2, 3] >= [2, 2, 2]
[0, 1, 1]
> _

When comparing an array with a scalar value, each value in the array is compared to the scalar value and a new

array is created containing the elementwise comparison of each element with the scalar value:

> print [1, 2, 3] >= 2
[0, 1, 1]
> print 2 >= [1, 2, 3]
[1, 1, 0]
> print "aardvark" >= ["abacus", "Abacus"]
[0, 1]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

130

[...]

Synopsis

[expression, expression...]

Construct array.

Description

[...] creates an array initialized with the comma-separated values.

> print [1, 1/2, 3]
[1, 0.5, 3]
> _

Each value can be any expression, and the array can hold values of mixed type:

> x = "Aardvark"
> print [1, ucase x, 37]
[1, "AARDVARK", 37]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

131

|

Description

The | symbol is used as a separator in a PRINT statement to indicate a new line.

See PRINT.

CoreBASIC Reference Guide CoreBASIC Language Reference

132

ABS

Synopsis

ABS arg

Compute absolute value.

Description

ABS computes the magnitude (absolute value) of arg.

Real numbers

The magnitude of a positive real number arg is simply arg, and the magnitude of a negative number arg is −arg:

> print abs 3, abs -3
3 3
> _

Complex numbers

The absolute value of a complex number arg is the distance from the origin to arg:

> print abs cmplx(3, 4)
5
> _

Quaternions

The absolute value of a quaternion arg is the distance from the origin to arg:

> print abs quat(2, 3, 4, 5)
7.34847
> _

Arrays

If arg is an array, ABS threads recursively over the elements of the array:

> print abs [-0.5, 1, -1.5]
[0.5, 1, 1.5]
> _

See also

SGN

CoreBASIC Reference Guide CoreBASIC Language Reference

133

ACS

Synopsis

ACS arg

Compute inverse circular cosine.

Description

ACS computes the inverse cosine of arg in radian measure. For real, complex, and quaternion types, ACS returns

a number of the same type as its operand if it can:

> print acs 1
0
> print acs cmplx(1, 2)
1.14372-1.52857j
> _

If the argument is real but not in the interval [−1, +1], CoreBASIC cannot return a real result—it must return a

complex number:

> print acs 2
0+1.31696j
> _

If arg is an array, ACS threads recursively over the elements of the array:

> print acs [0.5, 1, 1.5]
[1.0472, 0, 0+0.962424j]
> _

See also

COS, ASN, ATN

CoreBASIC Reference Guide CoreBASIC Language Reference

134

ACSH

Synopsis

ACSH arg

Compute inverse hyperbolic cosine.

Description

ACSH computes the inverse hyperbolic cosine of arg. For real, complex, and quaternion types, ACSH returns a

number of the same type as its operand if it can:

> print acsh 1
0
> print acsh cmplx(1, 2)
1.46406+0.738411j
> print acsh quat(1, 2, 3, 4)
2.40145+0.516276i+0.774414j+1.03255k
> _

If the argument is real but does not lie in the interval [−1, +1], CoreBASIC cannot return a real result—it must

return a complex number:

> print acsh 2
0+1.0472j
> _

If arg is an array, ACSH threads recursively over the elements of the array:

> print acsh [0.5, 1, 1.5]
[0+1.0472j, 0, 0.962424]
> _

See also

SINH, ACSH, ATNH

CoreBASIC Reference Guide CoreBASIC Language Reference

135

AND

Synopsis

x AND y

Bitwise conjunction.

Description

AND computes the bitwise conjunction of x and y. A bit is set in the result only if the corresponding bit is set in

both x and y:

> print hex(0x1234 and 0xfedc)
1214
> _

If x and y are logical expressions, AND will compute the logical conjunction of x and y according to the standard

truth table:

> list
 10 FOR X = 0 TO 1
 20 FOR Y = 0 TO 1
 30 PRINT X; " AND "; Y; " = "; X AND Y
 40 NEXT Y
 50 NEXT X
 60 END
> run
0 AND 0 = 0
0 AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1
> _

Both x and y are converted to integers before applying AND:

> print 1.5 and 2.2 | 1.5 and 0.2
1
0
> _

Arrays are processed element-by-element and a new array is created containing the elementwise conjunction of

each pair:

> print [0, 1, 0, 1] and [0, 0, 1, 1]
[0, 0, 0, 1]
> _

See also

AND THEN

CoreBASIC Reference Guide CoreBASIC Language Reference

136

AND THEN

Synopsis

x AND THEN y

Short-circuit logical conjunction.

Description

AND THEN computes the short-circuit logical conjunction of x and y. The result AND THEN is x if x is zero,

otherwise it is y. If x is zero, y is not evaluated:

> list
 10 FOR X = FALSE TO TRUE
 20 FOR Y = FALSE TO TRUE
 30 PRINT TRUTH X; " AND THEN "; TRUTH Y; " = "; TRUTH(X AND THEN Y)
 40 NEXT Y
 50 NEXT X
 60 END
> run
False AND THEN False = False
False AND THEN True = False
True AND THEN False = False
True AND THEN True = True
> _

Note that x AND THEN y is equivalent to IFF(x,y,x) with x evaluated only once:

> print 0 and then "Surprising"
0
> print 1 and then "Surprising"
Surprising
> _

Note

For bitwise operations, use AND.

See also

AND, IFF, OR ELSE

CoreBASIC Reference Guide CoreBASIC Language Reference

137

ARG

Synopsis

ARG arg

Compute argument of complex number.

Description

ARG computes the argument, or phase angle, of the complex number arg. The argument of a complex number is

counterclockwise angle, in radians, from the positive real axis.

The argument of a real number is zero because all real numbers lie on the real axis of the complex plane:

> print arg 3
0
> _

The argument of a complex number x is defined as ATN2(IM x, RE x):

> print arg cmplx(0, 1)
1.5708
> _

ARG is not defined for quaternions:

> print arg quat(1, 2, 3, 4)
?type mismatch
> _

If arg is an array, ARG threads recursively over the elements of the array:

> print arg [cmplx(1, 1), cmplx(-1, -1)]
[0.785398, -2.35619]
> print deg arg [cmplx(1, 1), cmplx(-1, -1)]
[45, -135]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

138

AS

Synopsis

INSTALL driver [AS var]

Install driver.

See INSTALL.

Synopsis

INPUT ["string";] var [AS type]…

Read from console.

See INPUT.

Synopsis

PIN x AS mode

Configure pin.

See PIN.

CoreBASIC Reference Guide CoreBASIC Language Reference

139

ASC

Synopsis

ASC arg

Extract ASCII code.

Description

ASC returns the ASCII code of the first character of the string arg:

> print asc "Aardvark"
65
> _

The string arg must not be empty:

> print asc ""
?argument error
> _

If arg is an array, ASC threads recursively over the elements of the array:

> lyric = ["Delerious", "Incredible", "Superficial", "Complicated", "Oh oh oh"]
> print asc lyric
[68, 73, 83, 67, 79]
> print merge asc lyric
DISCO
> _

Notes

To convert an entire string to its component ASCII codes, use EXPAND.

See also

EXPAND

CoreBASIC Reference Guide CoreBASIC Language Reference

140

ASN

Synopsis

ASN arg

Compute inverse circular sine.

Description

ASN computes the inverse sine of arg in radian measure. For real, complex, and quaternion types, ASN returns a

number of the same type as its operand if it can:

> print asn 1
1.5708
> print asn cmplx(1, 2)
0.427079+1.52857j
> _

If the argument is real but does not lie in the interval [−1, +1], CoreBASIC cannot return a real result—it must

return a complex number:

> print asn 2
1.5708-1.31696j
> _

If arg is an array, ASN threads recursively over the elements of the array:

> print asn [0.5, 1, 1.5]
[0.523599, 1.5708, 1.5708-0.962424j]
> _

See also

SIN, ACS, ATN

CoreBASIC Reference Guide CoreBASIC Language Reference

141

ASNH

Synopsis

ASNH arg

Compute inverse hyperbolic sine.

Description

ASNH computes the inverse hyperbolic sine of arg. For real, complex, and quaternion types, ASN returns a

number of the same type as its operand:

> print asnh 1
0.881374
> print asnh cmplx(1, 2)
1.46935+1.06344j
> _

If arg is an array, ASNH threads recursively over the elements of the array:

> print asnh [0.5, 1, 1.5]
[0.481212, 0.881374, 1.19476]
> _

See also

SINH, ACSH, ATNH

CoreBASIC Reference Guide CoreBASIC Language Reference

142

ATN

Synopsis

ATN arg

Compute inverse circular tangent.

Description

ATN computes the inverse tangent of arg in radian measure. For real, complex, and quaternion types, ATN

returns a number of the same type as its operand:

> print atn 1
0.785398
> print atn cmplx(1, 2)
1.33897+0.402359j
> _

If arg is an array, ATN threads recursively over the elements of the array:

> print atn [0.5, 1, 1.5]
[0.463648, 0.785398, 0.982794]
> _

See also

TAN, ACS, ASC

CoreBASIC Reference Guide CoreBASIC Language Reference

143

ATN2

Synopsis

ATN2(y, x)

Compute inverse circular tangent.

Description

ATN2 computes the inverse tangent of y divided by x using the signs of x and y to compute the quadrant of the

return value. The principal value lies in the interval [−½π, +½π] radians.

> print atn2(1, 1) | atn2(-1, -1)
0.785398
-2.35619
> _

Note that the signs of x and y do matter—comparing ATN2 with ATN:

> print deg atn2(1, 1) | deg atn(1 / 1)
45
45
> print deg atn2(-1, -1) | deg atn(-1 / -1)
-135
45
> _

See also

ATN, TAN

CoreBASIC Reference Guide CoreBASIC Language Reference

144

ATNH

Synopsis

ATNH arg

Compute inverse hyperbolic tangent.

Description

ATNH computes the inverse hyperbolic tangent of arg. For real, complex, and quaternion types, ATNH returns a

number of the same type as its operand if it can:

> print atnh 0.5
0.549306
> print atnh cmplx(1, 2)
0.173287+1.1781j
> print atnh quat(1, 2, 3, 4)
0.0323029+0.517345i+0.776018j+1.03469k
> _

If the argument is real but does not lie in the interval [−1, +1], CoreBASIC cannot return a real result—it must

return a complex number:

> print atnh 2
0.549306+1.5708j
> _

If arg is an array, ATNH threads recursively over the elements of the array:

> print atnh [0.25, 0.5, 0.75]
[0.255413, 0.549306, 0.972955]
> _

See also

TANH

CoreBASIC Reference Guide CoreBASIC Language Reference

145

AUTO

Synopsis

AUTO

AUTO start [, increment]

Automatically number lines.

Description

AUTO instructs CoreBASIC to start generating line numbers for program entry. AUTO begins numbering at

start and increments each subsequent line by increment. If start and increment are omitted, CoreBASIC starts

numbering at 10 in increments of 10:

> new
> auto
> 10 print "'Twas brillig, and the slithy toves"
> 20 print " Did gyre and gimble in the wabe:"
> 30 print "All mimsy were the borogoves,"
> 40 print " And the mome raths outgrabe."
> 50 end
> 60
> _

To exit AUTO mode, press Enter when the next line number appears. In this case, any existing line with that

number is not deleted and AUTO mode is canceled.

> list
 10 PRINT "'Twas brillig, and the slithy toves"
 20 PRINT " Did gyre and gimble in the wabe:"
 30 PRINT "All mimsy were the borogoves,"
 40 PRINT " And the mome raths outgrabe."
 50 END
> auto 8, 1
> 8 ' A poem by Lewis Carroll.
> 9 '
> 10
> list
 8 ' A poem by Lewis Carroll.
 9 '
 10 PRINT "'Twas brillig, and the slithy toves"
 20 PRINT " Did gyre and gimble in the wabe:"
 30 PRINT "All mimsy were the borogoves,"
 40 PRINT " And the mome raths outgrabe."
 50 END
> _

You can also exit AUTO mode by deleting the line number using Backspace or Ctrl+U, and typing another

command, such as LIST or RUN.

See also

RENUMBER

CoreBASIC Reference Guide CoreBASIC Language Reference

146

BASE64$

Synopsis

BASE64$ arg

Encode string using Base64.

Description

BASE64$ returns a string containing the Base64-encoded representation of arg according to RFC4648 section 4

(and RFC 1421 section 4.3.2.4). Base64 encoding replaces the source octets with characters that will pass through

a network connection without further modification.

> list
 10 ' Program to replicate Base64 examples from Wikipedia.
 20 '
 30 ' See http://en.wikipedia.org/wiki/Base64
 40 '
 50 S = "any carnal pleasure."
 60 FOR I = 1 TO 5
 70 PRINT "Input ends with: "; JUSTIFY$(S, -20); " ";
 80 PRINT "Output ends with: "; BASE64$(S)
 90 S = LEFT(S, -1)
 100 NEXT I
 110 END
> run
Input ends with: any carnal pleasure. Output ends with: YW55IGNhcm5hbCBwbGVhc3VyZS4=
Input ends with: any carnal pleasure Output ends with: YW55IGNhcm5hbCBwbGVhc3VyZQ==
Input ends with: any carnal pleasur Output ends with: YW55IGNhcm5hbCBwbGVhc3Vy
Input ends with: any carnal pleasu Output ends with: YW55IGNhcm5hbCBwbGVhc3U=
Input ends with: any carnal pleas Output ends with: YW55IGNhcm5hbCBwbGVhcw==
> _

See also

RFC4648 - The Base16, Base32, and Base64 Data Encodings

http://tools.ietf.org/html/rfc4648

CoreBASIC Reference Guide CoreBASIC Language Reference

147

BGET

Synopsis

BGET arg

Read byte from stream.

Description

BGET reads the the next byte on the stream arg. The value returned is the ASCII code of the character read, or if

there was an error reading the stream, a negative error code.

See also

BGET$

CoreBASIC Reference Guide CoreBASIC Language Reference

148

BGET$

Synopsis

BGET$ arg

Read byte from stream.

Description

BGET$ reads the next byte on the stream arg. The value returned is a string containing the single byte read. If

there is an error reading the stream, CoreBASIC throws an appropriate error code.

See also

GET

CoreBASIC Reference Guide CoreBASIC Language Reference

149

BLUE%

Synopsis

BLUE% arg

Extract blue component of a color.

Description

BLUE% extracts the blue component of the 24-bit RGB color value arg and returns it as a number between 0

(fully desaturated) and 1 (fully saturated).

> x = rgb(0.7, 0.2, 0.1)
> print blue% x
0.1
> _

See also

GREEN%, RED%, RGB

CoreBASIC Reference Guide CoreBASIC Language Reference

150

BYE

Synopsis

BYE

Exit CoreBASIC.

Description

BYE exits the CoreBASIC interpreter by closing the established network connection. For the SolderCore, the

current program remains in memory and, if connection is re-established, you can resume your CoreBASIC

session. On the SolderCore Emulator, BYE will exit the CoreBASIC interpreter and any program in memory is lost.

> bye

Connection to host lost.

C:\Users\Paul> _

Note

Pressing Ctrl+D at the CoreBASIC command line will execute BYE.

CoreBASIC Reference Guide CoreBASIC Language Reference

151

CALL

Synopsis

CALL name(arg, arg, …)

Call a procedure.

Description

CALL calls the procedure name with the arguments in the list. The number of arguments in the list must match

the number of arguments in the procedure's parameter list.

> list
 10 CALL CENTER_STRING("**************************")
 20 CALL CENTER_STRING("Welcome to CoreBASIC")
 30 CALL CENTER_STRING("**************************")
 40 END
 100 DEFPROC CENTER_STRING(TXT)
 110 PRINT "|"; SPC(20 - LEN(TXT)/2); TXT; SPC(20 - LEN(TXT)/2); "|"
 120 ENDPROC
> run
| ************************** |
| Welcome to CoreBASIC |
| ************************** |
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

152

CASE ... ENDCASE

Synopsis

CASE value

 WHEN expr, expr, expr…

 statements

 WHEN relation expr…

 statements

 ?

 [OTHERWISE

 statements]

ENDCASE

Multi-way branch.

Description

CASE selects a sequence of statements to execute depending upon the value of value. If value matches any of

the expressions after a WHEN, control is passed to the statements following matching WHEN, and run up to the

following WHEN, OTHERWISE, or ENDCASE. Control then passes to the following ENDCASE.

If no match is found in the WHEN lists, control passes to the statements following OTHERWISE, if present, or

ENDCASE if there is no OTHERWISE.

CASE statements are usually found testing the values of numbers:

> list
 10 FOR I = 1 TO 10
 20 PRINT I; " - ";
 30 CASE I
 40 WHEN 1, 2, 3, 5, 7
 50 PRINT "Prime"
 60 WHEN 2, 4, 6, 8, 10
 70 PRINT "Even"
 80 OTHERWISE
 90 PRINT "Odd"
 100 ENDCASE
 110 NEXT I
 120 END
> run
1 - Prime
2 - Prime
3 - Prime
4 - Even
5 - Prime
6 - Even
7 - Prime
8 - Even
9 - Odd
10 - Even
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

153

Note that WHEN statements are evaluated in top-to-bottom fashion. In the example above, the value 2 appears

in two WHEN statements. CoreBASIC matches 2 in the first WHEN, executes the statements following the

matching WHEN and prints Prime. Control then transfers to ENDCASE, bypassing subsequent WHEN and

OTHERWISE statements.

CASE statements can test strings too:

> list
 10 TEXT = "Hello, world"
 20 FOR EACH C IN CHR EXPAND TEXT
 30 CASE C
 40 WHEN "a", "A" : PRINT "Vowel - A"
 50 WHEN "e", "E" : PRINT "Vowel - E"
 60 WHEN "i", "I" : PRINT "Vowel - I"
 70 WHEN "o", "O" : PRINT "Vowel - O"
 80 WHEN "u", "U" : PRINT "Vowel - U"
 90 OTHERWISE PRINT "Consonant - "; UCASE C
 100 ENDCASE
 110 NEXT C
 120 END
> run
Consonant - H
Vowel - E
Consonant - L
Consonant - L
Vowel - O
Consonant - ,
Consonant -
Consonant - W
Vowel - O
Consonant - R
Consonant - L
Consonant - D
> _

A WHEN can use one of the relational operators <, <=, >, >=, or <>:

> list
 10 FOR FLOW = -5 TO 25 STEP 5
 20 PRINT "Flow is "; FLOW; " L/s: ";
 30 CASE FLOW
 40 WHEN < 0
 50 PRINT "Alert! Flowing in wrong direction!"
 60 WHEN 0
 70 PRINT "Flow stopped"
 80 WHEN <= 5
 90 PRINT "Warning: flow is slow; blockage?"
 100 WHEN > 20
 110 PRINT "Alert! Flow is dangerously high!"
 120 OTHERWISE
 130 PRINT "Flow is within operating limits"
 140 ENDCASE
 150 NEXT FLOW
 160 END
> run
Flow is -5 L/s: Alert! Flowing in wrong direction!
Flow is 0 L/s: Flow stopped
Flow is 5 L/s: Warning: flow is slow; blockage?
Flow is 10 L/s: Flow is within operating limits

CoreBASIC Reference Guide CoreBASIC Language Reference

154

Flow is 15 L/s: Flow is within operating limits
Flow is 20 L/s: Flow is within operating limits
Flow is 25 L/s: Alert! Flow is dangerously high!
> _

CASE statements can be nested. Each nested CASE statement must have a matching ENDCASE must be

completely contained within a single WHEN or OTHERWISE block.

Notes

You can write END CASE as two separate words and CoreBASIC will change the two words to ENDCASE

automatically.

CoreBASIC Reference Guide CoreBASIC Language Reference

155

CATALOG

Synopsis

CATALOG

CATALOG folder

Display folder content.

Description

CATALOG displays the contents of the current or specified folder.

Example

> catalog

Directory of: /c/*.*

12/05/12 11:26 <DIR> sys
01/01/12 00:00 144 work.bas
01/01/12 00:00 1,913 crc.bas
01/01/12 00:00 2,499 union.bas
01/01/12 00:00 194 analog.bas
01/01/12 00:00 13,291 trek.bas
01/01/12 00:00 1,986 calib.bas
01/01/12 00:00 227 blinky.bas
01/01/12 00:00 157 !run.bas
01/01/12 00:00 2,580 flag.bas
01/01/12 00:00 538 air.bas
01/01/12 00:00 88 ansi.bas
01/01/12 00:00 102 test.bas
01/01/12 00:00 910 cam.bas
01/01/12 00:00 <DIR> www

> chdir "sys"
> catalog

Directory of: /c/sys/*.*

12/05/12 11:26 <DIR> .
12/05/12 11:26 <DIR> ..
01/01/12 00:00 896 history.log
01/01/12 00:00 491,520 core.fw
01/01/12 00:00 113 !network.bas
01/01/12 00:00 84 !boot.bas

> _

Note

Pressing F6 at the CoreBASIC command line will execute CATALOG.

CoreBASIC Reference Guide CoreBASIC Language Reference

156

CD

Synopsis

CD folder

Change working folder.

Description

CD changes the working folder to folder. The difference between CD and CHDIR is that CD interprets the text

folder as a folder name without requiring quotation marks—this is excellent when traversing the file system

interactively using CD to move and DIR to list contents.

> cd /c
> dir

Directory of: /c/*.*

12/05/12 11:26 <DIR> sys
01/01/12 00:00 144 work.bas
01/01/12 00:00 1,913 crc.bas
01/01/12 00:00 2,499 union.bas
01/01/12 00:00 194 analog.bas
01/01/12 00:00 13,291 trek.bas
01/01/12 00:00 1,986 calib.bas
01/01/12 00:00 227 blinky.bas
01/01/12 00:00 157 !run.bas
01/01/12 00:00 2,580 flag.bas
01/01/12 00:00 538 air.bas
01/01/12 00:00 88 ansi.bas
01/01/12 00:00 102 test.bas
01/01/12 00:00 910 cam.bas
01/01/12 00:00 <DIR> www

> cd sys
> dir *.fw

Directory of: /c/sys/*.fw

01/01/12 00:00 491,520 core.fw

> cd ..
> print $cwd
/c
> _

See also

CHDIR, $CWD, CATALOG

CoreBASIC Reference Guide CoreBASIC Language Reference

157

CEIL

Synopsis

CEIL arg

Compute ceiling.

Description

CEIL computes computes the smallest integer value not less than arg:

> print ceil -3.4 | 3.4
-3
4
> print ceil -6 | 6
-6
6

CoreBASIC Reference Guide CoreBASIC Language Reference

158

CHAIN

Synopsis

CHAIN name

Load and run program from storage device.

Description

CHAIN loads into memory the program contained in the file name and immediately starts it running. The

current program name is set to name just as NAME would have set the current program name:

> chain "/c/welcome.bas"
Welcome to CoreBASIC on the SolderCore!
For more information, visit http://www.soldercore.com/
> list
 10 ' Welcome program for CoreBASIC.
 20 '
 30 PRINT "Welcome to CoreBASIC on the "; CORE.NAME; "!"
 40 PRINT "For more information, visit http://www.soldercore.com/"
 50 '
 60 END
> _

You can use CHAIN in a program to swap between applications.

See also

LOAD, RUN

CoreBASIC Reference Guide CoreBASIC Language Reference

159

CHDIR

Synopsis

CHDIR path

Change working folder.

Description

CHDIR changes the working folder to path.

Example

> print $cwd
/c
> chdir "www"
> print $cwd
/c/www
> chdir "/c/sys/backups"
> print $cwd
/c/sys/backups
> chdir ".."
> print $cwd
/c/sys
> _

See also

CD, $CWD

CoreBASIC Reference Guide CoreBASIC Language Reference

160

CHECK

Synopsis

CHECK

Check program syntax.

Description

You can use CHECK to see whether your program contains any syntax errors before running it. In fact, RUN

performs a CHECK before starting to execute your program.

Note

Pressing F7 at the CoreBASIC command line will execute CHECK.

CoreBASIC Reference Guide CoreBASIC Language Reference

161

CHR

Synopsis

CHR arg

Convert ASCII code to character.

Description

CHR returns a string containing the single character with ASCII code arg:

> print chr 65
A
> _

The ASCII code arg is silently converted modulo 256:

> print asc chr -1
255
> _

If arg is a nonempty string, CHR returns the first character of that string:

> print chr "ABC"
A
> _

If arg is an empty string, CHR stops with a dimension error:

> print chr ""
?dimension error
> _

If arg is an array, CHR threads recursively over the elements of the array:

> print chr [67, 111, 114, 101, 66, 65, 83, 73, 67]
["C", "o", "r", "e", "B", "A", "S", "I", "C"]
> _

See also

ASC

CoreBASIC Reference Guide CoreBASIC Language Reference

162

CINT

Synopsis

CINT arg

Convert to integer using banker's rounding.

Description

CINT converts arg to an integer using banker's rounding. Banker's rounding uses a special rule to round when

the fractional part of arg is exactly one half.

For the most part, CINT converts numbers just as FIX does, by discarding the fractional part of arg:

> print cint 48.4 | fix 48.4
48
48
> print cint 48.9 | fix 48.9
48
48
> print cint -48.4 | fix -48.4
-48
-48
> _

However, when arg has a fractional part that is exactly one half (0.5), CINT rounds to the nearest even:

> print cint 48.5 | fix 48.5
48
48
> print cint 49.5 | fix 49.5
50
49
> print cint -48.5 | fix -48.5
-48
-48
> print cint -49.5 | fix -49.5
-50
-49

If arg is a string, it is converted to a number before applying CINT to the result:

> print cint "1.5"
2
> _

If arg is not recognized as a valid number, CINT returns a NaN:

> print cint "garbage"
nan
> _

If arg is an array, CINT threads recursively over the elements of the array:

CoreBASIC Reference Guide CoreBASIC Language Reference

163

> print cint [47.5, 48.5, 49.5, 50.5]
[48, 48, 50, 50]
> _

See also

FIX, INT

CoreBASIC Reference Guide CoreBASIC Language Reference

164

CIRCLE

Synopsis

CIRCLE x, y, radius

FILL CIRCLE x, y, radius

Draw or fill a circle.

Description

CIRCLE draws a circle centered on x, y with radius r pixels using the current graphics color set by COLOR:

This figure is generated by the following program which uses CIRCLE:

***../examples/random-circles.bas not found ***

You can load this into CoreBASIC using EXAMPLE "random-circles" or |random-circles.

If CIRCLE is preceded by FILL, the whole circle is filled with the current graphics color.

This figure is generated by the following program which uses FILL CIRCLE:

***../examples/random-spots.bas not found ***

You can load this into CoreBASIC using EXAMPLE "random-spots" or |random-spots.

CoreBASIC Reference Guide CoreBASIC Language Reference

165

CIS

Synopsis

CIS arg

Compute circular sine and cosine.

Description

CIS computes the sine and cosine of arg radians. The result is a complex number where the real part is the sine

of arg and the imaginary part is the cosine of :

> print cis rad 30
0.866025+0.5j
> _

The result of CIS is a point that lies on the unit circle of the complex plane and as such as magnitude one:

> print abs cis rad 30
1
> _

You can use CIS to convert a complex number r(cos θ + i sin θ) in polar form to Cartesian form used in

CoreBASIC. For instance, taking r=5 and theta=3π/4:

> print 5 * cis(5*pi/6)
-4.33013+2.5j
> _

If arg is an array, CIS threads recursively over the elements of the array:

> print cis gen(0 to %pi in 4)
[1, 0.5+0.866025j, -0.5+0.866025j, -1-8.74224e-08j]
> _

See also

SIN, COS

CoreBASIC Reference Guide CoreBASIC Language Reference

166

CLG

Synopsis

CLG

Clear graphics display.

Description

The current graphics display is cleared to the display's default background color and the current drawing colour

is set to the display's default foreground color.

Note that the default foreground and background colors are set for the particular device that is selected.

For true color LCD or VGA displays, the background color is usually black and the foreground color is usually

white.

For monochrome LCD displays, the foreground color is usually black and the background color is whatever

color the display uses). Some LCD displays use reverse polarity, such as orange on black, for effect. Whatever the

actual colors on display, color 0 always denotes background and color 1 always denotes foreground.

Note that clearing the graphics display does not reset the origin to (0, 0). In order to reset the graphics origin, use

ORIGIN 0, 0.

CoreBASIC Reference Guide CoreBASIC Language Reference

167

CLOSE

Synopsis

CLOSE arg

Close a channel.

Description

CLOSE closes the open channel arg. All pending data sent, but not yet written, is flushed to the device. For

channels associated with disk files, the channel is closed, all buffers are written to the medium, and the file size is

updated in the directory. For channels associated with sockets, all data are flushed to the network and the socket

is closed gracefully.

> list
 10 F = OPEN("/c/log.txt", WRITE)
 20 IF F < 0 THEN PRINT "Open error: "; REPORT(F) : STOP
 30 FOR I = 1 TO 100
 40 PRINT #F, "Count = "; I
 50 NEXT I
 60 CLOSE F
 70 END
> _

See also

FLUSH

CoreBASIC Reference Guide CoreBASIC Language Reference

168

CLS

Synopsis

CLS

Clear screen.

Description

The standard output device's screen is cleared by writing the ANSI clear-screen escape sequence.

CoreBASIC Reference Guide CoreBASIC Language Reference

169

CMPLX

Synopsis

CMPLX(real, imag)

Construct complex number.

Description

CMPLX constructs the complex number real + i × imag:

> print cmplx(1, 2)
1+2j
> _

If real and imag are vectors, CMPLX creates an array of complex numbers with each real value from real paired

with its corresponding imaginary value from imag:

> print cmplx([1, 2], [3, 4])
[1+3j, 2+4j]
> _

For this, the length of the real and imag vectors must be equal:

> print cmplx([1, 2], [3, 4, 5])
?dimension error
> _

Note

You can use the constant %I to create pure imaginary numbers and then combine these with a real to generate

a complex:

> print 4 - 7 * %i
4-7j
> print (3 - 4 * %i) * (-2 + 4 * %i)
10+20j
> print %i * %i
-1
> _

Using %I in this way is marginally more expensive than using CMPLX to construct a complex number.

See also

%I, IM, RE

CoreBASIC Reference Guide CoreBASIC Language Reference

170

CNJ

Synopsis

CNJ arg

Computes conjugate.

Description

CNJ computes the conjugate of arg:

> print cnj 3
3
> print cnj cmplx(3, 5)
3-5j
> print cnj quat(1, -2, 3, -4)
1+2i-3j+4k
> _

If arg is an array, CNJ threads recursively over the elements of the array:

> print cnj [3, cmplx(3, 5), quat(1, -2, 3, -4)]
[3, 3-5j, 1+2i-3j+4k]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

171

CON

Synopsis

CON(dimension, …)

Create unit matrix.

Description

CON uses the dimension list in its argument to create a unit matrix. A unit matrix is a matrix where each of its

elements is one.

> print con(3, 3)
[[1, 1, 1], [1, 1, 1], [1, 1, 1]]
> mat print con(3, 3)
1 1 1
1 1 1
1 1 1
> mat print con(1, 3)
1 1 1
> mat print con(3, 1)
1
1
1
> print con(3)
[1, 1, 1]
> print con(2, 2, 2)
[[[1, 1], [1, 1]], [[1, 1], [1, 1]]]
>

See also

IDN, ZER

CoreBASIC Reference Guide CoreBASIC Language Reference

172

COL

Synopsis

COL(matrix, n)

Extract matrix column.

Description

COL extracts column n of the matrix matrix.

> a = [[1, 2], [3, 4]]
> mat print a
1 2
3 4
> print col(a, 0) | col(a, 1)
[1, 3]
[2, 4]
> _

See also

ROW

CoreBASIC Reference Guide CoreBASIC Language Reference

173

COLOR

Synopsis

COLOR color

Set drawing color.

Description

COLOR sets the drawing color to color. If the graphics device surface is a true color device, color must be a 24-bit

RGB true color value. If the graphics device uses a palette, color is the palette index to use.

If no graphics device is selected, an error is thrown.

See also

%COLOR

CoreBASIC Reference Guide CoreBASIC Language Reference

174

COLOR$

Synopsis

COLOR$ arg

Return HTML color specification.

Description

COLOR$ returns the HTML specification for the 24-bit color arg as a number sign followed by six uppercase

hexadecimal numerals.

> print color$ %red
#FF0000
> _

If arg is an array, COLOR$ threads recursively over the elements of the array:

> print color$ [%red, %green, %blue]
["#FF0000", "#00FF00", "#0000FF"]
> _

See also

COLOR

CoreBASIC Reference Guide CoreBASIC Language Reference

175

CORE

Synopsis

CORE

Core driver.

Description

CORE evaluates to the CPU or "core" driver. The CPU driver provides access to the hardware resources of the host

CPU.

For full information on the SolderCore CPU driver, see SolderCore CPU. For full information on the Freedom

Board CPU driver, see Freedom Board CPU.

See also

SolderCore CPU, Freedom Board CPU

CoreBASIC Reference Guide CoreBASIC Language Reference

176

COS

Synopsis

COS arg

Compute circular cosine.

Description

COS computes the circular cosine of arg in radian measure. For real, complex, and quaternion types, COS returns

a number of the same type as its operand:

> print cos 10
-0.839072
> print cos cmplx(2, 10)
-4583.12-10014.3j
> print cos quat(2, 3, 4, 5)
-244.987-227.111i-302.814j-378.518k
> _

If arg is an array, COS threads recursively over the elements of the array:

> print cos [2, 3, 4]
[-0.416147, -0.989992, -0.653644]
> _

See also

ACS, SIN, TAN

CoreBASIC Reference Guide CoreBASIC Language Reference

177

COSH

Synopsis

COSH arg

Compute hyperbolic cosine.

Description

Computes the hyperbolic cosine of arg. For real, complex, and quaternion types, COSH returns a number of the

same type as its operand:

> print cosh 1
1.54308
> print cosh cmplx(1, 2)
3.0519+2.03272j
> print cosh quat(2, 3, 4, 5)
2.65366+1.09076i+1.45434j+1.81793k
> _

If arg is an array, COSH threads recursively over the elements of the array:

> print cosh [2, 3, 4]
[3.7622, 10.0677, 27.3082]
> _

See also

ACSH, SINH, TANH

CoreBASIC Reference Guide CoreBASIC Language Reference

178

CREDITS

Synopsis

CREDITS

Show credits.

Description

CREDITS shows those steely, dedicated individuals responsible for bringing CoreBASIC software and

SolderCore hardware to you:

> credits

The SolderCore Project is brought to you by...

Paul Curtis at Rowley Associates
 Conceived, designed, wrote, documented, and eventually debugged CoreBASIC.
 www.rowley.co.uk

Iain Derrington at K&I Design
 Designed, prototyped, reworked, tweaked, and finally built SolderCore.
 kandi-electronics.co.uk

Be part of the SolderCore Community...

 Launch www.soldercore.com to start!
 Follow @SolderCore on Twitter.
 Chat on Google Groups at groups.google.com/d/forum/soldercore

> _

See also

The SolderCore Website

http://www.rowley.co.uk/
http://kandi-electronics.co.uk
http://www.soldercore.com/
http://twitter.com/soldercore
http://groups.google.com/d/forum/soldercore/
http://www.soldercore.com/

CoreBASIC Reference Guide CoreBASIC Language Reference

179

CROSS

Synopsis

CROSS(x, y)

Cross product.

Description

CROSS computes the cross product of x and y. x and y must be 3-element vectors of real numbers.

> print cross([1, 2, 3], [4, 5, 6])
[3, -6, 3]
> _

The cross product of a vector with itself is the zero vector:

> print cross([1, 2, 3], [1, 2, 3])
[0, 0, 0]
> _

See also

DOT

CoreBASIC Reference Guide CoreBASIC Language Reference

180

CRUNCH

Synopsis

CRUNCH

CRUNCH MAX

Compress program.

Description

CRUNCH removes all comments and redundant tokens from your program. If you find yourself running out of

memory at runtime, for instance when creating large arrays, you can CRUNCH your program to recover some

extra space for those arrays. You will, of course, lose all your comments!

All references to lines that are removed by CRUNCH are correctly re-targeted so execution is not affected:

> list
 10 REM Written by some idiot circa 2013.
 20 REM
 30 X = 5
 40 Y = 3
 50 Z = %I : REM Set up
 60 PRINT "A piece of nonsense" ' ...but not any old nonsense...
 70 REM
 80 IF X = 1 THEN GOTO 40 ELSE GOTO 100 : REM Some more...
 90 REM
 100 REM
 110 GOTO 90
> crunch
Program was: 236 bytes
Program is now: 104 bytes
Crunching saved 132 bytes and reduced program size by 55.9%
> list
 30 X = 5
 40 Y = 3
 50 Z = %I
 60 PRINT "A piece of nonsense"
 80 IF X = 1 THEN GOTO 40 ELSE GOTO 110
 110 GOTO 110
> _

CRUNCH leaves the structure and line layout of your program intact, removing redundant code only. Using

CUNCH MAX, on the other hand, asks that your program be crunched even further—if possible—by using multi-

statement lines:

> list
 10 REM Written by some idiot circa 2013.
 20 REM
 30 X = 5
 40 Y = 3
 50 Z = %I : REM Set up
 60 PRINT "A piece of nonsense" ' ...but not any old nonsense...

CoreBASIC Reference Guide CoreBASIC Language Reference

181

 70 REM
 80 IF X = 1 THEN GOTO 40 ELSE GOTO 100 : REM Some more...
 90 REM
 100 REM
 110 GOTO 90
> crunch
Program was: 236 bytes
Program is now: 104 bytes
Crunching saved 132 bytes and reduced program size by 55.9%
> list
 30 X = 5
 40 Y = 3
 50 Z = %I
 60 PRINT "A piece of nonsense"
 80 IF X = 1 THEN GOTO 40 ELSE GOTO 110
 110 GOTO 110
> crunch max
Program was: 104 bytes
Program is now: 84 bytes
Crunching saved 20 bytes and reduced program size by 19.2%
> list
 30 X = 5
 40 Y = 3 : Z = %I : PRINT "A piece of nonsense" : IF X = 1 THEN GOTO 40
 110 GOTO 110
> _

You may well find that a program compressed using CRUNCH MAX is incomprehensible and cannot be edited

because the program lines are too long. You should only use CRUNCH MAX before running your program to

achieve top speed and maximum space for data.

See also

MEMORY

CoreBASIC Reference Guide CoreBASIC Language Reference

182

CVF

Synopsis

CVF arg

Convert binary data to float.

Description

CVF converts arg to a floating point value by interpreting the bytes in the argument as a 32-bit IEEE-754 single

precision floating value in PC byte order (little endian). arg is converted to a string, using the MERGE operator,

before conversion takes place.

After the implicit MERGE, arg must be a string containing exactly four characters or CoreBASIC throws a

dimension error.

> print cvf [0x00, 0x00, 0x80, 0x3f] ' 1.0 is 3F'80'00'00
1
> _

You can use REVERSE to swap from network byte order (big endian) to PC byte order (little endian):

> print cvf reverse [0x3f, 0x80, 0x00, 0x00] ' 1.0 is 3F'80'00'00
1
> _

See also

MKF, REVERSE

CoreBASIC Reference Guide CoreBASIC Language Reference

183

CVI

Synopsis

CVI arg

Convert binary data to integer.

Description

CVI converts arg to an integer by interpreting the bytes in the argument as a two's complement integer in PC

byte order (little endian). arg is converted to a string, using the MERGE operator, before conversion takes place.

> a = [0x27, 0x59, 0x41, 0x31]
> print cvi a, hex cvi a
826366247 31415927
> _

To convert bytes in network byte order (big endian) to an integer, you can use REVERSE:

> a = [0x27, 0x59, 0x41, 0x31]
> print cvi reverse a, hex cvi reverse a
660160817 27594131
> _

Because the input is treated as two's complement on conversion, CVI will return negative values if the most

significant bit is set:

> print cvi [0x00, 0xff]
-256
> _

You can use this capability to easily sign-extend an 8-bit value:

> print cvi chr 0x7f
127
> print cvi chr 0xfe
-2

See also

CVU, MERGE(), MKI

CoreBASIC Reference Guide CoreBASIC Language Reference

184

CVU

Synopsis

CVU arg

Convert binary data to to unsigned.

Description

CVU converts arg to an integer by interpreting the bytes in the argument as an unsigned integer in PC byte

order (little endian). arg is converted to a string, using the MERGE operator, before conversion takes place.

> a = [0x27, 0x59, 0x41, 0x31]
> print cvu a, hex cvu a
826366247 31415927
> _

To convert bytes in network byte order (big endian) to an integer, you can use REVERSE:

> a = [0x27, 0x59, 0x41, 0x31]
> print cvu reverse a, hex cvu reverse a
660160817 27594131
> _

Because the input is treated unsigned on conversion, CVU will not return negative values even if the most

significant bit is set:

> print cvu [0x00, 0xff]
65280
> _

Note

As the internal representation of integers in CoreBASIC is 32-bit signed, a 32-bit input with its most significant bit

set will convert to a signed value:

> print cvu [0x98, 0xba, 0xdc, 0xef]
-270746984
> _

The internal representation, however, carries all significant bits:

> print hex cvu [0x98, 0xba, 0xdc, 0xef]
EFDCBA98
> _

See also

CVI, MERGE(), MKI

CoreBASIC Reference Guide CoreBASIC Language Reference

185

DATA

Synopsis

DATA expression, expression…

Provide data.

Description

DATA lists the data for READ statements.

See also

READ

CoreBASIC Reference Guide CoreBASIC Language Reference

186

DATE$

Synopsis

DATE$

DATE$(arg)

Return textual date.

Description

DATE$ returns the date set for the core in the format YYYY/MM/DD. arg is the number of seconds since 1

January 1970, the standard way of representing time in CoreBASIC. If the argument arg is negative, DATE$

returns ????/??/??.

DATE$ without an argument returns the time string for the current core time and is equivalent to DATE

$(CORE.TIME).

> list
 10 PRINT "The date according to SolderCore is "; DATE$; "."
 20 END
> run
The date according to SolderCore is 2012/18/05.
> _

See also

TIME$

CoreBASIC Reference Guide CoreBASIC Language Reference

187

DATE%

Synopsis

DATE%

DATE%(arg)

Return day within month.

Description

DATE%(arg) returns the current day within the month for the time arg. arg is the number of seconds since 1

January 1970, the standard way of representing time in CoreBASIC. The result is a number from one to 31.

DATE% without an argument returns the current day within the month for the core time and is equivalent to

DATE%(CORE.TIME).

> list
 10 PRINT "Today is day "; SPOKEN$ DATE%; " of the month."
 20 END
> run
Today is day thirty of the month.
> _

See also

DAY%, MONTH%, YEAR%

CoreBASIC Reference Guide CoreBASIC Language Reference

188

DAY%

Synopsis

DAY%

DAY%(arg)

Return day within week.

Description

DAY%(arg) returns the current day within the week for the time arg. arg is the number of seconds since 1

January 1970, the standard way of representing time in CoreBASIC. The result is a number from one to seven,

with Sunday encoded as 1, Monday as 2, and so on.

DAY% without an argument returns the current day within the week for the core time and is equivalent to DAY

%(CORE.TIME).

> list
 10 DAYNAMES = ["---", "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"]
 20 PRINT "Today is ";
 30 PRINT DAYNAMES(DAY%)
 40 END
> run
Today is Fri
> _

See also

DATE%, MONTH%, YEAR%

CoreBASIC Reference Guide CoreBASIC Language Reference

189

DEBUG

Synopsis

DEBUG

Start full screen debugger.

Description

DEBUG enters the full-screen editor, prepares to execute the program, and stops at the first line to be executed.

See also

RUN

CoreBASIC Reference Guide CoreBASIC Language Reference

190

DEFPROC ... ENDPROC

Synopsis

DEFPROC name [(expr, expr…)] [USING var, var…]

 statements

ENDPROC

Define a procedure.

Description

DEFPROC defines a procedure which contains a sequence of statements that you can execute with CALL.

In its simplest form, DEFPROC can replace a repetitive sequence of statements that you use often:

> list
 10 CALL WELCOME
 20 PRINT | "Once again, please..." ||
 30 CALL WELCOME
 40 END
 50 '
 60 DEFPROC WELCOME
 70 PRINT "Welcome to SolderCore and CoreBASIC,"
 80 PRINT "we hope you enjoy the experience!"
 90 ENDPROC
> run
Welcome to SolderCore and CoreBASIC,
we hope you enjoy the experience!

Once again, please...

Welcome to SolderCore and CoreBASIC,
we hope you enjoy the experience!
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

191

DEG

Synopsis

DEG arg

Convert radian measure to degree measure.

Description

DEG converts arg radians to degrees by multiplying arg by 180?π:

> print deg(2*pi)
360
> _

If arg is complex or a quaternion, each part is multiplied by 180?π:

> print deg cmplx(-%pi, %pi)
-180+180j
> print deg quat(-%pi, %pi, -1, 1)
-180+180i-57.29578j+57.29578k
> _

If arg is an array, DEG threads recursively over the elements of the array:

> print deg [-%pi, %pi]
[-180, 180]
> _

See also

RAD

CoreBASIC Reference Guide CoreBASIC Language Reference

192

DELETE

Synopsis

DELETE [start] [, [end]]

Delete lines from program.

Description

DELETE will delete all line numbers falling in the range start to end inclusive.

If the first line number is omitted, DELETE will use the first line number in the program:

> list
 10 ' A poem by Lewis Carroll.
 20 '
 30 PRINT "'Twas brillig, and the slithy toves"
 40 PRINT " Did gyre and gimble in the wabe:"
 50 PRINT "All mimsy were the borogoves,"
 60 PRINT " And the mome raths outgrabe."
 70 END
> delete , 55
> list
 60 PRINT " And the mome raths outgrabe."
 70 END
> _

If the second line number is omitted, DELETE will delete to the end of the program:

> list
 10 ' A poem by Lewis Carroll.
 20 '
 30 PRINT "'Twas brillig, and the slithy toves"
 40 PRINT " Did gyre and gimble in the wabe:"
 50 PRINT "All mimsy were the borogoves,"
 60 PRINT " And the mome raths outgrabe."
 70 END
> delete 35,
> list
 10 ' A poem by Lewis Carroll.
 20 '
 30 PRINT "'Twas brillig, and the slithy toves"
> _

With a single line number, DELETE will delete only that line:

> list
 10 ' A poem by Lewis Carroll.
 20 '
 30 PRINT "'Twas brillig, and the slithy toves"
> delete 20
> list
 10 ' A poem by Lewis Carroll.
 30 PRINT "'Twas brillig, and the slithy toves"
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

193

With two lines numbers, DELETE will delete between those lines:

> list
 10 ' A poem by Lewis Carroll.
 20 '
 30 PRINT "'Twas brillig, and the slithy toves"
 40 PRINT " Did gyre and gimble in the wabe:"
 50 PRINT "All mimsy were the borogoves,"
 60 PRINT " And the mome raths outgrabe."
 70 END
> delete 21, 60
> list
 10 ' A poem by Lewis Carroll.
 20 '
 70 END
> _

Typing a line number with no following text is equivalent to deleting just that line:

> list
 10 ' A poem by Lewis Carroll.
 20 '
 70 END
> 20
> list
 10 ' A poem by Lewis Carroll.
 70 END
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

194

DELETE$

Synopsis

DELETE$(str, pos, len)

Delete part of string.

Description

DELETE$ deletes len characters from str starting at position pos:

> print delete$("CoreBASIC", 1, 3)
CBASIC
> _

If pos is beyond the end of str, the string is unchanged:

> print delete$("CoreBASIC", 9, 100)
CoreBASIC
> _

See also

INSERT$

CoreBASIC Reference Guide CoreBASIC Language Reference

195

DET

Synopsis

DET arg

Matrix determinant.

Description

DET computes the determinant of the two-dimensional matrix arg. CoreBASIC will halt with an dimension error

if arg is not a square two-dimensional matrix.

> m = [[1, 2], [3, 4]] ' Set up matrix
> mat print m ' Print matrix in matrix form
1 2
3 4
> print det m ' Compute determinant of 2x2 matrix
-2
> m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
> mat print m
1 2 3
4 5 6
7 8 9
> print det m
0
> _

DET uses LU decomposition to compute the determinant.

See also

INV

CoreBASIC Reference Guide CoreBASIC Language Reference

196

DFT

Synopsis

DFT arg

Compute discrete Fourier transform.

Description

DFT computes the discrete Fourier transform of arg:

> m = [1, 2, 3, 4]
> print m | dft m
[1, 2, 3, 4]
[4, 6, -2, -2]
> _

CoreBASIC will halt with a dimension error if the length of arg is not a power of two:

> m = [1, 2, 3]
> print dft m
?dimension error
> _

In the array, the real parts of samples are listed first, followed by the imaginary parts. If you have an array of

complex values, you can use IM and RE to rearrange the array to the form DFT requires:

> c = [cmplx(1, 3), cmplx(2, 4)]
> print c
[1+3j, 2+4j]
> print dft c
?type mismatch
> print dft(re c & im c)
[4, 6, -2, -2]
> _

Note

The implementation of the DFT function uses floating point operations and is not intended for real-time digital

signal processing of large data sets.

See also

IDFT

CoreBASIC Reference Guide CoreBASIC Language Reference

197

DIM

Synopsis

DIM var(n)

Dimension variable.

Description

The variable var is created as an array of n integers with initial value zero. DIM A(N) is equivalent to the

statement LET A = ZER(N).

CoreBASIC Reference Guide CoreBASIC Language Reference

198

DIR

Synopsis

DIR

DIR folder

Display folder content.

Description

DIR will list the contents of a folder as CATALOG does. The difference between DIR and CATALOG is that DIR

interprets the text folder as a folder name or wildcard without requiring quotation marks—this is excellent when

traversing the file system interactively using CD to move and DIR to list contents.

> dir

Directory of: /c/*.*

12/05/12 11:26 <DIR> sys
01/01/12 00:00 144 work.bas
01/01/12 00:00 1,913 crc.bas
01/01/12 00:00 2,499 union.bas
01/01/12 00:00 194 analog.bas
01/01/12 00:00 13,291 trek.bas
01/01/12 00:00 1,986 calib.bas
01/01/12 00:00 227 blinky.bas
01/01/12 00:00 157 !run.bas
01/01/12 00:00 2,580 flag.bas
01/01/12 00:00 538 air.bas
01/01/12 00:00 88 ansi.bas
01/01/12 00:00 102 test.bas
01/01/12 00:00 910 cam.bas
01/01/12 00:00 <DIR> www

> dir sys/*.fw

Directory of: /c/sys/*.fw

01/01/12 00:00 491,520 core.fw

> _

See also

CATALOG, CD

CoreBASIC Reference Guide CoreBASIC Language Reference

199

DNS

Synopsis

DNS arg

Look up a DNS address.

Description

DNS looks up the hostname arg using the current set of DNS servers. If arg is a dotted-decimal, the IP address is

resolved without using a DNS lookup. The result is an array of four integers containing the resolved IP address:

> print dns "www.rowley.co.uk"
[212, 159, 9, 91]
> print dns "www.soldercore.com"
[50, 116, 85, 1]
> print dns "192.168.1.1"
[192, 168, 1, 1]
> _

If the host name is in error, no DNS servers are available, no DNS server responds within two seconds, or a DNS

server returns an error, CoreBASIC returns the null IP address [0, 0, 0, 0].

> print dns "www.bad.server"
[0, 0, 0, 0]
> _

You can check for a null IP address using SUM:

> list
 10 ADDR = DNS "www.bad.server"
 20 IF SUM(ADDR) = 0 THEN PRINT "Can't resolve address"
 30 END
> run
Can't resolve address
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

200

DOT

Synopsis

DOT(x, y)

Dot product.

Description

DOT computes the dot product of x and y. x and y must be equal-length vectors of real numbers.

> print dot([1, 2, 3], [4, 5, 6])
32
> _

See also

CROSS

CoreBASIC Reference Guide CoreBASIC Language Reference

201

DRAW

Synopsis

DRAW arg

Display text on graphics screen.

Description

DRAW draws the string arg on the graphics display at the current pen position. You can select the font to use

with FONT, and you can move the pen using MOVE.

Within the DRAW command, you can change the color, scale, and rotation using COLOR, SCALE, and ANGLE.

This change stays in effect for the duration of the DRAW command or until changed. When the DRAW command

completes, local drawing changes are discarded, reverting to the global drawing context.

Example

 10 COLOR %WHITE
 20 MOVE 10, 10
 30 DRAW COLOR %RED; "Error: "
 40 DRAW "Software crashed!"
 50 END

This example set the global drawing color to white then proceeds to draw Error: in red. Once the DRAW

command completes, that local change is canceled and Software crashed! is drawn in the global drawing

color, white.

CoreBASIC Reference Guide CoreBASIC Language Reference

202

DUMP

Synopsis

DUMP

Display all variables.

Description

All variables, and their values, are shown in list form to standard output:

> list
 10 U = [1, 7, 2]
 20 B = "CoreBASIC"
 30 F = 1 / 3
> run
> dump
U = [1, 7, 2]
B = "CoreBASIC"
F = 0.333333
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

203

EDIT

Synopsis

EDIT

EDIT line

EDIT filename

Edit a single line or entire program.

Description

EDIT with a line number will recall that program line to be edited in calculator mode:

> list
 10 PRINT "Hello"
 20 END
> edit 10
10 PRINT "Hello"

Here, the underline indicates the cursor position immediately after executing EDIT 10.

Visual editor

EDIT without a line number will invoke the CoreBASIC visual editor to edit the program in memory.

Load and edit

EDIT with a filename will load the file filename (as if using LOAD) and enter the visual editor to edit it.

Note

Pressing F4 at the CoreBASIC command line will execute EDIT. Not all terminal emulators will pass the F4

keystroke to the client.

See also

Visual editor keystrokes

CoreBASIC Reference Guide CoreBASIC Language Reference

204

EJECT

Synopsis

EJECT

EJECT name

Eject media.

Description

EJECT flushes all cached, unwritten sectors to the specified volume and unmounts it so that it can no longer be

accessed by CoreBASIC. If name is omitted, CoreBASIC ejects the /c volume which is the microSD card on the

SolderCore.

See also

MOUNT

CoreBASIC Reference Guide CoreBASIC Language Reference

205

ELSE

Synopsis

ELSE

ELSE statements

Alternative execution path for IF.

Description

See IF ... THEN.

CoreBASIC Reference Guide CoreBASIC Language Reference

206

END

Synopsis

END

Terminate program execution.

Description

CoreBASIC stops executing the program and returns to the command prompt. Note that, in contrast to STOP,

this returns control without displaying any message.

Notes

CoreBASIC will automatically make the following changes when END is used in conjunction with another

keyword:

• END IF is converted to ENDIF.

• END CASE is converted to ENDCASE.

• END WHILE is converted to WEND.

CoreBASIC Reference Guide CoreBASIC Language Reference

207

ENDCASE

Synopsis

ENDCASE

End a CASE statement.

Description

ENDCASE indicates the end of an CASE statement.

Notes

You can write END CASE as two separate words and CoreBASIC will change the two words to ENDCASE

automatically.

See also

See CASE ... ENDCASE.

CoreBASIC Reference Guide CoreBASIC Language Reference

208

ENDIF

Synopsis

ENDIF

End an IF statement.

Description

ENDIF indicates the end of an IF statement.

Notes

You can write END IF as two separate words and CoreBASIC will change the two words to ENDIF automatically.

See also

IF ... THEN

CoreBASIC Reference Guide CoreBASIC Language Reference

209

ENDPROC

Synopsis

ENDPROC

End a procedure.

Description

See DEFPROC ... ENDPROC.

CoreBASIC Reference Guide CoreBASIC Language Reference

210

EOF

Synopsis

EOF unary

Inquire end of file.

Description

EOF inquires whether the file unary is positioned at the end. EOF will return true if the stream unary is

positioned at the end and false otherwise. If unary is not an open file, or is a socket, EOF returns true.

CoreBASIC Reference Guide CoreBASIC Language Reference

211

EQV

Synopsis

x EQV y

Logical equivalence.

Description

EQV computes the logical equivalence of x and y. The result is true if x and y are both true or x and y are both

false:

> list
 10 FOR X = FALSE TO TRUE
 20 FOR Y = FALSE TO TRUE
 30 PRINT TRUTH X; " EQV "; TRUTH Y; " = "; TRUTH(X EQV Y)
 40 NEXT Y
 50 NEXT X
 60 END
> run
False EQV False = True
False EQV True = False
True EQV False = False
True EQV True = True
> _

Both x and y are converted to integers before applying EQV. After conversion to integers, any nonzero value is

considered true.

> print 1.5 eqv 0.2 | 1.1 eqv 1.2
0
1
> _

Arrays are processed element-by-element and a new array is created containing the elementwise equivalence of

each pair:

> print [0, 1, 0, 1] eqv [0, 0, 1, 1]
[1, 0, 0, 1]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

212

ERROR

Synopsis

ERROR

Return last error code.

Description

ERROR returns the last error code caught by TRY. When the program is first run, ERROR is set to zero, indicating

no previous error. If the statement following TRY executed without error, zero is assigned to ERROR; if the

statement following TRY raised an error, the corresponding error code is assigned to ERROR.

> list
 10 ' Generate a programmed "type mismatch" error
 20 '
 30 PRINT "Current error is: "; REPORT ERROR
 40 TRY PRINT "Comparing 3 to 4: "; TRUTH(3 < 4)
 50 PRINT "Current error is: "; REPORT ERROR
 60 TRY PRINT "Comparing 3 to ""Four"": "; TRUTH(3 < "Four")
 70 PRINT "Current error is: "; REPORT ERROR
 80 END
> run
Current error is: OK
Comparing 3 to 4: True
Current error is: OK
Comparing 3 to "Four": Current error is: type mismatch
> _

This example shows that some items are printed by PRINT before the error is raised, and then PRINT is

abandoned and no further items are output by PRINT.

See also

TRY, REPORT

CoreBASIC Reference Guide CoreBASIC Language Reference

213

EXAMPLE

Synopsis

EXAMPLE CATALOG

EXAMPLE

List examples available from network.

See EXAMPLE CATALOG.

Synopsis

EXAMPLE LOAD name

EXAMPLE name

Load example from network.

See EXAMPLE LOAD.

CoreBASIC Reference Guide CoreBASIC Language Reference

214

EXAMPLE CATALOG

Synopsis

EXAMPLE CATALOG

EXAMPLE

List examples available from network.

Description

EXAMPLE CATALOG contacts the SolderCore server at www.soldercore.com and lists the current set of

examples that are stored on the server. EXAMPLE, with nothing following, is the same as EXAMPLE CATALOG.

> example catalog
Connecting to www.soldercore.com (192.232.216.121)...
Requesting /examples/ from network...

Index of /examples

 * Parent Directory
 * 3d-cube-1.bas
 * 3d-function-plot.bas
 * bouncing-lines.bas
 * charlcd.bas
 * colors-shield-message.bas
 * compass-demo.bas
 ?
 * welcome.bas

Apache Server at www.soldercore.com Port 80
> _

You can load an example from the list into CoreBASIC using EXAMPLE LOAD and omitting the ".bas" extension:

> example load "welcome"
Connecting to www.soldercore.com (192.232.216.121)...
Loading welcome.bas from network...
Program loaded and ready. Type RUN to execute.
> _

See also

EXAMPLE LOAD

CoreBASIC Reference Guide CoreBASIC Language Reference

215

EXAMPLE LOAD

Synopsis

EXAMPLE LOAD name

EXAMPLE name

Load example from network.

Description

EXAMPLE LOAD loads the example with the name name from the SolderCore website,

www.soldercore.com. When EXAMPLE is followed by an expression, the LOAD is optional:

> example "welcome"
Connecting to www.soldercore.com (192.232.216.121)...
Loading welcome.bas from network...
Program loaded and ready. Type RUN to execute.
> list
 10 ' Welcome program for CoreBASIC.
 20 '
 30 PRINT "Welcome to CoreBASIC on the "; CORE.NAME; "!"
 40 PRINT "For more information, visit http://www.soldercore.com/"
 50 '
 60 END
> run
Welcome to CoreBASIC on the SolderCore!
For more information, visit http://www.soldercore.com/
> _

You can abbreviate EXAMPLE LOAD to a single bar to quickly load a program:

> |welcome
Connecting to www.soldercore.com (192.232.216.121)...
Loading welcome.bas from network...
Program loaded and ready. Type RUN to execute.
> _

Note

You can list the set of available online examples using EXAMPLE CATALOG.

See also

EXAMPLE CATALOG

CoreBASIC Reference Guide CoreBASIC Language Reference

216

EXIT

Synopsis

EXIT FOR

Exit innermost FOR loop.

See EXIT FOR.

Synopsis

EXIT REPEAT

Exit innermost REPEAT loop.

See EXIT REPEAT.

Synopsis

EXIT WHILE

Exit innermost WHILE loop.

See EXIT WHILE.

CoreBASIC Reference Guide CoreBASIC Language Reference

217

EXIT FOR

Synopsis

EXIT FOR

Exit the innermost FOR loop.

Description

EXIT FOR exists the innermost FOR loop, transferring control to the statement following NEXT.

Note

Do not exit a FOR loop by assigning to the control variable and do not use GOTO to skip over the NEXT

statement.

CoreBASIC Reference Guide CoreBASIC Language Reference

218

EXIT REPEAT

Synopsis

EXIT REPEAT

Exit the innermost REPEAT loop.

Description

EXIT REPEAT exists the innermost REPEAT loop, transferring control to the statement following UNIIL.

Note

Do not exit a REPEAT loop by using GOTO to skip over the UNTIL statement.

CoreBASIC Reference Guide CoreBASIC Language Reference

219

EXIT WHILE

Synopsis

EXIT WHILE

Exit the innermost WHILE loop.

Description

EXIT WHILE exists the innermost WHILE loop, transferring control to the statement following WEND.

Note

Do not exit a WHILE loop by using GOTO to skip over the WEND statement.

CoreBASIC Reference Guide CoreBASIC Language Reference

220

EXP

Synopsis

EXP arg

Exponential.

Description

EXP computes the exponential of arg.

For real, complex, and quaternion types, EXP returns a number of the same type as its operand:

> print exp 2
7.3891
> print exp cmplx(-0.5, 1)
0.32771+0.51038j
> print exp quat(2, 3, 4, 5)
5.2119+2.2222i+2.963j+3.7037k
> _

If arg is an array, EXP threads recursively over the elements of the array:

> print exp [2, 3, 4]
[7.3891, 20.0855, 54.5982]
> _

See also

LOG

CoreBASIC Reference Guide CoreBASIC Language Reference

221

EXPAND

Synopsis

EXPAND arg

Expand string to array.

Description

EXPAND converts its string argument into an array of integers corresponding to the ASCII code of each character

in the string.

