
CrossWorks Tasking Library

Version: 3.0

Copyright 2014 Rowley Associates Limited

CrossWorks Tasking Library

2

CrossWorks Tasking Library Contents

3

Contents
Tasking Library User Guide ... 7

Overview .. 8

Tasks .. 10

Event sets .. 13

Semaphores ... 17

Mutexes ... 20

Message queues .. 22

Byte queues ... 26

Global interrupts control ... 29

Timer support ... 30

Interrupt service routines .. 31

Memory areas ... 32

Task scheduling example .. 34

ARM implementation details ... 36

Cortex-M implementation details .. 39

Complete API reference ... 41

<ctl.h> .. 42

CTL_BYTE_QUEUE_t .. 46

CTL_ERROR_CODE_t .. 47

CTL_EVENT_SET_t .. 48

CTL_EVENT_WAIT_TYPE_t .. 49

CTL_MEMORY_AREA_t ... 50

CTL_MESSAGE_QUEUE_t ... 51

CrossWorks Tasking Library Contents

4

CTL_MUTEX_t ... 52

CTL_SEMAPHORE_t ... 53

CTL_STATE_t ... 54

CTL_TASK_t ... 55

CTL_TIMEOUT_t ... 56

CTL_TIME_t .. 57

ctl_byte_queue_init .. 58

ctl_byte_queue_num_free ... 59

ctl_byte_queue_num_used ... 60

ctl_byte_queue_post .. 61

ctl_byte_queue_post_multi ... 62

ctl_byte_queue_post_multi_nb ... 63

ctl_byte_queue_post_multi_uc ... 64

ctl_byte_queue_post_nb .. 65

ctl_byte_queue_post_uc ... 66

ctl_byte_queue_receive .. 67

ctl_byte_queue_receive_multi ... 68

ctl_byte_queue_receive_multi_nb ... 69

ctl_byte_queue_receive_multi_uc .. 70

ctl_byte_queue_receive_nb .. 71

ctl_byte_queue_receive_uc ... 72

ctl_byte_queue_setup_events ... 73

ctl_current_time .. 74

ctl_events_init .. 75

ctl_events_pulse ... 76

ctl_events_set_clear .. 77

ctl_events_wait ... 78

ctl_events_wait_nb .. 79

ctl_events_wait_uc .. 80

ctl_get_current_time .. 81

ctl_get_sleep_delay ... 82

ctl_global_interrupts_disable ... 83

ctl_global_interrupts_enable .. 84

ctl_global_interrupts_set .. 85

ctl_handle_error .. 86

ctl_increment_tick_from_isr .. 87

ctl_interrupt_count ... 88

ctl_last_schedule_time .. 89

ctl_memory_area_allocate ... 90

ctl_memory_area_free ... 91

ctl_memory_area_init .. 92

CrossWorks Tasking Library Contents

5

ctl_memory_area_setup_events ... 93

ctl_message_queue_init .. 94

ctl_message_queue_num_free .. 95

ctl_message_queue_num_used .. 96

ctl_message_queue_post ... 97

ctl_message_queue_post_multi .. 98

ctl_message_queue_post_multi_nb .. 99

ctl_message_queue_post_multi_uc .. 100

ctl_message_queue_post_nb ... 101

ctl_message_queue_post_uc ... 102

ctl_message_queue_receive ... 103

ctl_message_queue_receive_multi .. 104

ctl_message_queue_receive_multi_nb .. 105

ctl_message_queue_receive_multi_uc .. 106

ctl_message_queue_receive_nb ... 107

ctl_message_queue_receive_uc .. 108

ctl_message_queue_setup_events .. 109

ctl_mutex_init .. 110

ctl_mutex_lock .. 111

ctl_mutex_lock_nb .. 112

ctl_mutex_lock_uc ... 113

ctl_mutex_unlock .. 114

ctl_reschedule_on_last_isr_exit .. 115

ctl_semaphore_init ... 116

ctl_semaphore_signal .. 117

ctl_semaphore_wait ... 118

ctl_semaphore_wait_nb ... 119

ctl_semaphore_wait_uc .. 120

ctl_task_die ... 121

ctl_task_executing ... 122

ctl_task_init .. 123

ctl_task_list ... 124

ctl_task_remove ... 125

ctl_task_reschedule .. 126

ctl_task_restore .. 127

ctl_task_run .. 128

ctl_task_set_priority ... 129

ctl_task_switch_callout ... 130

ctl_time_increment ... 131

ctl_timeout_wait .. 132

ctl_timeslice_period .. 133

CrossWorks Tasking Library Contents

6

CrossWorks Tasking Library Tasking Library User Guide

7

Tasking Library User Guide
This document describes the CrossWorks Tasking Library (CTL). The tasking (aka multitasking) library provides a