> print expand "SolderCore"
[83, 111, 108, 100, 101, 114, 67, 111, 114, 101]
> print expand ["Solder", "Core"]
[83, 111, 108, 100, 101, 114, 67, 111, 114, 101]
> _

Using CHR with EXPAND expands the string to individual characters:

> print chr expand "SolderCore"
["S", "o", "l", "d", "e", "r", "C", "o", "r", "e"]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

222

EXT

Synopsis

EXT unary = expr

Set file extent.

Description

Assignment to EXT sets the length of the file unary to expr. You cannot extend a file beyond its current length.

See also

EXT()

CoreBASIC Reference Guide CoreBASIC Language Reference

223

EXT()

Synopsis

EXT arg

Get file extent.

Description

EXT returns the extent, or length, of the open file arg. If arg does not refer to an open file, the result of EXT will

be negative and indicate an error.

> list
 10 F = OPEN("/c/log.txt", READ)
 20 IF F < 0 THEN PRINT "Error opening /c/log.txt: "; REPORT F : END
 30 PRINT "The file /c/log.txt is "; EXT F; " bytes in size."
 40 CLOSE F
 50 END
> run
The file /c/log.txt is 7 bytes in size.
> dir "/c/log.txt"
 7 log.txt
> _

See also

EXT

CoreBASIC Reference Guide CoreBASIC Language Reference

224

FALSE

Synopsis

FALSE

Boolean false.

Description

FALSE is a synonym for zero as Boolean values are represented as integers in CoreBASIC.

> print false | truth false
0
False
> _

See also

TRUE

CoreBASIC Reference Guide CoreBASIC Language Reference

225

FILL

Synopsis

FILL CIRCLE x, y, radius

FILL LINE x0, y0 TO x1, y1 TO … FILL RECTANGLE x0, y0 TO x1, y1

Also…

FILL x0, y0 TO x1, y1

Draw a filled object.

Description

FILL instructs CoreBASIC to fill the area drawn by the following graphic command rather than simply drawing

an outline. You can use FILL before the CIRCLE, RECTANGLE, and LINE commands.

RECTANGLE is optional with the FILL command. If you omit a command after FILL, RECTANGLE is assumed.

Note that FILL : RECTANGLE… is not valid: the FILL must immediately precede a graphics command.

See also

CIRCLE, LINE, RECTANGLE

CoreBASIC Reference Guide CoreBASIC Language Reference

226

FIRMWARE

Synopsis

FIRMWARE CATALOG

List firmware versions available from network.

See FIRMWARE CATALOG.

Synopsis

FIRMWARE CHECK

Check integrity of upgrade firmware.

See FIRMWARE CHECK.

Synopsis

FIRMWARE GET

FIRMWARE GET version

Get firmware from network.

See FIRMWARE GET.

Synopsis

FIRMWARE KILL

Erase upgrade firmware.

See FIRMWARE KILL.

Synopsis

FIRMWARE SAVE

Replace installed firmware.

See FIRMWARE SAVE.

Synopsis

FIRMWARE RUN

FIRMWARE [RUN] version

Download and replace installed firmware.

See FIRMWARE RUN.

CoreBASIC Reference Guide CoreBASIC Language Reference

227

FIRMWARE CATALOG

Synopsis

FIRMWARE CATALOG

List firmware versions available from network.

Description

FIRMWARE CATALOG contacts the SolderCore server at www.soldercore.com and lists the releases of

CoreBASIC firmware compatible with your SolderCore.

> firmware catalog

Installed firmware is 0.9.5.

Connecting to www.soldercore.com (192.232.216.121)...
Requesting /firmware/soldercore-v1/ from network...

Index of /firmware/soldercore-v1

 * Parent Directory
 * core.fw
 * core-1.0.0.fw
 ?

Apache Server at www.soldercore.com Port 80
> _

See also

FIRMWARE GET, FIRMWARE RUN

CoreBASIC Reference Guide CoreBASIC Language Reference

228

FIRMWARE CHECK

Synopsis

FIRMWARE CHECK

Check integrity of upgrade firmware.

Description

FIRMWARE CHECK performs an integrity check of the firmware contained in the upgrade image file /c/sys/

core.fw on the microSD card.

> firmware check
Verifying integrity of upgrade firmware...
Verified 491,520 bytes of 491,520 (100%)...with good CRC.
Upgrade firmware is verified to work on soldercore-v1.
Installed firmware is 1.0; upgrade firmware is 1.0.
Installed firmware identical to upgrade firmware.
> _

See also

FIRMWARE SAVE, FIRMWARE RUN

CoreBASIC Reference Guide CoreBASIC Language Reference

229

FIRMWARE GET

Synopsis

FIRMWARE GET

FIRMWARE GET version

Get firmware from network.

Description

FIRMWARE GET contacts the SolderCore server at www.soldercore.com, retrieves the most recent release

of the CoreBASIC firmware, and stores the upgrade firmware in the file /c/sys/core.fw on the microSD card.

If you follow FILENAME RUN with a filename, that specific firmware version is downloaded from the SolderCore

website.

Once the upgrade firmware is successfully downloaded from the server, FIRMWARE GET proceeds with an

integrity check of the upgrade firmware to ensure that the firmware is intended for this SolderCore model.

> firmware get
Connecting to www.soldercore.com (192.232.216.121)...
Requesting /firmware/soldercore-v1/core.fw...
Downloaded 491,520 bytes of 491,520 (100%)...
Verifying integrity of upgrade firmware...
Verified 491,520 bytes of 491,520 (100%)...with good CRC.
Upgrade firmware is verified to work on soldercore-v1.
Installed firmware is 0.9; upgrade firmware is 1.0.
Installed firmware differs from upgrade firmware.
> _

You can update the SolderCore to the upgrade firmware with FIRMWARE SAVE.

See also

FIRMWARE CATALOG, FIRMWARE RUN

CoreBASIC Reference Guide CoreBASIC Language Reference

230

FIRMWARE KILL

Synopsis

FIRMWARE KILL

Erase upgrade firmware.

Description

FIRMWARE KILL removes the file /c/sys/core.fw from the microSD card.

CoreBASIC Reference Guide CoreBASIC Language Reference

231

FIRMWARE RUN

Synopsis

FIRMWARE RUN

FIRMWARE [RUN] version

Download and replace installed firmware.

Description

FIRMWARE RUN contacts the SolderCore server at www.soldercore.com, retrieves the most recent release

of the CoreBASIC firmware, and stores the upgrade firmware in the file /c/sys/core.fw on the microSD card.

If you follow FIRMWARE RUN with a filename, that specific firmware version is downloaded from the SolderCore

website.

Once the upgrade firmware is successfully downloaded from the server, FIRMWARE RUN proceeds with an

integrity check of the upgrade firmware to ensure that the firmware is intended for this SolderCore model. If

the upgrade firmware passes all checks, the SolderCore resets and the upgrade firmware is installed by the

bootloader.

Note

FIRMWARE RUN combines FIRMWARE GET followed by FIRMWARE SAVE into a single operation.

See also

FIRMWARE GET, FIRMWARE SAVE, FIRMWARE CATALOG

CoreBASIC Reference Guide CoreBASIC Language Reference

232

FIRMWARE SAVE

Synopsis

FIRMWARE SAVE

Replace installed firmware.

Description

FIRMWARE SAVE performs an integrity check of the firmware contained in the upgrade image file /c/sys/

core.fw on the microSD card (as FIRMWARE CHECK); if the upgrade firmware passes the integrity check

and is suitable for the SolderCore model, the SolderCore is reset and the upgrade firmware is installed by the

bootloader.

> firmware save
Verifying integrity of upgrade firmware...
Verified 491,520 bytes of 491,520 (100%)...with good CRC.
Upgrade firmware is verified to work on soldercore-v1.
Installed firmware is 0.9; upgrade firmware is 1.0.
Installed firmware differs from upgrade firmware.

FIRMWARE UPGRADE STARTED

This network connection will be closed, the
SolderCore will reset, and the upgrade firmware
will be programmed into the SolderCore's flash.

If you have problems with firmware replacement,
please visit the support forums.

Closing connection now.

Connection to host lost.

C:\Users\Paul>

If the installed firmware and upgrade firmware are identical, FIRMWARE SAVE will not start the bootloader to

flash the firmware:

> firmware save
Verifying integrity of upgrade firmware...
Verified 491,520 bytes of 491,520 (100%)...with good CRC.
Upgrade firmware is verified to work on soldercore-v1.
Installed firmware is 1.0; upgrade firmware is 1.0.
Installed firmware identical to upgrade firmware.
> _

See also

FIRMWARE GET, FIRMWARE CHECK

CoreBASIC Reference Guide CoreBASIC Language Reference

233

FIX

Synopsis

FIX arg

Floor.

Description

FIX computes the largest integer value not greater than arg:

> print fix 6 | fix -6
6
-6
> print fix 6.4 | fix -6.4
6
-7

If arg is a complex number or quaternion, FIX is applied to the real, imaginary, and vector parts independently:

> print fix cmplx(6.4, -6.4)
6-7j
> print fix quat(1.1, -2.2, 3.3, -4.4)
1-3i+3j-5k

If arg is an array, FIX threads recursively over the elements of the array:

> print fix [1.1, -2.2, 3.3, -4.4]
[1, -3, 3, -5]
> _

See also

CINT, INT

CoreBASIC Reference Guide CoreBASIC Language Reference

234

FLT

Synopsis

FLT arg

Convert to floating.

Description

FLT converts arg to a floating value. In many cases you do not need to use FLT as CoreBASIC automatically

converts integers to floating point when required. However, FLT also specifies that an input must be in floating

point format with INPUT.

> print flt 1.5
1.5
> print flt 5
5
> _

See also

INPUT

CoreBASIC Reference Guide CoreBASIC Language Reference

235

FLUSH

Synopsis

FLUSH arg

Flush data.

Description

FLUSH ensures that all buffered data on the open channel arg is pushed to the network or written to disk. This is

important for sockets where data written to a socket is held for transmission until either a TCP segment is filled

or FLUSH is executed to push a partially-filled TCP segment.

See also

CLOSE

CoreBASIC Reference Guide CoreBASIC Language Reference

236

FOR ... NEXT

Synopsis

FOR variable = first TO last [STEP step]

 statements

NEXT variable

FOR variable = first TO last IN count

 statements

NEXT variable

Iterate a fixed number of times.

Description

FOR repeatedly executes the statements between the FOR and NEXT statements.

> list
 10 FOR I = 1 TO 10
 20 PRINT I; " ";
 30 NEXT I
 40 PRINT
 50 END
> run
1 2 3 4 5 6 7 8 9 10
> _

You can use STEP and the step parameter to count up in steps other than one:

> list
 10 FOR I = 1 TO 10 STEP 2
 20 PRINT I; " ";
 30 NEXT I
 40 PRINT
 50 END
> run
1 3 5 7 9
> _

The statements within the loop will not execute if the starting value is past the end value:

> list
 10 FOR I = 10 TO 0
 20 PRINT I
 30 NEXT I
 40 END
> run
> _

The step parameter can be negative to count down:

> list

CoreBASIC Reference Guide CoreBASIC Language Reference

237

 10 FOR I = 10 TO 1 STEP -2
 20 PRINT I; " ";
 30 NEXT I
 40 PRINT
 50 END
> run
10 8 6 4 2
> _

Rather than specifying a step, you can ask for the values to be evenly spaced between start and end by using IN.

> list
 10 FOR I = 1 TO 10 IN 9
 20 PRINT I; " ";
 30 NEXT I
 40 PRINT
 50 END
> run
1 2.125 3.25 4.375 5.5 6.625 7.75 8.875 10
> _

Note that a decreasing sequence still uses a positive value for IN:

> list
 10 FOR I = 2 TO 1 IN 4
 20 PRINT I; " ";
 30 NEXT I
 40 PRINT
 50 END
> run
2 1.66667 1.33333 1
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

238

FOR EACH ... NEXT

Synopsis

FOR EACH variable IN array

 statements

NEXT variable

Iterate over array.

Description

FOR EACH executes statements for each element taken from the array array and assigned to variable:

> list
 10 FOR EACH V IN ["Core", "BASIC", EXP(1), %I, %PI, 1, 0]
 20 PRINT "Processing element: "; V
 30 NEXT V
 40 END
> run
Processing element: Core
Processing element: BASIC
Processing element: 2.71828
Processing element: 0-1j
Processing element: 3.14159
Processing element: 1
Processing element: 0
> _

To iterate over the characters of a string, use EXPAND and CHR together:

> list
 10 FOR EACH CHAR IN CHR EXPAND "CoreBASIC"
 20 PRINT "Give me a """; CHAR; """!"
 30 NEXT V
 40 END
> run
Give me a "C"!
Give me a "o"!
Give me a "r"!
Give me a "e"!
Give me a "B"!
Give me a "A"!
Give me a "S"!
Give me a "I"!
Give me a "C"!
> _

See also

CHR, EXPAND

CoreBASIC Reference Guide CoreBASIC Language Reference

239

FONT

Synopsis

FONT arg

Select font.

Description

FONT selects the font named arg for subsequent DISPLAY commands. If the font does not exist, CoreBASIC

returns to the command prompt with a "font not found" error.

FONT CATALOG lists the fonts provided with each release of CoreBASIC.

See also

FONT CATALOG

CoreBASIC Reference Guide CoreBASIC Language Reference

240

FONT CATALOG

Synopsis

FONT CATALOG

List resident fonts.

Description

FONT CATALOG lists the font names of all the resident fonts.

> font catalog

Bitmap fonts

4x6 5x7 6x9
7x13 10x20 PET

Vector fonts

ROMAN-SIMPLEX

> _

See also

FONT

CoreBASIC Reference Guide CoreBASIC Language Reference

241

GEN

Synopsis

GEN(start TO end)

GEN(start TO end STEP step)

GEN(start TO end IN count)

Generate arithmetic progression as an array.

Description

GEN creates an array containing values in an arithmetic progression. The first value in the array will be start,

continuing in steps of step, ending at end; if STEP is not present, it is assumed to be one.

> print gen(1 to 10)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
> print gen(1 to 10 step 2)
[1, 3, 5, 7, 9]
> _

The step parameter can be negative to count down:

> print gen(10 to 1 step -1)
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
> print gen(10 to 1 step -2)
[10, 8, 6, 4, 2]
> _

And step can be fractional:

> print gen(1 to 2 step 0.25)
[1, 1.25, 1.5, 1.75, 2]
> _

Rather than specifying a step, you can ask for the values to be evenly spaced between start and end by using IN.

The value in is converted to an integer and the array contains that many values, all equally spaced:

> print gen(1 to 10 in 9)
[1, 2.125, 3.25, 4.375, 5.5, 6.625, 7.75, 8.875, 10]
> print gen(2 to 1 in 4)
[2, 1.66667, 1.33333, 1]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

242

GET

Synopsis

GET

Read standard input.

Description

GET waits for the next character on the standard input stream, typically the keyboard. The value returned is the

ASCII code of the character read.

CoreBASIC encodes standard keystrokes into ASCII codes with values above 128. Please refer to CoreBASIC

Keyboard codes for further details on keyboard mappings.

See also

GET$

Note

GET is equivalent to BGET %IN.

CoreBASIC Reference Guide CoreBASIC Language Reference

243

GET$

Synopsis

GET$

Read standard input.

Description

GET waits for the next character on the standard input stream, typically the keyboard. The value returned is a

string containing the single character read.

CoreBASIC encodes standard keystrokes into ASCII codes with values above 128. Please refer to CoreBASIC

Keyboard codes for further details on keyboard mappings.

See also

GET

Note

GET$ is equivalent to BGET$ %IN.

CoreBASIC Reference Guide CoreBASIC Language Reference

244

GOTO

Synopsis

GOTO line

Transfer control to line.

Description

GOTO transfers control to line number line.

CoreBASIC Reference Guide CoreBASIC Language Reference

245

GFX

Synopsis

GFX.property

GFX arg

Inquire graphics capabilities.

Description

GFX returns the capability of the selected graphics device. You can inquire a subset of the capabilities using

property syntax and the remainder by using a capability index.

Following GFX with a named property inquires the following capabilities:

Property Description

WIDTH Visible display width, in pixels.

HEIGHT Visible display height, in pixels.

DEPTH Color depth, in bits.

X Graphics pen x co-ordinate.

Y Graphics pen y co-ordinate.

FONT Selected font name.

Following GFX with an expression arg inquires the capability of the graphics device by index. The value of arg

selects the particular capability of interest according to the following:

Capability Description

0 Logical display width, in pixels

1 Logical display height, in pixels

2 Visible display width, in pixels

3 Visible display height, in pixels

4 Color depth, in bits

6 Default background color as RGB888

7 Default foreground color as RGB888

Some LCD displays have a wider logical width than visible width, or a taller logical height than visible height.

This is because the controller chips are able to control an LCD with more pixels than the current panel supports.

You will be able to draw outside of the logical display region, however you will not see that on the screen

because the LCD panel is not capable of showing it.

The color depth in bits tells you whether you're dealing with a true color display or a paletted display. For true

color displays that have 24-bit color (using an RGB888 arrangement), the color depth will be 24. Some displays

CoreBASIC Reference Guide CoreBASIC Language Reference

246

are use and RGB666 arrangement with a color depth of 18. Other displays use an RGB565 arrangement with a

color depth of 16.

If a display reports a color depth of 8 or below, it is paletted with a finite set of colors chosen from a wider

palette.

If a display reports a color depth of 1 then it is monochrome and supports only two usually fixed, colors.

CoreBASIC Reference Guide CoreBASIC Language Reference

247

GOSUB

Synopsis

GOSUB line

Call subroutine.

Description

GOSUB transfers control to the subroutine starting at line number line. Execution returns to the statement

immediately after the GOSUB when the called subroutine executes a RETURN.

See also

RETURN

CoreBASIC Reference Guide CoreBASIC Language Reference

248

GREEN%

Synopsis

GREEN% arg

Extract green component of a color.

Description

GREEN% extracts the green component of the 24-bit RGB color value arg and returns it as a number between 0

(fully desaturated) and 1 (fully saturated).

> x = rgb(0.7, 0.2, 0.1)
> print green% x
0.2
> _

See also

BLUE%, RED%, RGB

CoreBASIC Reference Guide CoreBASIC Language Reference

249

HELP

Synopsis

HELP

HELP keyword…

HELP "driver-name"

Display help.

Description

HELP on its own displays the help on HELP. If you follow HELP with a keyword, HELP will look up the HTML

help text on the SolderCore website for that keyword and display the associated help page using colored text on

the terminal:

> help green%
Connecting to www.soldercore.com (192.232.216.121)...
Requesting /manual/corebasic_green_percent.htm from network...

GREEN%

Synopsis

GREEN% arg

Extract green component of a color.

Description

GREEN% extracts the green component of the 24-bit RGB color value arg and
returns it as a number between 0 and 1 (fully saturated).

 > x = rgb(0.7, 0.2, 0.1)
 > print green% x
 0.2
 >

See also

BLUE%, RED%, RGB

> _

You can use multiple keywords for compound statements:

> help mat print
Connecting to www.soldercore.com (192.232.216.121)...
Requesting /manual/corebasic_mat_print.htm from network...

MAT PRINT

Synopsis

CoreBASIC Reference Guide CoreBASIC Language Reference

250

MAT PRINT expr

Print matrix.
?

You can use parentheses to select help on a function when there are statements and functions that use the same

keyword:

> help run()
Connecting to www.soldercore.com (192.232.216.121)...
Requesting /manual/corebasic_run_function.htm from network...

RUN()

Synopsis

RUN
RUN(index)
?

HELP followed by a string displays information relating to the driver named by the string:

> help "bmp085"
Connecting to www.soldercore.com (192.232.216.121)...
Requesting /manual/corebasic_bosch_sensortec_bmp085.htm from network...

Bosch Sensortec BMP085 Driver

Installation

INSTALL "BOSCH-SENSORTEC-BMP085"
INSTALL "BMP085"
INSTALL "CORE-PRESSURE"

Options

None.
?

Keys

At the --More-- prompt, you can use the following keys:

• Space: Show the next page.

• Return: Show the next line.

• .: Continue without paging.

• Q: Quit.

See also

NEWS, WEB, INSTALL

CoreBASIC Reference Guide CoreBASIC Language Reference

251

HEX

Synopsis

HEX arg

Convert to hexadecimal string.

Description

HEX converts arg to its equivalent 32-bit unsigned integer and returns a string containing the hexadecimal

representation of that integer. The string returned will always have an even number of characters with leading

zeros appended if required:

> print hex 32767 | hex 1023 | hex 0 | hex -1
7FFF
03FF
00
FFFFFFFF
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

252

HIGH

Synopsis

HIGH arg

Compute upper bound.

Description

HIGH returns the upper bound of arg. If arg is a string, HIGH returns the number of characters in the string less

one:

> print high "abc" | high ""
2
-1
> _

If arg is an array, HIGH returns high bound of the array, that is one less than the number of elements in the array:

> print high [11, 22, 33, 44] | high []
3
-1
> _

The rationale for HIGH is that indexes for arg run from 0 through one less than LEN arg, so it is more natural to

write a loop over a string or an array using HIGH as the upper bound:

> list
 10 X = 10 * RND CON(5)
 20 FOR I = 0 TO HIGH X
 30 PRINT I, X(I)
 40 NEXT I
 50 END
> run
0 2.22801
1 9.19247
2 2.65284
3 7.44131
4 8.20336
> _

See also

LEN

CoreBASIC Reference Guide CoreBASIC Language Reference

253

HISTORY

Synopsis

HISTORY [LIST]

List command line history.

See HISTORY LIST.

Synopsis

HISTORY KILL

Clear command line history and erase history file.

See HISTORY KILL.

Synopsis

HISTORY OFF

Suspend command line recording.

See HISTORY OFF.

Synopsis

HISTORY ON

Resume command line recording.

See HISTORY ON.

Synopsis

HISTORY [PICK] n

Recall command line.

See HISTORY PICK.

CoreBASIC Reference Guide CoreBASIC Language Reference

254

HISTORY LIST

Synopsis

HISTORY

HISTORY LIST

List command line history.

Description

HISTORY LIST displays all recorded command line history. This history is saved in the file /c/sys/

history.log on the SolderCore and persists over resets and power cycles.

> history list
> history on
> example "welcome"
Connecting to www.soldercore.com (192.232.216.121)...
Loading welcome.bas from network...
Program loaded and ready. Type RUN to execute.
> run
Welcome to CoreBASIC on the SolderCore!
For more information, visit http://www.soldercore.com/
> history list
 1 example "welcome"
 2 run
 3 history list
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

255

HISTORY KILL

Synopsis

HISTORY KILL

Clear command line history and erase history file.

Description

HISTORY KILL deletes the history file /c/sys/history.log; however, if history recording is turned on, the

next command line entered will automatically create the history file and continue to record command lines.

> history on
> history list
 1 example "welcome"
 2 run
 3 history list
> history kill
> history list
 1 history list
> history off
> history kill
> history list
> _

See also

HISTORY OFF

CoreBASIC Reference Guide CoreBASIC Language Reference

256

HISTORY OFF

Synopsis

HISTORY OFF

Suspend command line recording.

Description

HISTORY OFF suspends recording command lines to the history file.

See also

HISTORY ON

CoreBASIC Reference Guide CoreBASIC Language Reference

257

HISTORY ON

Synopsis

HISTORY ON

Resume command line recording.

Description

HISTORY ON resumes recording command lines to the history file.

See also

HISTORY OFF

CoreBASIC Reference Guide CoreBASIC Language Reference

258

HISTORY PICK

Synopsis

HISTORY [PICK] n

Recall command line.

Description

HISTORY PICK recalls the command entry n from the history file. If entry n does not exist, CoreBASIC throws an

argument error.

> history list
 1 catalog
 2 example "welcome"
 3 run
 4 history list
> history pick 2
> example welcome_

You can omit PICK and use the single-character substitution ! for HISTORY:

> history list
 1 catalog
 2 example "welcome"
 3 run
 4 history list
> !2
> example welcome_

Note

At the command prompt, the Up and Down cursor keys scroll through the saved history.

CoreBASIC Reference Guide CoreBASIC Language Reference

259

HOUR%

Synopsis

HOUR%

HOUR%(arg)

Return hour within day.

Description

HOUR%(arg) returns the current hour within the day for the time arg. arg is the number of seconds since 1

January 1970, the standard way of representing time in CoreBASIC. The result is a number from zero to 23 with

zero representing midnight, 1 representing 1am, and so on.

HOUR% without an argument returns the current hour within the day for the core time and is equivalent to HOUR

%(CORE.TIME).

> list
 10 PRINT "The hour is "; HOUR%; "."
 20 END
> run
The hour is 16.
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

260

I2C

Synopsis

I2C addr [WRITE data, data...] [READ n TO var]

I2C USING bus; addr [WRITE data, data...] [READ n TO var] I2C # bus; addr [WRITE data, data...] [READ

n TO var]

Issue transaction on I2C bus.

Description

I2C initiates a transaction on the I2C bus and waits for it to complete. If no USING clause is present, CoreBASIC

selects the primary I2C bus routed to the Arduino headers. You can override the default I2C bus selection with a

USING clause that specifies the bus to use for the transaction. The standard channel marker, #, is acceptable as a

substitute for USING.

The expression addr is the 8-bit device address to read or write. The I2C statement takes care of setting or

clearing the least significant bit of the address to correctly read and write to the bus.

data is an expression to write to the I2C bus. This is typically an array of integers or strings. data is automatically

merged, as if by MERGE, before being sent to the device.

Example

I2C 0x10 WRITE 0x55, 0x20, "DATA"
I2C 0x10 READ 5 TO X
I2C 0x10 WRITE 0x10 READ 1 TO X
I2C USING CORE.I2C(1); 0x10 WRITE 0x55, 0x20

CoreBASIC Reference Guide CoreBASIC Language Reference

261

IDFT

Synopsis

IDFT arg

Compute inverse discrete Fourier transform.

Description

IDFT computes the inverse discrete Fourier transform of arg:

> m = [1, 2, 3, 4]
> print m | idft m
[1, 2, 3, 4]
[2, 3, -1, -1]
> _

CoreBASIC will halt with a dimension error if the length of arg is not a power of two:

> m = [1, 2, 3]
> print idft m
?dimension error
> _

In the output array, the real parts of samples are listed first, followed by the imaginary parts. Here is a snippet of

code to convert these into a complex array:

> list
 10 ' Frequency domain input.
 20 R = [1, 2, 3, 4]
 30 '
 40 ' Dump data as a vector.
 50 PRINT "Frequency domain sample: "; R
 60 PRINT "Time domain (reals): "; IDFT R
 70 '
 80 ' Convert to complex vector
 90 C = IDFT R
 100 C = CMPLX(LEFT(C, LEN C / 2), RIGHT(C, LEN C / 2))
 110 '
 120 ' Dump as complex.
 130 PRINT "Time domain (complex): "; C
 140 END
> run
Frequency domain sample: [1, 2, 3, 4]
Time domain (reals): [2, 3, -1, -1]
Time domain (complex): [2-1j, 3-1j]
> _

Note

The implementation of the IDFT function uses floating point operations and is not intended for real-time digital

signal processing of large data sets.

CoreBASIC Reference Guide CoreBASIC Language Reference

262

See also

DFT

CoreBASIC Reference Guide CoreBASIC Language Reference

263

IDN

Synopsis

IDN(dimension, …)

Create identity matrix.

Description

IDN uses the dimension list in its argument to create an identity matrix. An identity matrix is a square matrix

where the leading diagonal elements are one, and all other elements are zero.

> print idn(3, 3)
[[1, 0, 0], [0, 1, 0], [0, 1, 0]]
> mat print idn(3, 3)
1 0 0
0 1 0
0 0 1
> mat print idn(1, 3)
?dimension error ' matrix must be square
> mat print idn(3, 3, 3)
?dimension error ' require two dimensions
> _

See also

CON, ZER

CoreBASIC Reference Guide CoreBASIC Language Reference

264

IF ... THEN

Synopsis

IF condition THEN true-statements [ELSE false-statements]

IF condition THEN

 true-statements

[ELSE IF condition THEN

 true-statements]

[ELSE

 false-statements]

ENDIF

Conditionally execute.

Description

IF will execute true-statements or false-statements depending upon the logical value of condition. Any nonzero

value is considered true, and a zero value is false.

If condition is nonzero then IF executes true-statements following THEN, otherwise IF executes the false-

statements following ELSE.

There are two forms of IF statement: a single-line IF statement and a multi-line "block IF" statement.

Single-line IF

A single-line IF statement has both the THEN part and the optional ELSE part on a single line which provides a

compact way to code a decision if the THEN and ELSE part is short:

> list
 10 FOR I = 1 TO 5
 20 PRINT I; " ";
 30 IF I MOD 2 = 0 THEN PRINT "is even" ELSE PRINT "is odd"
 40 NEXT I
 50 END
> run
1 is odd
2 is even
3 is odd
4 is even
5 is odd
> _

You can omit the ELSE part of the IF and if condition is false, the THEN part is ignored and execution continues

at the following statement.

> list

CoreBASIC Reference Guide CoreBASIC Language Reference

265

 10 REPEAT
 20 INPUT "Enter an even number: "; N
 30 IF N MOD 2 <> 0 THEN PRINT N; " is not an even number. Try again."
 40 UNTIL N MOD 2 = 0
 50 PRINT "Yes, "; N; " is even."
 60 END
> run
Enter an even number: 5
5 is not an even number. Try again.
Enter an even number: 16
Yes, 16 is even.

Muti-line IF

You can use the multi-line IF statement if your conditional code is too long to easily fit a single-line IF.

The multi-line IF is no different from the single-line IF other than you must indicate the end of the IF

statement using ENDIF.

> list
 10 FOR I = 1 TO 5
 20 IF I MOD 2 = 0 THEN
 30 PRINT I; " is even";
 40 ELSE
 50 PRINT I; " is odd";
 60 ENDIF
 70 IF I = (CINT SQR I) ^ 2 THEN
 80 PRINT " and square";
 90 ENDIF
 100 PRINT
 110 NEXT I
 120 END
> run
1 is odd and square
2 is even
3 is odd
4 is even and square
5 is odd
> _

With a multi-line IF, you can place as many statements as you want between after the THEN or ELSE, and you

can also nest IF statements inside the THEN and ELSE parts.

You can use ELSE IF for cascaded tests:

> list
 10 FOR I = 1 TO 5
 20 IF I = 1 THEN
 30 PRINT I; " is odd and square"
 40 ELSE IF I MOD 2 = 0 AND I = (CINT SQR I) ^ 2 THEN
 50 PRINT I; " is even and square"
 60 ELSE IF I MOD 2 = 0 THEN
 70 PRINT I; " is even"
 80 ELSE
 90 PRINT I; " is odd"
 100 ENDIF
 120 NEXT I
 130 END

CoreBASIC Reference Guide CoreBASIC Language Reference

266

> run
1 is odd and square
2 is even
3 is odd
4 is even and square
5 is odd
> _

See also

IFF

CoreBASIC Reference Guide CoreBASIC Language Reference

267

IFF

Synopsis

IFF(expr, true-part, false-part)

Conditional evaluation.

Description

IFF will select whether true-part or false-part is evaluated according to the control expression expr. If expr is true,

true-part will be evaluated and returned as the result of IFF without false-part being evaluated. Conversely, if

expr is false, false-part will be evaluated and and returned as the result of IFF without true-part being evaluated.

> list
 10 INPUT "Enter a number: "; N
 20 PRINT "The number "; N; " is ";
 30 PRINT IFF(N MOD 2, "odd", "even"); "."
 40 END
> run
Enter a number: 10
The number 10 is even.
> run
Enter a number: 11
The number 11 is odd.
> _

Note that the true part and the false part can evaluate to different types as necessary. For instance, the following

IFF returns a string or a number depending upon the control expression:

> list
 10 INPUT "Enter a number: "; N
 20 PRINT "The reciprocal of "; N; " is ";
 30 PRINT IFF(N = 0, "not defined", 1 / N); "."
 40 END
> run
Enter a number: 10
The reciprocal of 10 is 0.1.
> run
Enter a number: 0
The reciprocal of 0 is not defined.
> _

See also

IF ... THEN

CoreBASIC Reference Guide CoreBASIC Language Reference

268

IM

Synopsis

IM arg

Extract imaginary part.

Description

IM extracts the imaginary part of a complex number:

> print im sqr -1
1
> _

If arg is a quaternion, IM returns a the vector part of the quaternion:

> print im quat(1, 2, 3, 4)
[2, 3, 4]
> _

If arg is an array, IM threads recursively over the elements of the array:

> print im cis gen (-1 to +1 in 4)
[-0.841471, -0.327195, 0.327195, 0.841471]
> _

See also

RE

CoreBASIC Reference Guide CoreBASIC Language Reference

269

IMP

Synopsis

x IMP y

Logical implication.

Description

IMP computes the logical implication of x and y. The result is false if and only if x is true and y is false:

> list
 10 FOR X = FALSE TO TRUE
 20 FOR Y = FALSE TO TRUE
 30 PRINT TRUTH X; " IMP "; TRUTH Y; " = "; TRUTH(X IMP Y)
 40 NEXT Y
 50 NEXT X
 60 END
> run
False IMP False = True
False IMP True = True
True IMP False = False
True IMP True = True
> _

Both x and y are converted to integers before applying IMP. After conversion to integers, any nonzero value is

considered true.

> print 1.5 imp 0.2 | 1.1 imp 1.2
0
1
> _

Arrays are processed element-by-element and a new array is created containing the elementwise implication of

each pair:

> print [0, 1, 0, 1] imp [0, 0, 1, 1]
[1, 0, 1, 1]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

270

IN

Synopsis

FOR variable = first TO last IN count

Iterate a fixed number of times.

See FOR ... NEXT.

Synopsis

GEN(start TO end IN count)

Generate arithmetic progression as an array.

See GEN.

CoreBASIC Reference Guide CoreBASIC Language Reference

271

INF

Synopsis

INF

INF(arg)

Generate or inquire infinity.

Description

INF with an argument arg inquires whether arg is an infinity:

> print 1/0 | 0/0 | 1/2
inf
nan
0.5
> print inf(1/0) | inf(0/0) | inf(1/2)
1
0
0
> _

INF on its own generates an infinity:

> print inf | inf(inf)
inf
1
> _

For complex and quaternion arguments, INF is true if any of the real, imaginary, or vector parts of arg are an

infinity:

> print inf(cmplx(1, inf)) | inf(cmplx(1, 2))
1
0
> print inf(quat(1, 2, inf, 4)) | inf(quat(1, 2, 3, 4))
1
0
> _

If arg is an array, INF threads recursively over the elements of the array:

> print inf([-1/0, 0/0, +1/0])
[1, 0, 1]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

272

INK

Synopsis

INK n

Construct string to change foreground color.

Description

INK constructs a string that changes the foreground color of the text display to the color n. The INK function

is most commonly used with the PRINT command to change the foreground color of text sent to standard

output.

The value n must line in the range 0 to 15 inclusive.

Colors

Ink Color

0 Black

1 Red

2 Green

3 Yellow

4 Blue

5 Magenta

6 Cyan

7 White

Note

More descriptive strings to select a particular color are offered using the $ keyword.

See also

PAPER, $constant

CoreBASIC Reference Guide CoreBASIC Language Reference

273

INNER

Synopsis

INNER(mulop, u, v,addop)

Compute inner product.

Description

INNER computes the inner product of the vectors u and v using the multiplicative operator mulop and the

additive operator addop. The inner product is a generalization of the dot product.

The elements of u and v are combined elementwise using the operator addop, and then the resulting vector is

reduced using the operator addop.

For instance, we can compute the dot product of two vectors using INNER:

> u = [3, 2, -5]
> v = [4, -4, -7]
> print inner(*, u, v, +)
39
> _

This computes 3×4 + 2×(-4) + (-5)×(-7) = 39.

In this particular case, we can verify the result using SUM and element-by-element multiplication:

> print sum(u * v)
39
> _

We can use INNER to see whether two vectors have identical elements:

> u = [3, 2, -5]
> v = [3, 2, -5]
> print truth inner(=, u, v, and)
True
> v = [3, 2, +5]
> print truth inner(=, u, v, and)
False
> _

When using INNER, the u and v vectors must be the same length:

> u = [3, 2, -5, 1]
> v = [4, -4, -7]
> print inner(*, u, v, +)
?dimension error
> _

See also

REDUCE

CoreBASIC Reference Guide CoreBASIC Language Reference

274

INPUT

Synopsis

INPUT ["string";] var [AS type]…

Read from console.

Description

INPUT reads data from the standard input stream into program variables.

If no prompt is provided, CoreBASIC prompts with the name of the variable being read followed by a question

mark:

> list
 10 INPUT X, Y
 20 PRINT "X is "; X; " and Y is "; Y; "."
 30 END
> run
X? 10
Y? 20
X is 10 and Y is 20.
> _

If you provide a prompt, CoreBASIC uses that prompt for each variable to be read in the current INPUT

statement:

> list
 10 INPUT "Enter X and Y: "; X, Y
 20 PRINT "X is "; X; " and Y is "; Y; "."
 30 END
> run
Enter X and Y: 10
Enter X and Y: 20
X is 10 and Y is 20.
> _

You can change the prompt within an input statement which provides a better user experience:

> list
 10 INPUT "Enter X: "; X; "Enter Y: "; Y
 20 PRINT "You entered: "; X; " and "; Y; "."
 30 END
> run
Enter X: 10
Enter Y: 20
You entered: 10 and 20.
> _

You can remove the prompt INPUT prints by using an empty string:

> list

CoreBASIC Reference Guide CoreBASIC Language Reference

275

 10 PRINT "Blind prompt. Press enter, OK? ";
 20 INPUT ""; X
 30 END
> run
Blind prompt. Press enter, OK?
> _

10 INPUT "Enter a whole number: "; X AS INT
20 PRINT "You entered: "; X
30 END

> list
 10 INPUT "Enter a number: "; X AS FLT
 20 PRINT "You entered: "; X
 30 PRINT "The integer part of "; X; " is "; FIX X
 40 PRINT "The fractional part of "; X; " is "; ABS(X - FIX X)
 50 END
> run
Enter a number: foobar
?bad input for X: float expected. Try again.
Enter a number: 127.25
You entered: 127.25
The integer part of 127.25 is 127
The fractional part of 127.25 is 0.25
> _

> list
 10 INPUT "Enter any string: "; X AS STR
 20 PRINT "You entered: "; X
 30 PRINT X; " as upper case is "; UCASE X
 40 PRINT X; " as lower case is "; LCASE X
 50 END
> run
Enter any string: SolderCore CoreBASIC
You entered: SolderCore CoreBASIC
SolderCore CoreBASIC as upper case is SOLDERCORE COREBASIC
SolderCore CoreBASIC as lower case is soldercore corebasic
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

276

INPUT$

Synopsis

INPUT$(stream, count)

INPUT$(stream, count, timeout)

Read characters from stream.

Description

INPUT$ reads count characters from the stream stream with an optional timeout of timeout sections. If a

timeout is not provided, it is assumed to be infinite.

INPUT$ will return a string with as many characters as it can read, up to and including count characters. Fewer

than count characters may be returned if the stream closes (because it is a socket stream) or the timeout expires

with fewer than count characters read from the stream, or if an end of line is encountered (ASCII code 10, or

%LF).

Note

It is not possible to interrupt INPUT$ using Ctrl+C, so using a sensible timeout is highly advised. Characters read

from the standard input stream, %IN, are not echoed and are not otherwise processed.

Example

***../examples/input-timeout-demo.bas not found ***

See also

READ$

CoreBASIC Reference Guide CoreBASIC Language Reference

277

INSERT$

Synopsis

INSERT$(sub, str, pos)

Insert into string.

Description

INSERT$ inserts sub into str at position pos:

> print insert$("ore", "CBASIC", 1)
CoreBASIC
> _

If pos is beyond the end of the str, sub is appended to str:

> print insert$("BASIC", "Core", 55)
CoreBASIC
> _

If pos is negative, sub is prepended before str:

> print insert$("Core", "BASIC", -1)
CoreBASIC
> _

See also

DELETE$

CoreBASIC Reference Guide CoreBASIC Language Reference

278

INSTALL

Synopsis

INSTALL driver [AS var]

INSTALL FIX driver [AS var]

Install driver.

Description

INSTALL installs the device driver driver, which must be a string. The list of drivers supported by SolderCore are

described in the drivers section.

If you omit the FIX keyword, the driver is installed as a temporary driver. A temporary driver remains installed

until the program is changed.

If you specify the FIX keyword, the driver is installed as a permanent driver and remains installed until the

SolderCore is reset.

See also

INSTALL CATALOG

CoreBASIC Reference Guide CoreBASIC Language Reference

279

INSTALL CATALOG

Synopsis

INSTALL CATALOG

List built-in drivers.

Description

INSTALL CATALOG lists the drivers that are built into CoreBASIC and that can be installed using INSTALL:

> install catalog

LED

SPARKFUN-BUTTONPAD Prototype
SPARKFUN-RINGCODER-BREAKOUT Prototype
JIMMIE-RODGERS-LOL-SHIELD Shield
THINGM-BLINKM-BREAKOUT Breakout
GRAVITECH-7SEG-SHIELD Shield
ITEAD-STUDIO-COLORS-SHIELD Shield

?

Prototyped Module

SPARKFUN-BUTTONPAD Prototype
SPARKFUN-RINGCODER-BREAKOUT Prototype
OLIMEX-MOD-NOKIA6610 Prototype

> _

See also

INSTALL

CoreBASIC Reference Guide CoreBASIC Language Reference

280

INSTALL LIST

Synopsis

INSTALL LIST

INSTALL

List install drivers.

Description

INSTALL LIST displays the list of installed drivers, whether they are installed as transitory drivers or fixed

drivers, and the amount of high memory that they consume.

Example

> install

Driver Type Himem Used
--
SOLDERCORE-CPU Fixed 0
EXTENDED-USER-MEMORY Fixed 1,024

> _

See also

INSTALL, INSTALL CATALOG

CoreBASIC Reference Guide CoreBASIC Language Reference

281

INSTR

Synopsis

INSTR(sub, in)

INSTR(sub, in, start)

Find substring in string.

Description

INSTR returns the index of the start of substring sub within the string in, with the search starting at index start. If

start is not given it is assumed to be zero:

> print instr("o", "Hello, world")
4
> print instr("o", "Hello, world", 5)
8
> print instr("ip", "Mississippi")
7
> _

INSTR returns −1 if sub cannot be found in in:

> print instr("L", "Hello, world")
-1
> print instr("o", "Hello, world", 9)
-1
> print instr("ipi", "Mississippi")
-1
> _

See also

MATCH

CoreBASIC Reference Guide CoreBASIC Language Reference

282

INT

Synopsis

INT arg

Integer part.

Description

INT removes any fractional part from arg and returns only the integer part:

> print int 3.4 | int -3.4
3
-3
> print int 1.5e20
1.5e20
> _

If arg is a complex number or quaternion, INT is applied to the real, imaginary, and vector parts independently:

> print int cmplx(6.4, -6.4)
6-6j
> print int quat(1.1, -2.2, 3.3, -4.4)
1-2i+3j-4k

If arg is an array, INT threads recursively over the elements of the array:

> print fix [1.1, -2.2, 3.3, -4.4]
[1, -2, 3, -4]
> _

See also

CINT, FIX

CoreBASIC Reference Guide CoreBASIC Language Reference

283

INV

Synopsis

INV arg

Compute inverse.

Description

INV computes the multiplicative inverse of its argument. For real, complex, and quaternion types, INV arg is

simply the reciprocal of arg (one divided by arg):

> print inv 3
0.333333
> print inv cmplx(2, 4)
0.1-0.2j
> print inv quat(1, 2, 3, 4)
0.0333333-0.066667i-0.1j-0.133333k
> _

If arg is an array, INV threads recursively over the elements of the array:

> print inv [2, 3, 4]
[0.5, 0.333333, 0.25]
> _

Matrix mode

In matrix mode, INV evaluates the inverse of the two-dimensional matrix arg. CoreBASIC will halt with an

dimension error if arg is not a square two-dimensional matrix.

> m = [[1, 2], [3, 4]] ' Set up matrix
> mat print m ' Print matrix in matrix form
1 2
3 4
> _
> i = inv m ' Compute inverse in scalar mode
> mat print i
1 0.5
0.33333 0.25
> _
> i = mat(inv m) ' Compute inverse in matrix mode
> mat print i ' Print inverse in matrix form
-2 1
1.5 -0.5
> _
> mat print m * i ' Verify identity
1 0
0 1
> _

If arg is a singular matrix with zero determinant, the returned matrix will be filled with NaNs:

CoreBASIC Reference Guide CoreBASIC Language Reference

284

> m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
> mat print m
1 2 3
4 5 6
7 8 9
> print det m
0
> mat print inv m
nan nan nan
nan nan nan
nan nan nan
> _

INV uses Gauss-Jordan elimination with full pivoting to ensure numeric stability when computing the inverse.

See also

DET

CoreBASIC Reference Guide CoreBASIC Language Reference

285

IP$

Synopsis

IP$ arg

Convert to dotted-decimal IP address.

Description

IP$ converts arg to a string in dotted-decimal IPv4 format. arg can be either an integer or a 4-element array

containing the IPv4 address.

> list
 10 PRINT "Network name: "; NET.NAME
 20 PRINT "IP address: "; IP$(NET.IPADDR)
 20 PRINT "Net mask: "; IP$(NET.MASK)
 30 PRINT "Gateway: "; IP$(NET.GATEWAY)
 40 PRINT "DNS server: "; IP$(NET.DNS(0)); " (primary)"
 50 END
> run
Network name: core-000001
IP address: 10.0.0.133
Net mask: 255.255.255.0
Gateway: 10.0.0.3
DNS server: 10.0.0.8 (primary)
> _

See also

NET, DNS

CoreBASIC Reference Guide CoreBASIC Language Reference

286

JOIN

Synopsis

JOIN(arg)

JOIN(arg, separator)

JOIN(arg, separator, flag)

Join strings.

Description

JOIN will concatenate all the strings in the array arg into a single string, placing the string separator between

each of them:

> print join(["fee", "fi", "fo", "fum"], "-")
fee-fi-fo-fum
> _

No separators are added for a single string or empty array:

> print join(["fee"], "-") | join([], "-")
fee

> _

If you do not specify a separator parameter, the strings are concatenated without any separator:

> print join(["fee", "fi", "fo", "fum"])
feefifofum
> _

Note

If you have an array with empty strings, JOIN may not deliver exactly what you desire:

> print join(["A sentence", "", "Another sentence"], ". ") + "."
A sentence. . Another sentence.
> _

In this case you can use the third parameter, flag, to tell JOIN to ignore empty strings. If flag is false (the default),

empty strings will be treated as normal; if flag is true, empty strings will be ignored when joining:

> print join(["A sentence", "", "Another sentence"], ". ", %true) + "."
A sentence. Another sentence.
> _

Setting flag to true when joining is more efficient than removing empty strings from the array with PICK before

JOIN:

CoreBASIC Reference Guide CoreBASIC Language Reference

287

> s = ["A sentence", "", "Another sentence"]
> print join(pick(s, s <> ""), ". ") + "."
A sentence. Another sentence.
> _

See also

SPLIT

CoreBASIC Reference Guide CoreBASIC Language Reference

288

URI$

Synopsis

URI$ arg

Convert string to percent-encoded URI.

Description

URI$ returns a string containing the percent-encoded representation of arg according to RFC 3986 section

2.2. Percent-encoding replaces certain reserved characters with an escape sequence started with a percent and

followed by two hexadecimal numerals.

> print uri$ "Hello"
Hello
> print uri$ "http://www.soldercore.com/manual/index.htm"
http%3A%2F%2Fwww.soldercore.com%2Fmanual%2Findex.htm
> _

Note

The following characters are reserved and percent-encoded by URI$:

: / ? # [] @ ! $

& ' () * + , ; =

See also

RFC3986 - Uniform Resource Identifier (URI): Generic Syntax

http://tools.ietf.org/html/rfc3986

CoreBASIC Reference Guide CoreBASIC Language Reference

289

JUSTIFY$

Synopsis

JUSTIFY$(str, len)

Justify string.

Description

JUSTIFY$ will left justify or right justify str according to the len parameter. If len is zero or positive, str is right

justified to len characters by padding str to the left with spaces. If len is negative, str is left justified to −len

characters by padding str to the right with spaces.

> print "|"; justify$("CoreBASIC", 20); "|"
| CoreBASIC|
> print "|"; justify$("CoreBASIC", -20); "|"
|CoreBASIC |
> _

If the field width that str must be justified in is smaller than the length of str, str is trimmed to the left or right

(according to the sign of len) such that the returned string's length is exactly the requested field width:

> print "|"; justify$("CoreBASIC", 6); "|"
|eBASIC|
> print "|"; justify$("CoreBASIC", -6); "|"
|CoreBA|
> _

See also

LEFT, RIGHT

CoreBASIC Reference Guide CoreBASIC Language Reference

290

KILL

Synopsis

KILL path

Erase program from storage device.

Description

KILL erases the file with file name path. If the file does not exist, or cannot be erased because it is read only, or if

any other error occurs, CoreBASIC stops with an error.

Example

> kill "/c/!run.bas"

See also

RENAME

CoreBASIC Reference Guide CoreBASIC Language Reference

291

LCASE

Synopsis

LCASE arg

Convert string to lower case.

Description

LCASE converts the string arg to lower case:

> print lcase("www.CoreBASIC.com")
www.corebasic.com
> _

If arg is an array, LCASE threads recursively over the elements of the array:

> mat print lcase ["Core", "Basic"]
core
basic
> _

See also

UCASE

CoreBASIC Reference Guide CoreBASIC Language Reference

292

LEFT

Synopsis

LEFT(arg, n)

Slice left part of string or array.

Description

LEFT extracts the first n characters of the string arg:

> print left("CoreBASIC", 4)
Core
> _

If n is negative, it specifies that the number of characters is computed from the end of the string. For instance,

you can drop the last four characters from a string:

> print left("CoreBASIC", -4)
CoreB
> _

LEFT also works on arrays in the same manner as strings:

> print left([5, 4, 3, 2, 1], 3)
[5, 4, 3]
> print left([5, 4, 3, 2, 1], -3)
[5, 4]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

293

LEN

Synopsis

LEN arg

Compute length.

Description

LEN computes the length of its argument. If arg is a string, LEN returns the number of characters in the string.

> print len "abc" | len ""
3
0
> _

If arg is an array, LEN returns the number of elements in the array:

> print len [11, 22, 33, 44] | len []
4
0
> _

See also

HIGH

CoreBASIC Reference Guide CoreBASIC Language Reference

294

LET

Synopsis

LET variable = expression

Assign variable.

Description

Sets variable to expression. LET is optional and, if not specified, is assumed.

CoreBASIC Reference Guide CoreBASIC Language Reference

295

LINE

Synopsis

LINE x, y [TO x, y]…

LINE TO x, y [TO x, y]…

Draw lines.

Description

LINE draws lines in the current color between the specified points. LINE TO draws a line from the current

position to the first point.

See also

PLOT

CoreBASIC Reference Guide CoreBASIC Language Reference

296

LIST

Synopsis

LIST [line1] [, [line2]]

List a range of lines.

Description

LIST will list the program between the lines line1 and line2 inclusive.

LIST on its own will list the whole program:

> example "welcome"
Connecting to www.soldercore.com (192.232.216.121)...
Loading welcome.bas from network...
Program loaded and ready. Type RUN to execute.
> list
 10 ' Welcome program for CoreBASIC.
 20 '
 30 PRINT "Welcome to CoreBASIC on the "; CORE.NAME; "!"
 40 PRINT "For more information, visit http://www.soldercore.com/"
 50 '
 60 END
> _

If the first line number is omitted, LIST lists from the start of the program:

> list ,30
 10 ' Welcome program for CoreBASIC.
 20 '
 30 PRINT "Welcome to CoreBASIC on the SolderCore!"
> _

If the second line number is omitted, LIST lists to the end of the program:

> list 40,
 40 PRINT "For more information, visit http://www.soldercore.com/"
 50 '
 60 END
> _

With a single line number, LIST will list only that line:

> list 30
 30 PRINT "Welcome to CoreBASIC on the SolderCore!"
> _

With two lines numbers, LIST will list everything between those lines:

> list 25, 45
 30 PRINT "Welcome to CoreBASIC on the SolderCore!"

CoreBASIC Reference Guide CoreBASIC Language Reference

297

 40 PRINT "For more information, visit http://www.soldercore.com/"
> _

Note

Pressing F12 at the CoreBASIC command line will execute LIST.

See also

LIST USING

CoreBASIC Reference Guide CoreBASIC Language Reference

298

LIST USING

Synopsis

LIST USING format [, [line1] [, [line2]]]

List a range of lines with selected formatting.

Description

LIST USING will list the program, as LIST does, between the lines line1 and line2 inclusive. Please refer to

LIST for a description of the line number range.

The format argument is a number that defines the style of the listing. This is a combination of the listing

mode (plain, highlighted, HTML) or-ed with some formatting options (line number display, control structure

indentation).

The mode is one of:

• 0 — Syntax-highlighted listing using ANSI escapes for colors.

• 1 — Plain listing, no syntax highlighting.

• 2 — HTML-formatted, syntax-highlighted listing for inclusion in a web page.

The options, when set, are:

• 8 — Inhibit initial line number in listing.

• 16 — Do not indent control structures.

• 32 — Enable page mode.

The standard mode that LIST uses is mode 32: syntax-highlighted with initial line numbers and indented

control structures, in paged mode.

A 1980's style plain listing with line numbers and no indentation is mode 17, which is the inclusive-or of the

mode, 1, with the no-indent option, 16.

To prepare an HTML-styled listing for the web, without line numbers, you would use mode 10, which is the

inclusive-or of the mode, 2, with the no-line-number option, 8.

Of course, other combinations are possible. For instance, SAVE uses listing mode 1 when writing the program to

a file as plain text.

See also

LIST

CoreBASIC Reference Guide CoreBASIC Language Reference

299

LOCK

Synopsis

LOCK arg

Make file read only.

Description

LOCK makes the file with name arg read only by setting the read-only attribute. When a file is locked and read

only, it cannot be overwritten or removed. In order to remove or overwrite a read-only file, you must first make it

writable using UNLOCK.

> example "welcome"
Connecting to www.soldercore.com (192.232.216.121)...
Loading welcome.bas from network...
Program loaded and ready. Type RUN to execute.
> save $work
> lock $work
> save $work
?read-only file
> kill $work
?read-only file
> unlock $work
> save $work
> _

See also

UNLOCK

CoreBASIC Reference Guide CoreBASIC Language Reference

300

LOG

Synopsis

LOG arg

Compute natural logarithm.

Description

LOG computes the base-e (natural) logarithm of arg. For real, complex, and quaternion types, LOG tries to return

a number of the same type as its operand:

> print log 10
2.30259
> print log cmplx(2, 10)
2.3222+1.3734j
> print log quat(2, 3, 4, 5)
1.99449+0.549487i+0.73265j+0.915812k
> _

An exception to this rule exists for negative real values. As a negative real value has no corresponding logarithm

that is real, LOG will return a complex number:

> print log 10
2.30259
> print log -10
2.30259+3.14159j
> _

If arg is an array, LOG threads recursively over the elements of the array:

> print log [2, 3, 4]
[0.693147, 1.09861, 1.38629]
> _

Note

The implementation of LOG follows the ISO standard for BASIC and the way that Microsoft have historically

implemented LOG. Significantly, BBC BASIC uses LN for natural logarithms and LOG for common logarithms, so

beware of this difference if you are converting programs written for BBC BASIC.

See also

EXP, LOG10, LOG2, SQR

CoreBASIC Reference Guide CoreBASIC Language Reference

301

LOG10

Synopsis

LOG10 arg

Compute common logarithm.

Description

LOG10 computes the base-10 (common) logarithm of arg. The definition of LOG10(x) is simply LOG(x)/

LOG(10).

See also

LOG, LOG2

CoreBASIC Reference Guide CoreBASIC Language Reference

302

LOG2

Synopsis

LOG2 arg

Compute binary logarithm.

Description

LOG2 computes the base-2 (binary) logarithm of arg. The definition of LOG2(x) is simply LOG(x)/LOG(2).

See also

LOG, LOG10

CoreBASIC Reference Guide CoreBASIC Language Reference

303

LOAD

Synopsis

LOAD

LOAD name

Load program from storage device.

Description

LOAD loads into memory the program contained in the file name. The current program name is set to name just

as NAME would have set the current program name.

With LOAD on its own, the program is loaded from disk using the current program name.

> list
> load "/c/welcome.bas"
> list
 10 ' Welcome program for CoreBASIC.
 20 '
 30 PRINT "Welcome to CoreBASIC on the "; CORE.NAME; "!"
 40 PRINT "For more information, visit http://www.soldercore.com/"
 50 '
 60 END
> _

See also

NAME, SAVE

CoreBASIC Reference Guide CoreBASIC Language Reference

304

LTRIM

Synopsis

LTRIM arg

Remove leading whitespace.

Description

LTRIM removes all leading whitespace from the string arg. If arg is an array of strings, a new array is created with

each string having leading whitespace removed:

> print "|"; ltrim " CoreBASIC "; "|";
|CoreBASIC |
> _

If arg is an array, LTRIM threads recursively over the elements of the array:

> mat print "|" + ltrim [" Core ", " BASIC "] + "|"
|Core |
|BASIC |
> _

See also

RTRIM, TRIM

CoreBASIC Reference Guide CoreBASIC Language Reference

305

MAIL

Synopsis

MAIL to, from, subject, body

Send e-mail.

Description

MAIL sends a mail message to the e-mail address to with the from field from. The subject of the e-mail is in

subject and the body of the e-mail is body.

In order to send an e-mail, the SMTP server to use as the agent needs to be set up by assigning the

SMTPSERVER property of the NET object.

> list
 10 SUBJECT = "Hello from SolderCore!"
 20 FROM = NET.NAME + "@local" ' fill in your own e-mail address
 30 TOO = "soldercore@googlegroups.com"
 40 BODY = "Hello from " + NET.NAME + "." + $NL
 50 BODY = BODY + "My device address is " + IP$(NET.IPADDR) + "." + $NL
 60 MAIL TOO, FROM, SUBJECT, BODY
 70 PRINT "e-mail away!"
 80 END
> run
e-mail away!
> _

E-mail address format

The e-mail addresses from and to can either be plain e-mail addresses such as:

• soldercore@googlegroups.com

• plc@rowley.co.uk

Or they can be augmented with a presentation name such as

• SolderCore <soldercore@googlegroups.com>

• Paul Curtis <plc@rowley.co.uk>

See also

NET

CoreBASIC Reference Guide CoreBASIC Language Reference

306

MAT

Synopsis

MAT var = expr

MAT LET var = expr

Assign matrix.

See MAT LET.

Synopsis

MAT PRINT expr

Print matrix.

See MAT PRINT.

Synopsis

MAT arg

Evaluate arg in matrix mode.

See MAT().

CoreBASIC Reference Guide CoreBASIC Language Reference

307

MAT LET

Synopsis

MAT var = expr

MAT LET var = expr

Assign matrix.

Description

MAT LET evaluates expr in matrix mode and assigns the result to var.

> a = [[1, 2], [3, 4]]
> let b = a * a
> print b
[[1, 4], [9, 16]] ' element-wise multiplcation
> mat b = a * a
> print b
[[7, 10], [15, 22]] ' matrix multiplication
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

308

MAT PRINT

Synopsis

MAT PRINT expr

Print matrix.

Description

MAT PRINT evaluates expr in matrix mode and prints it in matrix form.

> mat print [[1, 2, 3], [4, 5, 6]]
1 2 3
4 5 6
> _

If expr is a vector, the vector is printed in row form:

> mat print [1, 2, 3, 4]
1 2 3 4
> _

If you want the vector printed in column format, convert it to a matrix and use TRN to transpose it:

> a = [1, 2, 3, 4]
> mat print a
1 2 3 4
> mat print trn [a]
1
2
3
4
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

309

MAT()

Synopsis

MAT arg

Evaluate arg in matrix mode.

Description

MAT evaluates arg in matrix mode. In matrix mode, some operators and functions work differently to the way

they usually work. In scalar mode, all operations on are matrix are computed element-by-element. In matrix

mode, operations are computed using their standard mathematical definitions.

> a = [[1, 2], [3, 4]] ' 2x2 matrix
> mat print a
1 2
3 4
> p = a*a
> mat print p ' each element is squared
1 4
9 16
> p = mat(a*a) ' multiplication in matrix mode
> mat print p ' uses standard mathematical matrix multiply
7 10
15 22
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

310

MATCH

Synopsis

MATCH(pattern, string)

Wildcard match.

Description

MATCH performs a wildcard match to see if string matches pattern.

The match is performed using the following rules:

• Matching is always case sensitive.

• The character * matches a sequence of zero or more characters.

• The character ? matches exactly one character.

You can use this to check to see whether a filename has a particular extension:

> print match("*.bas", "foo.bas")
1
> print match("*.bas", "foo.c")
0
> _

However, remember that this match is case sensitive:

> print match("*.bas", "FOO.BAS")
0
> _

If you want to match filenames without regard to case, use UCASE or LCASE to normalize letter case to begin

with:

> print match("*.bas", lcase "FOO.BAS")
1
> _

See also

INSTR

CoreBASIC Reference Guide CoreBASIC Language Reference

311

MAX

Synopsis

x MAX y

Maximum.

Description

MAX returns the maximum of x and y.

For complex operands, the maximum is the complex number with the greatest complex modulus (magnitude). If

both have the same magnitude, the maximum is the number with the greatest phase angle.

See also

MAX(), MIN

CoreBASIC Reference Guide CoreBASIC Language Reference

312

MAX()

Synopsis

MAX array

Maximum of array.

Description

MAX returns the maximum value held in the argument array:

> marks = int(100 * rnd con(10))]
> print marks | max marks
[51, 17, 30, 53, 94, 17, 70, 22, 49, 12]
94
> _

Note

MAX(x) is equivalent to REDUCE(MAX, x).

See also

MAX, MIN(), REDUCE

CoreBASIC Reference Guide CoreBASIC Language Reference

313

MEMORY

Synopsis

MEMORY

Display program memory use.

Description

MEMORY displays the current program's memory use and the maximum available program size that CoreBASIC

can support.