multi-priority, preemptive, task switching and synchronization facility. Additionally, it supports a timer, interrupt

service routines, and memory-block allocation.

This document is divided into three parts:

A whistle-stop tour of the tasking library introduces the key concepts.

Putting the tasking library to use looks in-depth at the tasking library and how to use it in your applications.

Reference information is a concise reference for each function provided in the tasking library.

CrossWorks Tasking Library Tasking Library User Guide

8

Overview
The tasking library enables your application to employ multiple tasks. Tasks are typically used for processing that

may suspend execution while other activities occur. For example, you may have a protocol-processing task, a

user-interface task, and a data-acquisition task.

Each task has its own task stack, which is used to store local variables and function-return information. The task

stack is also used to store the CPU execution context when the task isn't executing. The CPU execution context

of a task varies between machine architectures; it is typically the subset of the CPU register values that enable a

task to be descheduled at any point during its execution.

The process of changing the CPU registers from one task to another is termed taskswitching}. Task switching

occurs when a CTL function is called, either from a task or from an interrupt service routine (ISR), and there is a

runnable task with higher priority than the executing task. Task switching also occurs when there is a runnable

task of the same priority as the executing task, if the executing task has exceeded its time-slice period. If you

have more than one runnable task of the same priority, the next task (modulo priority) after the executing task is

selected. This is sometimes called round-robin scheduling.

There is a single task list and it is kept in priority-sorted order. The task list is updated when tasks are created

and deleted, and when their priority changes. The task list is traversed when a CTL function is called that could

change the execution state of a task. While the task list is modified or traversed, global interrupts are disabled.

Consequently, the length of the interrupt-disable period depends on the number of tasks in the task list, and the

priority and type of the task affected by the CTL operation.

If you require a simple, deterministic (sometimes called real-time) system, you should ensure that each task has a

unique priority. The task switching will always select the highest-priority task that is runnable.

CTL has a pointer to the executing task. There must always be a task executing; if there isn't, a CTL error is

signaled. Typically, there will be an idle task that loops and, perhaps, puts the CPU into power-saving mode.

Global interrupts will be enabled when a task switch occurs, so you can safely call tasking library functions while

interrupts are disabled.

Task synchronization and resource allocation

The CTL provides several mechanisms to synchronize execution of tasks, to serialize resource access, and to

provide high-level communication.

Event Sets:An event set is a word-sized variable, and tasks can wait for its specific bits (representing

events) to be set to 1. Events can be used for synchronization and to serialize resource access. Events can

be set by interrupt service routines.

Semaphores:A semaphore is a word size variable which tasks can wait for to be non-zero. Semaphores

can be used be used for synchronization and to serialize resource access. Semaphores can be signaled by

interrupt service routines.

CrossWorks Tasking Library Tasking Library User Guide

9

Mutexes:A mutex is a structure that can be used to serialize resource access. Unlike semaphores, mutexes

cannot be used by interrupt service routines, but do provide extra features that make mutexes preferable

to semaphores for serializing resource access.

Message Queues:A message queue is a structure that enables tasks to post and receive data. Message

queues are used to provide a buffered communication mechanism. Messages can be sent by interrupt

service routines.

Byte Queues:A byte queue is a specialization of a message queue; i.e., it is a message queue in which the

messages are one byte in size. Byte queues can be sent by interrupt service routines.

Interrupt Enable and Disable:The tasking library provides functions that enable and disable the processor's

global interrupts. These functions can be used to provide a time-critical, mutual-exclusion facility.