For example, on a SolderCore:

> example "corempu-confidence-test"
Connecting to www.soldercore.com (192.232.216.121)...
Loading corempu-confidence-test.bas from network...
Program loaded and ready. Type RUN to execute.
> memory

Region Total Used Free Units Load Comment
--
CoreBASIC RAM 67,584 7,604 59,980 bytes 11.3% Total available RAM
Program text 65,016 5,044 59,972 bytes 7.8% Compress with CRUNCH
High memory 512 512 0 bytes 100.0% Drivers and long names
Variable names 512 133 379 bytes 26.0% Stored in high memory
Scratchpad 256 22 234 cells 8.6% Fixed runtime overhead
Object store 7,494 0 7,494 cells 0.0% Arrays and strings

> _

To reduce memory usage, you can use CRUNCH, which reports how much memory was saved:

> crunch
Program was: 5,044 bytes
Program is now: 2,768 bytes
Crunching saved 2,276 bytes and reduced program size by 45.1%
> _

See also

CRUNCH

CoreBASIC Reference Guide CoreBASIC Language Reference

314

MERGE

Synopsis

MERGE name

Merge program from storage device.

Description

MERGE loads the file with file name name without deleting the existing program in memory, effecting a merge

of two programs. If name has no file extension, ".bas" is added.

Lines from the loaded program replace existing lines in memory.

Example

Merges other.bas from the root folder of the SD card.

> merge "/c/other.bas"
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

315

MERGE()

Synopsis

MERGE arg

Merge data into string.

Description

MERGE flattens arrays of integers and strings into a single string. Integers are treated as the ASCII code of a

character, converted to a string, and then merged. Arrays are merged recursively.

> print merge "SolderCore"
SolderCore
> print merge ["Solder", "Core"]
SolderCore
> print merge ["Solder", 67, 111, 114, 101]
SolderCore
> print merge [["Solder"], [67, 111, "r"], 101]
SolderCore
> print merge 65
A
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

316

MID

Synopsis

MID(arg, pos)

MID(arg, pos, n)

Slice a string or array.

Description

MID extracts at most n characters of the string arg starting at position pos, or first n elements the array arg

starting at position pos. If n is omitted, all characters or array elements starting at index n to the end are returned:

> print mid("SolderCore", 1, 5)
older
> print mid("SolderCore", 6)
Core
> _

If pos is negative, it specifies that the start position is is computed from the end of the array:

> print mid("SolderCore", -4)
Core
> _

See also

LEFT, RIGHT

CoreBASIC Reference Guide CoreBASIC Language Reference

317

MIN

Synopsis

x MIN y

Minimum.

Description

MIN returns the minimum of x and y.

For complex operands, the minimum is the complex number with the smallest complex modulus (magnitude). If

both have the same magnitude, the minimum is the number with the smallest phase angle.

See also

MIN(), MAX

CoreBASIC Reference Guide CoreBASIC Language Reference

318

MIN()

Synopsis

MIN array

Minimum value of array.

Description

MIN returns the minimum value in the argument array:

> marks = int(100 * rnd con(10))]
> print marks | min marks
[51, 17, 30, 53, 94, 17, 70, 22, 49, 12]
12
> _

Note

MIN(x) is equivalent to REDUCE(MIN, x).

See also

MIN, MAX(), REDUCE

CoreBASIC Reference Guide CoreBASIC Language Reference

319

MINUTE%

Synopsis

MINUTE%

MINUTE%(arg)

Return minute within hour.

Description

MINUTE%(arg) returns the current minute within the hour for the time arg. arg is the number of seconds since

1 January 1970, the standard way of representing time in CoreBASIC. The result is a number from zero to 59.

MINUTE% without an argument returns the current minute within the hour for the core time and is equivalent to

MINUTE%(CORE.TIME).

> list
 10 PRINT "The minute is "; MINUTE%; "."
 20 END
> run
The minute is 23.
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

320

MKDIR

Synopsis

MKDIR path

Create folder.

Description

MKDIR creates the folder specified by path. MKDIR will not create a folder that already exists or create a folder

with the same name as a file that exists. If there is an error creating the folder path, CoreBASIC throws an error.

See also

MKDIR()

Example

> dir "/c/usr/paul/demos"
?file not found
> mkdir "/c/usr/paul/demos"
> dir "/c/usr/paul/demos"
>

See also

MKDIR()

CoreBASIC Reference Guide CoreBASIC Language Reference

321

MKDIR()

Synopsis

MKDIR path

Create folder.

Description

MKDIR creates the folder specified by path and returns a status code indicating success or failure. MKDIR will

not create a folder that already exists or create a folder with the same name as a file that exists.

This form of MKDIR makes it slightly easier to create a folder than using the statement MKDIR. You can,

however, still use a statement MKDIR and catch errors using TRY.

See also

MKDIR

CoreBASIC Reference Guide CoreBASIC Language Reference

322

MKF

Synopsis

MKF arg

Convert float to binary data.

Description

MKF forces arg to floating point and then encodes that value as a 4-character string in PC (little-endian) byte

order:

> x = mkf(1) ' 1.0 is 3F'80'00'00
> print hex expand x
["00", "00", "80", "3F"]
> _

You can use REVERSE to encode the floating point value in network (big-endian) byte order:

> x = mkf(1) ' 1.0 is 3F'80'00'00
> print hex reverse expand x
["3F", "80", "00", "00"]
> _

See also

CVF, REVERSE

CoreBASIC Reference Guide CoreBASIC Language Reference

323

MKI

Synopsis

MKI arg

Convert integer to binary data.

Description

MKI forces arg to an integer and then encodes that integer as a 4-character string in PC (little-endian) byte order.

> x = mki(32767)
> print hex expand x
["FF", "7F", "00", "00"]
> _

You can use REVERSE to encode the integer value in network (big-endian) byte order:

> x = mki(32767)
> print hex reverse expand x
["00", "00", "7F", "FF"]
> _

See also

REVERSE

CoreBASIC Reference Guide CoreBASIC Language Reference

324

MOD

Synopsis

x MOD y

Remainder after division.

Description

MOD returns the remainder after division of x by y. Both x and y must be compatible; if they are incompatible,

CoreBASIC throws an exception. For instance, CoreBASIC cannot divide strings by numbers directly:

> print "3" MOD 2
?type mismatch
> _

Numbers

Real numbers divided using standard mathematical rules:

> print 11 mod 3
2
> print 10 mod (2*pi)
3.71681
> _

It is not possible to use MOD with complex or quaternion operands.

Arrays

Arrays are divided element-by-element and a new array is created containing the remainder after division of

each pair.

> print [7, 8, 9] mod [2, 3, 4]
[1, 2, 1]
> _

You can compute the remainder after a division of a scalar value by an array, or an array by a scalar:

> print [1, 2, 3] mod 2
[1, 0, 1]
> print 2 mod [1, 2, 3]
[0, 0, 2]
> _

See also

/

CoreBASIC Reference Guide CoreBASIC Language Reference

325

MODULES

Synopsis

MODULES

List built-in CoreBASIC modules.

Description

MODULES lists the modules that the current firmware has installed. Because CoreBASIC is modular, a specific

build of CoreBASIC will well select a subset of the available modules to reduce both code space and data space

in order to fit into the target platform.

MODULES is of most use to CoreBASIC developers when debugging reduced-functionality firmware to ensure

that the correct modules are indeed linked in and available for use.

For a full-feature SolderCore, the following modules are built into the firmware:

> modules

Installed CoreBASIC modules:

 CORE-MODULE
 SOLDERCORE-MODULE
 STRINGS-MODULE
 FILES-MODULE
 TRANSCENDENTALS-MODULE
 EDITING-MODULE
 GRAPHICS-MODULE
 NETWORKING-MODULE
 DEVICE-MODULE

> _

CoreBASIC Reference Guide CoreBASIC Language Reference

326

MONTH%

Synopsis

MONTH%

MONTH%(arg)

Return month within year.

Description

MONTH%(arg) returns the current month within the year for the time arg. arg is the number of seconds since

1 January 1970, the standard way of representing time in CoreBASIC. The result is a number from one to 12

representing January through December.

MONTH% without an argument returns the current month within the month for the core time and is equivalent to

MONTH%(CORE.TIME).

> list
 10 NAMES = ["---", "Jan", "Feb", "Mar", "Apr", "May", "Jun"]
 10 NAMES = NAMES & ["Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
 20 PRINT "This month is ";
 30 PRINT NAMES(MONTH%)
 40 END
> run
This month is Dec
> _

See also

DATE%, DAY%, YEAR%

CoreBASIC Reference Guide CoreBASIC Language Reference

327

MORE

Synopsis

MORE name

List contents of file.

Description

MORE opens the file name for reading and lists its contents to the console. The program in memory is not altered

at all.

For instance, to list the contents of file welcome.bas on the root folder of the SD card:

> more "/c/welcome.bas"
 10 ' Welcome program for CoreBASIC.
 20 '
 30 PRINT "Welcome to CoreBASIC on the "; CORE.NAME; "!"
 40 PRINT "For more information, visit http://www.soldercore.com/"
 50 '
 60 END
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

328

MORSE$

Synopsis

MORSE$ arg

Encode string into Morse code.

Description

MORSE$ encodes its argument into ITU Morse code using dots, dashes, and spaces.

> print morse$ "sos"
... --- ...
> _

Numbers are converted to strings using STR and encoded:

> print morse$ 100.3
.---- ----- ----- .-.-.- ...--
> _

Characters that have no representation in Morse code are ignored:

> print "|"; morse$ "[]"; "|"
||
> _

See also

Recommendation ITU-R M.1667-1 - International Morse Code

Morse Code - Wikipedia, the free encylopedia

http://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.1677-1-200910-I!!PDF-E.pdf
http://en.wikipedia.org/wiki/Morse_code

CoreBASIC Reference Guide CoreBASIC Language Reference

329

MOUNT

Synopsis

MOUNT

MOUNT name

Mount media.

Description

MOUNT attempts to mount the specified volume so that it can be accessed by CoreBASIC. If name is omitted,

CoreBASIC attempts to mount the /c volume which, on the SolderCore, is the microSD card.

See also

EJECT

CoreBASIC Reference Guide CoreBASIC Language Reference

330

MOVE

Synopsis

MOVE x, y

Move pen position.

Description

MOVE moves the graphics pen position to the co-ordinate (x, y) without drawing on the display.

CoreBASIC Reference Guide CoreBASIC Language Reference

331

$NAME

Synopsis

$NAME

Program work file name.

Description

$NAME returns the work file name of the current program as set by NAME.

> print $name
/c/work.bas
> name "/c/welcome.bas"
> print $name
/c/welcome.bas
> _

See also

NAME

CoreBASIC Reference Guide CoreBASIC Language Reference

332

NAME

Synopsis

NAME

NAME path

Set or display program name.

Description

NAME on its own displays the default program name that LOAD and SAVE will use if no filename is given to

them.

NAME with path given will set the current program name to path. If path has no file extension, ".bas" is added.

Note that path is not validated when the name is set, it is only validated when used by SAVE and LOAD.

When CoreBASIC starts, the current program name is set to /c/work.bas. You can override this default by

including a NAME command in the CoreBASIC auto-exec file /c/!run.bas.

See also

LOAD, SAVE, $NAME

CoreBASIC Reference Guide CoreBASIC Language Reference

333

NAN

Synopsis

NAN

NAN(arg)

Generate or inquire NaN.

Description

NAN with an argument arg inquires whether arg is a NaN:

> print 1/0 | 0/0
inf
nan
> print nan(1/0) | nan(0/0)
0
1
> _

NAN on its own generates a Not-a-Number (NaN):

> print nan | nan(nan)
nan
1
> _

For complex and quaternion arguments, NAN is true if any of the real, imaginary, or vector parts of arg are a NaN:

> print nan(cmplx(1, nan)) | nan(cmplx(1, 2))
1
0
> print nan(quat(1, 2, nan, 4)) | nan(quat(1, 2, 3, 4))
1
0
> _

If arg is an array, NAN threads recursively over the elements of the array:

> print nan([-1/0, 0/0, +1/0])
[0, 1, 0]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

334

NET

Synopsis

NET

Network driver.

Description

NET evaluates to the SolderCore network driver. The network driver provides access to the network features of

the SolderCore CPU.

For full information on the network driver, see SolderCore Network.

See also

SolderCore Network

CoreBASIC Reference Guide CoreBASIC Language Reference

335

NEW

Synopsis

NEW

Start new program.

Description

Your existing program is removed from memory without warning. Note that NEW only clears your program from

memory and does not delete the program from disk. The working filename is reset to /c/work.bas.

> list
 10 PRINT "'Twas brillig, and the slithy toves"
 20 PRINT " Did gyre and gimble in the wabe:"
 30 PRINT "All mimsy were the borogoves,"
 40 PRINT " And the mome raths outgrabe."
 50 END
> run
'Twas brillig, and the slithy toves
 Did gyre and gimble in the wabe:
All mimsy were the borogoves,
 And the mome raths outgrabe.
> new
> list
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

336

NEWS

Synopsis

NEWS

Show release history.

Description

You can use NEWS to display the release history and what has changed in each each CoreBASIC version. Releases

are in reverse chronological order, with the most recent shown first.

> news
Connecting to www.soldercore.com (192.232.216.121)...
Requesting /manual/corebasic_change_history.htm from network...

Change history

While we have done all we can to test CoreBASIC, this is early in the
development cycle and, as such, please be warned that there will be the
inevitable bug. We urge you to report any bugs to us so they can be corrected
for all CoreBASIC users.

Release 1.3.0 changes

Major items:

 * Added HTTP-SERVER to serve HTTP requests from the SolderCore. SolderCore
 gets a web server! See HTTP Server.
 * Added FTP-SERVER which enables upload and download of files with an FTP
?
> _

Keys

At the --More-- prompt, you can use the following keys:

• Space: Show the next page.

• Return: Show the next line.

• .: Continue without paging.

• Q: Quit.

See also

HELP, WEB

CoreBASIC Reference Guide CoreBASIC Language Reference

337

NEXT

Synopsis

NEXT var

End of FOR or FOR EACH loop.

Description

See FOR ... NEXT and FOR EACH ... NEXT.

CoreBASIC Reference Guide CoreBASIC Language Reference

338

NOT

Synopsis

NOT arg

Logical negation.

Description

NOT computes the logical negation of arg. The result is true arg is false, and false if arg is true:

> list
 10 FOR X = FALSE TO TRUE
 20 PRINT "NOT "; TRUTH X; " = "; TRUTH NOT X
 30 NEXT X
 40 END
> run
NOT False = True
NOT True = False
> _

arg is converted to an integer before applying NOT. After conversion to an integer, any nonzero value is

considered true:

> print not 1.2 | not 0.2
0
1
> _

If arg is an array, logical negation threads recursively over the elements of the array:

> print not [0, 1]
[1, 0]
> _

Note

NOT does not perform bitwise negation, it performs logical negation, and there is a difference in the way that

nonzero values are treated. To perform bitwise negation, use XOR with −1:

> x = [-2, -1, 0, 1, 2]
> print not x | -1 xor x
[0, 0, 1, 0, 0]
[-1, 0, -1, -2, -3]
> _

See also

XOR

CoreBASIC Reference Guide CoreBASIC Language Reference

339

NUMBER$

Synopsis

NUMBER$ arg

Convert number to spoken string.

Description

NUMBER$ converts its argument to a string of English words that you would speak.

> print number$ 10
ten
> print number$ 2012
two thousand and twelve
> _

The resulting string is not grammatically correct English in that some words are not hyphenated. This is done

on purpose so that the string can be separated into words using SPLIT, or encoded again for voice output. For

example, the number 1023 is correctly spelled out as "one thousand and twenty-three", but NUMBER$ drops the

hyphen:

> print number$ 1023
one thousand and twenty three
> _

Negative values use "minus" as a prefix, not "negative":

> print number$ -1
minus one
> _

For large values, SPOKEN$ uses the American definition of billion rather than the English one:

> print number$ 1000000001
one billion and one
> _

Fractional values are spoken as decimals, not as fractions:

> print number$ 0.5
zero point five
> print number$ pi
three point one four one five nine
> _

For even exceptionally large or small values, NUMBER$ resorts to standard form:

> print number$ 3.14e15
three point one four times ten to the power of fifteen

CoreBASIC Reference Guide CoreBASIC Language Reference

340

> print number$ 0.00001
one times ten to the power of minus five
> _

If arg is an array, NUMBER$ threads recursively over the elements of the array:

> print number$ [5, 4, 3, 2, 1]
["five", "four", "three", "two", "one"]
> _

Infinities and not-a-numbers are converted appropriately:

> mat print number$ [1/0, -1/0, 0/0]
infinity
minus infinity
not a number
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

341

OPEN

Synopsis

OPEN(filepath)

OPEN(filepath, READ)

OPEN(filepath, WRITE)

OPEN(filepath, READ WRITE)

OPEN(filepath, APPEND)

Open file for read, write, or update.

Description

OPEN attempts to open the file filepath according to the access mode. If no access mode is given, it defaults to

READ.

If value returned is negative, the file could not be opened; if the value returned is positive, it is the channel

allocated to the file.

The effect of opening a nonexistent file is different depending upon open mode:

• in READ mode it is an error.

• in WRITE mode, CoreBASIC will truncate the file, if the file can be written.

• in READ WRITE, a new file is created if it does not already exist; if the file already exists, it is opened for

update and positioned at the start.

• in APPEND, a new file is created if it does not already exist; if the file already exists, it is opened for update

and positioned at the end.

Example

> list
 10 ' A self-listing program
 20 F = OPEN($WORK, READ)
 30 IF F < 0 THEN PRINT "Open failed: "; REPORT F : STOP
 40 WHILE NOT EOF(F)
 50 INPUT #F, TEXT AS STR
 60 PRINT TEXT
 70 WEND
 80 END
> save $work
> run
 10 ' A self-listing program
 20 F = OPEN($WORK, READ)
 30 IF F < 0 THEN PRINT "Open failed: "; REPORT F : STOP
 40 WHILE NOT EOF(F)
 50 INPUT #F, TEXT AS STR
 60 PRINT TEXT
 70 WEND
 80 END
>

CoreBASIC Reference Guide CoreBASIC Language Reference

342

OR

Synopsis

x OR y

Logical disjunction.

Description

OR computes the bitwise disjunction of x and y. A bit is set in the result if the corresponding bit is set in either x

or y:

> print hex(0x1234 or 0xfedc)
fefc
> _

If x and y are logical expressions, OR will compute the logical disjunction of x and y according to the standard

truth table:

> list
 10 FOR X = 0 TO 1
 20 FOR Y = 0 TO 1
 30 PRINT X; " OR "; Y; " = "; X OR Y
 40 NEXT Y
 50 NEXT X
 60 END
> run
0 OR 0 = 0
0 OR 1 = 1
1 OR 0 = 1
1 OR 1 = 1
> _

Both x and y are converted to integers before applying OR. After conversion to integers, any nonzero value is

considered true.

> print 1.5 or 0.2 | 0.1 or 0.2
1
0
> _

Arrays are processed element-by-element and a new array is created containing the elementwise disjunction of

each pair:

> print [0, 1, 0, 1] or [0, 0, 1, 1]
[0, 1, 1, 1]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

343

OR ELSE

Synopsis

x OR ELSE y

Short-circuit logical disjunction.

Description

OR ELSE computes the short-circuit logical disjunction of x and y. The result OR ELSE is x if x is nonzero,

otherwise it is y. If x is nonzero, y is not evaluated.

> list
 10 FOR X = FALSE TO TRUE
 20 FOR Y = FALSE TO TRUE
 30 PRINT TRUTH X; " OR ELSE "; TRUTH Y; " = "; TRUTH(X OR ELSE Y)
 40 NEXT Y
 50 NEXT X
 60 END
> run
False OR ELSE False = False
False OR ELSE True = True
True OR ELSE False = True
True OR ELSE True = True
> _

Note that x OR ELSE y is equivalent to IFF(x,x,y) with x evaluated only once.

> print 0 or else "Surprising"
Surprising
> print 2 or else "Surprising"
2
> _

Note

For bitwise operations, use OR.

See also

AND THEN, IFF, OR

CoreBASIC Reference Guide CoreBASIC Language Reference

344

ORIGIN

Synopsis

ORIGIN x, y

ORIGIN CENTER

Set graphics origin.

Description

ORIGIN sets the graphics origin to the display co-ordinate (x, y). The co-ordinate (x, y) is an absolute co-ordinate

and is not affected by any origin already set.

All graphics commands executed after an origin is set will be relative to the new origin.

ORIGIN CENTER sets the graphic origin to the center of the display and is equivalent to

ORIGIN GFX.WIDTH/2, GFX.HEIGHT/2

CoreBASIC Reference Guide CoreBASIC Language Reference

345

OTHERWISE

Synopsis

OTHERWISE

Catch-all for CASE statement.

Description

See CASE ... ENDCASE.

CoreBASIC Reference Guide CoreBASIC Language Reference

346

PAPER

Synopsis

PAPER n

Construct string to change background color.

Description

PAPER constructs a string that changes the background color of the text display to the color n. The PAPER

function is most commonly used with the PRINT command to change the background color of text sent to

standard output.

The value n must line in the range 0 to 7 inclusive.

Colors

Paper Color

0 Black

1 Red

2 Green

3 Yellow

4 Blue

5 Magenta

6 Cyan

7 White

See also

INK

CoreBASIC Reference Guide CoreBASIC Language Reference

347

PAUSE

Synopsis

PAUSE n

Pause execution.

Description

Execution of the CoreBASIC program is paused for at least n seconds. During the pause, background tasks, such

as networking, LCD refreshing, and other updates, continue to run. CoreBASIC will check for break-in requests

every 500 ms so you will not cause CoreBASIC to become unresponsive by an inadvertent programming error.

Example

PAUSE 1.5 ' pause for 1.5 seconds
PAUSE 0.01 ' pause for 1/100th of a second

CoreBASIC Reference Guide CoreBASIC Language Reference

348

PI

Synopsis

PI

Approximation for π.

Description

PI evaluates to an approximation to π.

Example

> list
 10 INPUT "Radius? "; R
 20 PRINT "Circumference of a circle = "; 2 * PI * R
 30 PRINT "Area of a circle = "; PI * R^2
 40 PRINT "Volume of a sphere = "; 4/3 * PI * R^3
 50 END
> run
Radius? 15.2
Circumference of a circle = 94.248
Area of a circle = 706.86
Volume of a sphere = 14137.2
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

349

PICK

Synopsis

PICK(source, flags)

Pick elements from array.

Description

PICK will select elements from source according to the Boolean values in the array flags. The array that is

returned contains only those elements from source where the corresponding element in flags is nonzero:

> v = ["Co", "re", "BA", "SIC"]
> print pick(v, [0, 0, 1, 0])
["BA"]
> _

The lengths of the arrays source and flags must be identical:

> v = ["Co", "re", "BA", "SIC"]
> print pick(v, [0, 0, 1])
?dimension error
> _

Usually you would use PICK together with some relation to select the elements of the array. For instance, to

select all elements of an array that exceed a threshold:

> marks = int(100 * rnd con(10))]
> print v
[86, 23, 23, 45, 56, 67, 61, 28, 34, 87]
> print marks > 50]
[1, 0, 0, 0, 1, 1, 1, 0, 0, 1]
> print pick(marks, marks > 50)
[86, 56, 67, 61, 87]
> _

See also

SELECT

CoreBASIC Reference Guide CoreBASIC Language Reference

350

PIN

Synopsis

PIN x AS DIGITAL OUTPUT

PIN x AS DIGITAL INPUT

PIN x AS ANALOG OUTPUT

PIN x AS ANALOG INPUT

Configure pin.

Description

This sets the mode of the pin x to be either a digital or analog input or output. If the pin cannot support the

particular mode selected, a "bad pin configuration" error is thrown.

x can be an integer value that indicates a single pin or an array of integer values indicating a set of pins, for

instance:

> pin 2 as digital input
> pin [1, 3, 5] as digital output
> _

Synopsis

PIN x = value

Drive pin.

Description

This sets the pin x to the value value.

If the pin x is a digital output, it is set high if value is greater than zero and set low if value is less than or equal to

zero.

If the pin is an analog output, value must be between zero and one. If value is less than zero, is is set to zero and

if greater than one it is set to one. The analog output is then set to value, with zero being the smallest analog

output and one being the largest analog output.

If the analog pin is controlled by a DAC, the DAC will output the selected voltage. If the pin is not attached to a

DAC but does support PWM, the pin is set to be a digital output in PWM mode and value sets the duty cycle of

the pin. value is clamped between zero and one as it is with an analog output. A value of zero indicates a zero

duty cycle, a value of 0.5 is a 50% duty cycle, and a value of 1 indicates a 100% duty cycle.

If x is an array of pins, all pins in the array are set to value:

CoreBASIC Reference Guide CoreBASIC Language Reference

351

> pin [1, 3, 5] as digital output
> pin [3, 5] = 0

See also

Arduino-style header pinout

CoreBASIC Reference Guide CoreBASIC Language Reference

352

PIN CATALOG

Synopsis

PIN CATALOG

List pins available and in use.

Description

PIN CATALOG lists all pins that are available for use and what, if anything, they are configured for.

SolderCore

On reset, the pin catalog of the SolderCore is:

> pin catalog

Pin# Name Function Claim

 0 D0 Floating None
 1 D1 Floating None
 2 D2 Floating None
 3 D3 Floating None
 4 D4 Floating None
 5 D5 Floating None
 6 D6 Floating None
 7 D7 Floating None
 8 D8 Floating None
 9 D9 Floating None
 10 D10 Floating None
 11 D11 Floating None
 12 D12 Floating None
 13 D13 Floating None
 14 A0 Floating None
 15 A1 Floating None
 16 A2 Floating None
 17 A3 Floating None
 18 A4 Floating None
 19 A5 Floating None
 20 A4_ANA Floating None
 21 A5_ANA Floating None
 22 SCL1 Floating None
 23 SDA1 Floating None
 24 CSMEM1 Floating None
 25 CSMEM2 Floating None
 26 UL Digital Output Fixed
 27 IDL Digital Output Fixed
 28 CS Digital Output Fixed
> _

See Arduino-style header pinout.

Raspberry Pi

On reset, the pin catalog of the Raspberry Pi is:

CoreBASIC Reference Guide CoreBASIC Language Reference

353

> pin catalog

Pin# Name Function Claim

 0 D0 Floating None
 1 D1 Floating None
 2 D2 Floating None
 3 D3 Floating None
 2 D2 Floating None
 3 D3 Floating None
 4 D4 Floating None
 5 D5 Floating None
 6 D6 Floating None
 7 D7 Floating None
 8 D8 Floating None
 9 D9 Floating None
 10 D10 Floating None
 11 D11 Floating None
 12 D12 Floating None
 13 D13 Floating None
 14 A0 Floating None
 15 A1 Floating None
 16 A2 Floating None
 17 A3 Floating None
 18 A4 Floating None
 19 A5 Floating None
> _

Freedom Board

On reset, the pin catalog of the Freedom Board is:

> pin catalog

Pin# Name Function Claim

 0 D0 RS232 Rx Locked
 1 D1 RS232 Tx Locked
 2 D2 Floating None
 3 D3 Floating None
 4 D4 Floating None
 5 D5 Floating None
 6 D6 Floating None
 7 D7 Floating None
 8 D8 Floating None
 9 D9 Floating None
 10 D10 Floating None
 11 D11 Floating None
 12 D12 Floating None
 13 D13 Floating None
 14 A0 Floating None
 15 A1 Floating None
 16 A2 Floating None
 17 A3 Floating None
 18 A4 Floating None
 19 A5 Floating None
 20 D12 Floating None
 21 D13 Floating None
 22 J1_01 Floating None
 23 J1_03 Floating None
 24 J1_05 Floating None

CoreBASIC Reference Guide CoreBASIC Language Reference

354

 25 J1_07 Floating None
 26 J1_09 Floating None
 27 J1_11 Floating None
 28 J1_13 Floating None
 29 J1_15 Floating None
 30 J2_01 Floating None
 31 J2_03 Floating None
 32 J2_05 Floating None
 33 J2_07 Floating None
 34 J2_09 Floating None
 35 J2_11 Floating None
 36 J2_13 Floating None
 37 J2_17 Floating None
 38 J2_19 Floating None
 39 J9_01 Floating None
 40 J9_03 Floating None
 41 J9_05 Floating None
 42 J9_06 Floating None
 43 J9_07 Floating None
 44 J9_09 Floating None
 45 J9_11 Floating None
 46 J9_13 Floating None
 47 J9_15 Floating None
 48 J10_01 Floating None
 49 J10_03 Floating None
 50 J10_05 Floating None
 51 J10_07 Floating None
 52 J10_09 Floating None
 53 J10_11 Floating None

> _

CoreBASIC Reference Guide CoreBASIC Language Reference

355

PIN LIST

Synopsis

PIN LIST

List pins in use.

Description

PIN LIST lists the pins that are currently configured for use and what they are configured for.

The pin function listed is the mode the pin is configured for and is one of:

• Floating: Pin is not configured.

• Digital Output: Configured as a digital output.

• Digital Input: Configured as a digital input.

• Analog Output: Configured as a DAC or PWM output.

• Analog Input: Configured as an ADC input.

• SCL: Configured as an I2C SCL signal.

• SDA: Configured as an I2C SDA signal.

• MOSI: Configured as an SPI MOSI signal.

• MISO: Configured as an SPI MISO signal.

• SCK: Configured as an SPI SCK signal.

• RS232 Tx: Configured as an RS232 transmit signal.

• RS232 Rx: Configured as an RS232 receive signal.

The pin claim indicates how the pin is being used:

• None: The pin is not claimed and can be reconfigured for other functions as needed.

• Shared: The pin is claimed for shared functional use. For example, SPI and I2C clock and data signals can

be shared by many devices. Attempting to claim this pin for other uses or for exclusive access will result in

a pin configuration error.

• Exclusive: The pin is claimed for exclusive use by a device driver and cannot be shared and cannot be

reconfigured. Many shield drivers will claim exclusive use of certain pins because they cannot be shared

at a hardware level. The pin will be unlocked for reuse when the program is edited or run.

• Fixed: As Exclusive, but the pin will not be unlocked for reuse when the program is edited or run.

• Locked: The pin is claimed for exclusive use by CoreBASIC and has no user-level access. This prevents

inadvertently configuring the target such that it is inaccessible.

SolderCore

On reset, the pin list of the SolderCore is:

> pin list

CoreBASIC Reference Guide CoreBASIC Language Reference

356

Pin# Name Function Claim Mode

 22 UL Digital Output Fixed Standard, 2 mA
 23 IDL Digital Output Fixed Standard, 2 mA
 24 CS Digital Output Fixed Standard, 2 mA
 29 SCK SPI SCK Locked Standard, 8 mA
 30 MISO SPI MISO Locked Standard, 8 mA
 31 MOSI SPI MOSI Locked Standard, 8 mA

> _

Raspberry Pi

On reset, the pin list of the Raspberry Pi is empty:

> pin catalog

Pin# Name Function Claim Mode

> _

Freedom Board

On reset, the pin list of the Freedom Board is:

> pin list

Pin# Name Function Claim Mode

 0 D0 RS232 Rx Locked Standard
 1 D1 RS232 Tx Locked Standard

> _

CoreBASIC Reference Guide CoreBASIC Language Reference

357

PIN()

Synopsis

PIN arm

Sample pin.

Description

PIN reads the current state of pin arg.

If the pin is a digital input, PIN returns 1 for a high signal and 0 for a low signal. If the pin is an analog input, PIN

returns a value between zero and one when the analog voltage swings between the full scale voltages, with zero

indicating the smallest voltage and one indicating the largest voltage on the pin.

If arg is an array, PIN is threaded over the array:

> pin [1, 3] as digital input
> pin [15, 16] as analog input
> print pin [1, 3, 15, 16]
[1, 0, 0.523949, 0.757576]
> _

See also

Arduino-style header pinout

CoreBASIC Reference Guide CoreBASIC Language Reference

358

PLOT

Synopsis

PLOT position [TO position]...

Draw points or lines.

If you specify a single position, a single pixel is plotted at that position on the graphics device using the selected

color. If you specify more than one point, lines are drawn to connect each point.

Example

PLOT 10, 50

Plot a single point at the position 10, 50.

PLOT 10, 50 TO 15, 4

Draws a line between the points 10, 50 and 15, 4.

PLOT 10, 50 TO 15, 4 TO 1, 3

Draws a line between the points 10, 50 and 15, 4 and a second line from 15, 4 to 1, 3.

CoreBASIC Reference Guide CoreBASIC Language Reference

359

PRINT

Synopsis

PRINT expr [, | ; | |] expr…

PRINT [subclause,…] expr [, | ; | |] [subclause,…] expr…

Print data.

Subclause use

USING expr

#channel

Description

PRINT prints the values of each expression in the list. Numbers are printed in decimal:

> print 1/7
0.142857
> _

Strings print as themselves:

> print "CoreBASIC"
CoreBASIC
> _

Complex numbers and quaternions print their component parts:

> print cmplx(1, 2) | quat(2, -3, 4, -5)
1+2j
2-3i+4j-5k
> _

If the imaginary part of a complex number or any of the vector parts of a quaternion are zero, they are still

printed:

> print cmplx(1, 0) | quat(2, 0, 0, -5)
1+0j
2-0i+0j-5k
> _

Arrays print in source-like notation, enclosed in square brackets:

> print [1, "CoreBASIC", cmplx(1, 0)]
[1, "CoreBASIC", 1+0j]
> _

Separators

Each expression in PRINT statement is separated from the next by either a comma, semicolon, or vertical bar.

These format effectors alter the spacing between values printed.

CoreBASIC Reference Guide CoreBASIC Language Reference

360

Using a semicolon effector leaves no gap between one item and the next:

> print 1; 2; 3; "Core"; "BASIC"
123CoreBASIC
> _

A comma effector uses a horizontal tab character to tabulate each item into columns:

> print 1, 2, 3, "Core", "BASIC"
1 2 3 Core BASIC
> _

A vertical bar effector starts a new line:

> print 1 | 2 | 3 | "Core" | "BASIC"
1
2
3
Core
BASIC
> _

You can use an effector at the end of a statement to modify the way that the PRINT statement ends. If you

do not specify an effector, CoreBASIC assumes a vertical bar and prints a new line. If you use a semicolon, no

newline is printed at the end of the statement. If you use a comma, a horizontal tab is printed:

> list
 10 PRINT "Core";
 20 PRINT "BASIC",
 30 PRINT "OK" ||
 40 END
> run
CoreBASIC OK

> _

To print in matrix mode, you can use MAT PRINT.

See also

MAT PRINT, VDU

CoreBASIC Reference Guide CoreBASIC Language Reference

361

PTR

Synopsis

PTR unary = expr

Set position within file.

Description

Assignment to PTR sets the position within the open file unary to expr. You cannot position a file beyond its

current length or before its start.

See also

PTR()

CoreBASIC Reference Guide CoreBASIC Language Reference

362

PTR()

Synopsis

PTR arg

Get position within file.

Description

PTR returns the current position of the open file arg. If arg does not refer to an open file, the result of PTR will be

negative and indicate an error.

See also

PTR

CoreBASIC Reference Guide CoreBASIC Language Reference

363

QUAT

Synopsis

QUAT(a, b, c, d)

QUAT(r, v)

Construct quaternion.

Description

With four arguments, QUAT constructs the quaternion a + b × i + c × j + d × k:

> print quat(1, -2, 3, -4)
1-2i+3j-4k
> _

With two arguments, QUAT constructs the quaternion with scalar part r and vector part v:

> print quat(1, [-2, 3, -4])
1-2i+3j-4k
> _

See also

IM, RE

CoreBASIC Reference Guide CoreBASIC Language Reference

364

RAD

Synopsis

RAD arg

Convert degree measure to radian measure.

Description

RAD converts arg degrees to radians by multiplying arg by π?180:

> print rad 180
3.14159
> _

If arg is complex or a quaternion, each part is multiplied by π?180:

> print rad cmplx(-180, 180)
-3.14159+3.14159j
> print rad quat(-180, 180, -1, 1)
-3.14159+3.14159i-0.0174533j+0.0174533k
> _

If arg is an array, RAD threads recursively over the elements of the array:

> print rad [-180, 180]
[-3.14159, 3.14159]
> _

See also

DEG

CoreBASIC Reference Guide CoreBASIC Language Reference

365

RANDOMIZE

Synopsis

RANDOMIZE [arg]

Seed random number generator.

Description

RANDOMIZE seeds the random number generator with arg. arg can be any whole or fractional number. Seeding

the random number generator with the same value results in the same sequence of random numbers:

> randomize 10
> print rnd 100 | rnd 100
13.8641
86.102
> randomize 10
> print rnd 100 | rnd 100
13.8641
86.102
> _

If arg is omitted, CoreBASIC uses the internal timer, CORE.TICK, which changes rapidly and is hard to predict.

This may not be the best source of randomness during the boot sequence, but is a good source of randomness

after CoreBASIC has started and is waiting for user input.

Note

An implicit RANDOMIZE is executed each time a user program is run.

CoreBASIC Reference Guide CoreBASIC Language Reference

366

RAVEL

Synopsis

RAVEL array

Ravel an array to a vector

Description

RAVEL will ravel an array (either regular or ragged), of dimensionality up to and including 10, into a vector:

> v = [[1, 2], 3, [4, ["Five"]], [[[6]]]]
> print ravel v
[1, 2, 3, 4, "Five", 6]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

367

RE

Synopsis

RE arg

Extract real part.

Description

RE extracts the real part of a complex number:

> print re cmplx(4, pi)
4
> _

If arg is a quaternion, RE returns the real part of the quaternion:

> print re quat(1, 2, 3, 4)
1
> _

If arg is an array, RE threads recursively over the elements of the array:

> print re cis gen (-1 to +1 in 4)
[0.540302, 0.944957, 0.944957, 0.540302]
> _

See also

IM

CoreBASIC Reference Guide CoreBASIC Language Reference

368

READ

Synopsis

READ var, var…

Read data.

Description

READ reads the next item of data form a DATA statement and advances the data pointer. If there are insufficient

data items to satisfy the READ, CoreBASIC stops with an out of data error.

Example

Try to read 10 data items, with insufficient data:

> list
 10 PRINT "Try to read 10 items of simple data..."
 20 FOR I = 1 TO 10
 30 READ X
 40 PRINT "Read "; X
 50 NEXT I
 60 END
 100 DATA "Here are", "some data items", %PI, %E
> run
Reading simple data...
Read Here are
Read some data items
Read 3.14159
Read 2.71828

?out of data in 30: READ X
> _

You can also read vectors:

> list
 10 PRINT "Read some vectors..."
 20 FOR I = 1 TO 3
 30 READ X
 40 PRINT X
 50 NEXT I
 60 END
 100 DATA [1, 0, 0], [0, 1, 0], [0, 0, 1]
> run
Read some vectors...
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]
> _

It doesn't matter where the DATA statements are in the program, CoreBASIC will find them:

> list

CoreBASIC Reference Guide CoreBASIC Language Reference

369

 10 PRINT "Read some vectors..."
 15 DATA [0, 0, 1]
 20 FOR I = 1 TO 3
 30 READ X
 35 DATA [0, 1, 0]
 40 PRINT X
 50 NEXT I
 60 END
 100 DATA [0, 0, 1]
> run
Read some vectors...
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]
> _

See also

RESTORE

CoreBASIC Reference Guide CoreBASIC Language Reference

370

READ$

Synopsis

READ$(stream, count)

READ$(stream, count, timeout)

Read characters from stream.

Description

READ$ reads count characters from the stream stream with an optional timeout of timeout sections. If a timeout

is not provided, it is assumed to be infinite.

READ$ will return a string with as many characters as it can read, with no more than count characters. Fewer

than count characters may be returned if the stream closes (because it is a socket stream) or the timeout expires

with fewer than count characters read from the stream.

Note

It is not possible to interrupt READ$ using Ctrl+C, so using a sensible timeout is highly advised.

See also

INPUT$

CoreBASIC Reference Guide CoreBASIC Language Reference

371

REBOOT

Synopsis

REBOOT

Reboot SolderCore into CoreBASIC.

Description

REBOOT causes the SolderCore to reset and restart CoreBASIC as if you had pressed the reset switch on the

SolderCore. You can use REBOOT after changing the network parameters in the network startup file to have

SolderCore restart with the new network configuration.

Note

External shields and devices that rely on the RESET signal will not be reset by REBOOT as the RESET signal is not

asserted by REBOOT. If you require a hard reset of all devices, you can program a GPIO as an output pin, connect

that output to the RESET signal, and then set the GPIO low to reset both the SolderCore and all devices attached

to the RESET signal.

CoreBASIC Reference Guide CoreBASIC Language Reference

372

RECTANGLE

Synopsis

RECTANGLE x0, y0 TO x1, y1

FILL RECTANGLE x0, y0 TO x1, y1

Draw or fill a rectangle.

Description

RECTANGLE draws the rectangle with corners at x0, y0 and x1, y1 with the current graphics color set by COLOR.

This figure is generated by the following program which uses RECTANGLE:

***../examples/random-rectangles.bas not found ***

You can load this into CoreBASIC using EXAMPLE "random-rectangles" or |random-rectangles.

If RECTANGLE is preceded by FILL, the whole rectangle is filled with the current graphics color.

This figure is generated by the following program which uses FILL RECTANGLE:

***../examples/random-slabs.bas not found ***

You can load this into CoreBASIC using EXAMPLE "random-slabs" or |random-slabs.

CoreBASIC Reference Guide CoreBASIC Language Reference

373

RECYCLE

Synopsis

RECYCLE

Force garbage collection.

Description

CoreBASIC will run garbage collection whenever necessary to make space for new arrays, strings, or drivers.

RECYCLE is present so that the CoreBASIC garbage collector can be tested when developing the interpreter.

CoreBASIC Reference Guide CoreBASIC Language Reference

374

RED%

Synopsis

RED% arg

Extract red component of a color.

Description

RED% extracts the red component of the 24-bit RGB color value arg and returns it as a number between 0 (fully

desaturated) and 1 (fully saturated).

> x = rgb(0.7, 0.2, 0.1)
> print red% x
0.7
> _

See also

BLUE%, GREEN%, RGB

CoreBASIC Reference Guide CoreBASIC Language Reference

375

REDUCE

Synopsis

REDUCE(op, v)

Reduce vector.

Description

REDUCE reduces the vector v using the binary operator op by interposing op between all elements of v and

calculating the result. For instance:

> print reduce(*, [1, 2, 3, 4])
24
> print reduce(+, [4, 5, 6])
15
> _

You can use this, for instance, to compute the maximum and minimum values of an array:

> v = [10, 15, 2, 7]
> print reduce(max, v) | reduce(min, v))
15
2
> _

Or, you could ask whether every value in an array is less than 10; or greater than zero:

> v = [10, 15, 2, 7]
> print reduce(and, v < 10) | reduce(and, v > 0)
0
1
> _

Note

For convenience, CoreBASIC defines SUM(x) as equivalent to REDUCE(+, x), MAX(x) equivalent to

REDUCE(MAX, x), and MIN(x) equivalent to REDUCE(MIN, x),

See also

INNER, MAX(), MIN(), SUM

CoreBASIC Reference Guide CoreBASIC Language Reference

376

REM

Synopsis

REM comment

' comment

No-operation.

Description

All text following REM, to the end of the line, is skipped. You can use REM to add comments to your program.

CoreBASIC Reference Guide CoreBASIC Language Reference

377

RENAME

Synopsis

RENAME from, to

Rename file.

Description

RENAME changes the filename from to the filename to. from can be a full file specification, including volume.

from must be a simple file name, without any path specification.

See also

KILL

CoreBASIC Reference Guide CoreBASIC Language Reference

378

RENUMBER

Synopsis

RENUMBER

RENUMBER start [, increment]

Renumber program.

Description

RENUMBER will renumber the lines within a program and ensure that any reference to a line in the program is

correctly changed to the newly renumbered line.

> example "welcome"
Connecting to www.soldercore.com (192.232.216.121)...
Loading welcome.bas from network...
Program loaded and ready. Type RUN to execute.
> list
 10 ' Welcome program for CoreBASIC.
 20 '
 30 PRINT "Welcome to CoreBASIC on the "; CORE.NAME; "!"
 40 PRINT "For more information, visit http://www.soldercore.com/"
 50 '
 60 END
> renumber 100, 2
> list
 100 ' Welcome program for CoreBASIC.
 102 '
 104 PRINT "Welcome to CoreBASIC on the "; CORE.NAME; "!"
 106 PRINT "For more information, visit http://www.soldercore.com/"
 108 '
 110 END
> _

References to existing lines are automatically updated:

> 109 goto 104
> list
 100 ' Welcome program for CoreBASIC.
 102 '
 104 PRINT "Welcome to CoreBASIC on the "; CORE.NAME; "!"
 106 PRINT "For more information, visit http://www.soldercore.com/"
 108 '
 109 GOTO 104
 110 END
> renumber 50
> list
 50 ' Welcome program for CoreBASIC.
 60 '
 70 PRINT "Welcome to CoreBASIC on the "; CORE.NAME; "!"
 80 PRINT "For more information, visit http://www.soldercore.com/"
 90 '
 100 GOTO 70
 110 END
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

379

If no additional parameters are given, the program is renumbered starting from line 10 in steps of 10:

> renumber
> list
 10 ' Welcome program for CoreBASIC.
 20 '
 30 PRINT "Welcome to CoreBASIC on the "; CORE.NAME; "!"
 40 PRINT "For more information, visit http://www.soldercore.com/"
 50 '
 60 GOTO 30
 70 END
> _

Programs with references to nonexistent line numbers will not be renumbered:

> 60 goto 22
> list
 10 ' Welcome program for CoreBASIC.
 20 '
 30 PRINT "Welcome to CoreBASIC on the "; CORE.NAME; "!"
 40 PRINT "For more information, visit http://www.soldercore.com/"
 50 '
 60 GOTO 22
 70 END
> renumber
?no such line in 60: GOTO 22
> _

See also

CRUNCH

CoreBASIC Reference Guide CoreBASIC Language Reference

380

REPEAT ... UNTIL

Synopsis

REPEAT

 statements

UNTIL condition

Repetitively execute statements.

Description

REPEAT executes statements until condition is true. statements are executed at least once; if this is a problem,

consider using the WHILE statement. See WHILE ... WEND.

Example

Wait for a button press on pin 2 where signal is low when the button is pressed and high when it is released.

10 PIN 2 AS DIGITAL INPUT
20 PRINT "Press button on pin 2."
30 REPEAT
40 STATE = PIN(2)
50 UNTIL STATE = 0
60 PRINT "Thanks."
70 END

CoreBASIC Reference Guide CoreBASIC Language Reference

381

REPEAT$

Synopsis

REPEAT$(n, str)

Replicate a string or character.

Description

REPEAT$ constructs a new string containing n copies of the string str:

> print repeat$(10, "=")
==========
> print repeat$(3, "123")
123123123
> _

Repeating a string zero times, with n equal to zero, is an empty string:

> print "|"; repeat$(0, "x"); "|"
||
> _

If n is negative, CoreBASIC stops with an argument error:

> print repeat$(-1, "x")
?argument error
> _

See also

STRING$, SPC

CoreBASIC Reference Guide CoreBASIC Language Reference

382

REPORT

Synopsis

REPORT expr

Report error.

Description

REPORT prints the error message that corresponds to the error expr. If expr indicates no error, REPORT prints

"OK".

Note

The statement REPORT x is identical to PRINT REPORT(x).

See also

REPORT()

CoreBASIC Reference Guide CoreBASIC Language Reference

383

REPORT()

Synopsis

REPORT arg

Decode error code.

Description

REPORT decodes the error code arg into a printable string. You can use REPORT to display errors that are

returned from CoreOS or CoreBASIC.

See also

REPORT

CoreBASIC Reference Guide CoreBASIC Language Reference

384

RESTORE

Synopsis

RESTORE

RESTORE line

RESTORE RUN

Set data pointer.

Description

RESTORE on its own sets the data pointer to the current line. This is useful when entering a procedure to reset

the data pointer to a position that is independent of line numbering. Usually you would use RESTORE in a

procedure with DATA statements inside, or just following, the procedure.

RESTORE RUN sets the data pointer to the start of the program.

RESTORE line sets the data pointer to line number line and is not recommended for structured programs.

After setting the data pointer, subsequent READ statements will read data from the first DATA statement

following the data pointer.

Example

Use RESTORE RUN to read data twice.

> list
 10 FOR N = 1 TO 2
 20 PRINT "Pass "; N; " reading data..."
 30 FOR I = 1 TO 2
 40 READ X
 50 PRINT "Read "; X
 60 NEXT I
 70 RESTORE RUN
 80 NEXT N
 90 END
 100 DATA 3.1415926, 2.7182818
> run
Pass 1 reading data...
Read 3.14159
Read 2.71828
Pass 2 reading data...
Read 3.14159
Read 2.71828
> _

Example

Use a RESTORE in a procedure to read local data.

> list
 10 CALL DATA2
 20 CALL DATA1

CoreBASIC Reference Guide CoreBASIC Language Reference

385

 30 END
 40 DEFPROC DATA1
 50 RESTORE
 60 CALL DUMP_DATA
 70 DATA 1, 2, 3, -99
 80 ENDPROC
 90 DEFPROC DATA2
 100 RESTORE
 110 CALL DUMP_DATA
 120 DATA 3, 2, 1, -99
 130 ENDPROC
 140 DEFPROC DUMP_DATA
 150 READ X
 160 WHILE X >= 0
 170 PRINT X;
 180 READ X
 190 WEND
 200 PRINT
 210 ENDPROC
> run
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

386

RETURN

Synopsis

RETURN

Return control to caller.

Description

RETURN returns control to the statement following the GOSUB that called the subroutine. If there is no

corresponding GOSUB the program halts with a "return without GOSUB" error.

CoreBASIC Reference Guide CoreBASIC Language Reference

387

REVERSE

Synopsis

REVERSE var

Reverse a string or array variable.

Description

REVERSE will reverse the order of characters in a string or the elements in the array var.

If arg is an array, REVERSE will reverse the array in place:

> v = gen(1 to 10)
> print v
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
> reverse v
> print v
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
> _

If arg is a string, REVERSE will reverse the string in place:

> v = "CISABeroC"
> print v
CISABeroC
> reverse v
> print v
CoreBASIC
> _

Note

You can use reverse as a function to reverse a string during evaluation. See REVERSE().

CoreBASIC Reference Guide CoreBASIC Language Reference

388

REVERSE()

Synopsis

REVERSE arg

Reverse a string or array.

Description

If arg is an array, REVERSE will create a new array with the elements of arg in reverse order:

> v = gen(1 to 10)
> print v | reverse(v)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
> _

If arg is a string, REVERSE will create a new string with the characters in arg in reverse order:

> print reverse "CISABeroC"
CoreBASIC
> _

Note

You can use REVERSE to reverse the encoding order of a floating point or integer value created by MKF and

MKI:

> x = mkf(1) ' 1.0 is 3F'80'00'00
> print hex expand x
["3F", "80", "00", "00"]
> print hex reverse expand x
["00", "00", "80", "3F"]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

389

RGB

Synopsis

RGB(r, g, b)

Construct 24-bit true color.

Description

The three parameters r, g, and b, define the saturation of the red, green, and blue channels. These values should

lie in the range 0 to 1 inclusive. Values outside this range are clipped as appropriate, rather than causing an error.

You can use RGB to set the drawing color:

 COLOR RGB(1, 0, 0) ' fully saturated red
 COLOR RGB(0, 0.5, 0) ' 50% (dull) green

See also

BLUE%, GREEN%, RED%

CoreBASIC Reference Guide CoreBASIC Language Reference

390

RIGHT

Synopsis

RIGHT(arg, n)

Slice right part of string or array.

Description

RIGHT extracts the last n characters of the string arg:

> print right("CoreBASIC", 5)
BASIC
> _

If n is negative, it specifies that the number of characters is computed from the start of the string. For instance,

you can drop the first four characters from a string:

> print right("CoreBASIC", -4)
Core
> _

RIGHT also works on arrays in the same manner as strings:

> print right([5, 4, 3, 2, 1], 3)
[3, 2, 1]
> print right([5, 4, 3, 2, 1], -3)
[2, 1]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

391

RMDIR

Synopsis

RMDIR path

Remove folder.

Description

RMDIR removes the folder specified by path. RMDIR will not remove a folder unless it is empty. If there is an

error removing the folder path, CoreBASIC throws an error.

See also

RMDIR()

CoreBASIC Reference Guide CoreBASIC Language Reference

392

RMDIR()

Synopsis

RMDIR path

Remove folder.

Description

RMDIR removes the folder specified by path and returns a status code indicating success or failure. RMDIR will

not remove a folder unless it is empty.

> list
 10 E = RMDIR("/c/folder")
 20 IF E < 0 THEN REPORT E ELSE PRINT "Removed OK"
 30 END
> _

See also

RMDIR

CoreBASIC Reference Guide CoreBASIC Language Reference

393

RND

Synopsis

RND arg

Computes pseudo-random number.

Description

RND generates a pseudo-random number between zero and arg. Each time RND is executed, it picks the next

random number in the sequence:

> print rnd 3 | rnd 3
1.77252
2.29368
> _

The argument may be negative, in which case the random number returned will also be negative:

> print rnd -5
-4.37283
> _

You can use RND with RGB to generate a random color:

> c = rgb(rnd 1, rnd 1, rnd 1)
> print hex c
C6C1F3
> _

If arg is an array, RND threads recursively over the elements of the array:

> print rnd [10, 10, 10, 10, 10]
[5.34515, 9.47601, 1.71722, 7.02209, 2.2641]
> _

You can use this facility, for instance, to generate a vector containing 10 rolls of a 6-sided die:

> print 1 + int rnd(6*con(10))
[2, 5, 3, 3, 6, 1, 2, 6, 5, 3]
> _

See also

RANDOMIZE

CoreBASIC Reference Guide CoreBASIC Language Reference

394

ROT

Synopsis

ROT arg

Convert to rotation matrix form.

Description

ROT converts arg to rotation matrix form. If arg is real or complex, ROT reduces arg to a unit complex and

converts it to a 2×2 matrix:

> mat print rot cmplx(1, 2)
0.447214 -0.894427
0.894427 0.447214
> _

The zero complex is reduced to the identity matrix:

> mat print rot cmplx(0, 0)
1 0
0 1
> _

Using ROT together with CIS provides a way to generate a 2×2 rotation matrix for an angle. For example, the

matrix for counter-clockwise rotation through 30 degrees is:

> mat print rot cis rad 30
0.866025 -0.5
0.5 0.866025
> _

If arg is a quaternion, ROT reduces arg to a unit quaternion and converts it to a 3×3 rotation matrix:

> mat print rot quat(1, 2, 3, 4)
-0.666667 0.133333 0.733333
0.666667 -0.333333 0.666667
0.333333 0.933333 0.133333
> _

The zero quaternion is reduced to the identity matrix:

> mat print rot quat(0, 0, 0, 0)
1 0 0
0 1 0
0 0 1
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

395

ROW

Synopsis

ROW(matrix, n)

Extract matrix row.

Description

ROW extracts row n of the matrix matrix.

Example

> a = [[1, 2], [3, 4]]
> mat print a
1 2
3 4
> print row(a, 0) | row(a, 1)
[1, 2]
[3, 4]
> _

See also

COL

CoreBASIC Reference Guide CoreBASIC Language Reference

396

RTRIM

Synopsis

RTRIM arg

Remove trailing whitespace.

Description

RTRIM removes all trailing whitespace from the string arg. If arg is an array of strings, a new array is created with

each string having trailing whitespace removed:

> print "|"; rtrim(" CoreBASIC "); "|";
| CoreBASIC|
> _

If arg is an array, RTRIM threads recursively over the elements of the array:

> mat print "|" + rtrim [" Core ", " BASIC "] + "|"
| Core|
| BASIC|
> _

See also

LTRIM, TRIM

CoreBASIC Reference Guide CoreBASIC Language Reference

397

RUN

Synopsis

RUN

RUN expr, expr…

Executes program.

Description

RUN starts to run your stored program. All variables are cleared, TIMER is set to zero, and execution starts from

the first program line.

> example "welcome"
Connecting to www.soldercore.com (192.232.216.121)...
Loading welcome.bas from network...
Program loaded and ready. Type RUN to execute.
> list
 10 ' Welcome program for CoreBASIC.
 20 '
 30 PRINT "Welcome to CoreBASIC on the "; CORE.NAME; "!"
 40 PRINT "For more information, visit http://www.soldercore.com/"
 50 '
 60 END
> run
Welcome to CoreBASIC on the SolderCore!
For more information, visit http://www.soldercore.com/
> _

You can provide additional arguments to your program after RUN. The list of values ofter RUN is collected and

stored for future use using RUN as a function.

Auto-save feature

To provide extra protection from hardware and software crashes, you can enable auto-save mode with SAVE

AUTO ON. With auto-save turned on, CoreBASIC saves your program automatically, as if by SAVE, before the

program is run.

If your program cannot be auto-saved, CoreBASIC stops and does not attempt to continue and run your

program.

Note

Pressing F5 at the CoreBASIC command line will execute RUN.

See also

RUN(), corebasic_save_auto.

CoreBASIC Reference Guide CoreBASIC Language Reference

398

RUN()

Synopsis

RUN

RUN(index)

Return program arguments.

Description

RUN used as a function provides access to the program parameters after the RUN statement. The list of values

ofter RUN is collected and stored for future use:

> list
 10 PRINT "You have "; LEN RUN; " arguments."
 20 PRINT "Your program arguments are: "; RUN
 30 END
> run
You have 0 arguments.
Your program arguments are: []
> run 1/3
You have 1 arguments.
Your program arguments are: [0.33333]
> run sin(%pi/3), "CoreBASIC", gen(1 to 5)
You have 3 arguments.
Your program arguments are: [0.86603, "CoreBASIC", [1, 2, 3, 4, 5]]
> _

You can iterate over the program arguments using using FOR EACH and RUN:

> list
 10 IF LEN RUN = 0 THEN PRINT "No program arguments" : END
 20 PRINT "Your first argument is: "; RUN(0)
 30 PRINT "The remainder of your program arguments are:"
 40 FOR EACH A IN RUN(1 TO)
 50 PRINT A
 60 NEXT A
 70 END
> run
No program arguments
> run "CoreBASIC", "Core", "BASIC"
Your first argument is: CoreBASIC
The remainder of your program arguments are:
Core
BASIC
> _

Note

Variables are cleared before evaluating program arguments, so any variable used in a program argument will

default to zero:

> list
 10 PRINT RUN
 20 END

CoreBASIC Reference Guide CoreBASIC Language Reference

399

> run "CoreBASIC"
["CoreBASIC"]
> x = "CoreBASIC"
> run x
[0]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

400

SAMPLE

Synopsis

SAMPLE(property, n)

SAMPLE(property; property; … property, n)

Repeatedly sample properties.

Description

Creates an new array with n samples of the property parameter.

You can use this to sample an analog input:

> v = sample(core.a17, 100) ' take 100 samples of analog input 3
> _

Or one of the digital pins:

> v = sample(core.d2, 33) ' take 33 samples of digital input 2
> _

Or multiple digital signals in parallel using a bus:

> install "parallel-bus" using core.d2, core.d3, core.d4 as bus
> v = sample(bus.input, 10)
> _

You don't need to know the input to sample in advance. You might want to ask the user about it:

> list
 10 INPUT "What analog channel to sample? "; C
 20 INPUT "How many samples? "; N
 30 S = SAMPLE(CORE.A(C), N)
 40 PRINT "Samples are: "
 50 MAT PRINT S
 60 END
> _

You can sample more than one item by separating the properties using semicolons. For instance, to sample 100

pairs of inputs form analog inputs 3 and 4 in parallel:

> v = sample(core.a17; core.a18, 100)
> _

The output array has the readings interleaved: the first sample from input 3, then input 4, then input 3, and so

on.

SAMPLE can be very flexible. For instance, to acquire 50 samples form analog channels 3 and 4, as above, and to

timestamp each sample:

> v = sample(core.tick; core.a17; core.a18, 50)

CoreBASIC Reference Guide CoreBASIC Language Reference

401

> _

CoreBASIC Reference Guide CoreBASIC Language Reference

402

SAVE

Synopsis

SAVE

SAVE name

Save program to storage device.

Description

SAVE saves the program in memory to a file on disk. If a file name follows SAVE, the current program name is

set to name just as NAME would have set the current program name, and the program is saved.

With SAVE on its own, the program in memory is saved to the current program name.

Example

Saves hello.bas to the root folder of the SD card:

> save "/c/hello.bas"
> _

See also

NAME, LOAD

CoreBASIC Reference Guide CoreBASIC Language Reference

403

SAVE AUTO

Synopsis

SAVE AUTO [ON]

SAVE AUTO OFF

Turn auto-save on or off.

Description

SAVE AUTO enables or disables auto-save mode. Auto-save is a feature intended to provide extra protection

when developing programs that deal with general hardware prototyping that may sometimes cause the

SolderCore or CoreBASIC to become unresponsive.

With auto-save enabled by SAVE AUTO ON, your program is automatically saved to disk, as if by SAVE, just

before the program is run. Your program is saved if you type RUN from the CoreBASIC command line or if you

start running your program inside the CoreBASIC editor by pressing F5.

If your program cannot be auto-saved, CoreBASIC stops and does not attempt to continue and run your

program.

By default, auto-save is turned off; you can turn auto-save on by adding SAVE AUTO ON to your boot file.

See also

SAVE, RUN

CoreBASIC Reference Guide CoreBASIC Language Reference

404

SECOND%

Synopsis

SECOND%

SECOND%(arg)

Return second within minute.

Description

SECOND%(arg) returns the current second within the minute for the time arg. arg is the number of seconds

since 1 January 1970, the standard way of representing time in CoreBASIC. The result is a number from zero to

59.

SECOND% without an argument returns the current second within the minute for the core time and is equivalent

to MINUTE%(CORE.TIME).

> list
 10 PRINT "The second is "; SECOND%; "."
 20 END
> run
The second is 45.
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

405

SELECT

Synopsis

SELECT(array, indexes)

Select elements from array.

Description

SELECT will select elements from array using the indexes from the array indexes.

> v = ["Computers", "are", "useless", "They", "can", "only", "give", "you", "answers."]
> print select(v, [0, 6, 7, 2, 8])
["Computers", "give", "you", "useless", "answers."]
> _

If any of the indexes are beyond the dimensions of the source array, CoreBASIC throws an subscript error:

> v = ["Computers", "are", "useless", "They", "can", "only", "give", "you", "answers."]
> print select(v, [0, 9])
?subscript error
> _

See also

PICK

CoreBASIC Reference Guide CoreBASIC Language Reference

406

SHA1$

Synopsis

SHA1$ arg

Compute SHA-1 hash.

Description

SHA1$ computes the SHA-1 hash of the string arg according to FIPS 180-1. This example exchange replicates

the computation of hashes found in FIPS 180-1:

> print merge hex expand sha1$ "abc"
A9993E364706816ABA3E25717850C26C9CD0D89D
> print merge hex expand sha1$ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
84983E441C3BD26EBAAE4AA1F95129E5E54670F1
> _

Notes

The hash is computed over the whole string in a single operation; currently there is no support for initialization,

incremental update, and finalization of the hash computation.

See also

FIPS 180-1 - Secure Hash Standard

http://www.itl.nist.gov/fipspubs/fip180-1.htm

CoreBASIC Reference Guide CoreBASIC Language Reference

407

SGN

Synopsis

SGN arg

Compute signum.

Description

SGN computes the signum (or sign) of arg. The definition of SGN(x) is x/ABS(x) for nonzero arg and 0 for

zero x.

Real numbers

> print sgn -3, sgn 0, sgn 3
-1 0 1
> _

Complex numbers

The signum of a complex number arg is a unit complex that is the point on the unit circle of the complex plane

that is nearest to arg:

> print sgn(cmplx(1, 3))
0.316228+0.948683j
> print sgn(cmplx(0.1, 0.1))
0.707107+0.707107j
> _

The inverse of a unit complex number x is simply the complex conjugate of x:

> x = cmplx(3, 4) ' arbitrary complex number
> print x | 1/x | cnj x
3+4j
0.12-0.16j
3-4j
> x = sgn x ' convert to unit complex
> print x | 1/x | cnj x
0.6+0.8j
0.6-0.8j
0.6-0.8j
> _

Quaternions

The signum of a quaternion arg works just the same as for complex numbers:

> x = quat(1, 2, 3, 4) ' arbitrary quaternion
> print x | 1/x | cnj x

CoreBASIC Reference Guide CoreBASIC Language Reference

408

12i+3j+4k
0.0333333-0.066667i-0.1j-0.133333k
1-2i-3j-4k
> x = sgn x ' convert to unit quaternion
> print x | 1/x | cnj x
0.182574+0.365148i+0.547723j+0.730297k
0.182574-0.365148i-0.547723j-0.730297k
0.182574-0.365148i-0.547723j-0.730297k
> _

See also

ABS

CoreBASIC Reference Guide CoreBASIC Language Reference

409

SHUFFLE

Synopsis

SHUFFLE arr

Randomly shuffle an array.

Description

The elements within the array arr are shuffled in random order:

> v = gen(1 to 10)
> print v | shuffle(v)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[7, 5, 2, 6, 1, 8, 3, 10, 4, 9]
> _

SHUFFLE will not shuffle a string, but by using EXPAND and MERGE with SHUFFLE you can achieve the same:

> print merge shuffle expand "CoreBASIC"
eCrAICoSB
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

410

SIN

Synopsis

SIN arg

Compute circular sine.

Description

SIN computes the circular sine of arg in radian measure.

For real, complex, and quaternion types, SIN returns a number of the same type as its operand:

> print sin 10
-0.544021
> print sin cmplx(2, 10)
10014.3-4583.12j
> print sin quat(2, 3, 4, 5)
535.31-103.939i-138.585j-173.232k
> _

If arg is an array, SIN threads recursively over the elements of the array:

> print sin [2, 3, 4]
[0.909297, 0.14112, -0.756802]
> _

See also

ASN, COS, TAN

Graphing the sine function

Here is a graph of the sine function over the reals from −π to π:

The figure above is generated by the following program:

***../examples/sine-function.bas not found ***

You can load this into CoreBASIC using EXAMPLE "sine-function" or |sine-function.

CoreBASIC Reference Guide CoreBASIC Language Reference

411

SINH

Synopsis

SINH arg

Compute hyperbolic sine.

Description

Computes the hyperbolic sine of arg. For real, complex, and quaternion types, SINH returns a number of the

same type as its operand:

> print sinh 1
1.1752
> print sinh cmplx(1, 2)
-1.9596+3.16578j
> print sinh quat(2, 3, 4, 5)
2.5582+1.13146i+1.50861j+1.88577k
> _

If arg is an array, SINH threads recursively over the elements of the array:

> print sinh [2, 3, 4]
[3.62686, 10.0179, 27.2899]
> _

See also

ASNH, COSH, TANH

CoreBASIC Reference Guide CoreBASIC Language Reference

412

SOCKET

Synopsis

SOCKET(addr, port)

Opens a socket.

Description

SOCKET opens a socket to the IP address specified in addr on port port. addr must be a string which is resolved

using DNS. As such, addr can be a standard host name or a dotted decimal.

Example

 10 REM Open a socket to the SolderCore website
 20 S = SOCKET("www.soldercore.com", 80)
 30 IF S < 0 THEN REPORT S : STOP

CoreBASIC Reference Guide CoreBASIC Language Reference

413

SORT

Synopsis

SORT arr

Sort array into ascending order.

Description

The elements of the array are sorted into ascending order.

> v = shuffle gen(1 to 10)
> print v | sort v
[1, 4, 8, 5, 6, 3, 10, 2, 7, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
> _

To sort the array into descending order, simply use REVERSE:

> print v | reverse sort v
[1, 4, 8, 5, 6, 3, 10, 2, 7, 9]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
> _

You can sort strings:

> print sort ["Matthew", "Bethany", "Andrew", "Ben"])
["Andrew", "Ben", "Bethany", "Matthew"]
> _

All values in arr must be of the compatible with each other. If arr contains elements that cannot be compared,

e.g. a combination of strings and integers, execution stops with a type mismatch error.

> print sort [67, "A"]
?type mismatch
> _

You can normalize numbers and strings in an array using STR before sorting:

> print sort str [67, "A"]
["67", "A"]
> _

See also

REVERSE

CoreBASIC Reference Guide CoreBASIC Language Reference

414

SPI

Synopsis

SPI device [WRITE data, data...] [READ n TO var]

Issue transaction on SPI bus.

Description

SPI initiates a transaction on the SPI bus and waits for it to complete. The expression device is a device that

supports SPI transfers and is typically a variable created by installing the SPI-DEVICE driver.

data is an expression to write to the SPI bus. This is typically an array of integers or strings. data is automatically

merged, as if by MERGE, before being sent to the device.

CoreBASIC takes care of device selection and protocol setup: you do not need to select the device yourself.

When SPI executes, CoreBASIC will select the device before use, execute and write and read, and then deselect

the device.

See also

Reading an MPL115A1 pressure sensor using SPI

CoreBASIC Reference Guide CoreBASIC Language Reference

415

SPLIT

Synopsis

SPLIT(arg, separators)

Split string.

Description

SPLIT breaks the string arg into an array of strings, splitting at the character separator:

> print split("http://www.soldercore.com", ":")
["http", "//www.soldercore.com"]
> print split("HTTP/1.1 200 OK", " ")
["HTTP/1.1", "200", "OK"]
> _

You can specify more than one character in separators and SPLIT will split arg at any character in separators:

> print split("CoreBASIC is great. I love it! Truly awesome...", ".!")
["CoreBASIC is great", " I love it", " Truly awesome", "", "", ""]
> _

You can remove the empty strings created by adjacent separators in arg using PICK:

> s = split("CoreBASIC is great. I love it! Truly awesome...", ".!")
> print s
["CoreBASIC is great", " I love it", " Truly awesome", "", "", ""]
> s = pick(s, s <> "")
> print s
["CoreBASIC is great", " I love it", " Truly awesome"]
> _

And then you can clean it up using TRIM:

> print trim s
["CoreBASIC is great", "I love it", "Truly awesome"]
> _

See also

JOIN, PICK, TRIM

CoreBASIC Reference Guide CoreBASIC Language Reference

416

SPC

Synopsis

SPC n

Construct string containing spaces.

Description

SPC constructs a string containing n space characters:

> print "|"; spc(5); "|"
| |
> _

See also

REPEAT$, STRING$

CoreBASIC Reference Guide CoreBASIC Language Reference

417

SPOKEN$

Synopsis

SPOKEN$ arg

Convert string to spoken words.

Description

SPOKEN$ converts arg to a string where each character in arg is converted to an American English word for that

character:

> print spoken$ "$"
dollar
> print spoken$ "z"
zed
> print spoken$ "z$"
zed dollar
> _

Space characters are left unconverted:

> print spoken$ "z $"
zed dollar
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

418

SQR

Synopsis

SQR arg

Compute square root.

Description

SQR computes the square root of arg. For real, complex, and quaternion types, SQR tries to return a number of

the same type as its operand:

> print sqr 10
3.16228
> print sqr cmplx(2, 10)
2.46962+2.0246j
> print sqr quat(2, 3, 4, 5)
1.99449+0.549487i+0.73265j+0.915812k
> _

An exception to this rule exists for negative real values. As a negative real value has no corresponding square

root that is real, SQR will return a complex number:

> print sqr 10
3.16228
> print sqr -10
0+3.16228j
> _

If arg is an array, SQR threads recursively over the elements of the array:

> print sqr [2, 3, 4]
[1.41421, 1.73205, 2]
> _

See also

EXP, LOG

CoreBASIC Reference Guide CoreBASIC Language Reference

419

STEP

Synopsis

FOR variable = first TO last STEP step

Iterate a fixed number of times.

See FOR ... NEXT.

Synopsis

GEN(start TO end STEP step)

Generate arithmetic progression as an array.

See GEN.

CoreBASIC Reference Guide CoreBASIC Language Reference

420

STOP

Synopsis

STOP

Unconditionally stop execution.

Description

CoreBASIC stops executing the program and returns to the command prompt.

CoreBASIC Reference Guide CoreBASIC Language Reference

421

STR

Synopsis

STR arg

Convert to string.

Description

STR converts arg to a string as it would print using PRINT:

> print "|"; str cmplx(1/3, 1/7); "|"
|0.333333+0.142857j|
> _

Strings convert to themselves:

> print str "CoreBASIC"
CoreBASIC
> _

If arg is an array, STR threads recursively over the elements of the array:

> print str [-0.5, sqr(-1)]
["-0.5", "0+1j"]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

422

STRING$

Synopsis

STRING$(n, str)

STRING$(n, code)

Replicate a string.

Description

STRING$ constructs a new string containing n copies of the first character in the string str:

> print string$(10, "=")
==========
> print string$(3, "ABC")
AAA
> _

Repeating a string zero times, with n equal to zero, is an empty string:

> print "|"; string$(0, "x"); "|"
||
> _

If n is negative or the string is, CoreBASIC stops with an argument error:

> print string$(-1, "x")
?argument error
> _

If str is empty, CoreBASIC stops with a dimension error:

> print string$(10, "")
?dimension error
> _

If the second argument is an integer, it is interpreted as the ASCII code of the character to repeat:

> print string$(10, 88)
XXXXXXXXXX
> _

See also

REPEAT$, SPC

CoreBASIC Reference Guide CoreBASIC Language Reference

423

SUBST$

Synopsis

SUBST$(str, old, new)

Substitute string.

Description

SUBST$ replaces all occurrences of old in str with new.

> print subst$(subst$("Misisipi", "s", "ss"), "p", "pp")
Mississippi
> _

If old is empty, the original string is returned whatever new contains:

> print subst$("CoreBASIC", "", "Something")
CoreBASIC
> _

Using an empty new string has the effect of deleting all occurrences of old from str:

> print subst$("Transitivity", "it", "")
Transivy
> _

See also

INSERT$, DELETE$

CoreBASIC Reference Guide CoreBASIC Language Reference

424

SUM

Synopsis

SUM arg

Compute sum over data.

Description

SUM computes the sum of arg. If arg is an array, each of the elements is summed:

> print sum [1, 2, 3]
6
> print sum [1, cmplx(2, 4)]
3+4j
> print sum gen(1 to 100)
5050
> _

SUM will concatenate string arrays:

> print sum ["Core", "BASIC"]
CoreBASIC
> _

Note

SUM(x) is equivalent to REDUCE(+, x).

See also

REDUCE

CoreBASIC Reference Guide CoreBASIC Language Reference

425

SYSTEM

Synopsis

SYSTEM command

Execute CoreOS command.

Description

SYSTEM executes the CoreOS command command.

Example

> system "dir"

The SYSTEM statement may seem cumbersome when compared to issuing a CoreOS command using the

* command, but the SYSTEM statement lets you create commands on the fly and send them to CoreOS, for

instance to eject a disk:

 10 INPUT "Eject which volume? "; VOL
 20 SYSTEM "eject " + VOL
 30 END

CoreBASIC Reference Guide CoreBASIC Language Reference

426

TAB

Synopsis

TAB(x, y)

Construct string to position the cursor.

Description

TAB constructs a string that positions the cursor at column x of row y on the display. Both row and column

number from zero, so the top left of the display is (0, 0).

The TAB function is most commonly used with the PRINT command to position the cursor on the display.

Example

The following code uses TAB to position the cursor to write directly to the display and emulate the view of The

Matrix in the film of the same name.

***../examples/matrix-rain.bas not found ***

You can load this into CoreBASIC using EXAMPLE "matrix-rain" or |matrix-rain.

CoreBASIC Reference Guide CoreBASIC Language Reference

427

TAN

Synopsis

TAN arg

Compute circular tangent.

Description

TAN computes the circular tangent of arg in radian measure. For real, complex, and quaternion types, TAN

returns a number of the same type as its operand:

> print tan 10
0.648361
> print tan cmplx(1, 2)
0.0338128+1.01479j
> print tan quat(2, 3, 4, 5)
-1.12712e-06+0.424264i+0.565686j+0.707107k
> _

If arg is an array, TAN threads recursively over the elements of the array:

> print tan [2, 3, 4]
[-2.18504, -0.142547, 1.15782]
> _

See also

ATN, SIN, COS

CoreBASIC Reference Guide CoreBASIC Language Reference

428

TANH

Synopsis

TANH arg

Compute hyperbolic tangent.

Description

Computes the hyperbolic tangent of arg. For real, complex, and quaternion types, TANH returns a number of the

same type as its operand:

> print tanh 1
0.761594
> print tanh cmplx(1, 2)
-1.01479+0.0338128j
> print tanh quat(2, 3, 4, 5)
2.65366+1.09076i+1.45434j+1.81793k
> _

If arg is an array, TANH threads recursively over the elements of the array:

> print tanh [2, 3, 4]
[0.964028, 0.995055, 0.999329]
> _

See also

ATNH, SINH, COSH

CoreBASIC Reference Guide CoreBASIC Language Reference

429

THEN

Synopsis

THEN

THEN statements

True execution path for IF.

Description

See IF ... THEN.

CoreBASIC Reference Guide CoreBASIC Language Reference

430

TIME$

Synopsis

TIME$

TIME$(arg)

Return textual time.

Description

TIME$(arg) returns a string in HH:MM:SS format for the time arg. arg is the number of seconds since 1 January

1970, the standard way of representing time in CoreBASIC. If the argument arg is negative, TIME$ returns

??:??:??.

TIME$ without an argument returns the time string for the current core time and is equivalent to TIME

$(CORE.TIME).

> list
 10 PRINT "The time according to SolderCore is "; TIME$; "."
 20 END
> run
The time according to SolderCore is 21:20:22.
> _

See also

DATE$

CoreBASIC Reference Guide CoreBASIC Language Reference

431

TIMER

Synopsis

TIMER

TIMER = expression

Return or assign tick counter.

Description

TIMER returns the current tick counter which is the number of milliseconds elapsed since CoreBASIC started or

the program started to execute.

TIMER is reset to zero by RUN or when a program is edited, but you can set TIMER to zero or any value you

want in a program by assigning to it:

> list
 10 PRINT "Time how long it takes to compute 10,000 sines..."
 20 TIMER = 0
 30 FOR I = 1 TO 10000
 40 K = SIN 0
 50 NEXT I
 60 T = TIMER ' read timer immediately
 70 PRINT "Took "; T/1000; " seconds"
 80 END
> run
Time how long it takes to compute 10,000 sines...
Took 0.18 seconds
> _

Notes

CoreBASIC is designed to use standard SI units whenever possible, so PAUSE uses seconds for timing. The way

that TIMER works using milliseconds breaks this rule and may well be surprising, but this concession makes

porting programs from other BASIC dialects a little easier as they use a millisecond TIMER.

The counter's resolution is to 10 milliseconds, not the millisecond, so TIMER counting freely will return 0, 10, 20,

and so on.

CoreBASIC Reference Guide CoreBASIC Language Reference

432

TO

Synopsis

FOR variable = first TO last

Iterate a fixed number of times.

See FOR ... NEXT.

Synopsis

GEN(start TO end)

Generate arithmetic progression as an array.

See GEN.

Synopsis

RECTANGLE x0, y0 TO x1, y1

FILL RECTANGLE x0, y0 TO x1, y1

Draw or fill a rectangle.

See RECTANGLE.

CoreBASIC Reference Guide CoreBASIC Language Reference

433

TRIM

Synopsis

TRIM arg

Remove leading and trailing whitespace.

Description

TRIM removes all leading and trailing whitespace from the string arg.

> print "|"; trim " CoreBASIC "; "|";
|CoreBASIC|
> _

If arg is an array, TRIM threads recursively over the elements of the array:

> mat print "|" + trim [" Core ", " BASIC "] + "|"
|Core|
|BASIC|
> _

See also

LTRIM, RTRIM

CoreBASIC Reference Guide CoreBASIC Language Reference

434

TRN

Synopsis

TRN arg

Transpose matrix.

Description

TRN evaluates the transpose of the two-dimensional matrix arg.

> a = [[1, 2, 3], [4, 5, 6]]
> mat print a
1 2 3
4 5 6
> mat print trn a
1 4
2 5
3 6
> _

CoreBASIC will halt with an argument error if arg is a jagged two-dimensional matrix:

> a = [[1, 2, 3], [4, 5]]
> mat print trn a
?dimension error
> _

CoreBASIC will also transpose matrices with string elements:

> a = [["Core", "BASIC"]]
> mat print a
Core BASIC
> mat print trn a
Core
BASIC
> _

Note

TRN only transposes the matrix arg, even if arg has complex elements:

> a = [[1+2 * %i, 2 - %i, 3 + %i], [4, 5 - 3*%i, 6 + %i]]
> mat print a
1+2j 2-1j 3+1j
4 5-3j 6+1j
> mat print trn a
1+2j 4
2-1j 5-3j
3+1j 6+1j
> _

If you need to compute the conjugate transpose of arg, use CNJ and TRN together:

CoreBASIC Reference Guide CoreBASIC Language Reference

435

> mat print cnj trn a
1-2j 4
2+1j 5+3j
3-1j 6-1j
> _

See also

CNJ

CoreBASIC Reference Guide CoreBASIC Language Reference

436

TRUE

Synopsis

TRUE

Boolean true.

Description

TRUE is a synonym for 1 as Boolean values are represented as integers in CoreBASIC.

> print true | truth true
1
True
> _

See also

FALSE

CoreBASIC Reference Guide CoreBASIC Language Reference

437

TRUTH

Synopsis

TRUTH arg

Convert logical to string.

Description

TRUTH converts arg to a string; any nonzero integer is considered true:

> print truth 0 | truth 1
False
True
> _

For real arguments, arg is converted to an integer by truncation. After truncation to an integer, any nonzero

value is considered true:

> print truth -0.5 | truth -1 | truth 1.5
False
True
True
> _

If arg is an array, TRUTH threads recursively over the elements of the array:

> print truth [-0.5, -1, 1.5]
["False", "True", "True"]
> _

See also

%FALSE, %TRUE

CoreBASIC Reference Guide CoreBASIC Language Reference

438

TRY

Synopsis

TRY statement

Execute statement catching.

Description

TRY tries to execute statement and, if statement would have resulted in an error causing CoreBASIC to stop, the

error is recorded, execution of statement is abandoned, and control transfers to the statement following TRY

statement.

The last recorded error is accessible using ERROR. If statement executed without error, ERROR is set to zero.

If statement raised an error, ERROR will be negative. You can use REPORT to report the error or decode the

specific error raised by statement.

A nice example of using TRY to catch errors is when processing data coming from a socket.

> list
 10 S = SOCKET("www.google.com", 80)
 20 IF S < 0 THEN REPORT S : END
 30 PRINT #S, "GET /index.html HTTP/1.1"
 40 PRINT #S, "Accept: text/plain"
 50 PRINT #S, "Host: www.google.com"
 60 PRINT #S
 70 REPEAT
 80 TRY INPUT #S, HEADER AS STR
 90 IF NOT ERROR THEN PRINT HEADER
 100 UNTIL ERROR OR ELSE HEADER = ""
 110 IF ERROR THEN PRINT "Error processing headers: "; REPORT ERROR
 120 TRY CLOSE S
 130 END
> run
HTTP/1.1 302 Found
Location: http://www.google.co.uk/
Cache-Control: private
Content-Type: text/html; charset=UTF-8
?
Date: Fri, 08 Jun 2012 11:07:57 GMT
Server: gws
Content-Length: 221
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN

> _

The REPEAT loop attempts to read the socket and find the end of the returned headers, indicated by a blank

line. If an error happens during processing the data on the socket using INPUT, it is caught by TRY.

Because execution of INPUT is abandoned on an error, you cannot be sure what HEADER will contain after an

error-generating INPUT statement: it may be empty, or it may be partially filled with data read, or it could be

CoreBASIC Reference Guide CoreBASIC Language Reference

439

unchanged. However, as ERROR is set to a nonzero value if INPUT is abandoned, the loop exits if there is an

error on INPUT or INPUT completes correctly and a blank line is found.

See also

ERROR, REPORT

CoreBASIC Reference Guide CoreBASIC Language Reference

440

UCASE

Synopsis

UCASE arg

Convert to upper case.

Description

UCASE converts the string arg to upper case.

> print ucase("www.CoreBASIC.com")
WWW.COREBASIC.COM
> _

If arg is an array, UCASE threads recursively over the elements of the array:

> mat print ucase ["Core", "Basic"]
CORE
BASIC
> _

See also

LCASE

CoreBASIC Reference Guide CoreBASIC Language Reference

441

UNLOCK

Synopsis

UNLOCK arg

Make file writable.

Description

UNLOCK makes the file with name arg writable by removing the read only attribute. When a file is locked and

read only, it cannot be overwritten or removed. In order to remove or overwrite a read-only file, you must first

make it writable using UNLOCK.

> example "welcome"
Connecting to www.soldercore.com (192.232.216.121)...
Loading welcome.bas from network...
Program loaded and ready. Type RUN to execute.
> save $work
> lock $work
> save $work
?read-only file
> kill $work
?read-only file
> unlock $work
> save $work
> _

See also

LOCK

CoreBASIC Reference Guide CoreBASIC Language Reference

442

UNTIL

Synopsis

UNTIL expression

End a repeat loop.

Description

See REPEAT ... UNTIL.

CoreBASIC Reference Guide CoreBASIC Language Reference

443

UTF

Synopsis

UTF arg

Convert code point to UTF-8.

Description

UTF returns a string containing the UTF-8 sequence for the Unicode code point arg.

> print hex expand utf 65
["41"]
> print utf 65
A
> print hex expand utf 960
["CF", "80"]
> print utf 960
#
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

444

VAL

Synopsis

VAL arg

Convert to number.

Description

VAL converts its argument to a number. If arg is already a real number, complex number, or quaternion, it is

returned unchanged.

> print val 3.25
3.25
> _

If arg is a string, VAL converts the string to a number:

> print val "3.25"
3.25
> print val "1.66666666"
1.66667
> print val "-1e3"
-1000
> _

If arg is not recognized as a valid number, VAL returns a NaN:

> print val "garbage"
nan
> _

Both leading and trailing whitespace are ignored during conversion, but embedded whitespace is significant

and will cause a conversion failure:

> print val " 3.25 "
3.25
> print val "3. 25"
nan
> _

Numbers that are too big to represent convert to an infinity:

> print val "1e40"
inf
> _

Numbers that are too small convert to zero:

> print val "1e-40"
0
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

445

If arg is an array, VAL threads recursively over the elements of the array:

> print val ["3.1415", 2.781828, "CoreBASIC"]
[3.1415, 2.78183, nan]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

446

VDU

Synopsis

VDU arg, arg…

VDU #channel, arg, arg…

Display characters.

Description

VDU evaluates and prints each arg to the display. If arg is a string, it is printed in its entirety; numbers are treated

as ASCII codes and converted to strings before output.

If VDU is followed by a channel specification, output is written to that channel rather than to the current output

stream.

> vdu "Core", 13, 10
Core
> _

In contrast to PRINT, no separator characters are inserted between arguments on the output and no newline is

added at the end:

> print 0x43, 0x6f, 0x72, 0x65
67 111 114 101
> vdu 0x43, 0x6f, 0x72, 0x65
Core>

If arg is an array, VDU threads recursively over the elements of the array:

> vdu ["Core", 66, 65, [83, 73], 67], $crlf
CoreBASIC
> _

Note

VDU x, y, z is functionally equivalent to PRINT MERGE [x, y, z];.

See also

PRINT, MERGE().

CoreBASIC Reference Guide CoreBASIC Language Reference

447

VERSION

Synopsis

VERSION

Show CoreBASIC firmware version.

Description

VERSION displays the installed CoreBASIC firmware version.

> version
CoreBASIC firmware 0.9.12
> _

The firmware version number is also provided by the CORE.VERSION property so you can read the installed

firmware version from your program.

See also

SolderCore CPU

CoreBASIC Reference Guide CoreBASIC Language Reference

448

WAIT

Synopsis

WAIT expr

Wait for condition.

Description

WAIT will continuously evaluate expr until it is true. For example, to wait until the signals D2 and D3 are low:

WAIT CORE.D2 = 0 AND CORE.D3 = 0

Note

WAIT expr is equivalent to REPEAT UNTIL expr.

CoreBASIC Reference Guide CoreBASIC Language Reference

449

WATCHDOG

Synopsis

WATCHDOG REBOOT

Enable watchdog.

See WATCHDOG REBOOT.

Synopsis

WATCHDOG RESTORE

Service watchdog.

See WATCHDOG RESTORE.

Synopsis

WATCHDOG THROW

Debug hardware watchdog.

See WATCHDOG THROW.

Synopsis

WATCHDOG TIMER = expr

Set watchdog timeout period.

See WATCHDOG TIMER.

Synopsis

WATCHDOG

Remaining watchdog period.

See WATCHDOG().

CoreBASIC Reference Guide CoreBASIC Language Reference

450

WATCHDOG()

Synopsis

WATCHDOG

Remaining watchdog period.

Description

WATCHDOG, as an expression, returns the number of seconds remaining before the watchdog times out.

See also

WATCHDOG TIMER

CoreBASIC Reference Guide CoreBASIC Language Reference

451

WATCHDOG REBOOT

Synopsis

WATCHDOG REBOOT

Enable hardware watchdog.

Description

WATCHDOG REBOOT enables the hardware watchdog in protection mode. Once the watchdog is enabled, the

CoreBASIC program must service the watchdog within the timeout period set by WATCHDOG TIMER or the

microcontroller resets. To service the watchdog, you must execute WATCHDOG RESTORE.

Note

After the watchdog is enabled in protection mode, it remains enabled even if the program returns to the

CoreBASIC prompt. This behavior is intentional and caters for programming mistakes that cause the application

to halt and return to the CoreBASIC prompt. In this case, rather than sitting idle waiting for user input, the

microcontroller resets and starts running again.

See also

WATCHDOG THROW, WATCHDOG TIMER, WATCHDOG RESTORE

CoreBASIC Reference Guide CoreBASIC Language Reference

452

WATCHDOG RESTORE

Synopsis

WATCHDOG RESTORE

Service watchdog.

Description

WATCHDOG RESTORE services the watchdog and resets the watchdog to expire after the period set by

WATCHDOG TIMER.

Note

If the watchdog is not enabled, executing WATCHDOG RESTORE does nothing.

See also

WATCHDOG TIMER, WATCHDOG REBOOT, WATCHDOG THROW

CoreBASIC Reference Guide CoreBASIC Language Reference

453

WATCHDOG TIMER

Synopsis

WATCHDOG TIMER = expr

Set watchdog timeout period.

Description

WATCHDOG TIMER sets the expiry period of the watchdog to expr seconds. When the CoreBASIC program starts,

the expiry period is set to ten seconds. You can lengthen or shorten this period at any point in your application

by reprogramming the timeout using WATCHDOG TIMER.

When the watchdog is enabled but is not serviced by WATCHDOG RESTORE within expr seconds, it expires and:

• the microcontroller will reset if the watchdog is configured for protection mode (set by WATCHDOG

REBOOT).

• the program will halt with a watchdog timeout error if the watchdog is configured for debug mode (set

by WATCHDOG THROW).

See also

WATCHDOG RESTORE, WATCHDOG REBOOT, WATCHDOG THROW

CoreBASIC Reference Guide CoreBASIC Language Reference

454

WATCHDOG THROW

Synopsis

WATCHDOG THROW

Debug hardware watchdog.

Description

WATCHDOG THROW enables the hardware watchdog in debug mode. Once the watchdog is enabled, the

CoreBASIC program must service the watchdog within the timeout period set by WATCHDOG TIMER or

the program exits with a watchdog timeout error. To service the watchdog, you must execute WATCHDOG

RESTORE.

Note

Using WATCHDOG THROW rather than WATCHDOG REBOOT means that you can test your program to ensure

that it meets its deadlines without continual microcontroller resets. Once you are satisfied that your application

works well and meets its deadlines, you can deploy it in the field, using WATCHDOG REBOOT to guard against

unexpected lock-ups.

See also

WATCHDOG REBOOT, WATCHDOG RESTORE, WATCHDOG TIMER

CoreBASIC Reference Guide CoreBASIC Language Reference

455

WEB

Synopsis

WEB expr

Display Web content.

Description

WEB requests an HTML page from the web and displays it on the console. The web formatter is very primitive,

but it color-codes links, bold and italic text, and headers, and tries to format HTML pages as best it can with

appropriate text wrapping.

The network part of the web formatter will not process anything other than "200" return codes; it will not

redirect to new content with "page moved" codes.

> web "retro.hackaday.com"
Connecting to retro.hackaday.com (74.53.119.195)...
Requesting / from network...

[image omitted]

 __ __ __ ___
 / // /__ _____/ /__ ___ _ / _ ___ ___ __
 / _ / _ `/ __/ '_/ / _ `/ / // / _ `/ // /
 /_//_/_,_/__/_/_\ _,_/ /____/_,_/_, /
 retro edition /___/

Now optimized for embedded devices!

About
Successes
…

Keys

At the --More-- prompt, you can use the following keys:

• Space: Show the next page.

• Return: Show the next line.

• .: Continue without paging.

• Q: Quit.

Notes

If the web formatter doesn't work on your favorite site, that is indeed a shame. Don't think we're going to fix it.

The main purpose of the web formatter is to show CoreBASIC online help, using a restricted set of HTML, by way

of HELP.

CoreBASIC Reference Guide CoreBASIC Language Reference

456

See also

HELP, NEWS

CoreBASIC Reference Guide CoreBASIC Language Reference

457

WEND

Synopsis

WEND

End a while loop.

Description

See WHILE ... WEND.

Notes

You can write END WHILE as two separate words and CoreBASIC will change the two words to WEND

automatically.

CoreBASIC Reference Guide CoreBASIC Language Reference

458

WHEN

Synopsis

WHEN expr, expr, expr…

WHEN relation expr…

Match list for CASE statement.

Description

See CASE ... ENDCASE.

CoreBASIC Reference Guide CoreBASIC Language Reference

459

WHILE ... WEND

Synopsis

WHILE condition

 statements

WEND

Repetitively execute statements.

Description

Execute statements while condition is true. If condition is initially false, statements are not executed.

CoreBASIC Reference Guide CoreBASIC Language Reference

460

XOR

Synopsis

x XOR y

Logical exclusive-or.

Description

XOR computes the logical exclusive or of x and y. The result is true if either x or y is true, but not both:

> list
 10 FOR X = FALSE TO TRUE
 20 FOR Y = FALSE TO TRUE
 30 PRINT TRUTH X; " XOR "; TRUTH Y; " = "; TRUTH(X XOR Y)
 40 NEXT Y
 50 NEXT X
 60 END
> run
False XOR False = False
False XOR True = True
True XOR False = True
True XOR True = False
> _

Both x and y are converted to integers before applying XOR. After conversion to integers, any nonzero value is

considered true.

> print 1.5 xor 0.2 | 0.1 xor 0.2
1
0
> _

Arrays are processed element-by-element and a new array is created containing the elementwise exclusive-or of

each pair:

> print [0, 1, 0, 1] xor [0, 0, 1, 1]
[0, 1, 1, 0]
> _

CoreBASIC Reference Guide CoreBASIC Language Reference

461

YEAR%

Synopsis

YEAR%

YEAR%(arg)

Return month within year.

Description

YEAR%(arg) returns the current year for the time arg. arg is the number of seconds since 1 January 1970, the

standard way of representing time in CoreBASIC.

YEAR% without an argument returns the current year for the core time and is equivalent to YEAR

%(CORE.TIME).

> list
 10 PRINT "Year "; SPOKEN$ YEAR%; "."
 20 END
> run
Year two thousand and twelve.
> _

See also

DATE%, DAY%, MONTH%

CoreBASIC Reference Guide CoreBASIC Language Reference

462

ZER

Synopsis

ZER(dimension, …)

Create zero matrix.

Description

ZER uses the dimension list in its argument to create a zero matrix. A zero matrix is a matrix where each of its

elements is zero.

> print zer(3, 3)
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]
> mat print zer(3, 3)
0 0 0
0 0 0
0 0 0
> mat print zer(1, 3)
0 0 0
> mat print zer(3, 1)
0
0
0
> print zer(3)
[0, 0, 0]
> print zer(2, 2, 2)
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>

See also

IDN, ZER

CoreBASIC Reference Guide CoreBASIC Language Reference

463

Miscellaneous information
Here is some other miscellaneous information about CoreBASIC.

CoreBASIC Reference Guide CoreBASIC Language Reference

464

Command line keystrokes
The keystrokes recognized at the CoreBASIC command line are:

Completion

Enter Send line to CoreBASIC.

Moving

Left, Right Move insertion point in the direction of the arrow.

Home or Ctrl+A Move insertion point to the start of the line.

End or Ctrl+E Move insertion point to the end of the line.

Editing

Backspace or Ctrl+H Delete character before the insertion point.

Delete or Ctrl+G Delete character after the insertion point .

Ctrl+K Delete from the insertion point to the end of the line.

Ctrl+U Delete entire line.

Macros

F1 Execute HELP. (Ignored by some terminal emulators.)

F2 Execute SAVE. (Ignored by some terminal emulators.)

F3 Execute LOAD. (Ignored by some terminal emulators.)

F4 Execute EDIT. (Ignored by some terminal emulators.)

F5 Execute RUN.

F6 Execute CATALOG.

F7 Execute CHECK.

F10 Execute DEBUG.

F11 Execute PRINT PAPER 4; INK 15; $CLS; $ON
which resets the terminal colors, clears the screen, and
turns on the cursor.

F12 Execute LIST.

During program execution, Ctrl+C will request a break-in and stop the program running.

CoreBASIC Reference Guide CoreBASIC Language Reference

465

Visual editor keystrokes
The keystrokes recognized in the full screen editor, invoked by EDIT, are:

Control

Ctrl+D Exit the editor to the CoreBASIC command prompt.

F4 As Ctrl+D. (Ignored by some terminal emulators.)

Moving

Up, Down, Left, Right Move cursor in the direction of the arrow.

Home Move cursor to the start of the line.

End Move cursor to the end of the line.

PgDown, PgUp Move cursor down one page or up one page.

Editing

Return Split line at cursor.

Backspace Delete character to the left of the cursor.

Delete or Ctrl+G Delete character to the right of the cursor.

Ctrl+K Delete from the cursor to the end of the line.

Ctrl+U Delete from the cursor to the beginning of the line.

Ctrl+X Delete the current line.

Utility

Ctrl+L Center listing around current line.

F2 Save program. (Ignored by some terminal emulators.)

F5 Execute program.

F7 Check program for syntax errors.

F10 Execute one line of program.

CoreBASIC Reference Guide CoreBASIC Language Reference

466

CoreBASIC Keyboard codes
CoreBASIC encodes standard keystrokes into ASCII codes with values above 128:

Key ASCII Value Hexadecimal value Notes

Left 136 0x88

Right 137 0x89

Up 138 0x8a

Down 139 0x8b

Home 140 0x8c

End 141 0x8d

PgUp 142 0x8e

PgDn 143 0x8f

F1 145 0x91 Not available on network
virtual terminal

F2 146 0x92 Not available on network
virtual terminal

F3 147 0x93 Not available on network
virtual terminal

F4 148 0x94 Not available on network
virtual terminal

F5 149 0x95

F6 150 0x96

F7 151 0x97

F8 152 0x98

F9 153 0x99

F10 154 0x9a

F11 155 0x9b

F12 156 0x9c

There are some common keys too:

Key ASCII Value Hexadecimal value Notes

Backspace
8 0x08 May depend upon

terminal configuration

Tab 9 0x09

Return 10 0x0a

Delete 127 0x7f May depend upon
terminal configuration

CoreBASIC Reference Guide CoreBASIC Language Reference

467

Note

When connecting to the SolderCore using Telnet, the keyboard keys F1 through F4 are not passed through the

network connection because the standard VT100 terminal assigns F1 through F4 to local operations.

However, the PS/2 keyboard driver will return ASCII codes for F1 through F4.

CoreBASIC Reference Guide CoreBASIC Language Reference

468

CoreBASIC Reference Guide CoreBASIC Driver Reference

469

CoreBASIC Driver Reference
This is the online documentation set for CoreBASIC. CoreBASIC is a programming language for embedded

microcontrollers. It's easy to use, it's powerful, and most of all it's interactive.

CoreBASIC Reference Guide CoreBASIC Driver Reference

470

Drivers by function
This section describes the shield and device drivers that you can install to extend the capability of CoreBASIC.

Some drivers are very simple, such as reading from a sensors, while others are highly complex such as controlling

LCD devices. CoreBASIC relieves you of the complexity of configuring your devices and provides tested, working,

and robust drivers.

ADCs and DACs
ADCs convert analog voltages to digital value, and
DACs convert digital values to analog voltages.
Devices
LTC2309
MCP342x
MCP4725

Accelerometers
Accelerometers measure gravity and linear
acceleration. See Accelerometers.
Devices
ADIS16400
ADXL345
ADXL362
BMA150
BMA250
MMA8451Q
MMA8491Q
KXP84
KXTF9
MPU-6000 and MPU-6050
LIS302DL
LIS331DL
LIS331HH
LIS3DSH
LIS3LV02DL
SCA3000
SMB380
Products
CoreMPU
CoreTilt

Gyroscopes
Gyroscopes measure rotation around one or more
axes. See Gyroscopes.
Devices
ADIS16400
IMU-3000
ITG-3200
MPU-6000 and MPU-6050
MPU-9150
Products
CoreGyro
CoreMPU
IMU-3000 Combo
MPU-6050EVB
MPU-9150EVB

Magnetometers
Magnetometers measure the earth's magnetic field.
See Magnetometers.
Devices
ADIS16400
AK8975
BMM150
HMC5843
HMC5883L
HMC6343
HMC6352
MAG3110
Products
CoreMag
CoreMPU

CoreBASIC Reference Guide CoreBASIC Driver Reference

471

Inertial measurement units
Inertial measurement units (IMUs) combine
accelerometers, gyroscopes, and magnetometers
so you know how you're moving. See Inertial
measurement units.
Algorithms
AHRS
Devices
ADIS16400
MPU-6000
MPU-6050
MPU-9150
Products
ATAVRSBIN1
ATAVRSBIN2
CoreMPU
IMU-3000 Combo
MPU-6050EVB
MPU-9150EVB

Parallel Buses
Parallel buses are a common way to hook up digital
integrated circuits. See Parallel buses.
Drivers
Parallel Bus
Devices
MCP23x08
MCP23016
MCP23017
PCF8575

Humidity Sensors
Humidity sensors measure the moisture content of
the environment.
Devices
HIH6130
SHT1x
SHT2x
Si7005
DHT11, DHT21, DHT22, RHT03

Temperature Sensors
Temperature sensors measure temperature, but
how they sense it varies between sensors. See
Temperature sensors.
Devices
ADT7410
LM75
DHT11, DHT21, DHT22, RHT03
HIH6130
SHT1x
SHT2x
Si7005
TC77
TMP100
TMP102
Products
CoreTemp
Die temperature sensor
BMP085
MAG3110
MPU-6000 and MPU-6050

CoreBASIC Reference Guide CoreBASIC Driver Reference

472

Pressure Sensors
Pressure sensors measure barometric pressure
which can translate into altitude. See Pressure
sensors.
Devices
BMP085
MPL115A1
MPL115A2
MPL3115A2
LPS331AP

Light Sensors
Light sensors measure light level; and some sense
color. See Light sensors.
Devices
TSL2561
ISL29023

Graphic Displays
Graphic displays come in many forms: VGA output,
LED arrays, and LCD displays.
VGA displays
SolderCore Arcade Shield
LED displays
Jimmie Rodgers LoL Shield
ITead Studio Colors Shield
LCD displays
Adafruit TFT Touch Shield
AirSensor 128GLCD
AirSensor 192GLCD
ITead Studio ITDB02-2.2 LCD Module
ITead Studio ITDB02-2.4D LCD Module
ITead Studio ITDB02-2.4E LCD Module
ITead Studio ITDB02-2.8 LCD Module
ITead Studio ITDB02-3.2S LCD Module
ITead Studio ITDB02-3.2WD LCD Module
ITead Studio ITDB02-4.3 LCD Module
ITead Studio ITDB02-5.0 LCD Module
NuElectronics 3310 LCD Shield
NuElectronics TFT LCD Shield
Seeed Studio TFT Touch Shield
SolderCore LCD Shield
SparkFun Color LCD Shield
Watterott electronic mSD Shield
Watterott electronic S65 Shield
OLED displays
Seeed Studio 96x16 OLED Brick
Seeed Studio 96x96 OLED Twig
Seeed Studio 128x64 OLED Twig

CoreBASIC Reference Guide CoreBASIC Driver Reference

473

Accelerometers

Properties

All accelerometers implement a standard set of properties for reading acceleration in up to three axes. The

properties are:

Acceleration

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

Configuration

RANGE Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

CoreBASIC Reference Guide CoreBASIC Driver Reference

474

Drivers

CoreBASIC is delivered with the following accelerometer drivers:

Analog Devices ADIS16400 Driver

Analog Devices ADXL345 Driver

Analog Devices ADXL362 Driver

Bosch Sensortec BMA150 Driver

Bosch Sensortec BMA250 Driver

Bosch Sensortec SMB380 Driver

InvenSense MPU-6000 Driver

InvenSense MPU-6050 Driver

Kionix KXP84 Driver

Kionix KXTF9 Driver

SolderCore CoreMPU Driver

STMicroelectronics LIS302DL Driver

STMicroelectronics LIS331DLH Driver

STMicroelectronics LIS331HH Driver

STMicroelectronics LIS3DSH Driver

STMicroelectronics LIS3LV02DL Driver

VTI SCA3000 Driver

Example

When you receive a new board with a gyroscope on it, usually it is marked with the axis orientation. However,

some boards aren't, and tracking down the documentation might be a bit difficult. So, to figure out what the axis

orientation is, you can use this simple program. Do what it says in the comments and it will relieve a great deal of

stress.

***../examples/coretilt-confidence-test.bas not found ***

You can load this into CoreBASIC using EXAMPLE "coretilt-confidence-test" or |coretilt-

confidence-test.

CoreBASIC Reference Guide CoreBASIC Driver Reference

475

Gyroscopes

Properties

All gyroscopes implement a standard set of properties for reading rotation rate in up to three axes. The

properties are:

Angular rate

G Analog Read An array of three numbers
containing the rotation rates
measured around the x, y, and z
axes, in degrees per second.

GX or X Analog Read Rotation rate around the x axis, in
degrees per second.

GY or Y Analog Read Rotation rate around the y axis, in
degrees per second.

GZ or Z Analog Read Rotation rate around the z axis, in
degrees per second.

Configuration

RANGE Analog R/W Selected full scale range of the
gyroscope, in degrees per second.

BANDWIDTH Analog R/W Selected bandwidth of the of the
gyroscope, in hertz.

When RANGE is written with x, the gyroscope's range is set to the nearest range that handles at most x dps. If x

exceeds the maximum full scale range of the gyroscope, the gyroscope is set to the highest range.

For instance, assume a gyroscope offers ranges in degrees per second of 250, 500, 1000, and 2000. When RANGE

is written as 350, the gyroscope driver will select the 500 dps range as this is the best range to use for that

particular rate. When you read RANGE back, you will not read 350 because the gyroscope driver selected the 500

dps range, so you will instead read 500.

Now assume you write RANGE with 3000. The gyroscope can't deliver a full scale range of 3000 dps, so it selects

the highest range possible, which is 2000 dps in this case. When you read RANGE now, you will read 2000 dps.

Drivers

CoreBASIC is delivered with the following gyroscope drivers:

Analog Devices ADIS16400 Driver

InvenSense IMU-3000 Driver

InvenSense ITG-3200 Driver

InvenSense MPU-6000 Driver

CoreBASIC Reference Guide CoreBASIC Driver Reference

476

InvenSense MPU-6050 Driver

SolderCore CoreMPU Driver

Example

When you receive a new board with a gyroscope on it, usually it is marked with the axis orientation. However,

some boards aren't, and tracking down the documentation might be a bit difficult. So, to figure out what the axis

orientation is, you can use this simple program. Do what it says in the comments and it will relieve a great deal of

stress.

***../examples/coregyro-confidence-test.bas not found ***

You can load this into CoreBASIC using EXAMPLE "coregyro-confidence-test" or |coregyro-

confidence-test.

CoreBASIC Reference Guide CoreBASIC Driver Reference

477

Magnetometers

Properties

All magnetometers implement a standard set of properties for reading magnetic field in up to three axes. The

properties are:

Magnetic field

M Analog Read An array of three numbers
containing the magnetic field
measured in the x, y, and z axes, in
microtesla.

MX or X Analog Read Magnetic field measured in the x
direction, in microtesla.

MY or Y Analog Read Magnetic field measured in the y
direction, in microtesla.

MZ or Z Analog Read Magnetic field measured in the z
direction, in microtesla.

Configuration

BANDWIDTH Analog R/W Selected bandwidth of the of the
magnetometer, in hertz.

Drivers

CoreBASIC is delivered with the following magnetometer drivers:

Analog Devices ADIS16400 Driver

Asahi Kasei AK8975 Driver

Bosch Sensortec BMM150 Driver

Freescale MAG3110 Driver

Honeywell HMC5843 Driver

Honeywell HMC5883L Driver

Honeywell HMC6343 Driver

Honeywell HMC6352 Driver

SolderCore CoreMPU Driver

CoreBASIC Reference Guide CoreBASIC Driver Reference

478

Inertial measurement units
Inertial measurement units (IMUs)

AHRS Driver

Analog Devices ADIS16400 Driver

Atmel ATAVRSBIN1 Driver

Atmel ATAVRSBIN2 Driver

InvenSense MPU-6000 Driver

InvenSense MPU-6050 Driver

SolderCore CoreMPU Driver

SparkFun IMU-3000 Combo

CoreBASIC Reference Guide CoreBASIC Driver Reference

479

Parallel buses
Parallel buses

Microchip MCP23008 Driver

Microchip MCP23016 Driver

Microchip MCP23017 Driver

NXP PCF8575 Driver

Parallel Bus Driver

CoreBASIC Reference Guide CoreBASIC Driver Reference

480

Temperature sensors

Properties

All temperature sensors, whether they measure ambient temperature, die temperature, or some other

temperature, implement a property to return the temperature in degrees Celsius:

Sensor

TEMP Analog Read Temperature, in degrees Celsius.

Drivers

CoreBASIC is delivered with the following temperature sensor drivers:

Analog Devices ADT7410 Driver

Maxim MAX6675 Driver

Microchip TC77 Driver

National Semiconductor LM75 Driver

Texas Instruments TMP100 Driver

Texas Instruments TMP102 Driver

Die temperatuire

Some devices can sense their own temperature, commonly called the die temperature:

Bosch Sensortec BMP085 Driver

Freescale MAG3110 Driver

InvenSense MPU-6000 Driver

InvenSense MPU-6050 Driver

SolderCore CoreMPU Driver

CoreBASIC Reference Guide CoreBASIC Driver Reference

481

Pressure sensors
Pressure sensors

Bosch Sensortec BMP085 Driver

STMicroelectronics LPS331AP

Freescale MPL115A1 Driver

Freescale MPL115A2 Driver

Freescale MPL3115A2 Driver

CoreBASIC Reference Guide CoreBASIC Driver Reference

482

Light sensors
Light sensors

AMS TSL2561 Driver

Intersil ISL29023 Driver

CoreBASIC Reference Guide CoreBASIC Driver Reference

483

Graphic displays

VGA displays

SolderCore Arcade Shield

SolderCore Graphics Shield

LED displays

Jimmie Rodgers LoL Shield

ITead Studio Colors Shield

LCD displays

Adafruit TFT Touch Shield

AirSensor 128GLCD

AirSensor 192GLCD

ITead Studio ITDB02-2.2 LCD Module

ITead Studio ITDB02-2.4D LCD Module

ITead Studio ITDB02-2.4E LCD Module

ITead Studio ITDB02-2.8 LCD Module

ITead Studio ITDB02-3.2S LCD Module

ITead Studio ITDB02-3.2WD LCD Module

ITead Studio ITDB02-4.3 LCD Module

ITead Studio ITDB02-5.0 LCD Module

NuElectronics 3310 LCD Shield

NuElectronics TFT LCD Shield

Seeed Studio TFT Touch Shield

SolderCore LCD Shield

SparkFun Color LCD Shield

Watterott electronic mSD Shield

Watterott electronic S65 Shield

OLED displays

Seeed Studio 96x16 OLED Brick

Seeed Studio 96x96 OLED Twig

Seeed Studio 128x64 OLED Twig

CoreBASIC Reference Guide CoreBASIC Driver Reference

484

Character displays
Character display drivers — LCD, LED, and e-Paper

Hitachi HD44780 Driver

Jee Labs LCD Plug

SparkFun e-Paper Breakout

CoreBASIC Reference Guide CoreBASIC Driver Reference

485

Joysticks and joypads

Single sticks

All analog joystick implement a standard set of properties for reading joystick position. Joypads emulate a digital

joystick with up to nine directional settings.

For hardware that has a single joystick, the following properties are implemented:

Position

H Analog Read Sense horizontal joystick position;
−1 is fully left, +1 is fully right, and 0
is centered.

V Analog Read Sense vertical joystick position; −1
is fully down, +1 is fully up, and 0 is
centered.

POS Analog Read A complex number where the
real component is the horizontal
position of the joystick and the
imaginary component is the vertical
position of the joystick.

Selection

PRESS Digital Read If the joystick can be pressed (not all
can), this property reads 1 when the
joystick is pressed and 0 when it is
not.

Multiple sticks

For hardware that has multiple joysticks, or both joysticks and joypads (such as the SparkFun Joystick Shield with

has both), each property can be indexed to select a particular joystick or joypad:

Position

H(n) Analog Read Sense horizontal joystick position n;
−1 is fully left, +1 is fully right, and 0
is centered.

V(n) Analog Read Sense vertical joystick position n; −1
is fully down, +1 is fully up, and 0 is
centered.

POS(n) Analog Read A complex number where the
real component is the horizontal
position of joystick n and the
imaginary component is the vertical
position of joystick n.

Selection

CoreBASIC Reference Guide CoreBASIC Driver Reference

486

PRESS(n) Digital Read If joystick n can be pressed (not all
can), this property reads 1 when
the joystick is pressed and 0 when
it is not. If the joystick cannot be
pressed, PRESS always reads as 0.

CoreBASIC Reference Guide CoreBASIC Driver Reference

487

Drivers by vendor
This section is a complete reference to the drivers delivered in CoreBASIC.

CPUs
SolderCore CPU
Freedom Board CPU
Raspberry Pi CPU

CoreBASIC
AHRS Driver
ANSI Graphics Driver
Matrix Keyboard
Driver
NMEA Parser
Parallel Bus Driver
Software I2C Bus
Driver
Software SPI Bus
Driver
SolderCore Network
System UART Driver
Xterm Graphics Driver

Adafruit
TFT Touch Shield

AirSensor
128GLCD
192GLCD

AMS
TSL2561

Analog Devices
ADIS16400
ADT7410
ADXL345
ADXL362

Asahi Kasei
AK8975

Atmel
ATAVRSBIN1
ATAVRSBIN2

Bosch Sensortec
BMA150
BMA250
BMM150
BMP085
SMB380

Freescale
MAG3110
MMA8451Q
MMA8491Q
MPL115A1
MPL115A2
MPL3115A2

Gravitech
7-Segment Shield

Hitachi
HD44780

CoreBASIC Reference Guide CoreBASIC Driver Reference

488

Honeywell
HIH6130
HMC5843
HMC5883L
HMC6343
HMC6352
HMC5883L +
MPU-6050

Intersil
ISL29023

InvenSense
IMU-3000
ITG-3200
MPU-6000
MPU-6050
MPU-6050 +
HMC5883L
MPU-6050 + AK8975
MPU-9150

ITead Studio
Colors Shield
ITDB02-2.2 LCD
Module
ITDB02-2.4D LCD
Module
ITDB02-2.4E LCD
Module
ITDB02-2.8 LCD
Module
ITDB02-3.2S LCD
Module
ITDB02-3.2WD LCD
Module
ITDB02-4.3 LCD
Module
ITDB02-5.0 LCD
Module

Jee Labs
LCD Plug
Pressure Plug
RTC Plug

Jimmie Rodgers
LoL Shield

Kionix
KXP84
KXTF9

Linear Technology
LTC6904

Liquidware
Input Shield

MaxDetect
DHT11, DHT21,
DHT22, RHT03

Maxim
DS1340
MAX6675

Microchip
MCP23008
MCP23016
MCP23017
MCP342x
MCP4725
TC77

Modkit
MotoProto Shield

National
Semiconductor
LM75

Nintendo
Classic Controller
Nunchuk Controller

NuElectronics
3310 LCD Shield
TFT LCD Shield

NXP
PCF8575

Seeed Studio
96x16 OLED Brick
96x96 OLED Twig
128x64 OLED Twig
TFT Touch Shield

Sensirion
SHT1x
SHT2x

Silicon Labs
Si7005

CoreBASIC Reference Guide CoreBASIC Driver Reference

489

SolderCore
Arcade Shield
CoreLight Module
CoreMPU Module
CorePressure Module
CoreSpin Module
CoreTemp Module
CoreTilt Module
Graphics Shield
LCD Shield
Motor Shield
SenseCore
Servo Shield

SparkFun
ArduMoto Shield
Color LCD Shield
El Escudo
e-Paper Breakout
IMU-3000 Combo
Joystick Shield
MIDI Shield
OLED Carrier
RingCoder Breakout
Spectrum Shield
Touch Shield
VoiceBox Shield

STMicroelectronics
LIS302DL
LIS331DLH
LIS331HH
LIS3DSH
LIS3LV02DL
LPS331AP
LSM303DLH

Texas Instruments
TMP100
TMP102

VTI
SCA3000

Watterott electronic
mSD Shield
S65 Shield

CoreBASIC Reference Guide CoreBASIC Driver Reference

490

Adafruit TFT Touch Shield

Installation

INSTALL "ADAFRUIT-TFT-TOUCH-SHIELD"

INSTALL "TFT-TOUCH-SHIELD"

Options

None.

Description

Installing the TFT Touch Shield driver provides a 240×320 true color graphic display. You can use all the

CoreBASIC graphics commands to drive the LCD display.

Resources

http://www.adafruit.com/products/376

Benchmarks

Here is the result of running the SolderCore Graphics Benchmarks application:

> run
Graphics display benchmark for ADAFRUIT-TFT-TOUCH-SHIELD

 Circles: 2397 ms
 Discs: 26380 ms
Rectangles: 710 ms
 Slabs: 24416 ms
 Lines: 6689 ms
 Polygons: 7656 ms
 Text: 2131 ms
> _

http://www.adafruit.com/products/376

CoreBASIC Reference Guide CoreBASIC Driver Reference

491

AHRS Driver

Installation

INSTALL "AHRS" USING sensor, sensor…

Options

None.

Description

Installs a driver that fuses accelerometers, gyroscopes, and optional magnetometers to provide a complete

attitude and heading reference system (AHRS).

To create an AHRS successfully, the AHRS driver must be provided with a 3-axis accelerometer and 3-axis

gyroscope instance in the USING list. To update heading correctly, a magnetometer is also required in the

USING list.

To create a fully functioning AHRS from an ADXL345, an ITG-3200, and an HMC5883L, you would use:

INSTALL "ADXL345" AS TILT
INSTALL "ITG-3200" AS SPIN
INSTALL "HMC5883L" AS COMPASS
INSTALL "AHRS" USING TILT, SPIN, COMPASS AS AHRS

It doesn't matter which order you specify the sensors in, the AHRS driver will search the USING list to determine

the type of sensor and capabilities.

Some sensors, such as the MPU-6050, provide an accelerometer and gyroscope in the same package; in this case,

you only need provide the MPU-6050 instance to the AHRS driver, like this:

INSTALL "MPU-6050" AS MPU
INSTALL "AHRS" USING MPU AS AHRS

That's it! This is all you need to do to have a fully functioning IMU using the MPU-6050, except that heading

(yaw) drift is not compensated. In order to compensate for gyroscope drift in yaw, a magnetometer needs to be

provided. If you have, for instance, an HMC5843L magnetometer, you can create a full AHRS with long-term yaw

drift correction using:

INSTALL "MPU-6050" AS MPU
INSTALL "HMC5843" AS COMPASS
INSTALL "AHRS" USING MPU, COMPASS AS AHRS

Some drivers, such as the CoreMPU and ADIS16400, provide an accelerometer, gyroscope, and magnetometer in

the same package or board, and then it's even simpler to get the AHRS up and running:

INSTALL "CORE-MPU" AS MPU
INSTALL "AHRS" USING MPU AS AHRS

CoreBASIC Reference Guide CoreBASIC Driver Reference

492

Properties

Algorithm results

Q Analog Read A unit quaternion (an "attitude
quaternion") representing the
current orientation relative to the
world frame.

PITCH Analog Read Pitch angle θ about the y axis,
in degrees; derived from the
quaternion Q.

ROLL Analog Read Roll angle φ about the x axis,
in degrees; derived from the
quaternion Q.

YAW Analog Read Yaw angle ψ about the z axis,
in degrees; derived from the
quaternion Q.

Example

***../examples/ahrs-orientation-demo.bas not found ***

You can load this into CoreBASIC using EXAMPLE "ahrs-orientation-demo" or |ahrs-

orientation-demo.

Notes

See Accelerometers, Gyroscopes, and Magnetometers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

493

AirSensor 128GLCD

Installation

INSTALL "AIRSENSOR-128GLCD"

Options

ADDR=integer

Set the 8-bit I2C address of the port expander. By default the driver uses the address 0x40.

Description

Installing the AirSensor 128GLCD driver provides a 128×64 monochrome graphic display. You can use all the

CoreBASIC graphics commands to drive the LCD display.

Properties

Backlight

LIGHT Digital Write Backlight control. Writing 0 to
LIGHT turns the backlight off, if the
display has a controllable backlight,
and writing 1 turns it on.

Orientation

ROTATION Digital Write Sets the rotation angle of the
display, in units of 90 degrees.
Rotation 0 is native orientation,
rotation 1 is 90 degree rotation, 2 is
180 degrees, and 3 is 270 degrees.

See also

AirSensor 192GLCD

CoreBASIC Reference Guide CoreBASIC Driver Reference

494

AirSensor 192GLCD

Installation

INSTALL "AIRSENSOR-192GLCD"

Options

ADDR=integer

Set the 8-bit I2C address of the port expander. By default the driver uses the address 0x40.

Description

Installing the AirSensor 192GLCD driver provides a 192×64 monochrome graphic display. You can use all the

CoreBASIC graphics commands to drive the LCD display.

Properties

Backlight

LIGHT Digital Write Backlight control. Writing 0 to
LIGHT turns the backlight off, if the
display has a controllable backlight,
and writing 1 turns it on.

Orientation

ROTATION Digital Write Sets the rotation angle of the
display, in units of 90 degrees.
Rotation 0 is native orientation,
rotation 1 is 90 degree rotation, 2 is
180 degrees, and 3 is 270 degrees.

See also

AirSensor 128GLCD

CoreBASIC Reference Guide CoreBASIC Driver Reference

495

AMS TSL2561 Driver

Installation

INSTALL "AMS-TSL2561"

INSTALL "TSL2561"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x72. The TSL2561 can be configured to use

addresses 0x52 and 0x92.

Description

Installs a light sensor driver for the TSL2561.

Properties

Light sensor

LIGHT Analog Read Reads the current ambient light
level, in lux.

Configuration

GAIN Digital R/W Reads and writes the internal GAIN
bit. Setting GAIN to 16 selects 16×
high gain mode and setting GAIN
to 1 selects 1× mode.

General

VERSION String Read A string containing the detected
TSL2561 device and its silicon
revision.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

CoreBASIC Reference Guide CoreBASIC Driver Reference

496

Analog Devices ADIS16400 Driver

Installation

INSTALL "ANALOG-DEVICES-ADIS16400" USING select

INSTALL "ADIS16400" USING select

Options

None.

Description

Installs a driver for the Analog Devices ADIS16400 iSensor. The ADIS16400 is a highly accurate Inertial

Measurement Unit, or IMU. This driver provides an accelerometer, gyroscope, and magnetometer that can

be fused together using the AHRS for an attitude and heading reference system. See AHRS Driver for more

information on putting this device to work.

Properties

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX Analog Read Acceleration measured along the x
axis, in g.

AY Analog Read Acceleration measured along the y
axis, in g.

AZ Analog Read Acceleration measured along the z
axis, in g.

Gyroscope

G Analog Read An array of three numbers
containing the rotation rates
measured around the x, y, and z
axes, in degrees per second.

GX Analog Read Rotation rate around the x axis, in
degrees per second.

GY Analog Read Rotation rate around the y axis, in
degrees per second.

GZ Analog Read Rotation rate around the z axis, in
degrees per second.

Magnetometer

CoreBASIC Reference Guide CoreBASIC Driver Reference

497

M Analog Read An array of three numbers
containing the magnetic field
measured in the x, y, and z axes, in
microtesla.

MX Analog Read Magnetic field measured in the x
direction, in microtesla.

MY Analog Read Magnetic field measured in the y
direction, in microtesla.

MZ Analog Read Magnetic field measured in the z
direction, in microtesla.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

Notes

See Accelerometers, Gyroscopes, and Magnetometers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

498

Analog Devices ADT7410 Driver

Installation

INSTALL "ANALOG-DEVICES-ADT7410"

INSTALL "ADT7410"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x94.

Description

Installs a temperature sensor driver for the ADT7410.

Properties

Measurement

TEMP Analog Read Temperature in degrees Celsius.

Configuration

RESOLUTION Analog R/W The selected resolution of the
temperature sensor. The ADT7410
supports resolutions of 0.0625
(default) and 0.0078125 degrees
Celsius. Writing this property will
configure the sensor to deliver
measurements to one of those
resolutions.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

CoreBASIC Reference Guide CoreBASIC Driver Reference

499

Analog Devices ADXL345 Driver

Installation

INSTALL "ANALOG-DEVICES-ADXL345"

INSTALL "ADXL345"

INSTALL "CORE-TILT"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0xA6; to configure the primary address, use

ADDR=0x3A.

Description

Installs an accelerometer driver using the ADXL345 on the CoreTilt SExI module which mounts into a SenseCore

and initializes the accelerometer to the 2g range:

http://www.soldercore.com/products/sensecore/coretilt/

Although this is intended to fit into an SenseCore, you can use it as a standard breakout module and mount it

wherever you wish or use it with something other than a SolderCore.

Properties

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

http://www.soldercore.com/products/sensecore/coretilt/

CoreBASIC Reference Guide CoreBASIC Driver Reference

500

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

Configuration

RANGE Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

Notes

See Accelerometers.

References

The SolderCore CoreTilt SExI module:

http://www.soldercore.com/products/sensecore/coretilt/

SparkFun offer an ADXL345 breakout:

http://www.sparkfun.com/products/9836

http://www.soldercore.com/products/sensecore/coretilt/
http://www.sparkfun.com/products/9836

CoreBASIC Reference Guide CoreBASIC Driver Reference

501

Analog Devices ADXL362 Driver

Installation

INSTALL "ANALOG-DEVICES-ADXL362" USING select

INSTALL "ADXL362" USING select

Options

None.

Description

Installs an accelerometer driver using the ADXL362. The USING clause specifies the device select signal to select

the ADXL362.

Properties

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

Configuration

RANGE Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

CoreBASIC Reference Guide CoreBASIC Driver Reference

502

BANDWIDTH Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

Notes

See Accelerometers.

References

SparkFun offer an ADXL362 breakout:

http://www.sparkfun.com/products/11446

http://www.sparkfun.com/products/11446

CoreBASIC Reference Guide CoreBASIC Driver Reference

503

ANSI Graphics Driver

Installation

INSTALL "ANSI-GRAPHICS"

Options

None.

Description

Installing the ANSI Graphics driver provides you with a graphics display that is emulated on the terminal. The 24-

bit color space is mapped to the eight standard colors of an ANSI terminal. After installation, you can use all the

CoreBASIC graphics commands to write to the display.

Because the graphics are emulated, this driver makes it possible to run every standard graphics demonstration

without graphics hardware.

Note

If you use a graphics command without installing a graphics driver, CoreBASIC automatically installs and

initializes an ANSI-GRAPHICS driver.

See also

Xterm Graphics Driver

CoreBASIC Reference Guide CoreBASIC Driver Reference

504

Asahi Kasei AK8975 Driver

Installation

INSTALL "ASAHI-KASEI-AK8975"

INSTALL "AK8975"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x18.

Description

Installs a magnetometer driver for the AK8975.

Properties

Magnetometer

M Analog Read An array of three numbers
containing the magnetic field
measured in the x, y, and z axes, in
microtesla.

MX or X Analog Read Magnetic field measured in the x
direction, in microtesla.

MY or Y Analog Read Magnetic field measured in the y
direction, in microtesla.

MZ or Z Analog Read Magnetic field measured in the z
direction, in microtesla.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

Notes

See Magnetometers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

505

Atmel ATAVRSBIN1 Driver

Installation

INSTALL "ATMEL-ATAVRSBIN1"

INSTALL "ATAVRSBIN1"

Options

None.

Description

Installs a combination gyroscope, accelerometer, and magnetometer driver for the ATAVRSBIN1 module. The

ATAVRSBIN1 integrates a Bosch Sensortec BMA150 accelerometer, an InvenSense ITG-3200 gyroscope, and a

Asahi Kasei AK8975 magnetometer to provide a 9DOF sensor platform.

When these sensors are fused by the AHRS driver, you have excellent 9DOF attitude and heading reference

system.

Properties

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX Analog Read Acceleration measured along the x
axis, in g.

AY Analog Read Acceleration measured along the y
axis, in g.

AZ Analog Read Acceleration measured along the z
axis, in g.

RANGE(0) Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH(0) Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

BIAS(0) Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

CoreBASIC Reference Guide CoreBASIC Driver Reference

506

GAIN(0) Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Gyroscope

G Analog Read An array of three numbers
containing the rotation rates
measured around the x, y, and z
axes, in degrees per second.

GX Analog Read Rotation rate around the x axis, in
degrees per second.

GY Analog Read Rotation rate around the y axis, in
degrees per second.

GZ Analog Read Rotation rate around the z axis, in
degrees per second.

RANGE(1) Analog R/W Selected full scale range of the
gyroscope, in degrees per second.

BANDWIDTH(1) Analog R/W Selected bandwidth of the of the
gyroscope, in hertz.

BIAS(1) Analog R/W An array of three numbers
containing the gyroscope bias, in
degrees per second, for the x, y, and
z axes.

GAIN(1) Analog R/W An array of three numbers
containing the gain for one LSB, in
degrees per second, for the x, y, and
z axes.

Magnetometer

M Analog Read An array of three numbers
containing the magnetic field
measured in the x, y, and z axes, in
microtesla.

MX Analog Read Magnetic field measured in the x
direction, in microtesla.

MY Analog Read Magnetic field measured in the y
direction, in microtesla.

MZ Analog Read Magnetic field measured in the z
direction, in microtesla.

BANDWIDTH(2) Analog R/W Selected bandwidth of the of the
magnetometer, in hertz.

Algorithms

CoreBASIC Reference Guide CoreBASIC Driver Reference

507

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

Additional

BANDWIDTH Analog R/W Selected bandwidth of the
of the sensor assembly as a
whole, in hertz. This is the
smaller of BANDWIDTH(0) and
BANDWIDTH(1).

See also

See Accelerometers, Gyroscopes, Magnetometers, and AHRS Driver.

CoreBASIC Reference Guide CoreBASIC Driver Reference

508

Atmel ATAVRSBIN2 Driver

Installation

INSTALL "ATMEL-ATAVRSBIN2"

INSTALL "ATAVRSBIN2"

Options

None.

Description

Installs a combination gyroscope, accelerometer, and magnetometer driver for the ATAVRSBIN2 module. The

ATAVRSBIN2 integrates a Kionix KXTF9 accelerometer, an InvenSense IMU-3000 gyroscope, and a Honeywell

HMC5883L magnetometer to provide a 9DOF sensor platform.

When these sensors are fused by the AHRS driver, you have excellent 9DOF attitude and heading reference

system.

Properties

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX Analog Read Acceleration measured along the x
axis, in g.

AY Analog Read Acceleration measured along the y
axis, in g.

AZ Analog Read Acceleration measured along the z
axis, in g.

RANGE(0) Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH(0) Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

BIAS(0) Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

CoreBASIC Reference Guide CoreBASIC Driver Reference

509

GAIN(0) Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Gyroscope

G Analog Read An array of three numbers
containing the rotation rates
measured around the x, y, and z
axes, in degrees per second.

GX Analog Read Rotation rate around the x axis, in
degrees per second.

GY Analog Read Rotation rate around the y axis, in
degrees per second.

GZ Analog Read Rotation rate around the z axis, in
degrees per second.

RANGE(1) Analog R/W Selected full scale range of the
gyroscope, in degrees per second.

BANDWIDTH(1) Analog R/W Selected bandwidth of the of the
gyroscope, in hertz.

BIAS(1) Analog R/W An array of three numbers
containing the gyroscope bias, in
degrees per second, for the x, y, and
z axes.

GAIN(1) Analog R/W An array of three numbers
containing the gain for one LSB, in
degrees per second, for the x, y, and
z axes.

Magnetometer

M Analog Read An array of three numbers
containing the magnetic field
measured in the x, y, and z axes, in
microtesla.

MX Analog Read Magnetic field measured in the x
direction, in microtesla.

MY Analog Read Magnetic field measured in the y
direction, in microtesla.

MZ Analog Read Magnetic field measured in the z
direction, in microtesla.

BANDWIDTH(2) Analog R/W Selected bandwidth of the of the
magnetometer, in hertz.

Algorithms

CoreBASIC Reference Guide CoreBASIC Driver Reference

510

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

Additional

BANDWIDTH Analog R/W Selected bandwidth of the
of the sensor assembly as a
whole, in hertz. This is the
smaller of BANDWIDTH(0) and
BANDWIDTH(1).

See also

See Accelerometers, Gyroscopes, Magnetometers, and AHRS Driver.

CoreBASIC Reference Guide CoreBASIC Driver Reference

511

Bosch Sensortec BMA150 Driver

Installation

INSTALL "BOSCH-SENSORTEC-BMA150" [USING i2c-bus]

INSTALL "BMA150" [USING i2c-bus]

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x80.

Description

Installs an accelerometer driver for the BMA150 and initializes the accelerometer to the 2g range. If a USING

clause is present, the sensor is initialized on the I2C bus specified by i2c-bus; if no USING clause is present, the

sensor is initialized on the primary I2C bus.

Properties

General

VERSION String Read A string containing the silicon
revision of the BMA150.

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

CoreBASIC Reference Guide CoreBASIC Driver Reference

512

Configuration

RANGE Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

Notes

See Accelerometers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

513

Bosch Sensortec BMA250 Driver

Installation

INSTALL "BOSCH-SENSORTEC-BMA150" [USING i2c-bus]

INSTALL "BMA250" [USING i2c-bus]

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x30.

Description

Installs an accelerometer driver for the BMA250 and initializes the accelerometer to the 2g range. If a USING

clause is present, the sensor is initialized on the I2C bus specified by i2c-bus; if no USING clause is present, the

sensor is initialized on the primary I2C bus.

Properties

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

Configuration

CoreBASIC Reference Guide CoreBASIC Driver Reference

514

RANGE Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

Notes

See Accelerometers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

515

Bosch Sensortec BMM150 Driver

Installation

INSTALL "BOSCH-SENSORTEC-BMM150"

INSTALL "BMM150"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x22.

Description

Installs a magnetometer driver for the BMM150.

Properties

Magnetometer

M Analog Read An array of three numbers
containing the magnetic field
measured in the x, y, and z axes, in
microtesla.

MX or X Analog Read Magnetic field measured in the x
direction, in microtesla.

MY or Y Analog Read Magnetic field measured in the y
direction, in microtesla.

MZ or Z Analog Read Magnetic field measured in the z
direction, in microtesla.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

Notes

See Magnetometers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

516

Bosch Sensortec BMP085 Driver

Installation

INSTALL "BOSCH-SENSORTEC-BMP085"

INSTALL "BMP085"

INSTALL "CORE-PRESSURE"

Options

None.

Description

Installs a pressure sensor driver using the BMP085 on the CorePressure SExI module which mounts into a

SenseCore:

http://www.soldercore.com/products/sensecore/corepressure/

Although this is intended to fit into an SenseCore, you can use it as a standard breakout module and mount it

wherever you wish or use it with something other than a SolderCore.

Properties

Sensors

PRESSURE Analog Read Pressure measured in pascals.

TEMP Analog Read Die temperature measured in
degrees Celsius.

ALL Analog Read An array of two numbers containing
the pressure in pascals and the
temperature in degrees Celsius.

Control

HEIGHT Analog Read Current height above sea level,
in meters. For HEIGHT to work
correctly, you must assign the
barometric pressure at sea level to
ORIGIN.

RESOLUTION Digital R/W Sensor pressure resolution in
bits. The BMP085 supports 16 to
19 bits of resolution with higher
resolutions taking longer to convert
as the sensor uses oversampling.
The default is RESOLUTION=17.

http://www.soldercore.com/products/sensecore/corepressure/

CoreBASIC Reference Guide CoreBASIC Driver Reference

517

ORIGIN Analog R/W The pressure at sea level. You need
to set this property to the current
barometric pressure at sea level if
you want the HEIGHT property to
work correctly.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

References

The SolderCore CorePressure half-width SExI module:

http://www.soldercore.com/products/sensecore/corepressure/

SparkFun and Jee Labs offer BMP085 breakout boards:

http://www.sparkfun.com/products/9694

http://jeelabs.com/products/pressure-plug

Example

***../examples/corepressure-demo.bas not found ***

You can load this into CoreBASIC using EXAMPLE "corepressure-demo" or |corepressure-demo.

http://www.soldercore.com/products/sensecore/corepressure/
http://www.sparkfun.com/products/9694
http://jeelabs.com/products/pressure-plug

CoreBASIC Reference Guide CoreBASIC Driver Reference

518

Bosch Sensortec SMB380 Driver

Installation

INSTALL "BOSCH-SENSORTEC-SMB380" [USING i2c-bus]

INSTALL "SMB380" [USING i2c-bus]

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x70.

Description

Installs an accelerometer driver for the SMB380 and initializes the accelerometer to the 2g range. If a USING

clause is present, the sensor is initialized on the I2C bus specified by i2c-bus; if no USING clause is present, the

sensor is initialized on the primary I2C bus.

Properties

General

VERSION String Read A string containing the silicon
revision of the SMB380.

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

CoreBASIC Reference Guide CoreBASIC Driver Reference

519

Configuration

RANGE Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

Notes

See Accelerometers.

References

Olimex offer an SMB380 breakout board:

http://www.olimex.com/dev/mod-smb380.html

http://www.olimex.com/dev/mod-smb380.html

CoreBASIC Reference Guide CoreBASIC Driver Reference

520

Extended User Memory

Installation

INSTALL "EXTENDED-USER-MEMORY".

Options

SIZE=integer

Description

Installs a driver that provides additional memory for variable names. When CoreBASIC starts, it allocates 512

bytes to hold long variable names, that is, variable names longer than two characters. CoreBASIC manages this

area as you edit your program, add, rename, and remove variables, recovering free space in the background.

However, you may find that 512 bytes simply is not enough for longer programs with long variable names.

In this case, you can extend the memory that CoreBASIC sets aside for long variable names, by installing the

EXTENDED-USER-MEMORY driver.

The parameter SIZE specifies the number of additional bytes to set aside for long variable names. The memory

for CoreBASIC programs and runtime data are reduced by the same amount.

It's best to install this driver in the /c/sys/!boot.bas file, so it becomes part of the boot process.

Notes

You should install the extended user memory driver before any other driver that requires "high memory" for

operation (and most do). The extended memory driver ensures that it can extend the variable name space and, if

it cannot because other drivers have been installed beforehand, it will throw a "using error" exception.

Example

 ______ ____ ___ _____ __________
 / ____/___ ________ / __)/ | / ___// _/ ____/
 / / / __ \/ ___/ _ \/ __ / /| | __ \ / // /
/ /___/ /_/ / / / __/ /_/ / ___ |___/ // // /___
____/____/_/ ___/_____/_/ |_/____/___/____/

Welcome to CoreBASIC on the SolderCore.
Copyright (c) 2004-2014 Rowley Associates Limited.

65,016 bytes free. Core at 80 MHz. Firmware 1.3.0.

> memory

Region Total Used Free Units Load Comment
--
CoreBASIC RAM 67,584 2,566 65,018 bytes 3.8% Total available RAM
Program text 65,016 6 65,010 bytes 0.0% Compress with CRUNCH
High memory 512 512 0 bytes 100.0% Drivers and long names
Variable names 512 0 512 bytes 0.0% Stored in high memory
Scratchpad 256 0 256 cells 0.0% Fixed runtime overhead

CoreBASIC Reference Guide CoreBASIC Driver Reference

521

Object store 8,124 0 8,124 cells 0.0% Arrays and strings

> install "extended-user-memory size=1024"
> memory

Region Total Used Free Units Load Comment
--
CoreBASIC RAM 67,584 3,590 63,994 bytes 5.3% Total available RAM
Program text 63,992 6 63,986 bytes 0.0% Compress with CRUNCH
High memory 1,536 1,536 0 bytes 100.0% Drivers and long names
Variable names 1,536 0 1,536 bytes 0.0% Stored in high memory
Scratchpad 256 0 256 cells 0.0% Fixed runtime overhead
Object store 7,996 0 7,996 cells 0.0% Arrays and strings

> install list

Driver Type Himem Used
--
SOLDERCORE-CPU Fixed 0 bytes
EXTENDED-USER-MEMORY Fixed 1,024 bytes
> _

CoreBASIC Reference Guide CoreBASIC Driver Reference

522

Freedom Board Accelerometer

Installation

INSTALL "FREEDOM-ACCELEROMETER"

INSTALL "ACCELEROMETER"

Options

None.

Description

Installs an accelerometer driver for the on-board MMA8451Q accelerometer of the Freedom Board. The

accelerometer is connected to the internal I2C bus of the Freedom Board, not the I2C bus that is routed to the

Arduino-style headers on the PCB.

This is a special driver for the Freedom Board and is not available on the SolderCore. However, a generic

MMA8451Q driver is provided by the SolderCore for attaching such a sensor to the standard I2C bus.

Properties

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

Configuration

CoreBASIC Reference Guide CoreBASIC Driver Reference

523

RANGE Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

See also

See Freescale MMA8451Q Driver and Accelerometers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

524

Freedom Board CPU

Installation

The Freedom Board CPU driver is automatically installed as a fixed driver when CoreBASIC starts.

Description

The Freedom Board CPU provides the base hardware drivers for digital and analog I/O, SPI, and I2C. You access

the CPU driver using the CORE keyword.

Properties

Information

NAME String Input Presentation name for the model
that runs CoreBASIC. For the
standard Freedom Board, this is
"Freedom Board".

MODEL String Input Platform that CoreBASIC is running
on. For the Freedom Board, this is
"FREEDOM-V1".

VERSION String Input CoreBASIC version number.

Digital and analog I/O

D0 through D19 Digital R/W See expanded pin description
below.

A0 through A19 Digital R/W See expanded pin description
below.

D(n) Digital R/W Equivalent to D0 through D19,
indexed by n.

A(n) Digital R/W Equivalent to A0 through A19,
indexed by n.

LEDs

R Digital Write Illuminates the red channel of the
tricolor LED when written to a
nonzero value, and extinguishes it
when written to zero.

G Digital Write Illuminates the green channel of
the tricolor LED when written to a
nonzero value, and extinguishes it
when written to zero.

B Digital Write Illuminates the blue channel of
the tricolor LED when written to a
nonzero value, and extinguishes it
when written to zero.

CoreBASIC Reference Guide CoreBASIC Driver Reference

525

LED Digital Write Writes a 24-bit true color value to
the tricolor LED.

Timing

FREQUENCY Digital Write Core tick frequency. For the
Freedom Board, this reads as
24,000,000 indicating 24 MHz.

TICK Digital Write Core tick. The tick increments at the
core tick frequency, FREQUENCY.

See also

CORE

CoreBASIC Reference Guide CoreBASIC Driver Reference

526

Freescale MAG3110 Driver

Installation

INSTALL "FREESCALE-MAG3110"

INSTALL "MAG3110"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x1C.

Description

Installs a magnetometer driver for the MAG3110.

Properties

Magnetometer

M Analog Read An array of three numbers
containing the magnetic field
measured in the x, y, and z axes, in
microtesla.

MX or X Analog Read Magnetic field measured in the x
direction, in microtesla.

MY or Y Analog Read Magnetic field measured in the y
direction, in microtesla.

MZ or Z Analog Read Magnetic field measured in the z
direction, in microtesla.

Additional

TEMP Analog Read Die temperature, in degrees Celsius.
(See note below.)

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

Notes

The die temperature is not returned correctly by the MAG3110. We raised a service request with Freescale

regarding this and their response is as follows:

CoreBASIC Reference Guide CoreBASIC Driver Reference

527

"Yes, sorry, the die temperature is not being trimmed for MAG3110. This should have been in the errata. What

you are seeing is correct. You can get around this by trimming the output in software since the sensitivity of the

sensor is OK."

See Magnetometers.

References

SparkFun and Olimex both offer MAG3110 breakout boards:

http://www.sparkfun.com/products/10619

http://www.olimex.com/dev/mod-mag.html

http://www.sparkfun.com/products/10619
http://www.olimex.com/dev/mod-mag.html

CoreBASIC Reference Guide CoreBASIC Driver Reference

528

Freescale MMA8451Q Driver

Installation

INSTALL "FREESCALE-MMA8451Q"

INSTALL "MMA8451Q"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x3A. To select the alternate address, use

ADDR=0x38.

Description

Installs an accelerometer driver for the MMA8451Q.

Properties

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

Configuration

CoreBASIC Reference Guide CoreBASIC Driver Reference

529

RANGE Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

See also

See Freedom Board Accelerometer.

Notes

See Accelerometers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

530

Freescale MMA8491Q Driver

Installation

INSTALL "FREESCALE-MMA8491Q"

INSTALL "MMA8491Q"

Parameters

USING bus, enable

USING enable

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0xAA.

Description

Installs an accelerometer driver for the MMA8491Q. The MMA8491Q requires an additional signal, enable,

connected to the ENABLE pin of the accelerometer.

Properties

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

CoreBASIC Reference Guide CoreBASIC Driver Reference

531

Configuration

RANGE Analog R Fixed at ±8g.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

See also

See Accelerometers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

532

Freescale MPL115A1 Driver

Installation

INSTALL "FREESCALE-MPL115A1" USING select

INSTALL "MPL115A1" USING select

Options

None.

Description

Installs a pressure sensor driver for the Freescale MPL115A1 SPI pressure sensor. The USING clause specifies the

device select signal to select the MPL115A1.

Properties

Sensors

PRESSURE Analog Read Pressure measured in pascals.

TEMP Analog Read Returns NaN because the Freescale
do not document how to turn the
raw ADC values to a temperature
estimation. The temperature sensor
does, however, compensate the
pressure measurement.

Control

HEIGHT Analog Read Current height above sea level,
in meters. For HEIGHT to work
correctly, you must assign the
barometric pressure at sea level to
ORIGIN.

ORIGIN Analog R/W The pressure at sea level. You need
to set this property to the current
barometric pressure at sea level if
you want the HEIGHT property to
work correctly.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

CoreBASIC Reference Guide CoreBASIC Driver Reference

533

Example

***../examples/mpl115a1-demo.bas not found ***

You can load this into CoreBASIC using EXAMPLE "mpl115a1-demo" or |mpl115a1-demo.

CoreBASIC Reference Guide CoreBASIC Driver Reference

534

Freescale MPL115A2 Driver

Installation

INSTALL "FREESCALE-MPL115A2"

INSTALL "MPL115A2"

Options

ADDR=integer

Set the I2C 8-bit address of the MPL115A2. By default the driver uses the address 0xC0.

Description

Installs a pressure sensor driver for the Freescale MPL115A2 I2C pressure sensor.

Properties

Sensors

PRESSURE Analog Read Pressure measured in pascals.

TEMP Analog Read Returns NaN because the Freescale
do not document how to turn the
raw ADC values to a temperature
estimation. The temperature sensor
does, however, compensate the
pressure measurement.

Control

HEIGHT Analog Read Current height above sea level,
in meters. For HEIGHT to work
correctly, you must assign the
barometric pressure at sea level to
ORIGIN.

ORIGIN Analog R/W The pressure at sea level. You need
to set this property to the current
barometric pressure at sea level if
you want the HEIGHT property to
work correctly.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

CoreBASIC Reference Guide CoreBASIC Driver Reference

535

Freescale MPL3115A2 Driver

Installation

INSTALL "FREESCALE-MPL3115A2"

INSTALL "MPL3115A2"

Options

ADDR=integer

Set the I2C 8-bit address of the MPL3115A2. By default the driver uses the address 0xC0.

Description

Installs a pressure sensor driver for the Freescale MPL3115A2 I2C pressure sensor.

Properties

Sensors

PRESSURE Analog Read Pressure measured in pascals.

TEMP Analog Read Temperature measured in degrees
Celsius.

Control

HEIGHT Analog Read Current height above sea level,
in meters. For HEIGHT to work
correctly, you must assign the
barometric pressure at sea level to
ORIGIN.

ORIGIN Analog R/W The pressure at sea level. You need
to set this property to the current
barometric pressure at sea level if
you want the HEIGHT property to
work correctly.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

CoreBASIC Reference Guide CoreBASIC Driver Reference

536

FTP Server

Installation

INSTALL "FTP-SERVER".

Options

None.

Description

Installs the FTP server to transfer files to and from the SolderCore. The root of the FTP server file system is /c. The

FTP server is always installed as a fixed driver and continues to run in parallel with CoreBASIC.

The web server takes approximately 4 kilobytes of RAM from high memory for operation.

Notes

If you are going to use the FTP server, it's best to install it in /c/sys/!boot.bas as part of the boot process.

CoreBASIC Reference Guide CoreBASIC Driver Reference

537

Gravitech 7-Segment Shield

Installation

INSTALL "GRAVITECH-7SEG-SHIELD"

INSTALL "7SEG-SHIELD"

INSTALL "7SEG"

Options

ADDR=integer

Set the I2C 8-bit address of the SAA1064. By default the driver uses the address 0x92.

Description

The 7-Segment shield combines a four digit 7-segment driver, an LM75 temperature sensor, an 24LC128 (16K×8)

EEPROM, and RGB LED.

Properties

Tricolor LED

LED Analog Write When written, sets the red, green,
and blue color of the RGB LED.

COLOR Analog Write As LED.

R Analog Write Sets the brightness of the red
component of the RGB LED.

G Analog Write Sets the brightness of the green
component of the RGB LED.

B Analog Write Sets the brightness of the blue
component of the RGB LED.

7-Segment LEDs — Direct Addressing

COL(n) Digital Write Writes a single ASCII character
to digit n, where digit 0 is the
leftmost and digit 3 the rightmost.
If the ASCII character has no
corresponding encoding, the
character is ignored.

X(n) Digital Write As COL(n).

A(n) Digital Write Directly drives segment A of digit n.

B(n) Digital Write Directly drives segment B of digit n.

C(n) Digital Write Directly drives segment C of digit n.

CoreBASIC Reference Guide CoreBASIC Driver Reference

538

D(n) Digital Write Directly drives segment D of digit n.

E(n) Digital Write Directly drives segment E of digit n.

F(n) Digital Write Directly drives segment F of digit n.

G(n) Digital Write Directly drives segment G of digit n.

POINT(n) Digital Write Directly drives the decimal point
segment of digit n.

7-Segment LEDs — Character I/O

OUTPUT Digital Write Sends ASCII characters to the 7-
segment display. Characters are
shifted in from the right. If the ASCII
character has no corresponding
encoding, the character is ignored.

PRINT Digital Write As OUTPUT.

Example

 10 INSTALL "GRAVITECH-7SEG-SHIELD" AS DIS
 20 DIS.OUTPUT = "HELO"
 30 PAUSE 1
 40 FOR I = 1 TO 4
 50 DIS.OUTPUT = " "
 60 PAUSE 0.2
 70 NEXT I
 80 FOR I = 0 TO DIS.WIDTH - 1
 90 DIS.A(I) = 1
 100 DIS.D(DIS.WIDTH - 1 - I) = 1
 110 PAUSE 0.2
 120 NEXT I
 130 FOR I = 0 TO DIS.WIDTH - 1
 140 DIS.A(I) = 0
 150 DIS.D(DIS.WIDTH - 1 - I) = 0
 160 PAUSE 0.2
 170 NEXT I
 180 FOR I = 0 TO DIS.WIDTH - 1
 190 DIS.B(I) = 1 : DIS.C(I) = 1 : PAUSE 0.2
 210 DIS.E(I) = 1 : DIS.F(I) = 1 : PAUSE 0.2
 230 NEXT I
 240 FOR I = 1 TO 4
 250 DIS.OUTPUT = " " : PAUSE 0.1
 270 DIS.OUTPUT = "DONE" : PAUSE 0.2
 290 NEXT I
 300 END

CoreBASIC Reference Guide CoreBASIC Driver Reference

539

Hitachi HD44780 Driver

Installation

INSTALL "HITACHI-HD44780" USING databus, rs, e [, rw]

Options

None.

Description

Installs a generic driver for an HD44780 LCD.

Both 4-bit and 8-bit parallel buses are supported by this driver. If you are attaching using 4-bit mode, databus

must be a 4-bit-wide bus; if attaching using 8-bit mode, databus must be an 8-bit-wide bus.

The required parameters rs and e specify the properties that drive the RS and E signals on the LCD.

The rw parameter is optional. If rw is specified, the databus is bidirectional and will be used to determine when

the LCD is ready to accept further data. If the rw parameter is omitted, the databus is output only and the driver

uses open-loop delays after each command to ensure that the LCD is ready.

Properties

Dimensions

WIDTH Digital R/W The width of the display, in
character positions.

HEIGHT Digital R/W The height of the display, in
character lines.

Cursor

X or COL Digital R/W The x co-ordinate of the cursor.

Y or ROW Digital R/W The y co-ordinate of the cursor.

CURSOR Digital Write Cursor control. Writing 0 to
CURSOR turns the cursor off, and
writing 1 turns it on.

LINE String R/W As Y and ROW.

POS Digital R/W An array containing the x and y co-
ordinates of the cursor.

Control

LIGHT Digital Write Backlight control. Writing 0 to
LIGHT turns the backlight off, if the
display has a controllable backlight,
and writing 1 turns it on.

CoreBASIC Reference Guide CoreBASIC Driver Reference

540

Character I/O

LINE(n) String R/W As Y(n) and ROW(n).

Y(n) or ROW(n) String R/W When read, returns the string being
displayed on line n of the display.
When written, overwrites the whole
of line n of the display, filling the
line with extra spaces if necessary.

CENTER(n) String Write Centers the string written on
display line n. If the string is too
long for the display, only the central
part is displayed. If the string is
narrower than the display width, it
is padded left and right with spaces
to the display width such that it lies
central within the display.

RIGHT(n) String Write Right-justifies the string written
on display line n. If the string is too
long for the display, it is truncated
on the left such that the rightmost
part of the string covers the whole
line. If the string is narrower than
the display width, it is padded left
with spaces to the display width
such that it lies adjusted right on
the display.

Example

***../examples/digital-spirit-level.bas not found ***

You can load this into CoreBASIC using EXAMPLE "digital-spirit-level" or |digital-spirit-

level.

CoreBASIC Reference Guide CoreBASIC Driver Reference

541

Honeywell HIH6130 Driver

Installation

INSTALL "HONEYWELL-HIH1630"

INSTALL "HIH1630"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x4E.

Description

Installs a humidity and temperature sensor driver for the HIH1630 sensor.

Properties

Measurement

TEMP Analog Read Supply-compensated temperature
in degrees Celsius.

HUMIDITY Analog Read True relative humidity, in percent.

DEWPOINT Analog Read Dew point in degrees Celsius,
computed from the supply-
compensated temperature
TEMP and true relative humidity
HUMIDITY.

DATA Analog Read An array of four values: the
temperature, in degrees Celsius, the
true relative humidity in percent,
and the dew point in degrees
Celsius.

DATA(n) Analog Read Direct access to temperature and
humidity readings. DATA(0) is the
supply-compensated temperature
in degrees Celsius and is equivalent
to the TEMP property; DATA(1)
is the true relative humidity in
percent and is equivalent to the
HUMIDITY property; DATA(2) is
the dew point in degrees Celsius
and is equivalent to the DEWPOINT
property.

CoreBASIC Reference Guide CoreBASIC Driver Reference

542

Honeywell HMC5843 Driver

Installation

INSTALL "HONEYWELL-HMC5843"

INSTALL "HMC5843"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x3C.

Description

Installs a magnetometer driver for the HMC5843.

Properties

Magnetometer

M Analog Read An array of three numbers
containing the magnetic field
measured in the x, y, and z axes, in
microtesla.

MX or X Analog Read Magnetic field measured in the x
direction, in microtesla.

MY or Y Analog Read Magnetic field measured in the y
direction, in microtesla.

MZ or Z Analog Read Magnetic field measured in the z
direction, in microtesla.

Configuration

BANDWIDTH Analog R/W Selected bandwidth of the of the
magnetometer, in hertz.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

Notes

See Magnetometers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

543

Honeywell HMC5883L Driver

Installation

INSTALL "HONEYWELL-HMC5883L"

INSTALL "HMC5883L"

INSTALL "CORE-MAG"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x3C.

Description

Installs a magnetometer driver using the HMC5883L on the CoreMag SExI module which mounts into a

SenseCore:

http://www.soldercore.com/products/sensecore/coremag/

Although this is intended to fit into an SenseCore, you can use it as a standard breakout module and mount it

wherever you wish or use it with something other than a SolderCore.

If you require a complete attitude and heading reference system, the SolderCore CoreMPU provides an

HMC5883L and MPU-6050 on a SExI module:

http://www.soldercore.com/products/sensecore/corempu/

Properties

Magnetometer

M Analog Read An array of three numbers
containing the magnetic field
measured in the x, y, and z axes, in
microtesla.

MX or X Analog Read Magnetic field measured in the x
direction, in microtesla.

MY or Y Analog Read Magnetic field measured in the y
direction, in microtesla.

MZ or Z Analog Read Magnetic field measured in the z
direction, in microtesla.

Configuration

BANDWIDTH Analog R/W Selected bandwidth of the of the
magnetometer, in hertz.

http://www.soldercore.com/products/sensecore/coremag/
http://www.soldercore.com/products/sensecore/corempu/

CoreBASIC Reference Guide CoreBASIC Driver Reference

544

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

Notes

See Magnetometers.

References

The SolderCore CoreMag half-width SExI module:

http://www.soldercore.com/products/sensecore/coremag/

SparkFun and LoveElectronics offer HMC5883L breakout boards:

http://www.sparkfun.com/products/10530

http://www.loveelectronics.co.uk/products/140/

http://www.soldercore.com/products/sensecore/coremag/
http://www.sparkfun.com/products/10530
http://www.loveelectronics.co.uk/products/140/

CoreBASIC Reference Guide CoreBASIC Driver Reference

545

Honeywell HMC6343 Driver

Installation

INSTALL "HONEYWELL-HMC6343"

INSTALL "HMC6343"

Options

None.

Description

Installs a compass driver for the HMC6343.

Properties

Compass

HEADING Analog Write Heading in degrees.

PITCH Analog Write Pitch angle in degrees.

ROLL Analog Write Roll angle in degrees.

General

ALL Analog Write Array of three numbers with the
elements eading, pitch angle, and
roll angle in egrees.

CoreBASIC Reference Guide CoreBASIC Driver Reference

546

Honeywell HMC6352 Driver

Installation

INSTALL "HONEYWELL-HMC6352"

INSTALL "HMC6352"

Options

None.

Description

Installs a compass driver for the HMC6352.

Properties

Compass

HEADING Analog Read Heading in degrees.

CoreBASIC Reference Guide CoreBASIC Driver Reference

547

HTTP Server

Installation

INSTALL "HTTP-SERVER".

Options

None.

Description

Installs the HTTP server to serve web pages from /c/www. The HTTP server is always installed as a fixed driver

and continues to run in parallel with CoreBASIC.

The web server takes approximately 2 kilobytes of RAM from high memory for operation.

Notes

If you are going to use the HTTP server, it's best to install it in /c/sys/!boot.bas as part of the boot process.

CoreBASIC Reference Guide CoreBASIC Driver Reference

548

Intersil ISL29023 Driver

Installation

INSTALL "INTERSIL-ISL29023"

INSTALL "ISL29023"

INSTALL "CORE-LIGHT"

Options

None.

Description

Installs a light sensor driver for the ISL29023 on the CoreLight SExI module which mounts into a SenseCore:

http://www.soldercore.com/products/sensecore/corelight/

Although this is intended to fit into an SenseCore, you can use it as a standard breakout module and mount it

wherever you wish or use it with something other than a SolderCore.

Properties

Light sensor

LIGHT Analog Write Reads the current ambient light
level, in lux.

Configuration

RANGE Digital R/W Sets the ISL29023 sensor range,
from 1 to 4.

RESOLUTION Digital R/W Sets the ISL29023 sensor resolution.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

References

The SolderCore CoreLight SExI module:

http://www.soldercore.com/products/sensecore/corelight/

http://www.soldercore.com/products/sensecore/corelight/
http://www.soldercore.com/products/sensecore/corelight/

CoreBASIC Reference Guide CoreBASIC Driver Reference

549

Example

***../examples/corelight-demo.bas not found ***

You can load this into CoreBASIC using EXAMPLE "corelight-demo" or |corelight-demo.

CoreBASIC Reference Guide CoreBASIC Driver Reference

550

InvenSense IMU-3000 Driver

Installation

INSTALL "INVENSENSE-IMU-3000"

INSTALL "IMU-3000"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0xD0.

Description

Installs a gyroscope driver for the IMU-3000.

Properties

Gyroscope

G Analog Read An array of three numbers
containing the rotation rates
measured around the x, y, and z
axes, in degrees per second.

GX or X Analog Read Rotation rate around the x axis, in
degrees per second.

GY or Y Analog Read Rotation rate around the y axis, in
degrees per second.

GZ or Z Analog Read Rotation rate around the z axis, in
degrees per second.

Configuration

RANGE Analog R/W Selected full scale range of the
gyroscope, in degrees per second.

BANDWIDTH Analog R/W Selected bandwidth of the of the
gyroscope, in hertz.

BIAS Analog R/W An array of three numbers
containing the gyroscope bias, in
degrees per second, for the x, y, and
z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
degrees per second, for the x, y, and
z axes.

CoreBASIC Reference Guide CoreBASIC Driver Reference

551

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

HALF(n) Digital R/W Reads or writes the 16-bit device
register n.

See also

SparkFun IMU-3000 Combo

Notes

See Gyroscopes.

CoreBASIC Reference Guide CoreBASIC Driver Reference

552

InvenSense ITG-3200 Driver

Installation

INSTALL "INVENSENSE-ITG-3200"

INSTALL "ITG-3200"

INSTALL "CORE-SPIN"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0xD2.

Description

Installs a gyroscope driver for the ITG-3200 on the CoreSpin SExI module which which mounts into a SenseCore:

http://www.soldercore.com/products/sensecore/coregyro/

Although this is intended to fit into an SenseCore, you can use it as a standard breakout module and mount it

wherever you wish or use it with something other than a SolderCore.

Properties

Gyroscope

G Analog Read An array of three numbers
containing the rotation rates
measured around the x, y, and z
axes, in degrees per second.

GX or X Analog Read Rotation rate around the x axis, in
degrees per second.

GY or Y Analog Read Rotation rate around the y axis, in
degrees per second.

GZ or Z Analog Read Rotation rate around the z axis, in
degrees per second.

Configuration

RANGE Analog R/W Selected full scale range of the
gyroscope, in degrees per second.

BANDWIDTH Analog R/W Selected bandwidth of the of the
gyroscope, in hertz.

BIAS Analog R/W An array of three numbers
containing the gyroscope bias, in
degrees per second, for the x, y, and
z axes.

http://www.soldercore.com/products/sensecore/coregyro/

CoreBASIC Reference Guide CoreBASIC Driver Reference

553

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
degrees per second, for the x, y, and
z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

HALF(n) Digital R/W Reads or writes the 16-bit device
register n.

Notes

See Gyroscopes.

References

The SolderCore CoreSpin SExI module:

http://www.soldercore.com/products/sensecore/coregyro/

SparkFun offer an ITG-3200 breakout:

http://www.sparkfun.com/products/9801

http://www.soldercore.com/products/sensecore/coregyro/
http://www.sparkfun.com/products/9801

CoreBASIC Reference Guide CoreBASIC Driver Reference

554

InvenSense MPU-6000 Driver

Installation

INSTALL "INVENSENSE-MPU-6000" USING select

INSTALL "MPU-6000" USING select

Options

None.

Description

Installs a combination gyroscope and accelerometer driver for the InvenSense MPU-6000.

Because the MPU-6000 is an SPI device, the USING clause must specify a single-bit GPIO that controls the chip

select connected to the MPU-6000 device. When the MPU-6000 is paired with the CoreBASIC AHRS driver, it

makes an excellent 6DOF IMU. When the MPU-6000 and a magnetometer are fused by the the AHRS driver, you

have an even better 9DOF attitude and heading reference system.

The MPU-6000 driver was tested on an InvenSense MPU-6000 Evaluation Board connected to a CoreProto rivet

plugged into a SenseCore.

If you need an easy to use plug-and-go motion sensing and AHRS solution, take a look at the SolderCore

CoreMPU.

Properties

General

VERSION String Read A string containing the silicon
revision of the MPU-6000.

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX Analog Read Acceleration measured along the x
axis, in g.

AY Analog Read Acceleration measured along the y
axis, in g.

AZ Analog Read Acceleration measured along the z
axis, in g.

http://www.soldercore.com/products/sensecore/corempu/

CoreBASIC Reference Guide CoreBASIC Driver Reference

555

RANGE(0) Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH(0) Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

BIAS(0) Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN(0) Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Gyroscope

G Analog Read An array of three numbers
containing the rotation rates
measured around the x, y, and z
axes, in degrees per second.

GX Analog Read Rotation rate around the x axis, in
degrees per second.

GY Analog Read Rotation rate around the y axis, in
degrees per second.

GZ Analog Read Rotation rate around the z axis, in
degrees per second.

RANGE(1) Analog R/W Selected full scale range of the
gyroscope, in degrees per second.

BANDWIDTH(1) Analog R/W Selected bandwidth of the of the
gyroscope, in hertz.

BIAS(1) Analog R/W An array of three numbers
containing the gyroscope bias, in
degrees per second, for the x, y, and
z axes.

GAIN(1) Analog R/W An array of three numbers
containing the gain for one LSB, in
degrees per second, for the x, y, and
z axes.

Algorithms

CoreBASIC Reference Guide CoreBASIC Driver Reference

556

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

Additional

BANDWIDTH Analog R/W Selected bandwidth of the
of the sensor assembly as a
whole, in hertz. This is the
smaller of BANDWIDTH(0) and
BANDWIDTH(1).

TEMP Analog Write Die temperature, in degrees Celsius.

Transport

SPEED Digital R/W The speed of the bus, in hertz, when
addressing the device. The default
is 1 MHz, which is the maximum
speed supported by the MPU-6000.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

HALF(n) Digital R/W Reads or writes the 16-bit device
register n.

References

The InvenSense MPU-6000 Evaluation Board manual:

http://www.invensense.com/mems/gyro/mpu6050.html

The SolderCore CoreMPU SExI module:

http://www.invensense.com/mems/gyro/mpu6050.html

CoreBASIC Reference Guide CoreBASIC Driver Reference

557

http://www.soldercore.com/products/sensecore/corempu/

Notes

See Accelerometers, Gyroscopes, SolderCore CoreMPU Driver, and AHRS Driver.

http://www.soldercore.com/products/sensecore/corempu/

CoreBASIC Reference Guide CoreBASIC Driver Reference

558

InvenSense MPU-6050 Driver

Installation

INSTALL "INVENSENSE-MPU-6050"

INSTALL "MPU-6050"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0xD0.

Description

Installs a combination gyroscope and accelerometer driver for the InvenSense MPU-6050.

When the MPU-6050 is paired with the CoreBASIC AHRS driver, it makes an excellent 6DOF IMU. When the

MPU-6050 and a magnetometer are fused by the the AHRS driver, you have an even better 9DOF attitude and

heading reference system.

Note that the CORE-MPU driver configures the SolderCore CoreMPU in its entirety to simplify generating a 9DOF

sensor-fusion AHRS.

Please see SolderCore CoreMPU Driver for more information on the CoreMPU driver and see AHRS Driver for

more information on putting this device to work.

Properties

General

VERSION String Read A string containing the silicon
revision of the MPU-6050.

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX Analog Read Acceleration measured along the x
axis, in g.

AY Analog Read Acceleration measured along the y
axis, in g.

AZ Analog Read Acceleration measured along the z
axis, in g.

CoreBASIC Reference Guide CoreBASIC Driver Reference

559

RANGE(0) Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH(0) Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

BIAS(0) Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN(0) Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Gyroscope

G Analog Read An array of three numbers
containing the rotation rates
measured around the x, y, and z
axes, in degrees per second.

GX Analog Read Rotation rate around the x axis, in
degrees per second.

GY Analog Read Rotation rate around the y axis, in
degrees per second.

GZ Analog Read Rotation rate around the z axis, in
degrees per second.

RANGE(1) Analog R/W Selected full scale range of the
gyroscope, in degrees per second.

BANDWIDTH(1) Analog R/W Selected bandwidth of the of the
gyroscope, in hertz.

BIAS(1) Analog R/W An array of three numbers
containing the gyroscope bias, in
degrees per second, for the x, y, and
z axes.

GAIN(1) Analog R/W An array of three numbers
containing the gain for one LSB, in
degrees per second, for the x, y, and
z axes.

Algorithms

CoreBASIC Reference Guide CoreBASIC Driver Reference

560

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

Additional

BANDWIDTH Analog R/W Selected bandwidth of the
of the sensor assembly as a
whole, in hertz. This is the
smaller of BANDWIDTH(0) and
BANDWIDTH(1).

TEMP Analog Write Die temperature, in degrees Celsius.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

HALF(n) Digital R/W Reads or writes the 16-bit device
register n.

References

InvenSense MPU-6050:

http://www.invensense.com/mems/gyro/mpu6050.html

The SolderCore CoreMPU SExI module:

http://www.soldercore.com/products/sensecore/corempu/

Notes

See Accelerometers, Gyroscopes, SolderCore CoreMPU Driver, and AHRS Driver.

http://www.invensense.com/mems/gyro/mpu6050.html
http://www.soldercore.com/products/sensecore/corempu/

CoreBASIC Reference Guide CoreBASIC Driver Reference

561

InvenSense MPU-6050EVB Driver

Installation

INSTALL "INVENSENSE-MPU-6050EVB"

INSTALL "MPU-6050EVB"

Options

ADDR=integer

Set the I2C 8-bit address of the InvenSense MPU. By default the driver uses the address 0xD0.

Description

Installs a combination gyroscope, accelerometer, and magnetometer driver for the InvenSense MPU-6050EVB

evaluation board. The MPU-6050EVB integrates an InvenSense MPU-6050 accelerometer and gyroscope and an

Asahi Kasei AK8975 magnetometer to provide a 9DOF sensor platform.

This driver will also work with an MPU-9150EVB where all sensors are integrated into a single package which acts

the same as the MPU-6050EVB.

The MPU driver automatically detects the type of MPU attached (MPU-6050, MPU-6150, or MPU-9150) and

configures itself for that device. The VERSION property returns the type of device detected and its silicon

revision.

When the MPU and AK8975 are fused by the AHRS driver, you have excellent 9DOF attitude and heading

reference system.

Properties

General

VERSION String Read A string containing the silicon
revision of the MPU.

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX Analog Read Acceleration measured along the x
axis, in g.

AY Analog Read Acceleration measured along the y
axis, in g.

AZ Analog Read Acceleration measured along the z
axis, in g.

CoreBASIC Reference Guide CoreBASIC Driver Reference

562

RANGE(0) Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH(0) Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

BIAS(0) Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN(0) Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Gyroscope

G Analog Read An array of three numbers
containing the rotation rates
measured around the x, y, and z
axes, in degrees per second.

GX Analog Read Rotation rate around the x axis, in
degrees per second.

GY Analog Read Rotation rate around the y axis, in
degrees per second.

GZ Analog Read Rotation rate around the z axis, in
degrees per second.

RANGE(1) Analog R/W Selected full scale range of the
gyroscope, in degrees per second.

BANDWIDTH(1) Analog R/W Selected bandwidth of the of the
gyroscope, in hertz.

BIAS(1) Analog R/W An array of three numbers
containing the gyroscope bias, in
degrees per second, for the x, y, and
z axes.

GAIN(1) Analog R/W An array of three numbers
containing the gain for one LSB, in
degrees per second, for the x, y, and
z axes.

Magnetometer

M Analog Read An array of three numbers
containing the magnetic field
measured in the x, y, and z axes, in
microtesla.

CoreBASIC Reference Guide CoreBASIC Driver Reference

563

MX Analog Read Magnetic field measured in the x
direction, in microtesla.

MY Analog Read Magnetic field measured in the y
direction, in microtesla.

MZ Analog Read Magnetic field measured in the z
direction, in microtesla.

BANDWIDTH(2) Analog R/W Selected bandwidth of the of the
magnetometer, in hertz.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

Additional

BANDWIDTH Analog R/W Selected bandwidth of the
of the sensor assembly as a
whole, in hertz. This is the
smaller of BANDWIDTH(0) and
BANDWIDTH(1).

TEMP Analog Write MPU-6050 die temperature, in
degrees Celsius.

References

InvenSense MPU-6050 EVB:

http://www.invensense.com/mems/gyro/documents/AN-MPU-6000EVB.pdf

InvenSense MPU-9150 EVB:

http://www.invensense.com/mems/gyro/documents/AN-MPU-9150EVB-00.pdf

http://www.invensense.com/mems/gyro/documents/AN-MPU-6000EVB.pdf
http://www.invensense.com/mems/gyro/documents/AN-MPU-9150EVB-00.pdf

CoreBASIC Reference Guide CoreBASIC Driver Reference

564

Notes

See Accelerometers, Gyroscopes, Magnetometers, and AHRS Driver.

CoreBASIC Reference Guide CoreBASIC Driver Reference

565

InvenSense MPU-9150 Driver

Installation

INSTALL "INVENSENSE-MPU-9150"

Options

ADDR=integer

Set the I2C 8-bit address of the InvenSense MPU. By default the driver uses the address 0xD0.

Description

Installs a combination gyroscope, accelerometer, and magnetometer driver for the InvenSense MPU-9150. The

MPU-9150 integrates an accelerometer and gyroscope and an Asahi Kasei AK8975 magnetometer to provide a

9DOF sensor platform.

When the MPU and AK8975 are fused by the AHRS driver, you have excellent 9DOF attitude and heading

reference system.

Properties

General

VERSION String Read A string containing the silicon
revision of the MPU.

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX Analog Read Acceleration measured along the x
axis, in g.

AY Analog Read Acceleration measured along the y
axis, in g.

AZ Analog Read Acceleration measured along the z
axis, in g.

RANGE(0) Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH(0) Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

CoreBASIC Reference Guide CoreBASIC Driver Reference

566

BIAS(0) Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN(0) Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Gyroscope

G Analog Read An array of three numbers
containing the rotation rates
measured around the x, y, and z
axes, in degrees per second.

GX Analog Read Rotation rate around the x axis, in
degrees per second.

GY Analog Read Rotation rate around the y axis, in
degrees per second.

GZ Analog Read Rotation rate around the z axis, in
degrees per second.

RANGE(1) Analog R/W Selected full scale range of the
gyroscope, in degrees per second.

BANDWIDTH(1) Analog R/W Selected bandwidth of the of the
gyroscope, in hertz.

BIAS(1) Analog R/W An array of three numbers
containing the gyroscope bias, in
degrees per second, for the x, y, and
z axes.

GAIN(1) Analog R/W An array of three numbers
containing the gain for one LSB, in
degrees per second, for the x, y, and
z axes.

Magnetometer

M Analog Read An array of three numbers
containing the magnetic field
measured in the x, y, and z axes, in
microtesla.

MX Analog Read Magnetic field measured in the x
direction, in microtesla.

MY Analog Read Magnetic field measured in the y
direction, in microtesla.

MZ Analog Read Magnetic field measured in the z
direction, in microtesla.

BANDWIDTH(2) Analog R/W Selected bandwidth of the of the
magnetometer, in hertz.

CoreBASIC Reference Guide CoreBASIC Driver Reference

567

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

Additional

BANDWIDTH Analog R/W Selected bandwidth of the
of the sensor assembly as a
whole, in hertz. This is the
smaller of BANDWIDTH(0) and
BANDWIDTH(1).

TEMP Analog Write MPU-6050 die temperature, in
degrees Celsius.

References

InvenSense MPU-9150:

http://invensense.com/mems/gyro/mpu9150.html

Notes

See Accelerometers, Gyroscopes, Magnetometers, and AHRS Driver.

http://invensense.com/mems/gyro/mpu9150.html

CoreBASIC Reference Guide CoreBASIC Driver Reference

568

ITead Studio Colors Shield

Installation

INSTALL "ITEAD-STUDIO-COLORS-SHIELD"

INSTALL "COLORS-SHIELD"

Options

None.

Description

Installing the Colors Shield Shield driver provides an 8×8 color graphic display using the high-power LEDs on the

shield. You can use all the CoreBASIC graphics commands to drive the LED display.

Properties

Control

FREQUENCY Digital R/W Line scanning frequency. To reduce
flicker, at the expense of higher
CPU overhead, you can increase
the scanning frequency. To reduce
CPU overhead, at the expense of
increased flicker, decrease the
scanning frequency. By default, the
frequency is set to 600 Hz; as the
array has eight lines, the default
frame scanning frequency is 75Hz.
Values assigned to FREQUENCY are
clamped to lie in the range 100 to
1,000.

Example

This example scrolls a multi-color message across the LED display.

***../examples/colors-shield-message.bas not found ***

You can load this into CoreBASIC using EXAMPLE "colors-shield-message" or |colors-shield-

message.

Resources

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=312

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=312

CoreBASIC Reference Guide CoreBASIC Driver Reference

569

ITead Studio ITDB02-2.2 LCD Module

Installation

INSTALL "ITEAD-STUDIO-ITDB02-2.2"

INSTALL "ITDB02-2.2"

Options

None.

Description

Installing the ITDB02 shield with the 2.2" LCD Module provides a 176×220 color graphic display with touch

screen input.

ITDB02 v2 shield

Using the ITDB02-2.2 LCD module and the ITDB02 v2 shield requires no configuration.

ITDB02 v1 shield

Using the ITDB02-2.2 LCD module and the ITDB02 v1 shield requires proper configuration to ensure success. The

LCD functions in 8-bit mode, so all shorting blocks on the ITDB02 must be moved to the T&SD side.

The switch on the ITB02 shield selects between routing the SD card or the the touch controller signals to the

SolderCore. This driver requires the switch in the Touch position and support the touch panel only.

Notes

The LCD and touch controller require a lot of pins on the SolderCore to drive it. If you really wish to have pins

left over and outstanding performance, the SolderCore LCD Shield uses only a few pins, has a 2.8" LCD with

touchscreen, and the firmware for the 400 MHz XMOS XS1-L1 device on board is fully open source.

Resources

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=149 — shield

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=529 — 2.2" LCD module

A reference for all the displays offered by ITead Studio is found here:

ITead Studio LCDs

Benchmarks

Here is the result of running the SolderCore Graphics Benchmarks application:

> run
Graphics display benchmark for ITEAD-STUDIO-ITDB02-2.2

 Circles: 3267 ms

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=149
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=529

CoreBASIC Reference Guide CoreBASIC Driver Reference

570

 Discs: 27950 ms
Rectangles: 781 ms
 Slabs: 22730 ms
 Lines: 9648 ms
 Polygons: 7858 ms
 Text: 3907 ms
> _

CoreBASIC Reference Guide CoreBASIC Driver Reference

571

ITead Studio ITDB02-2.4D LCD Module

Installation

INSTALL "ITEAD-STUDIO-ITDB02-2.4D"

INSTALL "ITDB02-2.4D"

Options

None.

Description

Installing the ITDB02 shield with the 2.4" LCD Module provides a 320×240 color graphic display with touch

screen input.

There are two versions of the ITDB02-2.4D LCD with different revisions of the ILI9325 controller. This driver

expects to use the 2.4D LCD panel with the ILI9325D controller; there is an earlier 2.4 panel using the ILI9325C

controller, but unfortunately that is no longer manufactured and we have no means to test any code on it.

ITDB02 v2 shield

Using the ITDB02-2.4D LCD module and the ITDB02 v2 shield requires no configuration.

ITDB02 v1 shield

Using the 2.4" LCD module requires proper configuration of the ITDB02 v1 shield to ensure success. The LCD

functions in 8-bit mode, so all shorting blocks on the ITDB02 must be moved to the T&SD side.

The switch on the ITB02 shield selects between routing the SD card or the the touch controller signals to the

SolderCore. This driver requires the switch in the Touch position and support the touch panel only.

Notes

The LCD and touch controller require a lot of pins on the SolderCore to drive it. If you really wish to have pins

left over and outstanding performance, the SolderCore LCD Shield uses only a few pins, has a 2.8" LCD with

touchscreen, and the firmware for the 400 MHz XMOS XS1-L1 device on board is fully open source.

Resources

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=149 — shield

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=55 — 2.4" LCD module

A reference for all the displays offered by ITead Studio is found here:

ITead Studio LCDs

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=149
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=55

CoreBASIC Reference Guide CoreBASIC Driver Reference

572

ITead Studio ITDB02-2.4E LCD Module

Installation

INSTALL "ITEAD-STUDIO-ITDB02-2.4E"

INSTALL "ITDB02-2.4E"

Options

None.

Description

Installing the ITDB02 shield with the ITDB02-2.4E LCD Module provides a 320×240 color graphic display with

touch screen input.

You can purchase a combined ITDB02-2.4E shield which integrated the ITDB02 v2 shield electronics and the

ITDB02-2.4E LCD module into a single combined. This offers no-hassle setup but doesn't enable you to swap LCD

displays like the ITDB02 shield does.

ITDB02 v2 shield

Using the ITDB02-2.4E LCD module and the ITDB02 v2 shield requires no configuration.

ITDB02 v1 shield

Using the ITDB02-2.4E LCD module requires proper configuration of the ITDB02 v1 shield to ensure success. The

LCD functions in 8-bit mode, so all shorting blocks on the ITDB02 must be moved to the T&SD side.

The switch on the ITB02 shield selects between routing the SD card or the the touch controller signals to the

SolderCore. This driver requires the switch in the Touch position and support the touch panel only.

Notes

The LCD and touch controller require a lot of pins on the SolderCore to drive it. If you really wish to have pins

left over and outstanding performance, the SolderCore LCD Shield uses only a few pins, has a 2.8" LCD with

touchscreen, and the firmware for the 400 MHz XMOS XS1-L1 device on board is fully open source.

Benchmarks

Here is the result of running the SolderCore Graphics Benchmarks application:

> run
Graphics display benchmark for ITEAD-STUDIO-ITDB02-2.4E

CoreBASIC Reference Guide CoreBASIC Driver Reference

573

 Circles: 2494 ms
 Discs: 26460 ms
Rectangles: 701 ms
 Slabs: 24267 ms
 Lines: 6961 ms
 Polygons: 7626 ms
 Text: 2224 ms
> _

Resources

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=149 — ITDB02 shield

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=55 — 2.4" LCD module

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=473 — 2.4" LCD module

and shield combined

A reference for all the displays offered by ITead Studio is found here:

ITead Studio LCDs

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=149
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=55
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=473

CoreBASIC Reference Guide CoreBASIC Driver Reference

574

ITead Studio ITDB02-2.8 LCD Module

Installation

INSTALL "ITEAD-STUDIO-ITDB02-2.8"

INSTALL "ITDB02-2.8"

Options

None.

Description

Installing the ITDB02 shield with the 2.8" LCD Module provides a 320×240 color graphic display with touch

screen input.

Setup

Using the 2.8" LCD module requires proper configuration of the ITDB02 shield to ensure success. The LCD

functions in 8-bit mode, so all shorting blocks on the ITDB02 must be moved to the T&SD side.

The switch on the ITB02 shield selects between routing the SD card or the the touch controller signals to the

SolderCore. This driver requires the switch in the Touch position and support the touch panel only.

The LCD and touch controller require a lot of pins on the SolderCore to drive it. If you really wish to have pins

left over and outstanding performance, the SolderCore LCD Shield uses only a few pins, has a 2.8" LCD with

touchscreen, and the firmware for the 400 MHz XMOS XS1-L1 device on board is fully open source.

Resources

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=149 — shield

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=530 — 2.8" LCD module

A reference for all the displays offered by ITead Studio is found here:

ITead Studio LCDs

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=149
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=530

CoreBASIC Reference Guide CoreBASIC Driver Reference

575

ITead Studio ITDB02-3.2S LCD Module

Installation

INSTALL "ITEAD-STUDIO-ITDB02-3.2S"

INSTALL "ITDB02-3.2S"

Options

None.

Description

Installing the ITDB02 shield with the ITDB02-3.2S LCD Module provides a 320×240 color graphic display but no

touch screen input.

Note that ITead Studio sold an ITDB02-3.2 module in the past—note the lack of a trailing "S". This driver is not

compatible with the ITDB02-3.2 module.

Setup

Using the ITDB02-3.2S LCD module requires proper configuration of the ITDB02 shield to ensure success. The

LCD only functions in 16-bit mode, so all shorting blocks on the ITDB02 must be moved to the LCD_16bit side.

Unfortunately, driving the LCD in 16-bit mode utilizes all the pins on the SolderCore, leaving nothing free. A

disappointing consequence is that you cannot use the SD card interface, nor can you use the touch screen

controller. (As an aside, the ITDB02 Mega Shield does support concurrent SD card and touch capability along

with the LCD, but that is a different format shield.)

If you really wish to have pins left over and outstanding performance, the SolderCore LCD Shield uses only a few

pins, has a 2.8" LCD with touchscreen, and the firmware for the 400 MHz XMOS XS1-L1 device on board is fully

open source.

Resources

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=149 — shield

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=54 — 3.2" LCD module

A reference for all the displays offered by ITead Studio is found here:

ITead Studio LCDs

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=149
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=54

CoreBASIC Reference Guide CoreBASIC Driver Reference

576

ITead Studio ITDB02-3.2WD LCD Module

Installation

INSTALL "ITEAD-STUDIO-ITDB02-3.2WD"

INSTALL "ITDB02-3.2WD"

Options

None.

Description

Installing the ITDB02 shield with the ITDB02-3.2WD LCD Module provides a 240×400 color graphic display but no

touch screen input.

Note that ITead Studio sold an ITDB02-3.2WC module in the past. This driver is not compatible with the

ITDB02-3.2WC LCD module.

Setup

Using the ITDB02-3.2WD LCD module requires proper configuration of the ITDB02 shield to ensure success. The

LCD only functions in 16-bit mode, so all shorting blocks on the ITDB02 must be moved to the LCD_16bit side.

Unfortunately, driving the LCD in 16-bit mode utilizes all the pins on the SolderCore, leaving nothing free. A

disappointing consequence is that you cannot use the SD card interface, nor can you use the touch screen

controller. (As an aside, the ITDB02 Mega Shield does support concurrent SD card and touch capability along

with the LCD, but that is a different format shield.)

If you really wish to have pins left over and outstanding performance, the SolderCore LCD Shield uses only a few

pins, has a 2.8" LCD with touchscreen, and the firmware for the 400 MHz XMOS XS1-L1 device on board is fully

open source.

Resources

This is the ITDB02 shield; currently only the v2 shield is offered for sale and is not compatible with the 3.2WD and

SolderCore.

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=149

This is the display module, ITead Studio part number DIS012:

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=263

A reference for all the displays offered by ITead Studio is found here:

ITead Studio LCDs

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=149
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=263

CoreBASIC Reference Guide CoreBASIC Driver Reference

577

ITead Studio ITDB02-4.3 LCD Module

Installation

INSTALL "ITEAD-STUDIO-ITDB02-4.3"

INSTALL "ITDB02-4.3"

Options

None.

Description

Installing the ITDB02 shield with the ITDB02-4.3 LCD Module provides a 480×272 color graphic display but no

touch screen input.

Setup

Using the ITDB02-4.3 is unreliable with the ITDB02 v1.2 shield and is incompatible with the ITDB02 v2 shield, so

you need to connect the ITDB02-4.3 module to the SolderCore headers directly.

Unfortunately, driving the LCD in 16-bit mode utilizes all the pins on the SolderCore, leaving nothing free. A

disappointing consequence is that you cannot use the SD card interface, nor can you use the touch screen

controller. (As an aside, the ITDB02 Mega Shield does support concurrent SD card and touch capability along

with the LCD, but that is a different format shield.)

If you really wish to have pins left over and outstanding performance, the SolderCore LCD Shield uses only a few

pins, has a 2.8" LCD with touchscreen, and the firmware for the 400 MHz XMOS XS1-L1 device on board is fully

open source.

Resources

This is the display module:

http://www.itead-europe.com/index.php/display/tft-lcm/itdb02-4-3.html

A reference for all the displays offered by ITead Studio and for hand-wiring this display is found here:

ITead Studio LCDs

http://www.itead-europe.com/index.php/display/tft-lcm/itdb02-4-3.html

CoreBASIC Reference Guide CoreBASIC Driver Reference

578

ITead Studio ITDB02-5.0 LCD Module

Installation

INSTALL "ITEAD-STUDIO-ITDB02-5.0"

INSTALL "ITDB02-5.0"

Options

None.

Description

Installing the ITDB02 shield with the ITDB02-5.0 LCD Module provides a 780×480 color graphic display but no

touch screen input.

Setup

Using the ITDB02-5.0 is unreliable with the ITDB02 v1.2 shield and is incompatible with the ITDB02 v2 shield, so

you need to connect the ITDB02-5.0 module to the SolderCore headers directly.

Unfortunately, driving the LCD in 16-bit mode utilizes all the pins on the SolderCore, leaving nothing free. A

disappointing consequence is that you cannot use the SD card interface, nor can you use the touch screen

controller. (As an aside, the ITDB02 Mega Shield does support concurrent SD card and touch capability along

with the LCD, but that is a different format shield.)

If you really wish to have pins left over and outstanding performance, the SolderCore LCD Shield uses only a few

pins, has a 2.8" LCD with touchscreen, and the firmware for the 400 MHz XMOS XS1-L1 device on board is fully

open source.

Resources

This is the display module:

http://www.itead-europe.com/index.php/display/tft-lcm/itdb02-5-0.html

A reference for all the displays offered by ITead Studio and for hand-wiring this display is found here:

ITead Studio LCDs

http://www.itead-europe.com/index.php/display/tft-lcm/itdb02-5-0.html

CoreBASIC Reference Guide CoreBASIC Driver Reference

579

Jee Labs LCD Plug

Installation

INSTALL "JEE-LABS-LCD-PLUG"

INSTALL "LCD-PLUG"

Options

ADDR=integer

Set the I2C 8-bit address of the MCP23028 bus expander. By default the driver uses the address 0x48.

Description

Installing the LCD Plug driver provides a character-based LCD display with up to four lines and up to 40

characters per line.

Note that LCD displays that are 4×40 characters are composed of two separate HD44780s which share a

common bus but have two select (or enable) signals to allow selection of each. It is not possible for the Jee Plug

to drive these displays because it does not support two chip selects on the 16-pin LCD header.

Properties

Dimensions

WIDTH Digital R/W The width of the display, in
character positions.

HEIGHT Digital R/W The height of the display, in
character lines.

Cursor

X or COL Digital R/W The x co-ordinate of the cursor.

Y or ROW Digital R/W The y co-ordinate of the cursor.

CURSOR Digital Write Cursor control. Writing 0 to
CURSOR turns the cursor off, and
writing 1 turns it on.

LINE String R/W As Y and ROW.

POS Digital R/W An array containing the x and y co-
ordinates of the cursor.

Control

LIGHT Digital Write Backlight control. Writing 0 to
LIGHT turns the backlight off, if the
display has a controllable backlight,
and writing 1 turns it on.

CoreBASIC Reference Guide CoreBASIC Driver Reference

580

Character I/O

LINE(n) String R/W As Y(n) and ROW(n).

Y(n) or ROW(n) String R/W When read, returns the string being
displayed on line n of the display.
When written, overwrites the whole
of line n of the display, filling the
line with extra spaces if necessary.

CENTER(n) String Write Centers the string written on
display line n. If the string is too
long for the display, only the central
part is displayed. If the string is
narrower than the display width, it
is padded left and right with spaces
to the display width such that it lies
central within the display.

RIGHT(n) String Write Right-justifies the string written
on display line n. If the string is too
long for the display, it is truncated
on the left such that the rightmost
part of the string covers the whole
line. If the string is narrower than
the display width, it is padded left
with spaces to the display width
such that it lies adjusted right on
the display.

Resources

http://jeelabs.com/products/lcd-plug

http://jeelabs.com/products/lcd-plug

CoreBASIC Reference Guide CoreBASIC Driver Reference

581

Jimmie Rodgers LoL Shield

Installation

INSTALL "JIMMIE-RODGERS-LOL-SHIELD"

INSTALL "LOL-SHIELD"

Options

None.

Description

Installing the LoL Shield Shield driver provides a 14×9 monochrome graphic display using the LEDs on the

shield. You can use all the CoreBASIC graphics commands to drive the LED display. In addition to this, this driver

offers an additional set of properties to directly address individual rows and columns of the display, and the

display as a whole, to ease animation and special effects.

Properties

Control

POLARITY Digital R/W Display polarity. By default, the
display is such that the LEDs
light when writing in color 1
with POLARITY set to 0. Setting
POLARTY to 1 inverts the display,
keeping all displayed content
unchanged. Using this property,
you can easily flash the display by
simply altering the display polarity
or write in "inverse video".

FREQUENCY Digital R/W Display scanning frequency. To
reduce flicker, at the expense of
higher CPU overhead, you can
increase the scanning frequency.
To reduce CPU overhead, at the
expense of increased flicker,
decrease the scanning frequency.
By default, the frequency is set
at 600 Hz; values assigned to
FREQUENCY are clamped to lie in
the range 100 to 1,000.

Direct Output

CoreBASIC Reference Guide CoreBASIC Driver Reference

582

FRAME Digital R/W Display frame dump. When read,
FRAME property returns an array
of 9 numbers corresponding to the
pixel state of each row of LEDs. The
elements of the array are binary
coded with bit 0 corresponding
to the leftmost LED, and bit 13
corresponding to the rightmost
LED. When written, the whole
display frame is updated with the
contents of the array assigned.

ROW(n) Digital R/W Binary-coded row data. When read,
returns the row data for row n, with
bit 0 corresponding to the leftmost
LED, and bit 13 corresponding to
the rightmost LED. When written,
updates row n with the assigned
binary-coded row data.

COL(n) Digital R/W Binary-coded column data. When
read, returns the column data for
column n, with bit 0 corresponding
to the topmost LED, and bit 8
corresponding to the bottommost
LED. When written, updates column
n with the assigned binary-coded
column data.

Scrolling message example

This application scrolls a simple message across the display, then flashes a message using the POLARITY

property.

***../examples/lol-message.bas not found ***

You can load this into CoreBASIC using EXAMPLE "lol-message" or |lol-message.

Random dissolve example

This runs a few random dissolves on the display:

***../examples/lol-dissolve.bas not found ***

You can load this into CoreBASIC using EXAMPLE "lol-dissolve" or |lol-dissolve.

Static noise example

This shows how to assign the whole frame at once to produce a display of random "static".

CoreBASIC Reference Guide CoreBASIC Driver Reference

583

***../examples/lol-static.bas not found ***

You can load this into CoreBASIC using EXAMPLE "lol-static" or |lol-static.

Resources

This is the original from Jimmie Rodgers:

http://jimmieprodgers.com/kits/lolshield/

The original shield offered by Jimmie Rodgers needs to be hand-soldered, and that takes a long time. However,

there are other shields on the market that come pre-assembled.

Compatible hardware is available, pre-assembled and tested, from Olimex:

http://www.olimex.com/dev/shield-lol.html

Of all the shields offered on the market now, the one with the best uniform brightness across all LEDs is the

Olimex LoL Shield with SMD LEDs, the SHIELD-LOL-SMT. The LEDs on this shield are not as bright as other

shields, but it produces a lovely uniform display.

Beware: the Olimex LoL Shield with 3mm green LEDs is so bright it could permanently burn an image into your

retina!

http://jimmieprodgers.com/kits/lolshield/
http://www.olimex.com/dev/shield-lol.html

CoreBASIC Reference Guide CoreBASIC Driver Reference

584

Kionix KXP84 Driver

Installation

INSTALL "KIONIX-KXP84"

INSTALL "KXP84"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x30; to configure the alternate address, use

ADDR=0x32.

Description

Installs an accelerometer driver for the KXP84. The KXP84 has a fixed 2g range and a fixed bandwidth defined by

a set of capacitors connected to the accelerometer.

Properties

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

Configuration

CoreBASIC Reference Guide CoreBASIC Driver Reference

585

RANGE Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH Analog R/W Selected bandwidth of the of
the accelerometer, in hertz. This
reads as 0 as the bandwidth is not
configurable and not documented
in the datasheet.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

CoreBASIC Reference Guide CoreBASIC Driver Reference

586

Kionix KXTF9 Driver

Installation

INSTALL "KIONIX-KXTF9"

INSTALL "KXTF9"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x1E.

Description

Installs an accelerometer driver for the KXTF9. The KXP84 supports 2g, 4g, and 8g ranges with a fixed bandwidth.

Properties

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

Configuration

RANGE Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

CoreBASIC Reference Guide CoreBASIC Driver Reference

587

BANDWIDTH Analog R/W Selected bandwidth of the of
the accelerometer, in hertz. This
reads as 0 as the bandwidth is not
configurable.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

CoreBASIC Reference Guide CoreBASIC Driver Reference

588

Linear Technology LTC2309 Driver

Installation

INSTALL "LINEAR-TECHNOLOGY-LTC2309"

INSTALL "LTC2309"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x10.

Description

Installs an 8-channel ADC driver for the Linear Techonology LTC2309 analog to digital converter. Each channel is

configured as a unipolar input.

Properties

Configuration

RESOLUTION Digital R The sample resolution, in bits. This
is fixed at 12.

Measurement

A0 … A7 Analog Read Measures the voltage on one of the
analog channels 0 through 7. An is
equivalent to A(n).

A(n) Analog Read Measure the voltage on analog
channel n. The value returned will
range between 0 and +1 for full
scale.

A Analog Read Measures the voltage on all eight
channels sequentially and returns
the measurements as an array of
eight numbers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

589

Linear Technology LTC6904 Driver

Installation

INSTALL "LINEAR-TECHNOLOGY-LTC6904"

INSTALL "LTC6904"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x2E; to configure the alternate address, use

ADDR=0x2C.

Description

Installs an digital oscillator driver for the LTC6904. The LTC6904 can be programmed to oscillate between 1 kHz

and 68 MHz.

Properties

Output

FREQUENCY Analog R/W Selected oscillator frequency in
hertz. Writing to this property will
select the frequency nearest to the
written value. When reading this
property, the value read will be the
oscillator frequency selected by the
driver as the nearest frequency to
the requested frequency.

MODE Digital R/W The selected oscillator mode. Mode
0 drives both CLK and nCLK with
nCLK = −CLK; mode 1 drives nCLK
only; mode 2 drives CLK only; and
mode 3 powers down the oscillator.

CoreBASIC Reference Guide CoreBASIC Driver Reference

590

Liquidware Input Shield

Installation

INSTALL "LIQUIDWARE-INPUT-SHIELD"

INSTALL "INPUT-SHIELD"

Options

MODE=A

Configures the driver for an InputShield with the mode switch in the A position.

MODE=B

Configures the driver for an InputShield with the mode switch in the B position.

Description

Installs a driver for the analog joystick and digital buttons on the InputShield. What makes the InputShield

slightly different from many other joystick shield is the vibration motor for haptic feedback, also known as a

rumble function.

When delivered, the InputShield's joystick outputs are configured to vary between 0V and +5V as the joystick's

potentiometers are tied to the 5V rail. In order to use this shield with SolderCore, you need a simple hardware

modification:

• Snip the 5V pin from the underside of the shield.

• Strap the 5V pin to the 3V3 pin next to it on the topside of the shield using a solder bridge or a small

length of wire.

With that done, the InputShield works perfectly with SolderCore.

Properties

Buttons

A Digital Read Sense A button. This property reads
1 when the A button is pressed and
0 when not.

B Digital Read Sense B button. This property reads
1 when the B button is pressed and
0 when not.

Analog Joystick

PRESS Digital Read This property reads 1 when the
joystick is pressed down and
continues to read 1 until the
joystick is released. It reads 0 when
it is not pressed.

CoreBASIC Reference Guide CoreBASIC Driver Reference

591

SELECT Digital Read As PRESS.

H Analog Read Sense horizontal joystick position;
−1 is fully left, +1 is fully right, and 0
is centered.

V Analog Read Sense vertical joystick position; −1
is fully down, +1 is fully up, and 0 is
centered.

POS Analog Read A complex number where the
real component is the horizontal
position of the joystick and the
imaginary component is the vertical
position of the joystick.

Vibration Motor

MOTOR Digital Write Controls the vibration motor. When
written to 0, the motor is turned off.
When written to any nonzero value,
the motor is turned on.

Resources

http://www.liquidware.com/shop/show/INPT/InputShield

http://www.liquidware.com/shop/show/INPT/InputShield

CoreBASIC Reference Guide CoreBASIC Driver Reference

592

Matrix Keyboard Driver

Installation

INSTALL "MATRIX-KEYBOARD" USING rowbus, colbus

Options

None.

Description

Installs a generic matrix keyboard driver using the two buses rowbus and colbus to scan the keyboard. The width

of the buses rowbus and colbus must match the electrical "rectangular" layout of the matrix.

The matrix keyboard is scanned by driving a single row bus signal low on rowbus and then sensing the column

outputs using colbus, for each row in the matrix. Each row on rowbus corresponds to a single row in the matrix,

and each column on colbus corresponds to a single column in the matrix. Of course, the physical layout of they

keys need to be taken into consideration, so the above simply reflects the logical layout of the keyboard matrix.

The position of a key on row r, column c is denoted (r, c). Both row and column numbers start from zero.

Scan codes for the matrix start from 1. The scan code corresponding to the position (r, c), with n columns per

row, is:

r × n + c + 1

Hence, position (0, 0) corresponds to scan code 1. Scan code 0 is reserved to indicate a "no key pressed"

condition.

Properties

Layout

ROW Digital Read Number of rows in the keyboard
matrix, and is equivalent to the
WIDTH property of rowbus.

COL Digital Read Number of columns in the keyboard
matrix, and is equivalent to the
WIDTH property of colbus.

Scanning

KEY Digital Read The scan code of the first key
pressed in the matrix, scanning in
row-wise and column-wise order
from row 0, column 0. If no key is
detected as pressed, 0 is output.

CoreBASIC Reference Guide CoreBASIC Driver Reference

593

ROW(r) Digital Read Select row r and return the column
sense. You can use this to see which
keys are held down on an individual
row. Bit c of the output is set to one
if the key at position (r, c) in the
matrix is held down.

Example

The following installs a matrix keyboard driver for the ITead Studio Ibridge Lite, which features a 3×3 matrix

keypad. The row selects are connected to D2 through D4 and the column senses are connected to D5 through

D7.

INSTALL "PARALLEL-BUS" USING CORE.D2, CORE.D3, CORE.D4 AS ROWBUS
INSTALL "PARALLEL-BUS" USING CORE.D5, CORE.D6, CORE.D7 AS COLBUS
INSTALL "MATRIX-KEYBOARD" USING ROWBUS, COLBUS AS KEYPAD
PRINT "Ready to scan keyboard. Press some keys. Key 9 to exit."
REPEAT
 SCAN = KEYPAD.INPUT
 IF SCAN THEN PRINT "Scan = "; SCAN
UNTIL SCAN = 9
END

CoreBASIC Reference Guide CoreBASIC Driver Reference

594

MaxDetect DHT and RHT Driver

Installation (DHT21, RHT03)

INSTALL "MAXDETECT-DHT21" USING data

INSTALL "DHT21" USING data

Installation (DHT11)

INSTALL "MAXDETECT-DHT11" USING data

INSTALL "DHT11" USING data

Options

None.

Description

Installs a humidity and temperature sensor driver for MaxDetect DHT11 or DHT21 devices.

As the one-wire protocol for these devices is timing sensitive, it is not possible to install the DHT21 using

a bus expander because the bus expander cannot drive and sense signals fast enough to meet the timing

requirements of the MaxDetect one-wire protocol.

Properties

Measurement

TEMP Analog Read Temperature in degrees Celsius.

HUMIDITY Analog Read Relative humidity, in percent.

DEWPOINT Analog Read Dew point in degrees Celsius,
computed from the temperature
TEMP and relative humidity
HUMIDITY.

DATA Analog Read An array of three values: the
temperature, in degrees Celsius, the
relative humidity in percent, and
the dewpoint in degrees Celsius.

CoreBASIC Reference Guide CoreBASIC Driver Reference

595

Maxim DS1340 driver

Installation

INSTALL "MAXIM-DS1340"

INSTALL "DS1340"

INSTALL "RTC-PLUG"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0xD0.

Description

Installs a real time clock driver using the DS1340. The DS1340 is a battery-backed real time clock that continues

marking time while the SolderCore is turned off. You can set the system time from the RTC time, or the RTC time

from the system, network, or GPS time if you wish to synchronize clocks.

Note

The DS1340 does not store the year, it only stores the year within the century. Because of this, the DS1340 driver

assumes all dates are in the 21st century and that YEAR will be assigned a value between 2000 and 2099.

This driver takes care of the necessary BCD to binary and binary to BCD conversions that are necessary when

reading and writing the RTC registers using the high-level properties. You can read the raw BCD values by using

the low-level PEEK and POKE properties.

Properties

Unix time

TIME Digital R/W Current time as seconds elapsed
since 1 January 1970, the standard
way of representing time in
CoreBASIC, read atomically from the
RTC. You can set the system time
used by CoreBASIC by assigning this
to CORE.TIME, or you can set the
RTC time by assigning the time from
another source (system, network,
GPS) to the RTC. When assigning
to TIME, the RTC day register will
be updated to the correct day of
the week derived from the assigned
date.

Time

CoreBASIC Reference Guide CoreBASIC Driver Reference

596

SECOND Digital R/W Current second, 0 to 59.

MINUTE Digital R/W Current minute, 0 to 59.

HOUR Digital R/W Current hour, 0 to 23.

Date

DAY Digital Read Current day within week, 1 to 7,
with 1 as Sunday. This is computed
from the date contained in the
RTC registers and is not read from
the RTC day register. If you wish to
read the RTC day register directly,
you can use the access property
PEEK(3).

DATE Digital R/W Current date (within month), 1 to
31.

MONTH Digital R/W Current month, 1 to 12.

YEAR Digital R/W Current year, 2000 to 2099.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

CoreBASIC Reference Guide CoreBASIC Driver Reference

597

Maxim MAX6675 Driver

Installation

INSTALL "MAXIM-MAX6675" USING select

INSTALL "MAX6675" USING select

Options

None.

Description

Installs a temperature sensor driver for the Maxim MAX6675. The MAX6675 is an SPI K-type thermocouple

sensor. The USING clause specifies the device select signal to select the MAX6675.

Properties

Sensors

TEMP Analog Read Returns the temperature in degrees
Celsius. If the thermocouple
is detected as open, the value
returned is NaN.

CoreBASIC Reference Guide CoreBASIC Driver Reference

598

Microchip MCP23008 Driver

Installation

INSTALL "MICROCHIP-MCP23008"

INSTALL "MCP23008"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x48.

Description

Installs an 8-bit parallel bus driver for the Microchip MCP23008.

Properties

Configuration

WIDTH Digital Read The width of the bus, in bits. Reads
as 8.

MASK Digital Read An integer with each bus bit set to
one. The mask for a bus of width n is

2n−1. Reads as 0xFF.

Bus Output

D0 … D7 Digital R/W Reads or writes individual bits on
the bus. When written, the bus
direction for that bit (only) is set
to output, and the state of the
bit is written. When read, the bus
direction for that bit (only) is set
to input and the state of the pin is
read. Note that writing to D0 is the
same as to writing to OUTPUT(0)
and reading from D0 is the same as
reading from INPUT(0), and so
on.

OUTPUT Digital R/W Reads or writes the output latches.
When written, sets the entire bus
to output and writes data to the
latches which drive the pins. When
read, returns the data set in the
latches, not the pins, and does not set
the bus to input. If you need to read
the state of the pins, use INPUT.

CoreBASIC Reference Guide CoreBASIC Driver Reference

599

OUTPUT(n) Digital R/W Reads or writes an individual output
latch. When written, sets the bus
direction for pin n to output and
writes latch bit n which then drives
the state of the pin. When read,
returns the data set for latch n, not
the pin, and does not set bus pin n
to input. If you need to read the
state of the an individual pins, use
INPUT(n).

INPUT Digital Read Sets the entire bus to input and
reads the current state of the pins.

INPUT(n) Digital Read Sets the bus direction for pin n to
input and reads the state of the pin.

DATA Digital R/W Reads or writes the entire bus.
When written, it acts as the OUTPUT
property and when read it acts as
the INPUT property.

DATA(n) Digital R/W Reads or writes an individual
pin. When written, it acts as the
OUTPUT(n) property and when
read it acts as the INPUT(n)
property.

DIRECTION Digital Read Reads the entire bus direction. Port
pins set to input mode read as 1,
port pins set to output mode read
as 0.

DIRECTION(n) Digital Read Reads the bus direction for pin n.
Port pins set to input mode read
as 1, port pins set to output mode
read as 0.

Example

This example shows hot to use the MCP23008 bus expander which controls an HD44780 to provide a 16×2

character-based LCD display.

' The LCD plug is controlled by a MCP23008 bus expander.
INSTALL "MICROCHIP-MCP23008" AS EXPANDER

' The LCD operates in 4-bit mode with the four data bus bits connected
' to bits 0 through 3 of the port expander. This creates a 4-bit bus
' using four bits on the 8-bit port expander.
INSTALL "PARALLEL-BUS" USING EXPANDER.D0, EXPANDER.D1, EXPANDER.D2, EXPANDER.D3 AS LCDBUS

' Install the HD44780 driver. We use the 4-bit bus constructed above,
' the R/S signal (connected to bit 4 of the port expander), and the E signal
' (connected to bit 6 of the port expander). The R/W signal is not used,

CoreBASIC Reference Guide CoreBASIC Driver Reference

600

' so we don't specify it when installing this driver.
INSTALL "HITACHI-HD44780" USING LCDBUS, EXPANDER.D4, EXPANDER.D6 AS LCD

' We now have the LCD initialized and ready to work.
LCD.ROW = 1 : LCD.COLUMN = 1
LCD.OUTPUT = "Hello, world!"

' We can turn the cursor on and off.
LCD.ROW = 2 : LCD.COLUMN = 1
LCD.CURSOR = 1

This is, however, equivalent to:

INSTALL "JEE-LABS-LCD-PLUG" AS LCD

CoreBASIC Reference Guide CoreBASIC Driver Reference

601

Microchip MCP23016 Driver

Installation

INSTALL "MICROCHIP-MCP23016"

INSTALL "MCP23016"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x48.

Description

Installs an 8-bit parallel bus driver for the Microchip MCP23016.

Properties

Configuration

WIDTH Digital Read The width of the bus, in bits. Reads
as 16.

MASK Digital Read An integer with each bus bit set to
one. The mask for a bus of width n is

2n−1. Reads as 0xFFFF.

Bus Output

D0 … D15 Digital R/W Reads or writes individual bits on
the bus. When written, the bus
direction for that bit (only) is set
to output, and the state of the
bit is written. When read, the bus
direction for that bit (only) is set
to input and the state of the pin is
read. Note that writing to D0 is the
same as to writing to OUTPUT(0)
and reading from D0 is the same as
reading from INPUT(0), and so
on.

OUTPUT Digital R/W Reads or writes the output latches.
When written, sets the entire bus
to output and writes data to the
latches which drive the pins. When
read, returns the data set in the
latches, not the pins, and does not set
the bus to input. If you need to read
the state of the pins, use INPUT.

CoreBASIC Reference Guide CoreBASIC Driver Reference

602

OUTPUT(n) Digital R/W Reads or writes an individual output
latch. When written, sets the bus
direction for pin n to output and
writes latch bit n which then drives
the state of the pin. When read,
returns the data set for latch n, not
the pin, and does not set bus pin n
to input. If you need to read the
state of the an individual pins, use
INPUT(n).

INPUT Digital Read Sets the entire bus to input and
reads the current state of the pins.

INPUT(n) Digital Read Sets the bus direction for pin n to
input and reads the state of the pin.

DATA Digital R/W Reads or writes the entire bus.
When written, it acts as the OUTPUT
property and when read it acts as
the INPUT property.

DATA(n) Digital R/W Reads or writes an individual
pin. When written, it acts as the
OUTPUT(n) property and when
read it acts as the INPUT(n)
property.

DIRECTION Digital Read Reads the entire bus direction. Port
pins set to input mode read as 1,
port pins set to output mode read
as 0.

DIRECTION(n) Digital Read Reads the bus direction for pin n.
Port pins set to input mode read
as 1, port pins set to output mode
read as 0.

Split bus

BUS(n) Digital R/W Write eight bits to the sub-bus n. If
n is zero, addresses bits D0 through
D7, and if n is one, addresses bits D8
through D15.

CoreBASIC Reference Guide CoreBASIC Driver Reference

603

Microchip MCP23017 Driver

Installation

INSTALL "MICROCHIP-MCP23017"

INSTALL "MCP23017"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x48.

Description

Installs an 16-bit parallel bus driver for the Microchip MCP23017. The low eight bits of the bus are mapped to

port A of the MCP23017, and the high eight bits are mapped to port B.

Properties

Configuration

WIDTH Digital Read The width of the bus, in bits. Reads
as 16.

MASK Digital Read An integer with each bus bit set to
one. The mask for a bus of width n is

2n−1. Reads as 0xFFFF.

Bus Output

D0 … D15 Digital R/W Reads or writes individual bits on
the bus. When written, the bus
direction for that bit (only) is set
to output, and the state of the
bit is written. When read, the bus
direction for that bit (only) is set
to input and the state of the pin is
read. Note that writing to D0 is the
same as to writing to OUTPUT(0)
and reading from D0 is the same as
reading from INPUT(0), and so
on.

OUTPUT Digital R/W Reads or writes the output latches.
When written, sets the entire bus
to output and writes data to the
latches which drive the pins. When
read, returns the data set in the
latches, not the pins, and does not set
the bus to input. If you need to read
the state of the pins, use INPUT.

CoreBASIC Reference Guide CoreBASIC Driver Reference

604

OUTPUT(n) Digital R/W Reads or writes an individual output
latch. When written, sets the bus
direction for pin n to output and
writes latch bit n which then drives
the state of the pin. When read,
returns the data set for latch n, not
the pin, and does not set bus pin n
to input. If you need to read the
state of the an individual pins, use
INPUT(n).

INPUT Digital Read Sets the entire bus to input and
reads the current state of the pins.

INPUT(n) Digital Read Sets the bus direction for pin n to
input and reads the state of the pin.

DATA Digital R/W Reads or writes the entire bus.
When written, it acts as the OUTPUT
property and when read it acts as
the INPUT property.

DATA(n) Digital R/W Reads or writes an individual
pin. When written, it acts as the
OUTPUT(n) property and when
read it acts as the INPUT(n)
property.

DIRECTION Digital Read Reads the entire bus direction. Port
pins set to input mode read as 1,
port pins set to output mode read
as 0.

DIRECTION(n) Digital Read Reads the bus direction for pin n.
Port pins set to input mode read
as 1, port pins set to output mode
read as 0.

Split bus

BUS(n) Digital R/W Write eight bits to the sub-bus n. If
n is zero, addresses bits D0 through
D7, and if n is one, addresses bits D8
through D15.

CoreBASIC Reference Guide CoreBASIC Driver Reference

605

Microchip MCP342x Driver

Installation

INSTALL "MICROCHIP-MCP342X"

INSTALL "MCP342X"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0xD0.

Description

Installs an 4-channel ADC driver for the Microchip MCP342x family of analog to digital converters. This driver will

work with the MCP3424, MCP3423, and MCP3422.

Properties

Configuration

AMPLIFIER Digital R/W Reads or writes the the gain of
the programmable gain amplifier.
The value assigned is the gain to
select: writing 1, 2, 4, or 8 selects 1×,
2×, 4×, or 8× gain for subsequent
measurements. 1× gain is selected
by default. The programmable gain
amplifier enables you to measure
very small voltages with high
resolution.

RESOLUTION Digital R/W Reads or writes the sample
resolution. The value assigned is the
sample resolution in bits. Writing
12, 14, 16, or 18 selects that many
bits for subsequent measurements.
Note that higher resolutions take
longer when measuring: 12 bit
resolution requires approximately
4 microseconds for a conversion
and 18 bit resolution requires 267
microseconds.

Measurement

A0 … A3 Analog Read Measures the voltage on one of the
analog channels 0 through 3. An is
equivalent to A(n).

CoreBASIC Reference Guide CoreBASIC Driver Reference

606

A(n) Analog Read Measure the voltage on analog
channel n using the selected gain
and resolution. The value returned
will range between −1 and +1 for
full scale which represents a full
scale swing of −2.048 to +2.048
volts across channel n inputs.

A Analog Read Measures the voltage on all four
channels sequentially using the
selected gain and resolution and
returns the measurements as an
array of four numbers. Note that
using this property will attempt
to read all four channels even for
the MCP3423 and MCP3422 which
have only two channels: the third
and fourth values in the array are
undefined in this case.

CoreBASIC Reference Guide CoreBASIC Driver Reference

607

Microchip MCP4725 Driver

Installation

INSTALL "MICROCHIP-MCP4725"

INSTALL "MCP4725"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0xC0.

Description

Installs an single-channel DAC driver for the Microchip MCP4725 digital to analog converter.

Properties

Measurement

A0 Analog Write Writes the DAC. 0 sets the DAC to
0 volts and 1 sets the DAC to VREF
volts, with values

A(n) Analog Write Implements only A(0) write and is
identical to the A0 property. Other
values of n will throw a subscript
error.

CoreBASIC Reference Guide CoreBASIC Driver Reference

608

Microchip TC77 Driver

Installation

INSTALL "MICROCHIP-TC77" USING select

INSTALL "TC77" USING select

INSTALL "CORE-TEMP" USING select

Options

None.

Description

Installs an temperature sensor driver using the TC77 on the CoreTemp SExI module which mounts into a

SenseCore:

http://www.soldercore.com/products/sensecore/coretemp/

Because the TC77 is an SPI device, the USING clause must specify a single-bit GPIO that controls the chip select

connected to the TC77 device. Although this is intended to fit into an SenseCore, you can use it as a standard

breakout module and mount it wherever you wish or use it with something other than a SolderCore.

Properties

Temperature Sensor

TEMP Analog Write Reads the current temperature, in
degrees Celsius.

Example

***../examples/coretemp-demo.bas not found ***

You can load this into CoreBASIC using EXAMPLE "coretemp-demo" or |coretemp-demo.

http://www.soldercore.com/products/sensecore/coretemp/

CoreBASIC Reference Guide CoreBASIC Driver Reference

609

Modkit MotoProto Shield

Installation

INSTALL "MODKIT-MOTOPROTO-SHIELD"

INSTALL "MOTOPROTO-SHIELD"

INSTALL "MOTOPROTO"

Options

None.

Description

The Modkit MotoProto Shield can control two DC motors and has an interface for a standard HD44780-based

display.

Properties

Motor Drive

MOTOR(n) Analog Write Sets the speed and direction of
channel n. The value assigned to
the property should lie between
−1 and 1; values outside this range
are clamped. The sign of the value
written determines whether the
motor runs forward or in reverse.

LEFT or A Analog Write Convenience property. Refers
directly to channel 0, so LEFT is
identical to MOTOR(0).

RIGHT or B Analog Write Convenience property. Refers
directly to channel 1, so RIGHT is
identical to MOTOR(0).

Button

PRESS Digital Read Sense button SW2 connected to
D12. This property reads 1 when
the button is pressed and 0 when
not.

LCD Properties

Dimensions

WIDTH Digital R/W The width of the display, in
character positions.

HEIGHT Digital R/W The height of the display, in
character lines.

CoreBASIC Reference Guide CoreBASIC Driver Reference

610

Cursor

X or COL Digital R/W The x co-ordinate of the cursor.

Y or ROW Digital R/W The y co-ordinate of the cursor.

CURSOR Digital Write Cursor control. Writing 0 to
CURSOR turns the cursor off, and
writing 1 turns it on.

LINE String R/W As Y and ROW.

POS Digital R/W An array containing the x and y co-
ordinates of the cursor.

Control

LIGHT Digital Write Backlight control. Writing 0 to
LIGHT turns the backlight off, if the
display has a controllable backlight,
and writing 1 turns it on.

Character I/O

LINE(n) String R/W As Y(n) and ROW(n).

Y(n) or ROW(n) String R/W When read, returns the string being
displayed on line n of the display.
When written, overwrites the whole
of line n of the display, filling the
line with extra spaces if necessary.

CENTER(n) String Write Centers the string written on
display line n. If the string is too
long for the display, only the central
part is displayed. If the string is
narrower than the display width, it
is padded left and right with spaces
to the display width such that it lies
central within the display.

RIGHT(n) String Write Right-justifies the string written
on display line n. If the string is too
long for the display, it is truncated
on the left such that the rightmost
part of the string covers the whole
line. If the string is narrower than
the display width, it is padded left
with spaces to the display width
such that it lies adjusted right on
the display.

Resources

http://www.sparkfun.com/products/10018

http://www.sparkfun.com/products/10018

CoreBASIC Reference Guide CoreBASIC Driver Reference

611

National Semiconductor LM75 Driver

Installation

INSTALL "NATIONAL-SEMICONDUCTOR-LM75"

INSTALL "NATSEMI-LM75"

INSTALL "LM75"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x90.

Description

Installs a temperature sensor driver for the LM75.

Properties

Measurement

TEMP Analog Read Temperature in degrees Celsius.

Configuration

RESOLUTION Analog R/W The selected resolution of the
temperature sensor. The LM75 has
a fixed resolution of 0.5 degrees
Celsius, writing this property has no
effect on the selected resolution of
the sensor.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

CoreBASIC Reference Guide CoreBASIC Driver Reference

612

Nintendo Classic Controller

Installation

INSTALL "NINTENDO-CLASSIC-CONTROLLER"

INSTALL "CLASSIC-CONTROLLER"

INSTALL "CLASSIC"

Options

None.

Description

Installs a driver for the Nintendo Classic Controller. The SolderCore WiiChuk Adapter fits into a SenseCore SExI

socket and allows you to attach either a Nintendo Classic Controller or a Nintendo Nunchuk to the SolderCore.

The Classic Controller communicates over I2C using the fixed address 0xA4. Because all controllers on an

I2C bus must have distinct addresses, it means that you can only have a single Nintendo Classic Controller or

Nintendo Nunchuk attached to an I2C bus.

In order for the Classic Controller to work, it is imperative that you ensure I2C pull-ups are fitted to the I2C bus. By

default, the SenseCore provides I2C pull-ups, but if you are using some other adapter, such as the Wiichuk, you

must ensure those pull-ups are in place. If you don't have pull-ups, communication with the Classic Controller or

Nunchuk will be unreliable or will hang.

Properties

Digital buttons

A Digital Read Sense A button. This property reads
1 when the A button is pressed and
0 when not.

B Digital Read Sense B button. This property reads
1 when the B button is pressed and
0 when not.

X Digital Read Sense X button. This property reads
1 when the X button is pressed and
0 when not.

Y Digital Read Sense Y button. This property reads
1 when the Y button is pressed and
0 when not.

L Digital Read Sense L button. This property reads
1 when the L button is pressed and
0 when not.

CoreBASIC Reference Guide CoreBASIC Driver Reference

613

R Digital Read Sense R button. This property reads
1 when the R button is pressed and
0 when not.

ZL Digital Read Sense ZL button. This property
reads 1 when the ZL button is fully
pressed and 0 when not.

ZR Digital Read Sense ZR button. This property
reads 1 when the ZR button is fully
pressed and 0 when not.

Control buttons

HOME Digital Read Sense Home button. This property
reads 1 when the Home button is
pressed and 0 when not.

SELECT Digital Read Sense Select button. This property
reads 1 when the Select button is
pressed and 0 when not.

START Digital Read Sense Start button. This property
reads 1 when the Start button is
pressed and 0 when not.

Digital pad

UP Digital Read Sense joypad Up button. This
property reads 1 when the Up
button is pressed and 0 when not.

DOWN Digital Read Sense joypad Down button. This
property reads 1 when the Down
button is pressed and 0 when not.

LEFT Digital Read Sense joypad Left button. This
property reads 1 when the Left
button is pressed and 0 when not.

RIGHT Digital Read Sense joypad Right button. This
property reads 1 when the Left
button is pressed and 0 when not.

Analog joysticks

H Analog Read Sense horizontal positions of all
joysticks; returns an array of four
positions for the two analog and
two digital joysticks. −1 is fully left,
+1 is fully right, and 0 is centered.

H(n) Analog Read Sense horizontal position of joystick
n. −1 is fully left, +1 is fully right, and
0 is centered.

CoreBASIC Reference Guide CoreBASIC Driver Reference

614

V Analog Read Sense vertical positions of all
joysticks; returns an array of four
positions for the two analog and
two digital joysticks. −1 is fully
down, +1 is fully up, and 0 is
centered.

V(n) Analog Read Sense horizontal position of joystick
n. −1 is fully down, +1 is fully up,
and 0 is centered.

POS Analog Read Sense position of all joysticks.
Returns an array of four elements
where each element is a complex
number. The complex number's
real component is the horizontal
position of the joystick and the
imaginary component is the vertical
position of the joystick.

POS(n) Analog Read Sense position of joystick n. Returns
a complex number. The complex
number's real component is the
horizontal position of the joystick
and the imaginary component is
the vertical position of the joystick.

Controller memory

PEEK(n) Digital Read Reads the 8-bit contents of memory
location n on the extension
controller.

POKE(n) Digital Write Write the 8-bit contents of memory
location n on the extension
controller.

BYTE(n) Digital R/W Reads or writes the 8-bit contents of
memory location n on the extension
controller.

Resources

This work couldn't have been possible without the pioneering effort of the WiiBrew community.

http://wiibrew.org/wiki/Wiimote/Extension_Controllers

The following are the formats used by original Nintendo controllers:

http://wiibrew.org/wiki/Wiimote/Extension_Controllers/Nunchuck

http://wiibrew.org/wiki/Wiimote/Extension_Controllers/Classic_Controller

http://wiibrew.org/wiki/Wiimote/Extension_Controllers/Wii_Motion_Plus

http://wiibrew.org/wiki/Wiimote/Extension_Controllers
http://wiibrew.org/wiki/Wiimote/Extension_Controllers/Nunchuck
http://wiibrew.org/wiki/Wiimote/Extension_Controllers/Classic_Controller
http://wiibrew.org/wiki/Wiimote/Extension_Controllers/Wii_Motion_Plus

CoreBASIC Reference Guide CoreBASIC Driver Reference

615

Nintendo Nunchuk Controller

Installation

INSTALL "NINTENDO-NUNCHUK-CONTROLLER"

INSTALL "NUNCHUK-CONTROLLER"

INSTALL "NUNCHUK"

Options

None.

Description

Installs a driver for the Nintendo Nunchuk Controller. The SolderCore WiiChuk Adapter fits into a SenseCore SExI

socket and allows you to attach a Nintendo Classic Controller, a Nintendo Nunchuk, or a WiiMotion Plus to the

SolderCore.

The Nunchuk Controller communicates over I2C using the fixed address 0xA4. Because all controllers on an

I2C bus must have distinct addresses, it means that you can only have a single Nintendo Classic Controller or

Nintendo Nunchuk attached to an I2C bus.

In order for the Nunchuk Controller to work, it is imperative that you ensure I2C pull-ups are fitted to the I2C bus.

By default, the SenseCore provides I2C pull-ups, but if you are using some other adapter, such as the Wiichuk,

you must ensure those pull-ups are in place. If you don't have pull-ups, communication with the Classic Controller

or Nunchuk will be unreliable or will hang.

Properties

Buttons

Z Digital Read Sense Z button. This property reads
1 when the Z button is pressed and
0 when not.

C Digital Read Sense C button. This property reads
1 when the B button is pressed and
0 when not.

Analog Joystick

H Analog Read Sense horizontal joystick position;
−1 is fully left, +1 is fully right, and 0
is centered.

V Analog Read Sense vertical joystick position; −1
is fully down, +1 is fully up, and 0 is
centered.

CoreBASIC Reference Guide CoreBASIC Driver Reference

616

POS Analog Read A complex number where the
real component is the horizontal
position of the joystick and the
imaginary component is the vertical
position of the joystick.

PRESS Digital Read Returns the state of the Z button in
order to emulate a press.

SELECT Digital Read Returns the state of the Z button in
order to emulate a selection.

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

Controller memory

PEEK(n) Digital Read Reads the 8-bit contents of memory
location n on the extension
controller.

POKE(n) Digital Write Write the 8-bit contents of memory
location n on the extension
controller.

CoreBASIC Reference Guide CoreBASIC Driver Reference

617

BYTE(n) Digital R/W Reads or writes the 8-bit contents of
memory location n on the extension
controller.

CoreBASIC Reference Guide CoreBASIC Driver Reference

618

NuElectronics 3310 LCD Shield

Installation

INSTALL "NUELECTRONICS-3310-LCD-SHIELD"

INSTALL "3310-SHIELD"

Options

None.

Description

Installing the 3310 LCD Shield driver provides a 84×38 monochrome graphic display. You can use all the

CoreBASIC graphics commands to drive the LCD display.

Resources

http://www.nuelectronics.com/estore/index.php?main_page=product_info&products_id=12

http://www.nuelectronics.com/estore/index.php?main_page=product_info&products_id=12

CoreBASIC Reference Guide CoreBASIC Driver Reference

619

NMEA Parser

Installation

INSTALL "NMEA-PARSER"

INSTALL "GPS-PARSER"

INSTALL "GPS"

Options

None.

Description

Installs a driver that parses GPS NMEA 0183 sentences to extract the fix and operating data.

The CoreBASIC NMEA 0183 parser will decode the following sentence:

• GPGGA, Global Positioning System Fix Data: This contains the time only, along with latitude and longitude.

• GPRMC, Recommended Minimum Specific GNSS Data: This contains the time and date along with latitude

and longitude.

• GPGSA, GNSS DOP and Active Satellites: This contains the satellites used in the navigation solution

reported by the GPGGA sentence.

Properties

Engine update

SENTENCE String Write Send sentence to NMEA 0183
parser. The string is parsed by
looking for a start-of-sentence
character '$', the NMEA 0183
sentence type and data, and the
requires checksum. Any data before
the sentence start character is
ignored. If the checksum presented
in the sentence does not match the
checksum computed by the parser,
the sentence is discarded as invalid.
If the sentence checksum is valid,
the sentence is parsed as described
above.

Position (derived from GPGGA or GPRMC)

CoreBASIC Reference Guide CoreBASIC Driver Reference

620

LONGITUDE Analog Read Longitude, in degrees. If the
longitude is not yet available, as
no appropriate sentence has been
passed to the parser containing a
valid fix, LONGITUDE is read as a
NaN.

LATITUDE Analog Read Latitude , in degrees. If the
longitude is not yet available, as
no appropriate sentence has been
passed to the parser containing a
valid fix, LATITUDE is read as a
NaN.

Combined time and date (derived from GPRMC)

TIME Digital Read Current time as seconds elapsed
since 1 January 1970, the standard
way of representing time in
CoreBASIC, computed from the
time and date in the GPRMC
sentence. You can set the system
time used by CoreBASIC by
assigning this to CORE.TIME.

Time (derived from GPGGA or GPRMC)

SECOND Digital Read Current second, 0 to 59.

MINUTE Digital Read Current minute, 0 to 59.

HOUR Digital Read Current hour, 0 to 23.

Date (derived from GPRMC)

DATE Digital Read Current date (within month), 1 to
31.

MONTH Digital Read Current month, 1 to 12.

YEAR Digital Read Current year, 2000 to 2099.

Solution data (derived from GPGSA)

SATELLITES Digital Read An array of satellite PRN numbers
that were used in the last fix.

Example

This example receives NMEA 0183 sentences from a GPS receiver attached to the UART, sends them to the NMEA

0183 parser, and prints the state of the parser after each sentence received.

***../examples/nmea-parser-demo.bas not found ***

You can load this into CoreBASIC using EXAMPLE "nmea-parser-demo" or |nmea-parser-demo.

CoreBASIC Reference Guide CoreBASIC Driver Reference

621

NuElectronics TFT LCD Shield

Installation

INSTALL "NUELECTRONICS-TFT-LCD-SHIELD"

INSTALL "TFT-SHIELD"

Options

None.

Description

Installing the TFT LCD Shield driver provides a 240×320 true color graphic display. This driver works on both the

2.4-inch and 2.8-inch LCD displays that NuElectronics offer. You can use all the CoreBASIC graphics commands to

drive the LCD display.

Resources

http://www.nuelectronics.com/estore/index.php?main_page=product_info&products_id=30

http://www.nuelectronics.com/estore/index.php?main_page=product_info&products_id=31

http://www.nuelectronics.com/estore/index.php?main_page=product_info&products_id=30
http://www.nuelectronics.com/estore/index.php?main_page=product_info&products_id=31

CoreBASIC Reference Guide CoreBASIC Driver Reference

622

NXP PCF8575 Driver

Installation

INSTALL "NXP-PCF8575"

INSTALL "PCF8575"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x40.

Description

Installs a 16-bit parallel bus driver for the NXP PCF8575 (and compatibles).

Properties

Configuration

WIDTH Digital Write The width of the bus, in bits. Reads
as 8.

MASK Digital Read An integer with each bus bit set to
one. The mask for a bus of width n is

2n−1. Reads as 0xFF.

Digital I/O

D0 … D7 Digital R/W Reads or writes individual bits on
the bus. When written, the bus
direction for that bit (only) is set
to output, and the state of the
bit is written. When read, the bus
direction for that bit (only) is set
to input and the state of the pin is
read. Note that writing to D0 is the
same as to writing to OUTPUT(0)
and reading from D0 is the same as
reading from INPUT(0), and so
on.

OUTPUT Digital R/W Reads or writes the output latches.
When written, sets the entire bus
to output and writes data to the
latches which drive the pins. When
read, returns the data set in the
latches, not the pins, and does not set
the bus to input. If you need to read
the state of the pins, use INPUT.

CoreBASIC Reference Guide CoreBASIC Driver Reference

623

OUTPUT(n) Digital R/W Reads or writes an individual output
latch. When written, sets the bus
direction for pin n to output and
writes latch bit n which then drives
the state of the pin. When read,
returns the data set for latch n, not
the pin, and does not set bus pin n
to input. If you need to read the
state of the an individual pins, use
INPUT(n).

INPUT Digital Read Sets the entire bus to input and
reads the current state of the pins.

INPUT(n) Digital Read Sets the bus direction for pin n to
input and reads the state of the pin.

DATA Digital R/W Reads or writes the entire bus.
When written, it acts as the OUTPUT
property and when read it acts as
the INPUT property.

DATA(n) Digital R/W Reads or writes an individual
pin. When written, it acts as the
OUTPUT(n) property and when
read it acts as the INPUT(n)
property.

DIRECTION Digital Read Reads the entire bus direction. Port
pins set to input mode read as 1,
port pins set to output mode read
as 0.

DIRECTION(n) Digital Read Reads the bus direction for pin n.
Port pins set to input mode read
as 1, port pins set to output mode
read as 0.

CoreBASIC Reference Guide CoreBASIC Driver Reference

624

Parallel Bus Driver

Installation

INSTALL "PARALLEL-BUS" USING digital-io, digital-io…

Options

None.

Description

Installs a generic parallel bus driver using discrete GPIOs. The first USING argument corresponds to the least

significant bit of the bus, typically called D0, the second argument to the next bit on the bus, and so on.

Properties

Configuration

WIDTH Digital Read The width of the bus, in bits.

MASK Digital Read An integer with each bus bit set to
one. The mask for a bus of width n is

2n−1. Reads as 0xFF.

Digital I/O

D0 … D15 Digital R/W Reads or writes individual bits on
the bus. When written, the bus
direction for that bit (only) is set
to output, and the state of the
bit is written. When read, the bus
direction for that bit (only) is set
to input and the state of the pin is
read. Note that writing to D0 is the
same as to writing to OUTPUT(0)
and reading from D0 is the same as
reading from INPUT(0), and so
on.

OUTPUT Digital Write Sets the bus to output and writes
data to the digital I/Os comprising
the bus.

INPUT Digital Read Sets the bus to input and reads the
digital I/Os comprising the bus.

DATA Digital R/W Reads or writes the bus. When
written, it acts as the OUTPUT
property and when read it acts as
the INPUT property.

CoreBASIC Reference Guide CoreBASIC Driver Reference

625

OUTPUT(n) Digital Write Sets the bus direction for pin n to
output and writes the state of that
pin.

INPUT(n) Digital Read Sets the bus direction for pin n to
input and reads the state of that
pin.

DATA(n) Digital R/W Reads or writes an individual
pin. When written, it acts as the
OUTPUT(n) property and when
read it acts as the INPUT(n)
property.

Example

Construct a 3-bit bus on the SolderCore's digital pins D4, D5, and D9, then use the bus to bring all signals high,

then low.

INSTALL "PARALLEL-BUS" USING CORE.D4, CORE.D5, CORE.D9 AS BUS
BUS.OUTPUT = 7 ' three bits all high
BUS.OUTPUT = 0 ' three bits all low
END

Create a 4-bit parallel bus to show a binary count on the SolderCore Breakout Shield LEDs.

' Parallel bus driver example.
' Written by Paul Curtis of Rowley Associates.
' You're free to do what you like with this program.

' Make S a synonym for CORE.
LET S = CORE

' Install a 4-bit parallel bus driver on D2 through D5.
INSTALL "PARALLEL-BUS" USING S.D2, S.D3, S.D4, S.D5 AS BUS

' Run through the binary coding of 0 through 15 on the bus.
' If you use a Breakout Shield, you can see the binary count
' on the green and red LEDs.
FOR I = 0 TO BUS.MASK
 BUS.OUTPUT = I
 PAUSE 0.1
NEXT I
END

CoreBASIC Reference Guide CoreBASIC Driver Reference

626

Raspberry Pi CPU

Installation

The Raspberry Pi CPU driver is automatically installed as a fixed driver when CoreBASIC starts.

Description

The Raspberry Pi Board CPU provides the base hardware drivers for digital and analog I/O, SPI, and I2C when

used with a Libelium Arduino Connection Bridge.

Note that not all shields are compatible with the Connection Bridge. Shields that expect 5V signaling must not

be used! Please refer to Libelium's information on the product.

You access the CPU driver using the CORE keyword.

Properties

Information

NAME String Input Presentation name for the model
that runs CoreBASIC. For the
standard Raspberry Pi, this is
"Raspberry Pi".

MODEL String Input Platform that CoreBASIC is running
on. For the Raspberry Pi, this is
"MODEL-B".

VERSION String Input CoreBASIC version number.

Digital and analog I/O

D0 through D19 Digital R/W See expanded pin description
below.

A0 through A19 Digital R/W See expanded pin description
below.

D(n) Digital R/W Equivalent to D0 through D19,
indexed by n.

A(n) Digital R/W Equivalent to A0 through A19,
indexed by n.

Timing

FREQUENCY Digital Write Core tick frequency. For the
Freedom Board, this reads as
24,000,000 indicating 24 MHz.

TICK Digital Write Core tick. The tick increments at the
core tick frequency, FREQUENCY.

http://www.cooking-hacks.com/index.php/shop/raspberry-pi/raspberry-pi-to-arduino-shield-connection-bridge.html

CoreBASIC Reference Guide CoreBASIC Driver Reference

627

Resources

Purchasing the adapter:

http://www.cooking-hacks.com/index.php/shop/raspberry-pi/raspberry-pi-to-arduino-shield-connection-

bridge.html

Information about the adapter:

http://www.cooking-hacks.com/index.php/documentation/tutorials/raspberry-pi-to-arduino-shields-

connection-bridge

See also

CORE

http://www.cooking-hacks.com/index.php/shop/raspberry-pi/raspberry-pi-to-arduino-shield-connection-bridge.html
http://www.cooking-hacks.com/index.php/shop/raspberry-pi/raspberry-pi-to-arduino-shield-connection-bridge.html
http://www.cooking-hacks.com/index.php/documentation/tutorials/raspberry-pi-to-arduino-shields-connection-bridge
http://www.cooking-hacks.com/index.php/documentation/tutorials/raspberry-pi-to-arduino-shields-connection-bridge

CoreBASIC Reference Guide CoreBASIC Driver Reference

628

Seeed Studio 96x16 OLED Brick

Installation

INSTALL "SEEED-STUDIO-OLED-96x16-BRICK"

INSTALL "OLED-96x16-BRICK"

Description

Installing the Seeed Studio 96x16 OLED provides a 96×16 monochrome graphic display. You can use all the

CoreBASIC graphics commands to drive the LCD display.

Resources

http://www.seeedstudio.com/depot/electronic-brick-oled-96x16-display-with-free-cable-p-704.html

http://www.seeedstudio.com/depot/electronic-brick-oled-96x16-display-with-free-cable-p-704.html

CoreBASIC Reference Guide CoreBASIC Driver Reference

629

Seeed Studio 96x96 OLED Twig

Installation

INSTALL "SEEED-STUDIO-OLED-96x96-TWIG"

INSTALL "OLED-96x96-TWIG"

Description

Installing the Seeed Studio 96x96 OLED provides a 96×96 16-level grayscale graphic display. You can use all the

CoreBASIC graphics commands to drive the LCD display.

Resources

http://www.seeedstudio.com/depot/twig-oled-96x96-p-824.htm

http://www.seeedstudio.com/depot/twig-oled-96x96-p-824.htm

CoreBASIC Reference Guide CoreBASIC Driver Reference

630

Seeed Studio 128x64 OLED Twig

Installation

INSTALL "SEEED-STUDIO-OLED-128x64-TWIG"

INSTALL "OLED-128x64-TWIG"

INSTALL "OLED-128x64-BRICK"

Description

Installing the Seeed Studio 128x64 OLED provides a 128×64 monochrome graphic display. You can use all the

CoreBASIC graphics commands to drive the LCD display.

Seeed Studio mounted this display on both an Electronic Brick and a Grove Twig module. The Electronic Brick is

no longer available, but if you're lucky enough to have one, the Twig driver and the Brick driver are identical.

Resources

http://www.seeedstudio.com/depot/twig-oled-display-12864-p-781.html

http://www.seeedstudio.com/depot/twig-oled-display-12864-p-781.html

CoreBASIC Reference Guide CoreBASIC Driver Reference

631

Seeed Studio TFT Touch Shield

Installation

INSTALL "SEEED-STUDIO-TFT-TOUCH-SHIELD"

Options

None.

Description

Installing the TFT Touch Shield driver provides a 240×320 true color graphic display. You can use all the

CoreBASIC graphics commands to drive the LCD display.

http://www.seeedstudio.com/depot/28-tft-touch-shield-p-864.html

Notes

This shield only works at 5V and will require the SolderCore Proteus Extender to work correctly with SolderCore.

Benchmarks

Here is the result of running the SolderCore Graphics Benchmarks application:

> run
Graphics display benchmark for SEEED-STUDIO-TFT-TOUCH-SHIELD

 Circles: 2379 ms
 Discs: 26550 ms
Rectangles: 702 ms
 Slabs: 23675 ms
 Lines: 6638 ms
 Polygons: 7899 ms
 Text: 2122 ms
> _

See also

SolderCore Proteus Extender

http://www.seeedstudio.com/depot/28-tft-touch-shield-p-864.html
http://soldercore.com/products/proteus-shield/
http://soldercore.com/products/proteus-shield/

CoreBASIC Reference Guide CoreBASIC Driver Reference

632

Sensirion SHT1x Driver

Installation

INSTALL "SENSIRION-SHT1X" USING sck, data

INSTALL "SHT1X" USING sck, data

Options

None.

Description

Installs a humidity and temperature sensor driver for the SHT1x family of sensors.

As the SHT1x is not a true I2C sensor, this driver requires two digital I/Os specified which are used for the SCK

and DATA signals to the sensor.

Properties

Measurement

TEMP Analog Read Supply-compensated temperature
in degrees Celsius. For accuracy, this
requires that the SOURCE property
is set correctly to reflect the sensor's
supply voltage.

HUMIDITY Analog Read True relative humidity, in percent.
The driver reads both temperature
and humidity and then supply-
compensates the temperature
reading and temperature-
compensates the linear humidity
reading to deliver true relative
humidity.

DEWPOINT Analog Read Dew point in degrees Celsius,
computed from the supply-
compensated temperature
TEMP and true relative humidity
HUMIDITY.

DATA Analog Read An array of four values: the
temperature, in degrees Celsius,
the linear relative humidity in
percent, the true relative humidity
in percent, and the dew point in
degrees Celsius.

CoreBASIC Reference Guide CoreBASIC Driver Reference

633

DATA(n) Analog Read Direct access to temperature and
humidity readings. DATA(-2)
is the raw humidity ADC result;
DATA(-1) is the raw temperature
ADC result; DATA(0) is the supply-
compensated temperature in
degrees Celsius and is equivalent
to the TEMP property; DATA(1)
is the linear relative humidity in
percent; DATA(2) is the true
relative humidity in percent and
is equivalent to the HUMIDITY
property; DATA(3) is the dew
point in degrees Celsius and is
equivalent to the DEWPOINT
property.

Configuration

SOURCE Analog R/W The supply voltage, Vdd. When
converting temperature, the driver
selects from a range of coefficients
to correct the temperature reading.
You should set SOURCE to the
voltage supplied to the Vdd pin.
By default, SOURCE is set to 3
indicating a 3 V supply.

RESOLUTION Digital R/W Sensor resolution selection. When
this property is written to zero, 14-
bit humidity and 12-bit temperature
readings are taken. When this
property is written to one, 12-bit
humidity and 8-bit temperature
readings are taken. By default,
RESOLUTION is set to 0 to select
high resolution mode.

STATUS Digital R/W Reads and writes the entire SHT1x
status register. Note that changing
the resolution bit in the status
register directly, without using the
RESOLUTION property, will lead to
incorrect measurement.

STATUS(n) Digital R/W Reads and writes bit n of the SHT1x
status register. For instance, you
can turn on the on-chip heater
by writing one to STATUS(2)
and turn it off by writing zero to
STATUS(2).

CoreBASIC Reference Guide CoreBASIC Driver Reference

634

Example

The following example shows how to read the temperature and humidity, and shows the measured temperature

being affected by the on-chip heater.

***../examples/sensirion-sht11-demo.bas not found ***

You can load this into CoreBASIC using EXAMPLE "sensirion-sht11-demo" or |sensirion-sht11-

demo.

CoreBASIC Reference Guide CoreBASIC Driver Reference

635

Sensirion SHT2x Driver

Installation

INSTALL "SENSIRION-SHT2X"

INSTALL "SHT2X"

Options

ADDR=integer

Set the I2C 8-bit address of the SHT2x. By default the driver uses the address 0x80.

Description

Installs a humidity and temperature sensor driver for the SHT2x family of sensors.

Properties

Measurement

TEMP Analog Read Supply-compensated temperature
in degrees Celsius.

HUMIDITY Analog Read Relative humidity, in percent.

DEWPOINT Analog Read Dew point in degrees Celsius,
computed from the temperature
TEMP and relative humidity
HUMIDITY.

DATA Analog Read An array of three values: the
temperature, in degrees Celsius, the
relative humidity in percent, and
the dew point in degrees Celsius.

DATA(n) Analog Read Direct access to temperature and
humidity readings. DATA(0) is the
supply-compensated temperature
in degrees Celsius and is equivalent
to the TEMP property; DATA(1)
is the true relative humidity in
percent and is equivalent to the
HUMIDITY property; DATA(2) is
the dew point in degrees Celsius
and is equivalent to the DEWPOINT
property.

Configuration

CoreBASIC Reference Guide CoreBASIC Driver Reference

636

RESOLUTION Digital R/W Reads and writes the sensor
resolution. The acceptable settings
are 0x00 for 12-bit relative
humidity and 14-bit temperature,
0x01 for 8-bit relative humidity
and 12-bit temperature, 0x80
for 10-bit relative humidity and
13-bit temperature, 0x81 for 11-
bit relative humidity and 11-bit
temperature.

STATUS Digital R/W Reads and writes the entire SHT2x
status register. Note that changing
the resolution bit in the status
register directly, without using the
RESOLUTION property, will lead to
incorrect measurement.

STATUS(n) Digital R/W Reads and writes bit n of the SHT2x
status register. For instance, you
can turn on the on-chip heater
by writing one to STATUS(2)
and turn it off by writing zero to
STATUS(2).

CoreBASIC Reference Guide CoreBASIC Driver Reference

637

Silicon Labs Si7005

Installation

INSTALL "SILICON-LABS-SI7005"

INSTALL "SI7005"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x80.

Description

Installs a humidity and temperature sensor driver for the Si7005 sensor.

Properties

Measurement

TEMP Analog Read Supply-compensated temperature
in degrees Celsius.

HUMIDITY Analog Read True relative humidity, in percent.

DEWPOINT Analog Read Dew point in degrees Celsius,
computed from the supply-
compensated temperature
TEMP and true relative humidity
HUMIDITY.

DATA Analog Read An array of four values: the
temperature, in degrees Celsius, the
true relative humidity in percent,
and the dew point in degrees
Celsius.

DATA(n) Analog Read Direct access to temperature and
humidity readings. DATA(0) is the
supply-compensated temperature
in degrees Celsius and is equivalent
to the TEMP property; DATA(1)
is the true relative humidity in
percent and is equivalent to the
HUMIDITY property; DATA(2) is
the dew point in degrees Celsius
and is equivalent to the DEWPOINT
property.

CoreBASIC Reference Guide CoreBASIC Driver Reference

638

Software I2C Bus Driver

Installation

INSTALL "SOFTWARE-I2C-BUS" USING scl, sda

INSTALL "SOFTWARE-I2C" USING scl, sda

INSTALL "SOFT-I2C" USING scl, sda

Options

None.

Description

Creates a software-driven I2C bus using the two digital pins scl and sda. This allows you great flexibility for

isolating your I2C devices, or using pins other than A4 ad A5 as an I2C connection. However, note that using

software-driven I2C imposes an additional overhead on the processor to handle each bit of communication

over the I2C bus and, as such, will have lower performance than the primary and secondary I2C buses on the

SolderCore.

Properties

Configuration

SPEED Digital R/W Sets the speed of the bus in hertz.

Example

Construct an I2C bus on SolderCore's digital pins D2 (as SCL) and D3 (as SDA) and use that bus to control a

BMP085 pressure sensor.

INSTALL "SOFTWARE-I2C-BUS" USING CORE.D2, CORE.D3 AS BUS
INSTALL "BOSCH-SENSORTEC-BMP085" USING BUS AS BMP085
PRINT "Current pressure: "; BMP085.PRESSURE

CoreBASIC Reference Guide CoreBASIC Driver Reference

639

Software SPI Bus Driver

Installation

INSTALL "SOFTWARE-SPI-BUS" USING sck, mosi, miso

INSTALL "SOFTWARE-SPI" USING sck, mosi, miso

INSTALL "SOFT-SPI" USING sck, mosi, miso

Options

None.

Description

Creates a software-driven SPI bus using the three digital pins sck, mosi, and msio. This allows you great

flexibility for isolating your SPI devices, or using pins other than D11, D12, and D13 as an SPI connection.

However, note that using software-driven SPI imposes an additional overhead on the processor to handle each

bit of communication over the SPI bus and, as such, will have lower performance than the primary SPI bus on the

SolderCore.

Example

The ITead Studio IBridge with a Nokia 3310 LCD display has a nonstandard SPI arrangement on the shield which

means that it is incompatible with the core SPI driver. However, with software-driven SPI, it's very simple to

create an SPI bus that will drive the display:

***../examples/ibridge-soft-spi-demo.bas not found ***

You can load this into CoreBASIC using EXAMPLE "ibridge-soft-spi-demo" or |ibridge-soft-

spi-demo.

CoreBASIC Reference Guide CoreBASIC Driver Reference

640

SolderCore Arcade Shield

Installation

INSTALL "SOLDERCORE-ARCADE-SHIELD"

INSTALL "ARCADE-SHIELD"

Options

None.

Description

Installing the Arcade Shield driver provides a 320×240 16-color graphic display.

Upon installation, the SolderCore inquires whether the Arcade Shield is fitted. If the shield is not fitted, or a

SolderCore LCD shield is fitted instead of the Arcade Shield, the driver stops with an incorrect device error.

Note that you can use the SolderCore Graphics driver to choose between the Arcade Shield driver and LCD

Shield driver at install time.

Properties

General

MODEL String Input A string containing the model
number of the Arcade Shield.
There is currently only one model
in the series and it is reported as
ARCADE-SHIELD-V1.

VERSION String Input A string containing the firmware
revision number of the Arcade
Shield.

Color palette

COLOR(n) Digital Write Assign color to palette entry. n
is the palette entry, 0 through
15; the value assigned should
be a standard 24-bit color value
(constructed by RGB or other
means).

See also

SolderCore Graphics Shield

Resources

http://www.soldercore.com/products/arcade-shield/

http://www.soldercore.com/products/arcade-shield/

CoreBASIC Reference Guide CoreBASIC Driver Reference

641

Benchmarks

Here is the result of running the SolderCore Graphics Benchmarks application:

> run
Graphics display benchmark for SOLDERCORE-ARCADE-SHIELD

 Circles: 10 ms
 Discs: 45 ms
Rectangles: 24 ms
 Slabs: 18 ms
 Lines: 48 ms
 Polygons: 274 ms
 Text: 572 ms
> _

CoreBASIC Reference Guide CoreBASIC Driver Reference

642

SolderCore CoreMPU Driver

Installation

INSTALL "SOLDERCORE-CORE-MPU"

INSTALL "CORE-MPU"

Options

ADDR=integer

Set the I2C 8-bit address of the InvenSense MPU-6050. By default the driver uses the address 0xD0.

Description

Installs a combination gyroscope, accelerometer, and magnetometer driver for the CoreMPU module. The

CoreMPU integrates an InvenSense MPU-6050 accelerometer and gyroscope and a Honeywell HMC5883L

magnetometer which provides a 9DOF sensor platform.

http://www.soldercore.com/products/sensecore/corempu/

When the MPU-6050 and HMC5883L are fused by the AHRS driver, you have excellent 9DOF attitude and

heading reference system.

Although this is intended to fit into an SenseCore, you can use it as a standard breakout module and mount it

wherever you wish or use it with something other than a SolderCore.

Properties

General

VERSION String Read A string containing the device
variant and silicon revision of the
MPU-6050.

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX Analog Read Acceleration measured along the x
axis, in g.

AY Analog Read Acceleration measured along the y
axis, in g.

AZ Analog Read Acceleration measured along the z
axis, in g.

http://www.soldercore.com/products/sensecore/corempu/

CoreBASIC Reference Guide CoreBASIC Driver Reference

643

RANGE(0) Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH(0) Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

BIAS(0) Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN(0) Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Gyroscope

G Analog Read An array of three numbers
containing the rotation rates
measured around the x, y, and z
axes, in degrees per second.

GX Analog Read Rotation rate around the x axis, in
degrees per second.

GY Analog Read Rotation rate around the y axis, in
degrees per second.

GZ Analog Read Rotation rate around the z axis, in
degrees per second.

RANGE(1) Analog R/W Selected full scale range of the
gyroscope, in degrees per second.

BANDWIDTH(1) Analog R/W Selected bandwidth of the of the
gyroscope, in hertz.

BIAS(1) Analog R/W An array of three numbers
containing the gyroscope bias, in
degrees per second, for the x, y, and
z axes.

GAIN(1) Analog R/W An array of three numbers
containing the gain for one LSB, in
degrees per second, for the x, y, and
z axes.

Magnetometer

M Analog Read An array of three numbers
containing the magnetic field
measured in the x, y, and z axes, in
microtesla.

CoreBASIC Reference Guide CoreBASIC Driver Reference

644

MX Analog Read Magnetic field measured in the x
direction, in microtesla.

MY Analog Read Magnetic field measured in the y
direction, in microtesla.

MZ Analog Read Magnetic field measured in the z
direction, in microtesla.

BANDWIDTH(2) Analog R/W Selected bandwidth of the of the
magnetometer, in hertz.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

Additional

BANDWIDTH Analog R/W Selected bandwidth of the
of the sensor assembly as a
whole, in hertz. This is the
smaller of BANDWIDTH(0) and
BANDWIDTH(1).

TEMP Analog Write MPU-6050 die temperature, in
degrees Celsius.

References

The SolderCore CoreMPU SExI module:

http://www.soldercore.com/products/sensecore/corempu/

Notes

See Accelerometers, Gyroscopes, Magnetometers, and AHRS Driver.

http://www.soldercore.com/products/sensecore/corempu/

CoreBASIC Reference Guide CoreBASIC Driver Reference

645

SolderCore CPU

Installation

The SolderCore CPU driver is automatically installed as a fixed driver when CoreBASIC starts.

Description

The SolderCore CPU provides the base hardware drivers for digital and analog I/O, SPI, I2C, networking, and mass

storage. You access the CPU driver using the CORE keyword.

Properties

Information

NAME String Input Presentation name for the
model that runs CoreBASIC.
For the standard SolderCore,
this is "SolderCore". For the
Windows SolderCore Emulator, it is
"SolderCore Emulator".

MODEL String Input Platform that CoreBASIC is running
on. For the SolderCore, this is
"SOLDERCORE-V1". For the
Windows SolderCore Emulator, it is
"SOLDERCORE-V1-EMULATOR".

SERIAL String Input SolderCore serial number.

VERSION String Input CoreBASIC version number.

Digital and analog I/O

D0 through D19 Digital R/W See expanded pin description
below.

A0 through A19 Digital R/W See expanded pin description
below.

D(n) Digital R/W Equivalent to D0 through D19,
indexed by n.

A(n) Digital R/W Equivalent to A0 through A19,
indexed by n.

LEDs

LED Digital R/W User LED. Illuminates the USER LED
when written to a nonzero value,
and extinguishes it when written to
zero.

CoreBASIC Reference Guide CoreBASIC Driver Reference

646

RUN Digital R/W Run LED. Illuminates the RUN LED
when written to a nonzero value,
and extinguishes it when written
to zero. The RUN LED is turned on
when commencing a CoreBASIC
program, and turned off on return
to the command line. During
program execution, however, the
user's CoreBASIC program has
complete control over the LED.

Y, G Digital Write Configure LAN yellow and green
LED functions. Writing 0 or 1
turns the LED off and on and does
not reflect any LAN function,
allowing an additional two LEDs for
application status output. Writing
negative values configure the LEDs
to indicate LAN status: −1 is "Link
OK" (i.e. carrier present), −2 is "Tx
or Rx activity", −6 is "100BASE-
Tx mode" and illuminates when
the link is running 100MHz, −7 is
10BASE-Tx mode" and illuminates
when the link is running 10MHz,
−8 is "Full Duplex" and illuminates
when the link is in full duplex mode,
and −9 is "Link OK and blink on Tx
or Rx activity". The default is for the
green LED to be connfigured as
"Link OK" and the yellow LED as "Tx
or Rx activity".

Operation

TEMP Analog Read The die temperature in degrees
Celsius. The LM3S9D92's
specification states that the internal
die temperature sensors accuracy is
±5 degrees Celsius, so this is simply
an indication of how hot the die is
running. This is not an indication of
the ambient air temperature: if you
require that, please use a separate
temperature sensor.

Serial buses

CoreBASIC Reference Guide CoreBASIC Driver Reference

647

I2C(n) Digital Read Access SolderCore I2C bus n. Bus #0
is the primary I2C bus routed to pins
A4 and A5 of the analog header. Bus
#1 is the secondary I2C bus routed
to the two-pin header between the
reset button and the status LEDs on
the SolderCore.

SPI(n) Digital Read Access SolderCore SPI bus n. Bus #0
is the primary SPI bus routed to pins
D11, D12, and D13 of the digital
header. Bus #1 is the secondary
SPI bus routed to the two SOIC-8
memory sites on the reverse side
of the SolderCore PCB and the
microSD card slot.

Timing

FREQUENCY Digital Write CPU operating frequency. For the
Soldercore, this reads as 80,000,000
indicating 80 MHz.

TICK Digital Write CPU tick. The tick increments at
the CPU operating frequency,
FREQUENCY.

TIME Digital R/W Current time as seconds elapsed
since 1 January 1970 the standard
way of representing time in
CoreBASIC. The core time can be set
automatically from an NTP server
or manually from some other time
source such as a battery-backed
RTC or a from a GPS receiver. Once
set, the core time ticks independent
of the original source.

See also

CORE

CoreBASIC Reference Guide CoreBASIC Driver Reference

648

SolderCore Graphics Shield

Installation

INSTALL "SOLDERCORE-GRAPHICS-SHIELD"

INSTALL "GRAPHICS-SHIELD"

Options

None.

Description

The SolderCore Graphics Shield driver is a composite driver that will automatically select between a SolderCore

LCD Shield and a SolderCore Arcade Shield at install time, depending upon which is connected to the

SolderCore.

As the LCD Shield and Arcade Shield share substantially the same interface and protocol, the Graphics Shield

driver inquires which shield is connected over SPI and then installs the appropriate driver for the device. The

advantage of using the Graphics Shield driver is that demonstrations, and your own code, can run on the Arcade

Shield or the LCD Shield with minimal changes.

You can determine the shield detected and installed at runtime by querying the MODEL property.

Properties

General

MODEL String Input A string containing the model of
the Arcade Shield or LCD Shield
attached. There is currently only
one model in each series and they
are reported as either ARCADE-
SHIELD-V1 or LCD-SHIELD-V1.

VERSION String Input A string containing the firmware
revision number of the Arcade
Shield or LCD Shield.

Color palette

COLOR(n) Digital Write Assign color to palette entry. n
is the palette entry, 0 through
15; the value assigned should
be a standard 24-bit color value
(constructed by RGB or other
means). This works as expected on
an Arcade Shield and has no effect
on an LCD Shield.

CoreBASIC Reference Guide CoreBASIC Driver Reference

649

See Also

SolderCore Arcade Shield, SolderCore LCD Shield

Resources

http://www.soldercore.com/products/arcade-shield/

http://www.soldercore.com/products/lcd-shield/

http://www.soldercore.com/products/arcade-shield/
http://www.soldercore.com/products/lcd-shield/

CoreBASIC Reference Guide CoreBASIC Driver Reference

650

SolderCore LCD Shield

Installation

INSTALL "SOLDERCORE-LCD-SHIELD"

INSTALL "LCD-SHIELD"

Options

None.

Description

Installing the LCD Shield driver provides a 320×240 64k-color graphic display.

Upon installation, the SolderCore inquires whether the LCD Shield is fitted. If the shield is not fitted, or a

SolderCore Arcade shield is fitted instead of the LCD Shield, the driver stops with an incorrect device error.

Note that you can use the SolderCore Graphics driver to choose between the Arcade Shield driver and LCD

Shield driver at install time.

Properties

General

MODEL String Input A string containing the model
number of the LCD Shield. There
is currently only one model in the
series and it is reported as LCD-
SHIELD-V1.

VERSION String Input A string containing the firmware
revision number of the LCD Shield.

See also

SolderCore Graphics Shield

Resources

http://www.soldercore.com/products/lcd-shield/

Benchmarks

Here is the result of running the SolderCore Graphics Benchmarks application:

> run
Graphics display benchmark for SOLDERCORE-LCD-SHIELD

 Circles: 64 ms
 Discs: 340 ms
Rectangles: 166 ms
 Slabs: 417 ms

http://www.soldercore.com/products/lcd-shield/

CoreBASIC Reference Guide CoreBASIC Driver Reference

651

 Lines: 223 ms
 Polygons: 286 ms
 Text: 572 ms
> _

CoreBASIC Reference Guide CoreBASIC Driver Reference

652

SolderCore Network

Installation

The SolderCore network driver is automatically installed as a fixed driver when CoreBASIC starts.

Description

The SolderCore network driver provides access to the networking features of the SolderCore. You access the

network driver using the NET keyword.

Properties

Information

NAME String I/O SolderCore's NetBIOS network
name.

MAC addressing

MACADDR Digital Write An array of six octets specifying
the MAC address of the integrated
Ethernet network interface.

IP addressing

IPADDR Digital R/W Assigned network IPv4 address. If
configured for DCHP, reading this
returns an array of four integers
corresponding to the DHCP-
assigned network address, or
four zeros if the IP address is not
yet configured. If DHCP is not
configured, writing to IPADDR
configures the IP address that
the integrated Ethernet network
interface uses.

MASK Digital R/W Network mask. IPv4 network mask
of the integrated Ethernet network
interface.

GATEWAY Digital R/W Gateway IPv4 address of the
integrated Ethernet network
interface; used when a nonlocal IP
address needs routing.

SMTPSERVER Digital R/W Assigned SMTP server IPv4 address.
CoreBASIC does not automatically
configure the SMTP server address;
you must assign this before using
the MAIL statement.

CoreBASIC Reference Guide CoreBASIC Driver Reference

653

TIMESERVER Digital R/W Assigned NTP server IPv4 address.
CoreBASIC does not automatically
configure the NTP server address;
you must assign this to have
CoreOS maintain network time.

See also

NET

CoreBASIC Reference Guide CoreBASIC Driver Reference

654

SolderCore Motor Shield

Installation

INSTALL "SOLDERCORE-MOTOR-SHIELD"

INSTALL "MOTOR-SHIELD"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x22.

Description

The SolderCore Motor Shield is a 6-channel brushed DC motor driver.

Properties

Motor Drive

MOTOR(n) Analog Write Sets the speed and direction of
channel n. The value assigned to
the property should lie between
−1 and 1; values outside this range
are clamped. The sign of the value
written determines whether the
motor runs forward or in reverse.

LEFT Analog Write Convenience property. Refers
directly to channel 0, so LEFT is
identical to MOTOR(0).

RIGHT Analog Write Convenience property. Refers
directly to channel 1, so RIGHT is
identical to MOTOR(0).

CoreBASIC Reference Guide CoreBASIC Driver Reference

655

SolderCore SenseCore Shield

Installation

INSTALL "SOLDERCORE-SENSECORE"

INSTALL "SENSECORE"

Options

None.

Description

Installing the SenseCore Shield driver provides a sites for up to four full-width SExI modules or eight half-width

SExI modules.

Properties

High-Level selection

A … D Digital Write Direct write to SExI SPI chip select
signal for sites A through D.

Port I/O

D0 … D3 Digital R/W Read or write signals DIO0 through
DIO3 which are the auxiliary digital
I/O signals routed to SExI sites A
through D.

D(n) Digital R/W Read or write signals DIO0 through
DIO3 which are the auxiliary digital
I/O signals routed to SExI sites A
through D.

TX(n) Digital R/W Read or write signals TX0 through
TX3 which are the TX digital I/
O signals routed to SExI sites A
through D.

RX(n) Digital R/W Read or write signals RX0 through
RX3 which are the RX digital I/
O signals routed to SExI sites A
through D.

SELECT(n) Digital Write Indexed write to SExI SPI chip
select bit for site sites A through
D. SELECT(0) writes to the chip
select for site A, SELECT(1) writes
to the chip select for site B, and so
on.

CoreBASIC Reference Guide CoreBASIC Driver Reference

656

OUTPUT Digital Write Write all 16 bits of the port
expander.

DATA Digital Write As OUTPUT.

OUTPUT(n) Digital Write Writes bit n of the port expander.

INPUT(n) Digital Write Reads bit n of the port expander.

Notes

Writing to the port expander directly may well select an SPI device onto the SPI bus; you'll need to consult the

SenseCore schematic and be careful not to interfere with CoreBASIC's management of SExI sites. Also note

that selecting a device on the SPI bus by writing directly to its chip select will not automatically deselect other

devices on the SPI bus: if you intend to manage chip selection yourself, you must also manage deselection of

selected devices.

Resources

http://www.soldercore.com/products/sensecore/

http://www.soldercore.com/products/sensecore/

CoreBASIC Reference Guide CoreBASIC Driver Reference

657

SolderCore Servo Shield

Installation

INSTALL "SOLDERCORE-SERVO-SHIELD"

INSTALL "SERVO-SHIELD"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x20.

Description

The SolderCore Servo Shield is a 6-channel servo driver.

Properties

Motor Drive

MOTOR(n) Analog Write Sets the position of channel n. The
value assigned to the property
should lie between −1 and 1; values
outside this range are clamped.

LEFT Analog Write Convenience property. Refers
directly to channel 0, so LEFT is
identical to MOTOR(0).

RIGHT Analog Write Convenience property. Refers
directly to channel 1, so RIGHT is
identical to MOTOR(0).

CoreBASIC Reference Guide CoreBASIC Driver Reference

658

SparkFun Ardumoto Shield

Installation

INSTALL "SPARKFUN-ARDUMOTO"

INSTALL "ARDUMOTO"

INSTALL "MONSTER-MOTO-SHIELD"

INSTALL "MONSTER-MOTO"

Options

None.

Description

The Ardumoto is a 2-channel brushed DC motor driver.

Properties

Motor Drive

A Analog Write Sets speed and direction of drive A;
equivalent to MOTOR(0).

B Analog Write Sets speed and direction of drive B;
equivalent to MOTOR(1).

Alternative naming

LEFT Analog Write Sets speed and direction of drive A;
equivalent to MOTOR(0).

RIGHT Analog Write Sets speed and direction of drive B;
equivalent to MOTOR(1).

Indexed Motor Drive

MOTOR(n) Analog Write Sets the speed and direction of
channel n. Channel 0 is drive A, and
channel 1 is drive B.

Notes

We arbitrarily designate the A channel as the left-hand drive and B as the right-hand drive channel so that your

programs read better if you use both left and right drives for a robot.

The value assigned to the drive channel should lie between −1 and +1; values outside this range are clamped.

The sign of the value written determines whether the motor runs forward (when positive) or in reverse (when

negative), or is stationary (when zero).

CoreBASIC Reference Guide CoreBASIC Driver Reference

659

SparkFun Color LCD Shield

Installation

INSTALL "SPARKFUN-COLOR-LCD-SHIELD"

INSTALL "6610-SHIELD"

Options

TYPE=GE8 (default)

Initializes the display to use an Epson-based GE8 display.

TYPE=GE12

Initializes the display to use an Philips-based GE12 display.

Description

Installing the SparkFun Color LCD Shield provides a 128×128 12-bit color graphic display. You can use all the

CoreBASIC graphics commands to drive the LCD display.

Properties

Buttons

D1 … D3 Digital Read Senses individual switches S1, S2,
and S3. The property reads 1 if
the switch is pressed and 0 if it is
released.

ALL Digital Read Senses the state of all switches S1,
S2, and S3, and returns an array of
three states. Index 0 corresponds to
switch S1, index 1 to switch S2, and
index 2 to switch S3. Each element
is 1 if the corresponding switch is
pressed and 0 if it is released.

BUTTON Digital Read As ALL.

Resources

http://www.sparkfun.com/products/9363

http://www.sparkfun.com/products/9363

CoreBASIC Reference Guide CoreBASIC Driver Reference

660

SparkFun El Escudo

Installation

INSTALL "SPARKFUN-EL-ESCUDO"

INSTALL "EL-ESCUDO"

INSTALL "ESCUDO"

Options

None.

Description

Installing the El Escudo driver sets the hardware to drive the electroluminescent wires (EL-wire) attached to D2

through D9 and the LED on D10. The SolderCore signal D2 drives segment A, D3 drives segment B, and so on.

Properties

Direct Single Wire Drive

A … H Digital Write Drives EL segments A through H.
Writing a zero turns the EL wire off,
writing nonzero turns it on.

LED Analog Write Controls the intensity of the LED on
the El Escudo using PWM.

Indexed Single Wire Drive

SEGMENT(n) Digital Write Indexes 0 through 7 drive segments
A through H; hence, SEGMENT(0)
is the same as A, SEGMENT(1)
is the same as B, and so on. This
form of addressing makes it easier
to write both simple and complex
sequence-based animations.

Resources

http://www.sparkfun.com/products/9259

http://www.sparkfun.com/products/9259

CoreBASIC Reference Guide CoreBASIC Driver Reference

661

SparkFun e-Paper Breakout

Installation

INSTALL "SPARKFUN-EPAPER-BREAKOUT"

INSTALL "SPARKFUN-EPAPER"

INSTALL "EPAPER"

Options

None.

Description

Installs a driver for the 10×2 WINSTAR e-paper display used in the SparkFun e-Paper Breakout.

The driver takes care of all necessary housekeeping and timing for the e-paper display and automatically

schedules updates independently from execution of your CoreBASIC application.

The CoreBASIC interface to the e-paper display is identical to character-based LCD displays using the HD44780.

If you have an application using an HD44780 LCD display, moving it to the e-paper display is a simple matter

of wiring the e-paper display to the SolderCore and changing the driver installed to handle the application's

output.

The differences between a character LCD display and the e-paper display are:

• The e-paper display is much slower to change than an LCD display owning to the different fabrication

technologies. You cannot update an e-paper display with quickly changing text and expect to be able

to read it. The display can take half a second to a second to change, and longer to erase ghosting of old

characters, inherent in e-paper technology.

• The LCD display has a flashing cursor which is controlled by the CURSOR property. The e-paper display

does not feature a cursor, so the CURSOR property does nothing on an e-paper display.

• The LCD display has eight programmable characters. The e-paper display does not have this capability.

• An LCD display may optionally have its backlight controlled using the LIGHT property. Because an e-

paper display does not require a backlight and maintains its contents after power is removed, the LIGHT

property does nothing on an e-paper display.

• The e-paper display can be black on white or white on black, controlled by the POLARITY property. A

character LCD display cannot invert its display and does not implement the POLARITY property.

Note

Because the e-paper display is updated by a separate task in the SolderCore, your application is not delayed

when you output to the e-paper display: your output request completes almost instantaneously and the update

of the display is taken care of, over time, by a independent update task.

CoreBASIC Reference Guide CoreBASIC Driver Reference

662

Setup

The connections required to use this driver are:

• D6 — SLEEP

• D8 — LATCH

• D9 — EIO

• D11 — DI0

• D13 — XCK

Properties

Dimensions

WIDTH Digital Write The width of the display, in
character positions. Reads as 10.

HEIGHT Digital Write The height of the display, in
character lines. Reads as 2.

Cursor

X or COL Digital R/W The x co-ordinate of the cursor.

Y or ROW Digital R/W The y co-ordinate of the cursor.

LINE Digital R/W As Y and ROW.

POS Digital R/W An array containing the x and y co-
ordinates of the cursor.

CURSOR Digital Write Cursor control. Writing to this
property has no effect: the
property is implemented only for
compatibility with character-based
LCD displays.

Control

POLARITY Digital R/W The display polarity. By default,
the display initialized to black on
white with POLARITY set to 0.
Setting POLARTY to 1 changes the
display to white on black, keeping
all displayed content unchanged.

LIGHT Digital Write Backlight control. Writing to
this property has no effect: the
property is implemented only for
compatibility with character-based
LCD display drivers.

Formatted I/O

CoreBASIC Reference Guide CoreBASIC Driver Reference

663

Y(n) or ROW(n) String R/W When read, returns the string being
displayed on line n of the display.
When written, overwrites the whole
of line n of the display, filling display
line n with extra spaces if necessary.

LINE(n) String R/W As Y(n) and ROW(n).

CENTER(n) String Write Centers the string written on
display line n. If the string is too
long for the display, only the central
part is displayed. If the string is
narrower than the display width, it
is padded left and right with spaces
to the display width such that it lies
central within the display.

RIGHT(n) String Write Right-justifies the string written
on display line n. If the string is too
long for the display, it is truncated
on the left such that the rightmost
part of the string covers the whole
line. If the string is narrower than
the display width, it is padded left
with spaces to the display width
such that it lies adjusted right on
the display.

Direct Digit Output

DIGIT(n) Digital R/W Reads or writes the 16-segment
digit n. The coding of the segments
to the bits in the value written is
described below. Digit 0 is the first
digit of the top line and digit 19 is
the last digit of the second line.

Resources

http://www.sparkfun.com/products/10150 — display

http://www.sparkfun.com/products/10304 — breakout

http://www.sparkfun.com/products/10150
http://www.sparkfun.com/products/10304

CoreBASIC Reference Guide CoreBASIC Driver Reference

664

SparkFun IMU-3000 Combo

Installation

INSTALL "SPARKFUN-IMU-3000-COMBO"

INSTALL "IMU-3000-COMBO"

Options

None.

Description

Installs drivers for the devices on the SparkFun IMU-3000 Combo. The IMU-3000 Combo has both an

InvenSense IMU-3000 which is a 3-axis gyroscope and motion processor, and a Analog Devices ADXL345 3-axis

accelerometer. Together, these provide a 6DOF IMU.

While the IMU-3000 has a capability to process motion data internally using its own Digital Motion Processor

(DMP), the CoreBASIC driver does not use this function. There are great reasons for not using the IMU-3000's

DMP capability: if we did, it would require that we devote a lot of internal RAM just to bootstrap the DMP, and

RAM is always at a premium.

So, rather than use the internal DMP for sensor fusion, you can simply use the CoreBASIC AHRS driver to fuse the

gyroscopes and accelerometers.

Features

This driver differs from the standard CoreBASIC IMU-3000 driver as the IMU-3000 Combo board has an

ADXL345 attached to the IMU-3000's auxiliary I2C bus. This driver programs up the IMU-3000 to deliver

accelerometer readings to the internal registers of the IMU-3000 rather than querying the ADXL345 directly.

The IMU-3000-COMBO driver also compensates for the misaligned axes on the ADXL345 with respect to the

IMU-3000 and presents accelerometer data in the same orientation as the gyroscope's body frame.

Integration with the AHRS driver

The IMU-3000 Combo is easily integrated into an 6DOF IMU using the AHRS driver:

INSTALL "IMU-3000-COMBO" AS IMU
INSTALL "AHRS" USING IMU AS AHRS

That's it! All you need to do now is query the AHRS driver to determine the orientation of the IMU-3000.

Properties

Accelerometer

CoreBASIC Reference Guide CoreBASIC Driver Reference

665

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX Analog Read Acceleration measured along the x
axis, in g.

AY Analog Read Acceleration measured along the y
axis, in g.

AZ Analog Read Acceleration measured along the z
axis, in g.

Gyroscope

G Analog Read An array of three numbers
containing the rotation rates
measured around the x, y, and z
axes, in degrees per second.

GX Analog Read Rotation rate around the x axis, in
degrees per second.

GY Analog Read Rotation rate around the y axis, in
degrees per second.

GZ Analog Read Rotation rate around the z axis, in
degrees per second.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from
the accelerometer readings. Note
that using the AHRS driver to fuse
gyroscopes and accelerometers will
provide better dynamic response
and will compensate for linear
acceleration.

See also

InvenSense IMU-3000 Driver

CoreBASIC Reference Guide CoreBASIC Driver Reference

666

Notes

See Accelerometers and Gyroscopes.

CoreBASIC Reference Guide CoreBASIC Driver Reference

667

SparkFun Joystick Shield

Installation

INSTALL "SPARKFUN-JOYSTICK-SHIELD"

Options

None.

Description

Installing the Joystick Shield provides a few digital switches and an analog joystick.

When delivered, the Joystick Shield's joystick outputs are configured to vary between 0V and +5V as the

joystick's potentiometers are tied to the 5V rail. In order to use this shield with SolderCore, you need a simple

hardware modification:

• Snip the 5V pin from the underside of the shield.

• Strap the 5V pin to the 3V3 pin next to it on the topside of the shield using a solder bridge or a small

length of wire.

With that done, the Joystick Shield works perfectly with SolderCore.

Properties

Joypad

LEFT Digital Write Sense left switch on the joystick.
This property reads 1 When the
joystick is pushed left and 0 when
not.

RIGHT Digital Write As LEFT but for the right switch.

UP Digital Write As LEFT but for the up switch.

DOWN Digital Write As LEFT but for the down switch.

PRESS Digital Write This property reads 1 when the
joystick is pressed down and
continues to read 1 until the
joystick is released. It reads 0 when
it is not pressed.

SELECT Digital Write As PRESS.

Analog Joystick

H(n) Analog Read Sense horizontal joystick position n;
−1 is fully left, +1 is fully right, and 0
is centered.

CoreBASIC Reference Guide CoreBASIC Driver Reference

668

V(n) Analog Read Sense vertical joystick position n; −1
is fully down, +1 is fully up, and 0 is
centered.

POS(n) Analog Read A complex number where the
real component is the horizontal
position of joystick n and the
imaginary component is the vertical
position of joystick n.

Resources

http://www.sparkfun.com/products/9760

http://www.sparkfun.com/products/9760

CoreBASIC Reference Guide CoreBASIC Driver Reference

669

SparkFun MIDI Shield

Installation

INSTALL "SPARKFUN-MIDI-SHIELD"

INSTALL "MIDI-SHIELD"

Options

None.

Description

Installing the MIDI shield provides you with a means to send and receive MIDI messages over a standard MIDI

cable. You can also read the state of the switches and rotary potentiometers directly.

Please make sure that the switch is set to the RUN position in order to route the MIDI connections to the Rx and

Tx signals on the SolderCore.

Properties

LEDs

RED Digital Write Drive the red LED. Writing 1 to RED
will illuminate the red LED, and
writing 0 will extinguish it.

GREEN Digital Write Drive the red LED. Writing 1 to
GREEN will illuminate the red LED,
and writing 0 will extinguish it.

Switches

D2 Digital Read Reads the state of switch D2. When
switch D2 is pressed, D2 reads as
zero and when released D2 reads
nonzero.

D3 Digital Read Reads the state of switch D2. When
switch D2 is pressed, D3 reads as
zero and when released D3 reads
nonzero.

D4 Digital Read Reads the state of switch D2. When
switch D2 is pressed, D4 reads as
zero and when released D4 reads
nonzero.

Potentiometers

A0 Analog Read Reads the setting of potentiometer
A0. This will deliver a result between
0 and 1, from fully off to fully on.

CoreBASIC Reference Guide CoreBASIC Driver Reference

670

A1 Analog Read Reads the setting of potentiometer
A1. This will deliver a result between
0 and 1, from fully off to fully on.

Resources

http://www.sparkfun.com/products/9595

http://www.sparkfun.com/products/9595

CoreBASIC Reference Guide CoreBASIC Driver Reference

671

SparkFun OLED Carrier

Installation

INSTALL "SPARKFUN-OLED-CARRIER"

INSTALL "OLED-CARRIER"

Options

None.

Description

The OLED carrier mounts a 128×128 OLED graphic display.

Connections

The connections from the carrier to the SolderCore are:

RST to D0; D/C to D1; CS to D8.

CoreBASIC Reference Guide CoreBASIC Driver Reference

672

SparkFun RingCoder Breakout

Installation

INSTALL "SPARKFUN-RINGCODER-BREAKOUT"

INSTALL "SPARKFUN-RINGCODER"

INSTALL "RINGCODER"

Options

The optional USING clause indicates how LATCH is connected.

Description

A driver for a single 16-segment RingCoder breakout.

The USING clause indicates how the RingCoder's LATCH signal is connected. If you do not specify a USING

clause, the latch signal, LATCH, is set to use CORE.D8.

The RingCoder's CLR signal must be pulled up to Vcc, and EN must be pulled down to GND.

Properties

Configuration

ORIGIN Digital R/W Read or write the 12-o'clock
segment. By default, ORIGIN is set
to zero.

LEDs

LED Digital R/W Directly read or write all 16 bits of
the shift register that controls the
LEDs. The 12-o'clock position is not
shifted by the ORIGIN property.

SEGMENT(n) Digital R/W Reads or writes the state of LED
segment n (modulo 16). Writing
a 1 turns the LED on, writing a 0
turns the LED off. The 12-o'clock
segment is controlled by the
ORIGIN property.

Example

INSTALL "RINGCODER" AS RINGCODER
CALL DISSOLVE(1)
CALL SWEEP(0) : CALL SWEEP(1)
CALL SWEEP(0) : CALL SWEEP(1)
CALL DISSOLVE(0)

CoreBASIC Reference Guide CoreBASIC Driver Reference

673

END

DEFPROC SWEEP(STATE)
FOR I = 0 TO 15
 RINGCODER.SEGMENT(I) = STATE
 PAUSE 0.1
NEXT I
ENDPROC

DEFPROC DISSOLVE(STATE)
SEQ = SHUFFLE GEN(0 TO 15)
FOR EACH S IN SEQ
 RINGCODER.SEGMENT(S) = STATE
 PAUSE 0.1
NEXT S
ENDPROC

This can be written a little more succinctly:

INSTALL "RINGCODER" AS RINGCODER
CALL EFFECT(SHUFFLE GEN(0 TO 15), 1)
CALL EFFECT(GEN(0 TO 15), 0) : CALL EFFECT(GEN(0 TO 15), 1)
CALL EFFECT(GEN(0 TO 15), 0) : CALL EFFECT(GEN(0 TO 15), 1)
CALL EFFECT(SHUFFLE GEN(0 TO 15), 0)
END

DEFPROC EFFECT(SEQ, STATE)
FOR EACH S IN SEQ
 RINGCODER.SEGMENT(S) = STATE
 PAUSE 0.1
NEXT S
ENDPROC

CoreBASIC Reference Guide CoreBASIC Driver Reference

674

SparkFun Spectrum Shield

Installation

INSTALL "SPARKFUN-SPECTRUM-SHIELD"

INSTALL "SPECTRUM-SHIELD"

Options

None.

Description

The SparkFun Spectrum Shield uses two graphic equalizer driver chips to analyze the spectrum of a stereo signal.

You connect the audio to be analyzed into either of the two jacks, and the left and right channels are divided

into frequency bands.

Properties

Direct Input

LEFT Analog Input Equivalent to CHANNEL(0).

RIGHT Analog Input Equivalent to CHANNEL(1).

Indexed Input

CHANNEL(n) Analog Input Returns a seven-element array for
the spectrum of channel n. Channel
0 is the left channel and channel 1
is the right channel. Each element
of the array lies between 0 and 1
inclusive.

Example

This example requires only the Spectrum Shield plugged into the SolderCore. It shows a bar graph, like you

would see on a graphic equalizer, for the left channel.

***../examples/spectrum-shield-test.bas not found ***

You can load this into CoreBASIC using EXAMPLE "spectrum-shield-test" or |spectrum-shield-

test.

Resources

http://www.sparkfun.com/products/10306

http://www.sparkfun.com/products/10306

CoreBASIC Reference Guide CoreBASIC Driver Reference

675

SparkFun Touch Shield

Installation

INSTALL "SPARKFUN-TOUCH-SHIELD"

INSTALL "TOUCH-SHIELD"

Options

None.

Description

The SparkFun Touch Shield provides a 9-digit capacitive sense keypad.

Properties

SINGLE filters out a single capacitive sense touch and returns a string. If the string is empty, no keys are

detected as pressed or multiple keys are pressed simultaneously (i.e. there is not a single unique key press).

ALL returns a string containing all the keys that are pressed, and is empty if no keys are pressed.

Note that both SINGLE and ALL return the instantaneous state of keys pressed—if you hold your finger on a

key, that key is continually returned as pressed.

Example

This example requires only the Touch Shield plugged into the SolderCore. It shows how to wait for keys to be

released before registering another key as pressed.

***../examples/touch-shield-pin.bas not found ***

You can load this into CoreBASIC using EXAMPLE "touch-shield-pin" or |touch-shield-pin.

Resources

http://www.sparkfun.com/products/10508

http://www.sparkfun.com/products/10508

CoreBASIC Reference Guide CoreBASIC Driver Reference

676

SparkFun VoiceBox Shield

Installation

INSTALL "SPARKFUN-VOICEBOX-SHIELD"

INSTALL "VOICEBOX"

Options

None.

Description

The SparkFun VoiceBox Shield is integrated into CoreBASIC so you can easily add speech to your application. It's

easy!

INSTALL "SPARKFUN-VOICEBOX-SHIELD" AS VOICE
VOICE.SAY = "Welcome to the SolderCore"

The VoiceBox shield routes the eight event input signals of the SpeakJet IC to digital pins 5 through 12.

CoreBASIC configures the SpeakJet such that these pins are unused and do not speak phrases when the event

signals change.

The SolderCore does not know how to "speak" each word that it sees. Rather, it uses a dictionary and looks up

each word and how to speak it from the dictionary. It does this using the file /c/sys/speakjet.txt on the

card in the SD slot. If that file doesn't exist and you use SAY, the SolderCore will substitute "error." In fact, if the

word you're trying to say is not in the dictionary, the SolderCore will substitute "error" for that word too.

You can add additional words, or trim the vocabulary, by editing the speakjet.txt file.

Resources

The first version of the VoiceBox shield has an SKU (Stock Keeping Unit) of DEV-09624. You can find it here:

http://www.sparkfun.com/products/9624

The updated version of the VoiceBox shield has an SKU of DEV-09799. You can find it here:

http://www.sparkfun.com/products/9799

The only difference between the two is that the newer VoiceBox uses a surface-mounted SpeakJet IC whereas

the older one uses a DIL package.

SparkFun then retired that version and replaced it with one that includes a 3.5mm jack:

http://www.sparkfun.com/products/10661

http://www.sparkfun.com/products/9624
http://www.sparkfun.com/products/9799
http://www.sparkfun.com/products/10661

CoreBASIC Reference Guide CoreBASIC Driver Reference

677

SPI Device Driver

Installation

INSTALL "SPI-DEVICE" USING digital-io

Options

None.

Description

Installs a SPI device driver for a device using the digital-io property as the device selector.

Each device on an SPI bus is selected using a device select or chip select signal. The digital-io property specifies

which digital I/O the installed SPI driver will use to select the device.

Properties

Configuration

SPEED Digital Read The speed of the bus, in hertz, when
addressing the device. The bus
speed must be between 1 kHz and
50 MHz. The default is 1 MHz.

MODE Digital Read The phase and polarity of the
bus when addressing the device.
Supported SPI modes are 0 through
3. The default is mode 0.

WIDTH Digital Read The width of one data item on the
bus. Supported widths are 1 though
8. The default is 8 bits.

IDLE Digital Read The state of the MOSI when reading
from the bus. The default is zero.

See also

SPI, Reading an MPL115A1 pressure sensor using SPI

CoreBASIC Reference Guide CoreBASIC Driver Reference

678

STMicroelectronics LIS302DL Driver

Installation

INSTALL "STMICROELECTRONICS-LIS302DL"

INSTALL "LIS302DL"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x38; to configure the alternate address, use

ADDR=0x3A.

Description

Installs an accelerometer driver for the LIS302DL and initializes the accelerometer to the 2g range.

Properties

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

Configuration

CoreBASIC Reference Guide CoreBASIC Driver Reference

679

RANGE Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

Specification

Parameter Supported settings

Bandwidth (Hz) 100, 400

Range (g) ±2, ±8

Communication up to 400 kHz (I2C) and 10 MHz (SPI)

Notes

See Accelerometers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

680

STMicroelectronics LIS331DLH Driver

Installation

INSTALL "STMICROELECTRONICS-LIS331DLH"

INSTALL "LIS331DLH"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x30; to configure the alternate address, use

ADDR=0x32.

Description

Installs an accelerometer driver for the LIS331DLH and initializes the accelerometer to the 2g range.

Properties

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

Configuration

CoreBASIC Reference Guide CoreBASIC Driver Reference

681

RANGE Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

Notes

See Accelerometers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

682

STMicroelectronics LIS331HH Driver

Installation

INSTALL "STMICROELECTRONICS-LIS331HH"

INSTALL "LIS331HH"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x30; to configure the alternate address, use

ADDR=0x32.

Description

Installs an accelerometer driver for the LIS331HH and initializes the accelerometer to the 6g range.

Properties

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

Configuration

CoreBASIC Reference Guide CoreBASIC Driver Reference

683

RANGE Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

Notes

See Accelerometers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

684

STMicroelectronics LIS3DSH Driver

Installation

INSTALL "STMICROELECTRONICS-LIS3DSH"

INSTALL "LIS3DSH"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x38; to configure the alternate address, use

ADDR=0x3A.

Description

Installs an accelerometer driver for the LIS3DSH and initializes the accelerometer to the 2g range.

Properties

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

Configuration

CoreBASIC Reference Guide CoreBASIC Driver Reference

685

RANGE Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

Specification

Parameter Supported settings

Bandwidth (Hz) 50, 200, 400, 800

Range (g) ±2, ±4, ±6, ±8, ±16

Communication up to 400 kHz (I2C) and 10 MHz (SPI)

Notes

See Accelerometers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

686

STMicroelectronics LIS3LV02DL Driver

Installation

INSTALL "STMICROELECTRONICS-LIS3LV02DL"

INSTALL "LIS3LV02DL"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x3A.

Description

Installs an accelerometer driver for the LIS3LV02DL and initializes the accelerometer to the 2g range.

Properties

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

Configuration

RANGE Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

CoreBASIC Reference Guide CoreBASIC Driver Reference

687

BANDWIDTH Analog R/W Selected bandwidth of the of the
accelerometer, in hertz.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

Specification

Parameter Supported settings

Bandwidth (Hz) 40, 160, 640, 2560

Range (g) ±2, ±6

Communication up to 400 kHz (I2C) and 8 MHz (SPI)

Notes

See Accelerometers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

688

STMicroelectronics LPS331AP

Installation

INSTALL "STMICROELECTRONICS-LPS331AP"

INSTALL "LPS331AP"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0xBA. The LPS331Ap can be configured to use

addresses 0xB8 using the SA0 signal.

Description

Installs a pressure sensor driver for the LPS331AP.

Properties

Sensors

PRESSURE Analog Read Pressure measured in pascals.

TEMP Analog Read Die temperature measured in
degrees Celsius.

ALL Analog Read An array of two numbers containing
the pressure in pascals and the
temperature in degrees Celsius.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

CoreBASIC Reference Guide CoreBASIC Driver Reference

689

STMicroelectronics LSM303DLH Driver

Installation

INSTALL "STMICROELECTRONICS-LIS331DL" AS accel

INSTALL "HONEYWELL-HMC5883L" AS compass

Options

None.

Description

The STMicroelectronics LSM303DLH device is the combination of a STMicroelectronics LIS331DL accelerometer

and a Honeywell HMC5883L magnetometer in a single integrated circuit. Each device has its own (standard) I2C

address and shares the same I2C bus. Rather than provide a single driver for the LSM303DLH in CoreBASIC, it is

much easier to consider the single package as two separate devices and install drivers for each device separately,

as above. Hence, CoreBASIC fully supports the LSM303DLH but does not provide a specific driver for it.

CoreBASIC Reference Guide CoreBASIC Driver Reference

690

System UART Driver

Installation

INSTALL "SYSTEM-UART"

INSTALL "UART"

Install UART driver.

Options

PORT=integer

Selects port to use. Port 0 is routed to pins D0/Rx and D1/Tx, and port 1 is routed to pins D8/Tx and D10/Rx. If no

port is specified, the UART uses port 0.

RXBUF=integer

Set receive buffer size, in bytes. The receive buffer size defaults to 128 bytes if not specified.

TXBUF=integer

Set transmit buffer size, in bytes. The transmit buffer size defaults to 128 bytes if not specified.

Description

Installs a UART driver for the system UART.

For the SolderCore:

• UART port 0 is brought out to pins 0 and 1 of the digital connector. Pin 0 is receive (for data transmitted to

the SolderCore) and pin 1 is transmit (for data transmitted by the SolderCore).

• UART port 1 is brought out to pins 8 and 10 of the digital connector. Pin 8 is transmit and pin 10 is receive.

All UART input and output is interrupt driven and buffered by CoreOS. If received characters are dropped

because the receive buffer isn't emptied quickly enough by your program, you should increase the buffer size

when installing the driver.

If the transmit buffer is full and you try to output to the UART, your program will wait until the transmit buffer

empties sufficiently such that more data can be accepted. Hence, you will never drop characters on output, but

your program may be delayed waiting for the buffer to empty when you output data with the transmit buffer

full.

Properties

Line protocol

SPEED Digital R/W Baud rate; from 9600 to 1Mbaud.
Default is 9600 baud.

CoreBASIC Reference Guide CoreBASIC Driver Reference

691

PARITY Digital R/W Parity for each character. 0 is no
parity, 1 is odd parity, 2 is even
parity. Default is no parity.

DATA Digital R/W Number of data bits for each
character, range is 5 to 8 inclusive.
Default is 8 data bits.

STOP Digital R/W Number of stop bits for each
character, range is 1 to 2 inclusive.
Default is 1 stop bit.

Writing

PRINT String Write Convert written item to a string and
write that to the UART.

WRITE, TX String Write Write merged data to UART.

Status

READY Digital Read Number of items that are ready to
be read from the UART input buffer.

LEFT Digital Read Number of items that remain in
the UART output buffer, waiting to
be sent to the UART. You can wait
on this property to ensure that all
buffered data has been sent to the
UART for transmission (by using, for
instance, WAIT UART.LEFT =
0).

Reading

READ Digital Read Read a single item from the UART
and return it as a number.

READ(n) String Read Read exactly n items from the UART
and return them as a string.

RX Digital Read Read a single item from the UART
and return it as a number. If the
UART has no item immediately
available, RX will read as −1.

RX(n) String Read Read at most n items from the
UART and return them as a string.
If the UART does not have n items
immediately available, the read will
consume all items that can be read.
The length of the returned string
indicates the number of items read
from the buffer.

CoreBASIC Reference Guide CoreBASIC Driver Reference

692

Example

The following example shows how you can print messages to the UART and poll the UART for input:

***../examples/uart-tick-tock.bas not found ***

You can load this into CoreBASIC using EXAMPLE "uart-tick-tock" or |uart-tick-tock.

Example

The following example will append all data received by the SolderCore UART to the file /c/log.txt and will

echo the received data to the transmitter.

***../examples/uart-sniffer.bas not found ***

You can load this into CoreBASIC using EXAMPLE "uart-sniffer" or |uart-sniffer.

Example

The following example will test that you can transmit and receive correctly on both SolderCore UARTs and is a

demonstration of how to use two UARTs.

***../examples/dual-uart-loopback-test.bas not found ***

You can load this into CoreBASIC using EXAMPLE "dual-uart-loopback-test" or |dual-uart-

loopback-test.

When this is run you should see this output:

> run

Setting initial conditions.

Testing loopback at 9600 baud.

Transmit from UART 0 to UART 1
..
Transmit from UART 1 to UART 0
..

Testing loopback at 38400 baud.

Transmit from UART 0 to UART 1
..
Transmit from UART 1 to UART 0
..

Testing loopback at 31250 baud.

Transmit from UART 0 to UART 1
..
Transmit from UART 1 to UART 0
..

Testing loopback at 115200 baud.

Transmit from UART 0 to UART 1

CoreBASIC Reference Guide CoreBASIC Driver Reference

693

..
Transmit from UART 1 to UART 0
..

Test passed.
> _

CoreBASIC Reference Guide CoreBASIC Driver Reference

694

Texas Instruments TMP100 Driver

Installation

INSTALL "TEXAS-INSTRUMENTS-TMP100"

INSTALL "TMP100"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x90.

Description

Installs a temperature sensor driver for the TMP100.

Properties

Measurement

TEMP Analog Read Temperature in degrees Celsius.

Configuration

RESOLUTION Analog R/W The selected resolution of the
temperature sensor. The TMP100
0.5 (default), 0.25, 0.125, and
0.0625 degrees Celsius. Writing
this property will configure the
sensor to deliver measurements to
one of those resolutions. Note that
higher resolutions require longer
conversion times.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

CoreBASIC Reference Guide CoreBASIC Driver Reference

695

Texas Instruments TMP102 Driver

Installation

INSTALL "TEXAS-INSTRUMENTS-TMP102"

INSTALL "TMP102"

Options

ADDR=integer

Set the I2C 8-bit address. By default the driver uses the address 0x90.

Description

Installs a temperature sensor driver for the TMP102.

Properties

Measurement

TEMP Analog Read Temperature in degrees Celsius.

Configuration

RESOLUTION Analog R/W The fixed resolution of the
temperature sensor, 0.0625 degrees
Celsius. Writing this property has
no effect as the TMP102 has fixed
resolution.

MODE Digital R/W Select TMP102 Extended Mode.
Writing a nonzero value to MODE
enables Extended Mode where
temperatures to to 150 degrees
Celsius can be measured and
reported. The default for MODE is
zero to set the TMP102 to Normal
Mode.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

WORD(n) Digital R/W Reads or writes the 16-bit device
register n.

CoreBASIC Reference Guide CoreBASIC Driver Reference

696

VTI SCA3000 Driver

Installation

INSTALL "VTI-SCA3000" USING select

INSTALL "SCA3000" USING select

Options

DEVICE=string

Sets the specific device variant, e.g. DEVICE=D01.

Description

Installs an accelerometer driver for the SCA3000 in SPI mode. The SCA has a fixed range, according to the device

variant, and a fixed bandwidth.

Properties

General

VERSION String Read A string containing the silicon
revision of the SCA3000.

Accelerometer

A Analog Read An array of three numbers
containing the accelerations
measured along the x, y, and z axes,
in g.

AX or X Analog Read Acceleration measured along the x
axis, in g.

AY or Y Analog Read Acceleration measured along the y
axis, in g.

AZ or Z Analog Read Acceleration measured along the z
axis, in g.

Algorithms

ROLL Analog Read Roll angle φ about the x axis, in
degrees; also called bank angle.
This is computed directly from the
accelerometer readings.

PITCH Analog Read Pitch angle θ about the y axis, in
degrees; also called elevation.
This is computed directly from the
accelerometer readings.

Configuration

CoreBASIC Reference Guide CoreBASIC Driver Reference

697

RANGE Analog R/W Selected full scale range of the
accelerometer, in g. Note that
changing the range will reset the
accelerometer GAIN and BIAS to
the defaults for the selected range.

BANDWIDTH Analog R/W Selected bandwidth of the of
the accelerometer, in hertz. This
reads as 0 as the bandwidth is not
configurable.

Calibration

BIAS Analog R/W An array of three numbers
containing the accelerometer bias,
in g, for the x, y, and z axes.

GAIN Analog R/W An array of three numbers
containing the gain for one LSB, in
g, for the x, y, and z axes.

Device

PEEK(n) Digital Read Reads the 8-bit device register n.

POKE(n) Digital Write Writes the 8-bit device register n.

BYTE(n) Digital R/W Reads or writes the 8-bit device
register n.

Notes

See Accelerometers.

CoreBASIC Reference Guide CoreBASIC Driver Reference

698

Watterott electronic mSD Shield

Installation

INSTALL "WATTEROTT-MSD-SHIELD"

INSTALL "MSD-SHIELD"

Options

None.

Description

Installing the MSD LCD Shield driver provides a 240×320 true color graphic display.

Resources

http://www.watterott.com/en/Arduino-mSD-Shield

Benchmarks

Here is the result of running the SolderCore Graphics Benchmarks application:

> run
Graphics display benchmark for WATTEROTT-MSD-SHIELD

 Circles: 3120 ms
 Discs: 10515 ms
Rectangles: 281 ms
 Slabs: 7284 ms
 Lines: 8723 ms
 Polygons: 4048 ms
 Text: 2801 ms
> _

http://www.watterott.com/en/Arduino-mSD-Shield

CoreBASIC Reference Guide CoreBASIC Driver Reference

699

Watterott electronic S65 Shield

Installation

INSTALL "WATTEROTT-S65-SHIELD"

INSTALL "S65-SHIELD"

Options

None.

Description

Installing the S65 LCD Shield driver provides a 176×132 true color graphic display.

Resources

http://www.watterott.com/en/Arduino-S65-Shield

http://www.watterott.com/en/Arduino-S65-Shield

CoreBASIC Reference Guide CoreBASIC Driver Reference

700

Xterm Graphics Driver

Installation

INSTALL "XTERM-GRAPHICS"

Options

None.

Description

Installing the Xterm Graphics driver provides you with a graphics display that is emulated using the 256-color

mode of an Xterm terminal emulator. The 24-bit color space is mapped to the 6x6x6 color cube supported by

Xterm which provides a 216-color graphics capability. After installation, you can use all the CoreBASIC graphics

commands to write to the display.

Because the graphics are emulated, this driver makes it possible to run every standard graphics demonstration

without graphics hardware.

Notes

Tera Term provides a 256-color Xterm emulation.

See also

ANSI Graphics Driver

CoreBASIC Reference Guide SolderCore Reference

701

SolderCore Reference
This section is a software and hardware reference for the SolderCore and the accessories in the SolderCore

product portfolio.

CoreBASIC Reference Guide SolderCore Reference

702

Arduino-style header pinout
The SolderCore has a standard Arduino pinout:

Pin Digital Analog PWM Channel Other LM3S Port

D0 I/O Input #15 Output #0 UART #0 Rx D0

D1 I/O Input #3 UART #0 Tx E4

D2 I/O Input #2 E5

D3 I/O Input #1 Output #4 E6

D4 I/O Output #5 G1

D5 I/O Output #0 G0

D6 I/O Input #14 Output #1 D1

D7 I/O Output #1 F1

D8 I/O UART #1 Tx C7

D9 I/O Output #6 C4

D10 I/O Input #13 Output #2 UART #1 Rx D2

D11 I/O Output #7 MOSI A5

D12 I/O Output #6 MISO A4

D13 I/O Output #4 SCK A2

A0 I/O Input #4 D7

A1 I/O Input #5 D6

A2 I/O Input #6 D5

A3 I/O Input #7 D4

A4 I/O SDA B3

A5 I/O SCL B2

Voltages

All I/O pins operating in digital mode are 5V tolerant.

All analog input voltages must be between 0V and 3V; voltages outside this range may well damage the

microprocessor on the SolderCore. Analog-capable pins operating in digital mode are 5V tolerant.

CoreBASIC Reference Guide SolderCore Reference

703

Boot sequence
When you turn on your SolderCore, or reset the SolderCore using the small button on the PCB, the SolderCore

performs a cold start sequence, or boot sequence to start networking, mount the microSD card, and start

CoreBASIC. The exact sequence is:

1. Initialize all hardware functions.

2. Mount the /c drive from the microSD card.

Default boot sequence

If the microSD card cannot be mounted, the SolderCore uses a default boot sequence as follows:

1. Start the networking service.

2. Request a DHCP address from an available DHCP server.

3. Request the current time from a time server on the network.

4. Start the WINS server to respond to the name core-xxxxxx where xxxxxx is the serial number of the

SolderCore found on the underside of the PCB.

Once the SolderCore is booted in this mode, you can find the IPv4 address assigned by the DHCP server

by looking at the records maintained by your particular DHCP server. However, if you have the NetBIOS or

the Windows Internet Name Service configured, you can simply use the name core-xxxxxx to address the

SolderCore over the network.

To find the network-assigned IPv4 address using ping:

C:\Users\Paul>ping core-0000be

Pinging core-0000be.rowley.co.uk [10.0.0.46] with 32 bytes of data:
Reply from 10.0.0.46: bytes=32 time<1ms TTL=64
Reply from 10.0.0.46: bytes=32 time<1ms TTL=64
Reply from 10.0.0.46: bytes=32 time<1ms TTL=64
Reply from 10.0.0.46: bytes=32 time<1ms TTL=64

Ping statistics for 10.0.0.46:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\Users\Paul>

User boot sequence

If the microSD is mounted without error, the SolderCore uses a more elaborate boot sequence as follows:

1. Start the networking service.

2. Loads and run /c/sys/!network.bas, if it exists, to configure the network.

3. If DHCP is configured, request a DHCP address from an available DHCP server.

4. Request the current time from a time server on the network.

5. Start the WINS server to respond to the network name set in NET.NAME.

CoreBASIC Reference Guide SolderCore Reference

704

6. Loads and run /c/sys/!boot.bas, if it exists, to allow further user configuration.

7. Loads and run /c/!run.bas, if it exists, to automatically start a user application.

CoreBASIC Reference Guide SolderCore Reference

705

Benchmarking CoreBASIC
In the 1980s, Kilobaud published a set of benchmarks for BASIC interpreters, and those benchmarks were

adopted by Personal Computer World (PCW), a magazine printed in the United Kingdom. They became the

de-facto method to measure the performance of a BASIC interpreter. It's fun to see just how far things have

progressed, so here is a table of results for some vintage computers and the SolderCore:

Computer BM1 BM2 BM3 BM4 BM5 BM6 BM7 BM8 Avg

BBC B 0.6 3.2 8.1 8.8 9.9 14.3 21.9 48 14.3

IBM PC 1.5 5.2 12.1 12.6 13.6 23.5 37.4 35 17.6

Acorn
Atom

0.5 5.1 9.5 10.8 13.9 19.1 31.1 92 22.8

VIC-20 1.4 8.3 15.5 17.1 18.3 27.2 42.7 99 28.7

Apple II 1.3 8.5 16.0 17.8 19.1 28.6 44.8 107 30.4

Dragon
32

1.6 10.2 19.7 21.6 23.3 34.3 50.0 129 36.2

Oric
Atmos

1.6 15.2 25.4 27.4 33.0 45.6 68.5 136 44.1

SVI-328 1.6 5.4 17.9 19.6 20.6 30.7 42.2 236 46.7

ZX81
(fast)

4.5 6.9 16.4 15.8 18.6 49.7 68.5 229 51.2

Microtan651.9 12.8 24.7 27.8 29.6 43.2 68.9 243 56.5

ZX
Spectrum

4.8 8.7 21.1 20.4 24.0 55.3 80.7 253 58.5

Oric-1 1.8 17.1 29.0 31.4 38.0 51.8 77.8 230 59.6

Atari
600XL

2.2 7.2 19.1 22.8 25.8 37.6 58.3 412 73.1

TI-99/4A 2.9 8.8 22.8 24.5 26.1 61.6 84.4 382 76.6

SolderCore0.0016 0.013 0.031 0.034 0.037 0.058 0.092 0.078 0.043

The SolderCore's time to run all eight benchmarks is just 0.388 seconds, which is quicker than the fastest

benchmark time recorded above—for a single benchmark!

Why does SolderCore run so fast? Well, it's a combination of pure grunt from an 80MHz Cortex-M3 core (the

Cortex-M3 is a 32-bit processor rather than an 8-bit or 16-bit processor) and CoreBASIC is a very slick piece of

software.

Here are the benchmarks that we ran:

BM1

***../examples/kilobaud-bm1.bas not found ***

CoreBASIC Reference Guide SolderCore Reference

706

You can load this into CoreBASIC using EXAMPLE "kilobaud-bm1" or |kilobaud-bm1.

BM2

***../examples/kilobaud-bm2.bas not found ***

You can load this into CoreBASIC using EXAMPLE "kilobaud-bm2" or |kilobaud-bm2.

BM3

***../examples/kilobaud-bm3.bas not found ***

You can load this into CoreBASIC using EXAMPLE "kilobaud-bm3" or |kilobaud-bm3.

BM4

***../examples/kilobaud-bm4.bas not found ***

You can load this into CoreBASIC using EXAMPLE "kilobaud-bm4" or |kilobaud-bm4.

BM5

***../examples/kilobaud-bm5.bas not found ***

You can load this into CoreBASIC using EXAMPLE "kilobaud-bm5" or |kilobaud-bm5.

BM6

***../examples/kilobaud-bm6.bas not found ***

You can load this into CoreBASIC using EXAMPLE "kilobaud-bm6" or |kilobaud-bm6.

BM7

***../examples/kilobaud-bm7.bas not found ***

You can load this into CoreBASIC using EXAMPLE "kilobaud-bm7" or |kilobaud-bm7.

BM8

***../examples/kilobaud-bm8.bas not found ***

You can load this into CoreBASIC using EXAMPLE "kilobaud-bm8" or |kilobaud-bm8.

CoreBASIC Reference Guide SolderCore Reference

707

The SolderCore bootloader
Before booting CoreBASIC, the integrity of the CoreBASIC firmware is verified by the SolderCore bootloader. The

bootloader tries to prevent you bricking your SolderCore and that the SolderCore can always be recovered.

The SolderCore will upgrade the CoreBASIC firmware from the microSD slot when commanded. If there is an

error upgrading the firmware, the bootloader will halt and report the error using the LEDs.

How the bootloader flashes your program

When the SolderCore is reset, the bootloader initializes the SolderCore hardware and checks the integrity of the

installed CoreBASIC firmware. If the CoreBASIC firmware is intact, the bootloader transfers control to CoreBASIC

and CoreBASIC continues with its standard boot sequence.

If the CoreBASIC firmware is damaged, the bootloader initiates a flash of the CoreBASIC firmware from the

upgrade image stored in the file /c/sys/core.fw on the microSD card.

To flash the CoreBASIC firmware, the bootloader takes the following steps:

• Initialize the microSD card.

• Mount the microSD card as drive /c.

• Open the upgrade firmware image file /c/sys/core.fw for reading.

• Verify the integrity of the firmware image by decrypting the firmware, checking the CRC, and checking

that the firmware label indicates that the firmware is intended for this model of SolderCore.

• Erase the current CoreBASIC firmware and verify that the firmware area in flash is blank.

• Read, decrypt, and flash the firmware image from /c/sys/core.fw.

• Once the image is flashed, verify the flashed image and check the firmware CRC.

• Reset the SolderCore to start running the new CoreBASIC firmware.

What to expect during firmware upgrade

Although the SolderCore and the CoreBASIC FIRMWARE commands provide many checks before requesting

the bootloader flash the CoreBASIC firmware, it is still possible to manually place corrupt firmware, or firmware

intended for another model, into /c/sys/core.fw. The SolderCore bootloader will, however, reject invalid

firmware by checking the firmware CRC and the firmware label before reprogramming the firmware which

makes it impossible, in normal operation, to brick your SolderCore.

During flashing, the LED next to the microSD card slot will be lit, indicating access to the SD card and flash

reprogramming. The bootloader checks the firmware upgrade at each stage. If something unexpected happens

during the upgrade, the the bootloader indicates the firmware upgrade failure by extinguishing the microSD

LED and blinking both red IDL and USR LEDs on the SolderCore PCB: you'll find these LEDs next to the reset

button.

LED blinks Description

2 No media in microSD slot.

CoreBASIC Reference Guide SolderCore Reference

708

3 Media in microSD slot is not recognized as a FAT file
system.

4 The media in the microSD slot is a valid FAT file system,
but the file upgrade image /c/sys/core.fw does
not exist.

5 Read error on /c/sys/core.fw indicating a
corrupted FAT file system, or the microSD card was
ejected during flashing.

6 The firmware upgrade image contained in /c/sys/
core.fw does not pass CRC verification; the firmware
or file system is corrupt.

7 The firmware upgrade image is intact and passes CRC
verification but the upgrade firmware is not intended
for this model of SolderCore.

8 Firmware erase or blank check failed.

9 Firmware flash programming failed.

10 Newly installed firmware failed CRC check.

CoreBASIC Reference Guide SolderCore Reference

709

Stellaris port mapping
The SolderCore has a number of signals that have dedicated functions. If you are programming the SolderCore

in C, this section is a quick summary of the pinning of the SolderCore and the LM3S9D92 port assignment.

However, if you are doing serious development with SolderCore, please refer to the schematic for exact details.

Internal signals

The signals internal to the SolderCore are mapped as follows:

SolderCore use Stellaris port assignment

User LED C5

Run LED E7

microSD LED J4

microSD Chip Select G7

Ethernet Yellow LED F2

Ethernet Green LED F3

MEM1 Chip Select J3

MEM2 Chip Select J5

SolderCore headers

The signals brought out to the SolderCore headers are mapped as follows:

SolderCore pin Stellaris port assignment

D0 D0

D1 E4

D2 E5

D3 E6

D4 G1

D5 G0

D6 D1

D7 F1

D8 C7

D9 C4

D10 D2

D11 A5

D12 A4

D13 A2

CoreBASIC Reference Guide SolderCore Reference

710

A0 D7

A1 D6

A2 D5

A3 D4

A4 B3

A5 B2

Alternative pinning

The SolderCore can be configured, using solder jumpers, to route pins A4 and A5 to Stellaris analog inputs rather

than use them for digital I/O, primarily I2C. CoreBASIC does not support this configuration, but if you move the

solder jumpers, the alternate routings are:

SolderCore pin Stellaris port assignment

A4 E3

A5 E2

CoreBASIC Reference Guide SolderCore Reference

711

A historical perspective...
The SolderCore compares extremely well with a 1977 popular computer:

Parameter PET 2001 SolderCore Comparison

Introduced 1977 2012 35 years pass…

RAM 4K 96K 24× bigger

ROM 12K 512K 43× bigger

Processor speed 1MHz 80MHz 80× faster

Storage capacity 170KB per disk 16GB per SD card 100,000× bigger

Write speed 1.8KB per second 6MB per second 3,500,000× faster!

Cost $795 + $795 = $1590 $80 1/20th the cost

Number of ICs 81 1 1/81× the chips

Actually, if we account for inflation, things become even more surreal. $795 in 1977 is approximately $4,500 in

2012; so, the cost of a Commodore PET plus a dual disk drive is $9,000—meaning the $80 SolderCore is 1/112th

the adjusted price of a Commodore PET!

CoreBASIC Reference Guide SolderCore Reference

712

XMOS Firmware Development
This section describes how to build the Arcade Shield and LCD Shield firmware factory image from source and

how to download them to the Arcade Shield using an XMOS XTAG-2 Debug adapter. We also describe how to

prepare a firmware upgrade release.

Preparing a factory image release
Describes how to develop XMOS firmware to run
in RAM for testing and how to flash that into the
SolderCore Arcade Shield or LCD Shield.

Generating a fimware upgrade release

Describes how to prepare an upgrade image of
new XMOS firmware and how to load that into
the SolderCore Arcade Shield or LCD Shield using
CoreBASIC and a SolderCore.

CoreBASIC Reference Guide SolderCore Reference

713

Preparing a factory image release
You will need:

• The the XMOS Desktop Tools: I happen to be using version 11.2.2 on Windows. You can download these

open tools from XMOS, http://www.xmos.com/products/development-tools.

• The firmware sources: Download and extract the sources to the Arcade Shield and LCD Shield firmware

from the SolderCore website.

• An XTAG-2 programmer: You can purchase an XTAG-2 programmer from a number of places, including

DigiKey: http://www.digikey.com/catalog/en/partgroup/xtag-2-debug-adapter-xcard-xtag-2/20055

• A 20-pin to 10-pin format converter: You can purchase this from Rowley Associates.

Compiling the sources for a factory image

1. Open an XMOS command prompt.

2. Change to the firmware folder

3. Compile the sources...

To compile the Arcade Shield sources:

xcc -O3 8x8.c Graphics.c Main.xc VGAThread.xc ArcadeShield.xn -lflash -o factory.xe

To compile the LCD Shield sources:

xcc -O3 Main.xc 8x8.xc LCDShield.xn -lflash -o factory.xe

You now have an executable file, factory.xe, that contains the firmware for the target.

Running the factory firmware in RAM

First, connect the XMOS XTAG-2 adapter to the PC and make sure the drivers install. Next, plug the XTAG-2

debug adapter into the format converter and connect the 10-conductor cable from the format converter into

the LCD or Arcade Shield using the red wire to ensure proper polarity between the format converter and the

shield.

To run the firmware in RAM:

xrun factory.xe

That's all there is to it! However, the firmware will evaporate if the shield is reset or power cycled. If you want to

make your new firmware a permanent addition, you need to write it to the SPI flash.

Burning the factory firmware into SPI flash

To burn the firmware into flash:

http://www.xmos.com/products/development-tools
http://www.digikey.com/catalog/en/partgroup/xtag-2-debug-adapter-xcard-xtag-2/20055

CoreBASIC Reference Guide SolderCore Reference

714

xflash factory.xe

You should see some messages like this:

Warning: F03098 Factory image and boot loader cannot be write-protected on flash device on
 node "0".
Site 0 has finished.

If you see some messages about the flash not being able to be identified, unplug the XTAG-2 and power cycle

the shield and try again—the XTAG-2 can be a little flaky sometimes.

CoreBASIC Reference Guide SolderCore Reference

715

Generating a fimware upgrade release
The factory firmware programmed into the Arcade Shield and LCD shield is capable of upgrading itself over SPI.

If you wish to build and distribute a firmware upgrade for the Arcade Shield or LCD Shield, you don't actually

need an XMOS XTAG-2 adapter, as long as you are 100% confident your application will never crash!

This example shows how to compile firmware for upgrade, produce an upgrade image, and then convert that

image into a CoreBASIC program that will present the image over SPI for a field upgrade by the SolderCore.

You will need:

• The the XMOS Desktop Tools: I happen to be using version 11.2.2 on Windows. You can download these

open tools from XMOS, http://www.xmos.com/products/development-tools.

• The firmware sources: Download and extract the sources to the Arcade Shield and LCD Shield firmware

from the SolderCore website.

• A SolderCore running CoreBASIC: You can purchase this from Rowley Associates.

Step 1. Build the upgrade firmware

You compile the sources as you would when creating a factory image to generate an '.xe' file; we'll call this

upgrade.xe.

Step 2. Build the upgrade image

You use xflash to prepare the upgrade image. Each upgrade image requires a unique number; the bootloader

will choose the firmware with the highest upgrade image number. We typically use the date of distribution of

the firmware image as the version number, in year-month-day format, and this date is displayed by the shield

firmware on its splash screen.

xflash --upgrade 20120426 upgrade.xe -o upgrade.xi

We now have a binary upgrade image, upgrade.xi, which can be placed into the SPI flash.

Step 3. Build the conversion utility

The SolderCore can run programs that send data over an SPI bus. So, to get the image into the shield, we format

the image into a CoreBASIC program which the SolderCore can run and send the upgrade image to the shield.

You can compile the program mkdata.c which processes the '.xi' file into CoreBASIC DATA statements.

Microsoft offer Visual Studio Express which can do this for you. Here I'm compiling with Visual Studio 2008

Standard Edition:

E:\boards> cl mkdata.c
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.21022.08 for 80x86

http://www.xmos.com/products/development-tools

CoreBASIC Reference Guide SolderCore Reference

716

Copyright (C) Microsoft Corporation. All rights reserved.

mkdata.c
Microsoft (R) Incremental Linker Version 9.00.21022.08
Copyright (C) Microsoft Corporation. All rights reserved.

/out:mkdata.exe
mkdata.obj

E:\boards>

Step 4. Convert upgrade image to DATA statements

Now I process the firmware image:

E:\boards> cd ArcadeShield
E:\boards\ArcadeShield> ..\mkdata upgrade.xi >upgrade.bas
E:\boards\ArcadeShield>

Step 5. Merge firmware upgrade fragment

Now I have the raw data as a set of CoreBASIC DATA statements; all that's left to do now is prepend the following

to those DATA statements:

 10 INSTALL "SOLDERCORE-ARCADE-SHIELD" AS U
 20 READ L
 30 PRINT "New firmware image requires "; L; " bytes."
 40 PRINT "Upgrading firmware."
 50 ' Send Firmware Upgrade command.
 60 U.WORD = 0xF00DBABE
 70 U.WORD = 0xDEADBEEF
 80 ' Send size of new firmware.
 90 U.WORD = L
 100 ' Send firmware image.
 110 WHILE L > 0
 120 READ X : U.WORD = X
 130 L = L - 4
 140 WEND
 150 PRINT
 160 PRINT "Firmware upgraded. Please power cycle your device."
 170 END

Step 6. Upgarade the firmware!

Now you can load this into a SolderCore, execute it, and upgrade your firmware:

 > load "/c/upgrade.bas"
 > run
 New firmware image requires 22784 bytes.
 Upgrading firmware.

 Firmware upgraded. Please power cycle your device.
 >

Done!

CoreBASIC Reference Guide Example programs

717

Example programs
Here are a few examples we cooked up with CoreBASIC.

Timing methods
How to time how long things
take using the timers CoreBASIC
provides.

Removing noise
A simple filter to eliminate noise
from a signal.

Deinterlacing samples
How to deinterlace samples
gathered by the SAMPLE
function.

Median filtering
How to apply a median filter for
algorithms such as touch screen
samples.

Monte Carlo simulation
Use random numbers to
simulate and estimate.

Parsing GPS sentences
Use CoreBASIC's advanced
string and array handling to
easily pick apart GPS sentences.

Calibrating touch screens
Calibrate your touch screen and
apply those calibrations to new
samples.

Four-parameter
calibration of a compass
for hard iron effects
Eliminate hard iron effects from
your magnetometer readings.

Reading an MPL115A1
pressure sensor using SPI
Read from a pressure sensor
using CoreBASIC's built-in SPI
support.

Downloading firmware
using CoreBASIC
An example that demonstrates
network and file access to
download new firmware by
hand.

ITead Studio LCDs
Select a working combination of
components from ITead Studio
for your SolderCore.

Conway's Game Of Life
Run Conway's classic Game
of Life on nothing but a
SolderCore.

CoreBASIC Reference Guide Example programs

718

Hangman
Play a version of Hangman
with the computer choosing
a randome word from a web
server.

Sign a Twitter request
with an OAuth signature
Shows how to create an OAuth
signature for a Twitter request.

CoreBASIC Reference Guide Example programs

719

Timing methods
The SolderCore has three different ways of measuring time:

• CORE.TIME, the time of day clock, counts once per second.

• TIMER, the millisecond timer, counts 1000 times per second, but is only accurate to 1/100th of a second.

• CORE.TICK, the high-precision timer, counts CORE.FREQUENCY times per second. For SolderCore, the

core frequency is 80 MHz and CORE.TICK increments 80 million times per second.

Which timer you use depends upon the type of time you're looking to measure, how long you need to measure

over, and what accuracy you would like to achieve.

Let's say that we'd like to time how long it takes to run one million FOR…NEXT iterations; we will do this using

the three timing methods available to us.

Time of day clock

The time of day clock CORE.TIME increments once per second. The format of CORE.TIME happens to be Unix

or POSIX time, which is the number of elapsed seconds since midnight UTC, 1 January 1970 and is the standard

way of representing time in CoreBASIC. See Unix time - Wikipedia, the free encyclopedia.

> list
 10 LIMIT = 10000000
 20 PRINT "About to time a count to "; LIMIT; " using time of day"
 30 T0 = CORE.TIME
 40 WAIT CORE.TIME <> T0 ' wait for one second tick to advance
 50 T0 = CORE.TIME
 60 FOR I = 1 TO LIMIT : NEXT I
 70 SECONDS = CORE.TIME - T0
 80 PRINT "That took "; SECONDS; " seconds..."
 90 PRINT "...or "; SECONDS / LIMIT * 1000000; " microseconds/iteration"
 100 END
> run
About to time a count to 10000000 using time of day
That took 16 seconds...
...or 1.6 microseconds/iteration
> _

Millisecond timer

The millisecond timer TIMER increments by 10 counts each centisecond. You can use TIMER to measure

periods of up to 231−1 milliseconds, which is 2,147,483 seconds, or just under 25 days, to one hundredth of a

second:

> list
 10 LIMIT = 10000000
 20 PRINT "About to time a count to "; LIMIT; " using millisecond timer"
 30 TIMER = 0
 40 FOR I = 1 TO LIMIT : NEXT I
 50 SECONDS = TIMER / 1000
 60 PRINT "That took "; SECONDS; " seconds..."

http://en.wikipedia.org/wiki/Unix_time

CoreBASIC Reference Guide Example programs

720

 70 PRINT "...or "; SECONDS / LIMIT * 1000000; " microseconds/iteration"
 80 END
> run
About to time a count to 10000000 using millisecond timer
That took 15.8 seconds...
...or 1.58 microseconds/iteration
> _

High-precision timer

The high-precision timer CORE.TICK increments CORE.FREQUENCY times per second. The actual frequency

delivered by CORE.FREQUENCY is dependent upon which microprocessor is running CoreBASIC: for

SolderCore, CORE.TICK increments 80 million times per second, and for the Freescale Freedom board it

increments 24 million times per second.

Considering SolderCore, you can use CORE.TICK to measure periods of up to 231−1 / 80,000,000 seconds,

which is about 26.84 seconds, to an accuracy of 1/80,000,000th of a second:

> list
 10 LIMIT = 10000000
 20 PRINT "About to time a count to "; LIMIT; " using high precision timer"
 30 T0 = CORE.TICK
 40 FOR I = 1 TO LIMIT : NEXT I
 50 SECONDS = (CORE.TICK - T0) / CORE.FREQUENCY
 60 PRINT "That took "; SECONDS; " seconds..."
 70 PRINT "...or "; SECONDS / LIMIT * 1000000; " microseconds/iteration"
 80 END
> run
About to time a count to 10000000 using high precision timer
That took 16.051 seconds...
...so it is 1.6051 microseconds/iteration
> _

If you run this on a Freedom board:

> run
About to time a count to 10000000 using high precision timer
That took 39.4006 seconds...
...or 3.94006 microseconds/iteration
> _

CoreBASIC Reference Guide Example programs

721

Removing noise
If you have a noisy signal, you might like to remove that noise by using a simple filter. For instance, the SparkFun

Spectrum Shield is prone to noise on both left and right channels which leads to unsightly graphic equalizer

displays. We'd like to eliminate the noise, and we have a couple of simple ways to do this.

The first is to simply force values below a threshold to zero:

> v = rnd con(10)
> print v
[0.513855, 0.17572, 0.308624, 0.534515, 0.947601, 0.171722, 0.702209, 0.22641, 0.494751,
 0.124695]
> print v * (v >= 0.2)
[0.513855, 0, 0.308624, 0.534515, 0.947601, 0, 0.702209, 0.22641, 0.494751, 0]
> _

This code generates an array of Boolean values, either zero or one, where each value indicates whether the

element exceeds the noise threshold; 0.2 in this case. Multiplying this array by the original array forces values

less than the threshold to zero and leaves other values unchanged.

If we wish to remove those noise values completely, we can use PICK:

> v = rnd con(10)
> print v
[0.513855, 0.17572, 0.308624, 0.534515, 0.947601, 0.171722, 0.702209, 0.22641, 0.494751,
 0.124695]
> print pick(v, v >= 0.2)
[0.513855, 0, 0.308624, 0.534515, 0.947601, 0, 0.702209, 0.22641, 0.494751, 0]
> _

This uses the same Boolean array as before, and selects only those values which we are interested in, discarding

the rest.

Of course, it's possible to use different selection criteria; for instance, to select only those values falling into a

particular band or interval:

> v = rnd con(10)
> print v
[0.513855, 0.17572, 0.308624, 0.534515, 0.947601, 0.171722, 0.702209, 0.22641, 0.494751,
 0.124695]
> print pick(v, 0.2 <= v and v <= 0.6)
[0.513855, 0.308624, 0.534515, 0.22641, 0.494751]
> _

As they say, the possibilities are endless...

CoreBASIC Reference Guide Example programs

722

Deinterlacing samples
The SAMPLE function delivers its results in a single array:

> v = sample(core.a17; core.a18; core.a19, 3)
> print v
[0.083893, 0.389618, 0.277222, 0.36804, 0.983429, 0.53537, 0.765656, 0.646454, 0.76712]
> _

This might be inconvenient for some algorithms or digital filters, which require sets of samples from a single

source. The samples from A3 are held in the array at indexes 0, 3, 6; the samples from A4 are held at 1, 4, 7; and

the samples from A5 are at 2, 5, and 8. We can use GEN together with SELECT to deinterlace these:

> a3 = select(v, gen(0 to high v step 3))
> print a3
[0.083893, 0.36804, 0.765656]
> a4 = select(v, gen(1 to high v step 3))
> print a4
[0.389618, 0.983429, 0.646454]
> a5 = select(v, gen(2 to high v step 3))
> print a5
[0.277222, 0.53537, 0.76712]
> _

CoreBASIC Reference Guide Example programs

723

Median filtering
As a follow-on from the previous sections, we can now put this into practice by using a median filtering

algorithm to filter the samples from a resistive touch panel.

We'll present only the sampling and filtering in this section; setting up the resistive touch panel depends very

much on how the panel is connected, so we'll assume that it is already set up and all we need to do is sample the

inputs.

Let's assume that we will be sampling the panel on analog input 2. We'll take N samples.

The median is found by sorting all the samples into ascending order and picking the middle one. If there is an

even number of samples, there is no single middle value and the median is then the average of the two middle

values.

We can code it like this:

T = SORT SAMPLE(CORE.A15, N)
N = N / 2
IF N \<\> INT N THEN M = T(N) ELSE M = (T(N-1) + T(N)) / 2

After this, M contains the median value of the samples.

CoreBASIC Reference Guide Example programs

724

Monte Carlo simulation
The value of π has been a lingering interest for me ever since I received a calculator, as a present from my aunt,

with a single unfathomable symbol on one of its keys. The off-the-cuff remark by a mathematics teacher one

afternoon, simply stating that you can approximate π using random numbers, set off a light bulb. After inquiring

a bit deeper after the lesson, I went away and wrote a program to approximate π during the morning break.

The approximation of π by the Monte Carlo method is simple to understand:

• Draw a square, then inscribe a circle within it.

• Scatter rice over the square.

• Count the total number of grains scattered and those grains falling within the circle.

• Calculate the ratio of the number of grains falling within the circle to the total number of grains scattered.

This is simply an estimate of the ratio of the two areas, which is π/4.

Rather than scattering rice over a circle, we can use a computer to virtually scatter a single grain of rice using two

random numbers. The two numbers, both between 0 and 1, represent the x and y coordinate of the grain of rice.

We use Pythoagoras to determine whether the grain of rice lies within a unit circle; it lies in the unit circle if x2 +

y2 ≤ 1.

We continue to scatter rice, or generating random numbers, and so develop a more accurate estimation of π—as

long as the random numbers are indeed uniformly random, and we don't start repeating.

Here's a single line of CoreBASIC to provide an estimate of pi using n grains of rice:

PRINT 4 * SUM((RND CON(N))^2 + (RND CON(N))^2 \<= 1)/N

We can scatter 10 grains and see how well we do:

> n = 10
> print 4 * sum((rnd con(n))^2 + (rnd con(n))^2 <= 1)/n
2.4
> print 4 * sum((rnd con(n))^2 + (rnd con(n))^2 <= 1)/n
3.2
> print 4 * sum((rnd con(n))^2 + (rnd con(n))^2 <= 1)/n
3.6
> _

Well, not too accurate. We can try 1,000:

> n = 1000
> print 4 * sum((rnd con(n))^2 + (rnd con(n))^2 <= 1)/n
3.10797
> print 4 * sum((rnd con(n))^2 + (rnd con(n))^2 <= 1)/n
3.18397
> print 4 * sum((rnd con(n))^2 + (rnd con(n))^2 <= 1)/n
3.11197
> _

CoreBASIC Reference Guide Example programs

725

The SolderCore will run this single-liner up to approximately 2,000 grains, but not much beyond, because of

memory constraints. To venture beyond 2,000 grains, we can construct a simple program which scatters one

grain at a time, and tallies everything at the end:

> list
***../examples/monte-carlo-pi.bas not found ***> run
How many iterations? 1000
After 1000 iterations an approximation to pi is 3.152
> run
How many iterations? 10000
After 10000 iterations an approximation to pi is 3.1416
> _

You can load this into CoreBASIC using EXAMPLE "monte-carlo-pi" or |monte-carlo-pi.

You might like to compare how fast array operations are compared to pure iteration. Try timing the program

above over a million operations. Now, rewrite the program to scatter 1,000 grains at a time, and iterate that

1,000 times so that you scatter one million grains.

Which do you predict to be faster? And which is actually faster?

CoreBASIC Reference Guide Example programs

726

Parsing GPS sentences
Although CoreBASIC has a GPS driver that will validate and parse GPS sentences, it's interesting to show how to

pick apart a GPS sentence and illustrate the simplicity and elegance of CoreBASIC.

Validating the checksum

A GPS sentence starts with a dollar sign and ends with a checksum after an asterisk. The checksum is computed

over the sentence between the dollar and asterisk.

Here is a simple sentence:

S = "$GPRMC,192157.110,A,4208.3427,N,02445.0243,E,0.13,92.58,211111,,,A*5E"

To validate the checksum, we will start by discarding the dollar sign:

S = S(1 TO)

We could have written this in functional form using MID(S, 1); it comes down to personal preference.

Now we divide the string into two at the asterisk:

V = SPLIT("*", S)

After execution of the SPLIT, V(0) contains the GPS sentence and V(1) contains the 8-bit checksum as two

hexadecimal numerals.

The GPS checksum is a longitudinal redundancy check over the ASCII characters in the sentence. A longitudinal

redundancy check computes the even parity over a parallel set of bits along the sentence; it just happens that

the XOR Boolean operation does this for us.

We must iterate over each character in V(0) and exclusive-or a running checksum with the ASCII value of each

character. The first thing that comes to mind is a loop like this:

CHECKSUM = 0
FOR I = 0 TO HIGH V(0)
 CHECKSUM = CHECKSUM XOR V(0)(I)
NEXT I

This would do the trick, but it's rather clumsy. Instead, we can use the EXPAND and REDUCE functions to

compute the checksum for us. EXPAND x, when x is a string, creates a new array where each value in the array

is the ASCII code of the corresponding character in x. Using REDUCE to apply the XOR operation over the

expanded data gives us the checksum:

CHECKSUM = REDUCE(XOR, EXPAND V(0))

Finally, we confirm that our computed checksum matches the two-digit checksum following the sentence by

converting the binary checksum to a hexadecimal string and comparing:

CoreBASIC Reference Guide Example programs

727

IF HEX CHECKSUM = V(1) THEN PRINT "GOOD" ELSE PRINT "BAD"

Tidying up, the code to validate the checksum is:

S = "$GPRMC,192157.110,A,4208.3427,N,02445.0243,E,0.13,92.58,211111,,,A*5E"
V = SPLIT("*", S(1 TO))
CHECKSUM = REDUCE(XOR, EXPAND V(0))
IF HEX CHECKSUM = V(1) THEN PRINT "GOOD" ELSE PRINT "BAD"
END

Separating the fields

Now that we have validated the checksum, we turn to separating the fields of the GPS sentence. Each field in a

GPS sentence is separated from the next by a comma; we can do that using SPLIT again:

V = SPLIT(",", V(0))

Now V contains an array of strings which correspond to the fields in the GPS sentence. The first field is the

sentence type, and the NMEA standard defines a number of standard sentence types. We'll only decode the

sentence type GPRMC, the recommended minimum essential GPS data. We can use a CASE statement to switch

to parsing routines for each sentence type:

CASE V(0)
 WHEN "GPRMC": CALL GPRMC(V)
 WHEN "GPGGA": CALL GPGGA(V)
 WHEN "GPGSA": CALL GPGSA(V)
 OTHERWISE PRINT "Unhandled GPS sentence type "; V(0)
ENDCASE

You can extend this with additional sentence types by following the format above and adding extra WHEN

clauses.

Implementing GPRMC is now simply a matter of examining and decoding each of the fields in the array. Showing

the time is easy enough:

DEFPROC GPRMC(X)
 PRINT "GPS time is "; X(1)

Latitude and longitude are spread over two fields: one gives the angle and the other says whether it's north or

south, and east or west. We would rather combine the the two fields into one where north/south is indicated by

sign, as is east/west:

 LAT = IFF(X(4) = "N", VAL X(3), -VAL X(3))
 LONG = IFF(X(6) = "E", VAL X(5), -VAL X(5))
 PRINT "Latitude: "; LAT
 PRINT "Longitude: "; LONG
ENDPROC

Adding more processing is simply a matter of more string processing. We can stub-out the procedures to

decode the other sentences and, in the best traditions of text books, leave it as an exercise for the reader:

CoreBASIC Reference Guide Example programs

728

DEFPROC GPGSA(X) : ENDPROC
DEFPROC GPGGA(X) : ENDPROC

Here is the full application:

S = "$GPRMC,190415,A,3456.246,N,07650.437,W,000.0,0,040505,0,W*7A"
V = SPLIT("*", S(1 TO))
CHECKSUM = REDUCE(XOR, EXPAND V(0))
IF HEX CHECKSUM = V(1) THEN PRINT "GOOD" ELSE PRINT "BAD"
V = SPLIT(",", V(0))
CASE V(0)
 WHEN "GPRMC": CALL GPRMC(V)
 WHEN "GPGGA": CALL GPGGA(V)
 WHEN "GPGSA": CALL GPGSA(V)
 OTHERWISE PRINT "Unhandled GPS sentence type "; V(0)
ENDCASE
END

DEFPROC GPRMC(X)
 PRINT "GPS time is "; X(1)
 LAT = IFF(X(4) = "N", VAL X(3), -VAL X(3))
 LONG = IFF(X(6) = "E", VAL X(5), -VAL X(5))
 PRINT "Latitude: "; LAT
 PRINT "Longitude: "; LONG
ENDPROC

DEFPROC GPGSA(X) : ENDPROC
DEFPROC GPGGA(X) : ENDPROC

CoreBASIC Reference Guide Example programs

729

Calibrating touch screens
One of the critical tasks that a developer needs implement when using a touch panel is simply calibration:

making sure that touches on the panel are accurately mapped to pixel positions on the LCD.

There are a number of ways to achieve this, but a nice algorithm is presented by Analog Devices in Application

Note AN-1021:

http://www.analog.com/static/imported-files/application_notes/AN-1021.pdf

We've implemented this algorithm in CoreBASIC and it works out very nicely using CoreBASIC's matrix functions.

***../examples/touch-calibration-demo.bas not found ***

You can load this into CoreBASIC using EXAMPLE "touch-calibration-demo" or |touch-

calibration-demo.

> example "touch-calibration-demo"
Connecting to www.soldercore.com (192.232.216.121)...
Loading touch-calibration-demo.bas from network...
Program loaded and ready. Type RUN to execute.
> run
Solution vectors

KX =
1.01116
-0.00188613
-25.7803

KY =
0.0097182
1.00611
-126.257

0 Calibrated= 3938 3856 Error= 7 7
1 Calibrated= 2044 3854 Error= -3 5
2 Calibrated= 162 3843 Error= -2 -6
3 Calibrated= 3925 2044 Error= -6 -3
4 Calibrated= 2047 2034 Error= 0 -13
5 Calibrated= 167 2053 Error= 3 6
6 Calibrated= 3932 245 Error= 1 -1
7 Calibrated= 2046 250 Error= -1 4
8 Calibrated= 165 249 Error= 1 3
> _

http://www.analog.com/static/imported-files/application_notes/AN-1021.pdf

CoreBASIC Reference Guide Example programs

730

Four-parameter calibration of a compass for hard iron
effects
This example shows how to use CoreBASIC's matrix mathematics to correct magnetometer samples for hard iron

effects.

The theory

There are a number of ways to achieve this, but a nice algorithm is presented by Freescale in Application Note

AN4246:

http://cache.freescale.com/files/sensors/doc/app_note/AN4246.pdf

We've implemented this algorithm in CoreBASIC and it works out very nicely using CoreBASIC's matrix functions.

This example replicates Worked Example 1 in the application note, to make sure that we get the implementation

right.

***../examples/compass-calibration-demo.bas not found ***

You can load this into CoreBASIC using EXAMPLE "compass-calibration-demo" or |compass-

calibration-demo.

> example "compass-calibration-demo"
Connecting to www.soldercore.com (192.232.216.121)...
Loading compass-calibration-demo.bas from network...
Program loaded and ready. Type RUN to execute.
> run
Known dependent variables vector Y:
 95189.4
 76457.9
 76310.3
110773.5
 85487.9
 96260.6

Known magnetometer measurements X:
 167.4 -242.4 91.7 1
 140.3 -221.9 86.8 1
 152.4 -230.4 -0.6 1
 180.3 -270.6 71.0 1
 190.9 -212.4 62.7 1
 192.9 -242.4 17.1 1

Solution vector BETA:
 311.5
 -478.3
 91.7
-81304.8

Hard iron vector V:
 155.7
 -239.1
 45.8

http://cache.freescale.com/files/sensors/doc/app_note/AN4246.pdf

CoreBASIC Reference Guide Example programs

731

Geomagnetic field strength B: 47.2405 uT
> _

Looking at the results, the calculated solution vector BETA(3), and consequently the field strength, are very

slightly different from the calculated values of the application note. This is simply because of the way the matrix

inverse is computed in CoreBASIC, using single precision floating point.

For real...

To make this example real, I modified the program above to use a real magnetometer and display results on an

LCD. To replicate this setup, you will require:

• a SolderCore, to run the algorithms

• a SenseCore shield, to mount the magnetometer

• a SolderCore LCD Shield, to display the results

• a CoreMPU, which contains a magnetometer to calibrate

• a Liquidware Lithium Backpack, for battery-powered operation

• a 2x2 flat-four base to mount it all on.

The only tricky part was connecting the Lithium Backpack to the 2x2 base. I soldered a couple of screw terminals

from RS (part number 220-4260) onto the sites for them on the 2x2 base. Then I simply connected the 5V output

of the Lithium Backpack to the 5V input on the base using some hook-up wire. With all the other components in

place, you can flick the switch on the backpack to "Batt", and you have a 100% autonomous computing platform!

To calibrate the compass, run the program, disconnect any cables, and rotate the base 360 degrees slowly. What

you'll see is some axes, and a plot of red circles corresponding to the uncompensated magnetometer readings.

After 10 seconds of rotating and collecting raw magnetometer readings, the hard iron effect is calculated and

then another ten seconds of readings are taken, and a plot of green circles corresponding to the calibrated

magnetometer readings. When I run it, I managed to see a plot like this:

And here is the code:

***../examples/corempu-compass-calibration.bas not found ***

You can load this into CoreBASIC using EXAMPLE "corempu-compass-calibration" or |corempu-

compass-calibration.

CoreBASIC Reference Guide Example programs

732

Digital spirit level
The following application uses a simple 16×2 LCD and an accelerometer to implement a digital spirit level.

***../examples/digital-spirit-level.bas not found ***

You can load this into CoreBASIC using EXAMPLE "digital-spirit-level" or |digital-spirit-

level.

CoreBASIC Reference Guide Example programs

733

Reading an MPL115A1 pressure sensor using SPI
This example shows how to use the SPI keyword and the SPI-DEVICE driver to communicate with a Freescale

MPL115A1 pressure sensor. CoreBASIC has no direct support for the MPL115A1 (though that will change), so this

is a realistic example of what you need to do to get a reading from a sensor from scratch.

Setup

The equipment uses a SenseCore and a SparkFun MPL115A1 Breakout that is wired to a CoreProto prototyping

board. The CoreProto and mounted MPL115A1 sensor are then plugged into site D on the SenseCore. Of course,

you could wire the sensor to the SolderCore SPI bus directly, and use one of the SolderCore digital I/Os as a slave

select, but the SenseCore and plug-in sensors makes set up and test very convenient.

The code

Well, here is the code with plenty of explanation:

***../examples/spi-mpl115a1-demo.bas not found ***

You can load this into CoreBASIC using EXAMPLE "spi-mpl115a1-demo" or |spi-mpl115a1-demo.

Running the test code

With TEST set to TRUE, the substituted test data confirms correct implementation of the calculations:

> run

MPL115A1 Read Pressure Demo
===========================

Pressure offset coefficient: 2107.87
Pressure sensitivity coefficient: -2.49512
Temperature offset coefficient: -1.02069
Temperature sensitivity coefficient: 0.000866652

Raw temperature (Tadc): 513 counts
Raw pressure (Padc): 415 counts

Compensated pressure (PCOMP): 733.293

Pressure is 96.5924 kPa

Running for real

When this is run for real in Dursley on an autumn day, the output looks like this:

> run

MPL115A1 Read Pressure Demo
===========================

Pressure offset coefficient: 2053.37
Pressure sensitivity coefficient: -2.41748
Temperature offset coefficient: -1.00311

CoreBASIC Reference Guide Example programs

734

Temperature sensitivity coefficient: 0.000843048

Raw temperature (Tadc): 519 counts
Raw pressure (Padc): 380 counts

Compensated pressure (PCOMP): 780.383

Pressure is 99.5844 kPa

> _

CoreBASIC Reference Guide Example programs

735

Drawing the flag of the United Kingdom
This example shows how to use the graphics commands in CoreBASIC to draw the complex Union Flag, the flag

of the United Kingdom.

***../examples/union-flag.bas not found ***

Dowloading

You can load this into CoreBASIC using EXAMPLE "union-flag" or |union-flag.

CoreBASIC Reference Guide Example programs

736

Downloading firmware using CoreBASIC
This example shows how to use the network, stream, and file capabilities of CoreBASIC to interact with a web

server. The intent of the program is to download a binary file that contains the latest CoreBASIC firmware from

the SolderCore server, and as such, replicates what FIRMWARE GET would do.

***../examples/firmware-download-demo.bas not found ***

Dowloading

You can load this into CoreBASIC using EXAMPLE "firmware-download-demo" or |firmware-

download-demo.

Running

When you run the program, you see something like this:

> run
Opened a socket to www.soldercore.com
header- Date: Wed, 05 Dec 2012 17:58:23 GMT
header- Server: Apache
header- Last-Modified: Fri, 28 Sep 2012 16:24:02 GMT
header- Accept-Ranges: bytes
header- Content-Length: 491520
header- Content-Type: text/plain
header-
Received 491520 bytes...
Downloaded firmware. Use FIRMWARE CHECK to verify.
> firmware check
Verifying integrity of upgrade firmware...
Verified 491,520 bytes of 491,520 (100%)...with good CRC.
Upgrade firmware is verified to work on soldercore-v1.
Installed firmware is 1.2.13; upgrade firmware is 1.0.0.
Installed firmware differs from upgrade firmware.
> _

CoreBASIC Reference Guide Example programs

737

Bouncing lines
The following application runs best on a SolderCore Arcade Shield to provide fast animation. You can run it on a

SolderCore LCD Shield too, but the effect isn't quite as explosive. Running it on many other graphics shields will

provide a dismal experience because they are designed to be cheap rather than perform well.

***../examples/bouncing-lines.bas not found ***

Dowloading

You can load this into CoreBASIC using EXAMPLE "bouncing-lines" or |bouncing-lines.

CoreBASIC Reference Guide Example programs

738

ITead Studio LCDs
ITead Studio offers a bewildering array of LCD components and shields, and this guide will to assist you in

selecting a working combination on SolderCore. We compare only the LCDs that you can plug directly into the

SolderCore, not the serial displays that require special wiring.

You can purchase LCDs as components that plug into the ITDB02 shields. There are a number of LCDs on offer,

and two versions of the ITDB02 shield to choose from. In addition, ITead Studio has integrated the 2.4D and 2.8S

displays and IDB02 shield into a single shield with a much enhanced appearance.

LCDs

You can choose from the following LCDs:

LCD Part Number Model Size Mode Touch? Link

ITDB02-2.2
DIS025 2.2" 8-bit Yes 2.2" TFT LCD

Screen Module

ITDB02-2.4DWOT DIS009 2.4" 8-bit No 2.4" TFT LCD
Screen Module

ITDB02-2.4D DIS001 2.4" 8-bit Yes No longer sold,
replaced by
ITDB02-2.4E

ITDB02-2.4E DIS001 2.4" 8-bit Yes 2.4" TFT LCD
Screen Module

ITDB02-2.8 DIS026 2.8" 8-bit Yes 2.8" TFT LCD
Screen Module

ITDB02-3.2S DIS002 3.2" 16-bit Yes 3.2" TFT LCD
Screen Module

ITDB02-3.2WD DIS012 3.2" 16-bit Yes 3.2" TFT LCD
Screen Module

ITDB02-4.3 DIS029 4.3" 16-bit Yes 4.3" TFT LCD
Screen Module
(*)

ITDB02-5.0 DIS030 5.0" 16-bit Yes 5.0" TFT LCD
Screen Module

(*) This page has some problems at the time of writing: it makes reference to the 3.2-inch display, the ITB02-3.2S,

which is incorrect.

ITDB02 versions

ITead Studio have made two versions of the ITDB02 shield. The first version, ITDB02 v1.2 (which we will refer

to as v1 from now on), requires you to shunt links to select either an 8-bit or 16-bit LCD interface. The second

version, ITDB02 v2, supports only an 8-bit LCD interface but offers selection between 3.3V and 5V interfaces.

http://iteadstudio.com/store/index.php?main_page=product_info&products_id=529
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=529
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=529
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=529
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=55
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=55
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=530
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=530
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=54
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=54
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=263
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=263
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=541
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=541
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=542
http://iteadstudio.com/store/index.php?main_page=product_info&products_id=542

CoreBASIC Reference Guide Example programs

739

So, what's the deal? Well, SolderCore will work correctly with either ITDB02 shield, but the IDB02 v2 will not

support 16-bit-only LCDs such as the 3.2S, 3.2WD, 4.3, or 5.0, which is a shame.

The manual for the v1.2 shield is here:

ITDB02 Arduino shield v1.2

The manual for the v2 shield is here:

ITDB02 Arduino shield v2.0

Compatibility matrix

The following will show you which combinations of components will be successful with SolderCore, and which

drivers to install to get going.

LCD Part Number ITDB02 version Mode Touch? Install

ITDB02-2.2 8-bit Yes Not supported

ITDB02-2.4DWOT v1 or v2 8-bit No ITDB02-2.4D

ITDB02-2.4D v1 or v2 8-bit Yes ITDB02-2.4D

ITDB02-2.4E 8-bit Yes ITDB02-2.4E

ITDB02-2.8 v1 or v2 8-bit Yes ITDB02-2.8

ITDB02-3.2S v1 16-bit No ITDB02-3.2S

ITDB02-3.2WD v1 16-bit No ITDB02-3.2WD

ITDB02-4.3 hand wire 16-bit No ITDB02-4.3

ITDB02-5.0 hand wire 16-bit No ITDB02-5.0

Hand-wiring and ITDB02 connections

In our experience, and that of others, the ITDB02-4.3 and ITDB02-5.0 LCD modules will not work reliably with

the ITDB02 v1.2 shield. You can wire these LCD displays directly to the SolderCore using the 16-bit ITDB02

connections listed below as the SolderCore and LCD modules both work at 3.3V.

The following table is a memento, in case this information decays from the Internet. The ITDB02 v2 supports 8-

bit mode only, the ITDB02 v1 supports both 8-bit mode and 16-bit mode.

Pin 8-bit mode 16-bit mode

D0 DB8 DB8

D1 DB9 DB9

D2 DB10 DB10

D3 DB11 DB11

D4 DB12 DB12

D5 DB13 DB13

http://iteadstudio.com/Downloadfile//ITDB02shield_Manual.pdf
http://iteadstudio.com/store/images/produce/Shield/ITDB02Arduinoshield/ITDB02%20Arduino%20shield%20v2.0.pdf

CoreBASIC Reference Guide Example programs

740

D6 DB14 DB14

D7 DB15 DB16

D8 D_CS DB0

D9 D_DOUT DB1

D10 SD_CS DB2

D11 SD_IN DB3

D12 SD_OUT DB4

D13 SD_CLK DB5

A0 D_DIN DB6

A1 D_CLK DB7

A2 RST RST

A3 CS CS

A4 WR WR

A5 RS RS

ITead Studio reference

A concise reference for the displays offered by ITead Studio is found here:

http://iteadstudio.com/product/itdb02-tft-lcd-display-series/

http://iteadstudio.com/product/itdb02-tft-lcd-display-series/

CoreBASIC Reference Guide Example programs

741

Conway's Game Of Life
Here we present an implementation of Conway's classic Game of Life which requires nothing more than your

SolderCore to run. It uses a text display to show the cells as each generation is computed.

Conway's Game of Life - Wikipedia, the free encylopedia

The code

***../examples/life.bas not found ***

You can load this into CoreBASIC using EXAMPLE "life" or |life.

While showing life on the console is great, it's really neat displaying it on an array of LEDs. So, if you have a

Jimmie Rodgers LoL shield, you can do just that:

***../examples/lol-life.bas not found ***

You can load this into CoreBASIC using EXAMPLE "lol-life" or |lol-life.

http://en.wikipedia.org/wiki/Conway's_Game_of_Life

CoreBASIC Reference Guide Example programs

742

Hangman
This is a version of Hangman with the computer choosing a word from the web server http://

www.randomword.net/.

The basics of the game are fully implemented except you have you have unlimited guesses at the secret word. If

you'd like to implement this, and some ASCII art or graphics that shows the current state of the gallows, great!

The code

***../examples/hangman.bas not found ***

You can load this into CoreBASIC using EXAMPLE "hangman" or |hangman.

http://www.randomword.net/
http://www.randomword.net/

CoreBASIC Reference Guide Example programs

743

Sign a Twitter request with an OAuth signature
This example shows how you can use the power of CoreBASIC to sign a Twitter API call with an OAuth HMAC-

SHA1 signature.

The example is taken from this page:

https://dev.twitter.com/docs/auth/creating-signature

When you run this, the correct OAuth signature is shown in hex and Base64 form:

> run
Raw hex signature:

["B6", "79", "C0", "AF", "18", "F4", "E9", "C5", "87", "AB", "8E", "20", "0A", "CD", "4E",
 "48", "A9", "3F", "8C", "B6"]

OAuth signature:

tnnArxj06cWHq44gCs1OSKk/jLY=
> _

The code

***../examples/twitter-oauth-signature.bas not found ***

You can load this into CoreBASIC using EXAMPLE "twitter-oauth-signature" or |twitter-oauth-

signature.

https://dev.twitter.com/docs/auth/creating-signature

CoreBASIC Reference Guide Example programs

744

CoreBASIC Reference Guide Additional Information

745

Additional Information

CoreBASIC Reference Guide Additional Information

746

CoreBASIC development history
CoreBASIC has its roots in a BASIC interpreter I wrote for the Texas Instruments MSP430, Butterfly BASIC.

Butterfly BASIC created interest and some positive feedback, but many prospective projects required something

more advanced than the simple Butterfly BASIC interpreter; and, in addition, these projects needed capabilities

beyond the scope of the Butterfly BASIC project.

Writing an interpreter in assembly language certainly means that it can run quickly, but implementing more

advanced, complicated features is both time consuming and difficult. Butterfly BASIC has many drawbacks: it

is limited to a small number of variables, it is limited to integers, and it can't be ported to other architectures

without complete recoding.

So, having completed Butterfly BASIC in MSP430 assembly language and knowing its problems, it was time to

move on to a wider audience with a complete rewrite. I wanted to code a version in pure C so that I could use it

on a wider range of hardware, with much wider capabilities than the MSP430.

I developed CoreBASIC over the Christmas holidays of 2004 and into the new year of 2005; it ran something like

this:

• Having consigned my main Windows laptop to the cupboard for Christmas and New Year on my wife's

orders, I retreated to my cute Apple PowerBook and began to code. CoreBASIC's roots lie in that intense

development period under Xcode.

• Having completed most of the work on the PowerBook, certainly enough for it to run programs from the

command line, I ported it to CrossWorks for the MSP430. Initially it ran using console I/O services over

JTAG.

• To prove its portability I moved CoreBASIC to the AVR, again using CrossWorks. At that time I also found

the AirDrop-A and made sure that it could work on an 802.11b wireless LAN.

CoreBASIC was then released to a few select customers for review, and the comments they provided were

generally positive. However, I still wasn't satisfied with the result because both AVR and MSP430 were limited.

And, in 2006, Revely Microsystems introduced a small computer that looked ripe for a CoreBASIC port.

Networking

One of the integral options in CoreBASIC, the "Net" part, is that you can use CoreBASIC in a network

environment. To provide a simple network interface to CoreBASIC I originally chose Adam Dunkels' uIP. I

cobbled together some network device drivers which opened up the possibility for users to telnet into network-

enabled boards and start to write programs on the target interactively.

In time, however, uIP just didn't cut it on the microcontrollers I used. So, I integrated CoreBASIC with the

CrossWorks Network Stack and it remains that way to this day.

Documentation

Because I'd like CoreBASIC to proliferate, it's important that the source code is documented well. I started off

using Dimitri van Heesch's excellent Doxygen tool (I also use Doxygen internally to document CrossStudio, our

http://www.sics.se/~adam/uip/
http://www.doxygen.org
http://www.rowley.co.uk/

CoreBASIC Reference Guide Additional Information

747

neat piece of development software). You can browse around CoreBASIC's documentation and, if you're going

to extend it, you should at least try to document what you do.

However, Doxygen had some problems, and I didn't like some of the formatting. I didn't feel like hacking

Doxygen to do what I wanted, so I now use a custom tool, DocGen, that I wrote and bolted into CrossStudio.

In fact, all our API documentation is now written using DocGen, including the manual. However, DocGen is

targeted at writing API documentation rather than internal interface and function documentation, so you've

been warned.

Ports

I have ported CoreBASIC to a number of boards. The source distribution of CoreBASIC does not contain code

for all these boards because they are either bound to proprietary hardware, are experimental, or are simply

incomplete. To aid portability, I created the CrossWorks Platform API and the CoreBASIC code and many other

examples are written to that API.

CoreBASIC Reference Guide Additional Information

748

Who did all this?
All SolderCore products are designed and manufactured entirely within the United Kingdom. The project divides

neatly into hardware and software:

• Paul Curtis at Rowley Associates in Dursley conceived, designed, wrote, documented, and eventually

debugged CoreBASIC. And the firmware for the Arcade Shield and LCD Shield.

• Iain Derrington at K&I Design in Torquay designed, prototyped, reworked, tweaked, and finally built

SolderCore. And all the accessories.

CoreBASIC runs on more than the SolderCore. Helping out with native ports:

• Jonathan Elliott at Rowley Associates reimplemented the file I/O functions and networking for the

Raspberry Pi and built the Raspberry Pi CPU driver.

Thanks

The following deserve special mention:

• Tony Kireluk for constructing the excellent test jigs using his CNC expertise, for lending space to set out

the SolderCore Production and Test area, and for being positive in the face of adversity.

• Deborah Curtis for keeping the home fires burning when her poor husband was chained to his keyboard

at the office, late into the night, getting CoreBASIC to product status.

• Kerry Derrington (formerly Kerry Keast), who designed the SolderCore box, logo, and supporting

graphics. During the SolderCore project, Kerry managed to get married to Iain—that's how long

SolderCore has been in gestation.

• Maureen Pugh for keeping Paul in baguettes and dispatching SolderCore prototypes during

development.

• Ben Curtis, Bethany Curtis, and Thomas Derrington for being part of the SolderCore Production Team at

weekends when they could have been chilling with friends.

Production

The SolderCore products are manufactured by Camtronics Vale in the UK, an ISO 9001:2008 approved company:

http://www.camtronicsvale.com/

Geography

Some information from Wikipedia about Dursley and Torquay:

• http://en.wikipedia.org/wiki/Dursley

• http://en.wikipedia.org/wiki/Torquay

For those that have trouble with understanding the difference between England, the United Kingdom, and Great

Britain, you might like to take a look at this fast-paced YouTube video on the subject:

http://www.rowley.co.uk
http://kandi-electronics.co.uk
http://www.rowley.co.uk
http://www.camtronicsvale.com/
http://en.wikipedia.org/wiki/Dursley
http://en.wikipedia.org/wiki/Torquay

CoreBASIC Reference Guide Additional Information

749

• http://www.youtube.com/watch?v=rNu8XDBSn10

Hope that clears it up for you.

http://www.youtube.com/watch?v=rNu8XDBSn10

	Contents
	CrossWorks CoreBASIC Library
	Setting up a SolderCore
	Unpacking your SolderCore
	SolderCore anatomy
	Power up!
	Contact SolderCore
	Fire up CoreBASIC
	Selecting and preparing microSD cards

	Setting up a Raspberry Pi

	CoreBASIC User Guide
	Starting out with CoreBASIC
	Calculator mode
	Making mistakes
	Your first program
	More on mistakes
	Using variables
	Saving your programs
	Loading examples
	Listing directories

	Watchdog protection
	Time and date
	Debunking common misconceptions

	CoreBASIC Language Reference
	Change history
	Keywords by function
	Write and edit programs
	Load and save programs
	Build loops and decision structures
	Define and call procedures and subroutines
	Device input and output
	Calculate with numbers
	Manipulate and transform strings
	Display graphics and text
	Manipulate and transform arrays
	Complex numbers
	Mathematical functions
	Linear systems and matrices

	Keywords, A to Z
	$constant
	$ATTR
	$CWD
	$DOWN
	$LEFT
	$RIGHT
	$UP
	%constant
	%COLOR
	%E
	%FALSE
	%HEIGHT
	%I
	%IN
	%OUT
	%PI
	%TRUE
	%WIDTH
	'
	+
	-
	*
	/
	\
	^
	&
	:
	<
	<=
	<>
	=
	>
	>=
	[...]
	|
	ABS
	ACS
	ACSH
	AND
	AND THEN
	ARG
	AS
	ASC
	ASN
	ASNH
	ATN
	ATN2
	ATNH
	AUTO
	BASE64$
	BGET
	BGET$
	BLUE%
	BYE
	CALL
	CASE ... ENDCASE
	CATALOG
	CD
	CEIL
	CHAIN
	CHDIR
	CHECK
	CHR
	CINT
	CIRCLE
	CIS
	CLG
	CLOSE
	CLS
	CMPLX
	CNJ
	CON
	COL
	COLOR
	COLOR$
	CORE
	COS
	COSH
	CREDITS
	CROSS
	CRUNCH
	CVF
	CVI
	CVU
	DATA
	DATE$
	DATE%
	DAY%
	DEBUG
	DEFPROC ... ENDPROC
	DEG
	DELETE
	DELETE$
	DET
	DFT
	DIM
	DIR
	DNS
	DOT
	DRAW
	DUMP
	EDIT
	EJECT
	ELSE
	END
	ENDCASE
	ENDIF
	ENDPROC
	EOF
	EQV
	ERROR
	EXAMPLE
	EXAMPLE CATALOG
	EXAMPLE LOAD
	EXIT
	EXIT FOR
	EXIT REPEAT
	EXIT WHILE
	EXP
	EXPAND
	EXT
	EXT()
	FALSE
	FILL
	FIRMWARE
	FIRMWARE CATALOG
	FIRMWARE CHECK
	FIRMWARE GET
	FIRMWARE KILL
	FIRMWARE RUN
	FIRMWARE SAVE
	FIX
	FLT
	FLUSH
	FOR ... NEXT
	FOR EACH ... NEXT
	FONT
	FONT CATALOG
	GEN
	GET
	GET$
	GOTO
	GFX
	GOSUB
	GREEN%
	HELP
	HEX
	HIGH
	HISTORY
	HISTORY LIST
	HISTORY KILL
	HISTORY OFF
	HISTORY ON
	HISTORY PICK
	HOUR%
	I2C
	IDFT
	IDN
	IF ... THEN
	IFF
	IM
	IMP
	IN
	INF
	INK
	INNER
	INPUT
	INPUT$
	INSERT$
	INSTALL
	INSTALL CATALOG
	INSTALL LIST
	INSTR
	INT
	INV
	IP$
	JOIN
	URI$
	JUSTIFY$
	KILL
	LCASE
	LEFT
	LEN
	LET
	LINE
	LIST
	LIST USING
	LOCK
	LOG
	LOG10
	LOG2
	LOAD
	LTRIM
	MAIL
	MAT
	MAT LET
	MAT PRINT
	MAT()
	MATCH
	MAX
	MAX()
	MEMORY
	MERGE
	MERGE()
	MID
	MIN
	MIN()
	MINUTE%
	MKDIR
	MKDIR()
	MKF
	MKI
	MOD
	MODULES
	MONTH%
	MORE
	MORSE$
	MOUNT
	MOVE
	$NAME
	NAME
	NAN
	NET
	NEW
	NEWS
	NEXT
	NOT
	NUMBER$
	OPEN
	OR
	OR ELSE
	ORIGIN
	OTHERWISE
	PAPER
	PAUSE
	PI
	PICK
	PIN
	PIN CATALOG
	PIN LIST
	PIN()
	PLOT
	PRINT
	PTR
	PTR()
	QUAT
	RAD
	RANDOMIZE
	RAVEL
	RE
	READ
	READ$
	REBOOT
	RECTANGLE
	RECYCLE
	RED%
	REDUCE
	REM
	RENAME
	RENUMBER
	REPEAT ... UNTIL
	REPEAT$
	REPORT
	REPORT()
	RESTORE
	RETURN
	REVERSE
	REVERSE()
	RGB
	RIGHT
	RMDIR
	RMDIR()
	RND
	ROT
	ROW
	RTRIM
	RUN
	RUN()
	SAMPLE
	SAVE
	SAVE AUTO
	SECOND%
	SELECT
	SHA1$
	SGN
	SHUFFLE
	SIN
	SINH
	SOCKET
	SORT
	SPI
	SPLIT
	SPC
	SPOKEN$
	SQR
	STEP
	STOP
	STR
	STRING$
	SUBST$
	SUM
	SYSTEM
	TAB
	TAN
	TANH
	THEN
	TIME$
	TIMER
	TO
	TRIM
	TRN
	TRUE
	TRUTH
	TRY
	UCASE
	UNLOCK
	UNTIL
	URI$
	UTF
	VAL
	VDU
	VERSION
	WAIT
	WATCHDOG
	WATCHDOG()
	WATCHDOG REBOOT
	WATCHDOG RESTORE
	WATCHDOG TIMER
	WATCHDOG THROW
	WEB
	WEND
	WHEN
	WHILE ... WEND
	XOR
	YEAR%
	ZER

	Miscellaneous information
	Command line keystrokes
	Visual editor keystrokes
	CoreBASIC Keyboard codes

	CoreBASIC Driver Reference
	Drivers by function
	Accelerometers
	Gyroscopes
	Magnetometers
	Inertial measurement units
	Parallel buses
	Temperature sensors
	Pressure sensors
	Light sensors
	Graphic displays
	Character displays
	Joysticks and joypads

	Drivers by vendor
	Adafruit TFT Touch Shield
	AHRS Driver
	AirSensor 128GLCD
	AirSensor 192GLCD
	AMS TSL2561 Driver
	Analog Devices ADIS16400 Driver
	Analog Devices ADT7410 Driver
	Analog Devices ADXL345 Driver
	Analog Devices ADXL362 Driver
	ANSI Graphics Driver
	Asahi Kasei AK8975 Driver
	Atmel ATAVRSBIN1 Driver
	Atmel ATAVRSBIN2 Driver
	Bosch Sensortec BMA150 Driver
	Bosch Sensortec BMA250 Driver
	Bosch Sensortec BMM150 Driver
	Bosch Sensortec BMP085 Driver
	Bosch Sensortec SMB380 Driver
	Extended User Memory
	Freedom Board Accelerometer
	Freedom Board CPU
	Freescale MAG3110 Driver
	Freescale MMA8451Q Driver
	Freescale MMA8491Q Driver
	Freescale MPL115A1 Driver
	Freescale MPL115A2 Driver
	Freescale MPL3115A2 Driver
	FTP Server
	Gravitech 7-Segment Shield
	Hitachi HD44780 Driver
	Honeywell HIH6130 Driver
	Honeywell HMC5843 Driver
	Honeywell HMC5883L Driver
	Honeywell HMC6343 Driver
	Honeywell HMC6352 Driver
	HTTP Server
	Intersil ISL29023 Driver
	InvenSense IMU-3000 Driver
	InvenSense ITG-3200 Driver
	InvenSense MPU-6000 Driver
	InvenSense MPU-6050 Driver
	InvenSense MPU-6050EVB Driver
	InvenSense MPU-9150 Driver
	ITead Studio Colors Shield
	ITead Studio ITDB02-2.2 LCD Module
	ITead Studio ITDB02-2.4D LCD Module
	ITead Studio ITDB02-2.4E LCD Module
	ITead Studio ITDB02-2.8 LCD Module
	ITead Studio ITDB02-3.2S LCD Module
	ITead Studio ITDB02-3.2WD LCD Module
	ITead Studio ITDB02-4.3 LCD Module
	ITead Studio ITDB02-5.0 LCD Module
	Jee Labs LCD Plug
	Jimmie Rodgers LoL Shield
	Kionix KXP84 Driver
	Kionix KXTF9 Driver
	Linear Technology LTC2309 Driver
	Linear Technology LTC6904 Driver
	Liquidware Input Shield
	Matrix Keyboard Driver
	MaxDetect DHT and RHT Driver
	Maxim DS1340 driver
	Maxim MAX6675 Driver
	Microchip MCP23008 Driver
	Microchip MCP23016 Driver
	Microchip MCP23017 Driver
	Microchip MCP342x Driver
	Microchip MCP4725 Driver
	Microchip TC77 Driver
	Modkit MotoProto Shield
	National Semiconductor LM75 Driver
	Nintendo Classic Controller
	Nintendo Nunchuk Controller
	NuElectronics 3310 LCD Shield
	NMEA Parser
	NuElectronics TFT LCD Shield
	NXP PCF8575 Driver
	Parallel Bus Driver
	Raspberry Pi CPU
	Seeed Studio 96x16 OLED Brick
	Seeed Studio 96x96 OLED Twig
	Seeed Studio 128x64 OLED Twig
	Seeed Studio TFT Touch Shield
	Sensirion SHT1x Driver
	Sensirion SHT2x Driver
	Silicon Labs Si7005
	Software I2C Bus Driver
	Software SPI Bus Driver
	SolderCore Arcade Shield
	SolderCore CoreMPU Driver
	SolderCore CPU
	SolderCore Graphics Shield
	SolderCore LCD Shield
	SolderCore Network
	SolderCore Motor Shield
	SolderCore SenseCore Shield
	SolderCore Servo Shield
	SparkFun Ardumoto Shield
	SparkFun Color LCD Shield
	SparkFun El Escudo
	SparkFun e-Paper Breakout
	SparkFun IMU-3000 Combo
	SparkFun Joystick Shield
	SparkFun MIDI Shield
	SparkFun OLED Carrier
	SparkFun RingCoder Breakout
	SparkFun Spectrum Shield
	SparkFun Touch Shield
	SparkFun VoiceBox Shield
	SPI Device Driver
	STMicroelectronics LIS302DL Driver
	STMicroelectronics LIS331DLH Driver
	STMicroelectronics LIS331HH Driver
	STMicroelectronics LIS3DSH Driver
	STMicroelectronics LIS3LV02DL Driver
	STMicroelectronics LPS331AP
	STMicroelectronics LSM303DLH Driver
	System UART Driver
	Texas Instruments TMP100 Driver
	Texas Instruments TMP102 Driver
	VTI SCA3000 Driver
	Watterott electronic mSD Shield
	Watterott electronic S65 Shield
	Xterm Graphics Driver

	SolderCore Reference
	Arduino-style header pinout
	Boot sequence
	Benchmarking CoreBASIC
	The SolderCore bootloader
	Stellaris port mapping
	A historical perspective...
	XMOS Firmware Development
	Preparing a factory image release
	Generating a fimware upgrade release

	Example programs
	Timing methods
	Removing noise
	Deinterlacing samples
	Median filtering
	Monte Carlo simulation
	Parsing GPS sentences
	Calibrating touch screens
	Four-parameter calibration of a compass for hard iron effects
	Digital spirit level
	Reading an MPL115A1 pressure sensor using SPI
	Drawing the flag of the United Kingdom
	Downloading firmware using CoreBASIC
	Bouncing lines
	ITead Studio LCDs
	Conway's Game Of Life
	Hangman
	Sign a Twitter request with an OAuth signature

	Additional Information
	CoreBASIC development history
	Who did all this?