Note that all task synchronization is priority based, i.e., the highest-priority task that is waiting will be scheduled

first.

Timer support

If your application can provide a periodic timer interrupt, you can use the timer facility of the CTL. This facility

enables time slicing of equal-priority tasks, allows tasks to delay, and provides a timeout capability when waiting

for something. The timer is a software counter that is incremented by your timer interrupt. The counter is

typically a millisecond counter, but you can change the timer's increment to reduce the interrupt frequency.

Memory allocation support

The CTL provides a simple memory block allocator that can be used in situations for which the standard C malloc

and free functions are either too slow or may block the calling task.

C library support

The CTL provides the functions required of the CrossWorks C library for multi-threading.

CrossWorks Tasking Library Tasking Library User Guide

10

Tasks
Each task has a corresponding task structure that contains the following information:

When the task isn't executing, a pointer to the stack containing the execution context.

The priority of the task; the lowest priority is 0, the highest is 255.

The state of the task, runnable or waiting.

A pointer to the next task.

If the task is waiting for something, the details of what it is waiting for.

Thread-specific data such as errno.

A pointer to a null-terminated string that names the task for debugging purposes.

Creating a task

You allocate task structures by declaring them as C variables.

CTL_TASK_t mainTask;

You create the first task by using ctl_task_init to turn the main program into a task. This function takes a pointer

to the task structure that represents the main task, its priority, and a name as parameters.

ctl_task_init(&mainTask, 255, "main");

This function must be called before any other CrossWorks tasking library calls. The priority (second parameter)

must be between 0 (the lowest priority) and 255 (the highest priority). It is advisable to create the first task with

the highest priority, which enables it to create other tasks without being descheduled. The name should point to

a zero-terminated ASCII string, which is shown in the Threads window.

You can create other tasks with the function ctl_task_run, which initializes a task structure and may cause a

context switch. You supply the same arguments as for ctl_task_init, together with the function the task will run

and the memory the task will use for its stack.

The function a task will run should take a void * parameter and not return any value.

void task1Fn(void *parameter)
{
 // task code goes in here
}

The parameter value is supplied to the function by the ctl_task_run call. Note that, when a task function returns,

the ctl_task_die function is called, terminating the task.

You must allocate the stack for the task as a C array of unsigned elements.

unsigned task1Stack[CTL_CPU_STATE_WORD_SIZE+32];

CrossWorks Tasking Library Tasking Library User Guide

11

The stack size you need depends on the CPU (i.e., the number of registers that must be saved), the function calls

the task will make, and (again depending on the CPU) the stack used for interrupt service routines. The macro

CTL_CPU_STATE_WORD_SIZE can be used to determine the number of words required to save the CPU state,

the other values you must supply. Running out of stack space is a common problem for multitasking systems,

and the resulting error behavior is often misleading. The ctl_task_run function will initialize the stack to the

word value 0xcdcdcdcd which will make it easier to check the stack's contents with the CrossWorks debugger if

problems should occur.

Your ctl_task_run function call should look something like this:

ctl_task_run(&task1Task,
 12,
 task1Fn,
 0,
 "task1",
 sizeof(task1Stack) / sizeof(unsigned),
 task1Stack,
 0);

The first parameter is a pointer to the task structure. The second parameter is the priority (in this case 12) at

which the task will start executing. The third parameter is a pointer to the function to execute (in this case

task1Fn). The fourth parameter is the value supplied to the task function (zero, in this case). The fifth parameter

is a null-terminated string that names the task for debug purposes. The sixth parameter is the size of the stack, in

words. The seventh parameter is the pointer to the stack. The last parameter is for systems that have a separate

call stack, and its value is the number of words to reserve for that stack.

Changing a task's priority

You can change the priority of a task using ctl_task_set_priority. It takes a pointer to a task structure and the

new priority as parameters, and returns the old priority.

old_priority = ctl_task_set_priority(&mainTask, 255); // lock scheduler
//
// ... your critical code here
//
ctl_task_set_priority(old_priority);

To enable time slicing, you need to set the ctl_timeslice_period variable before any task scheduling occurs.

ctl_timeslice_period = 100; // time slice period of 100 ms

If you want finer control over the scheduling of tasks, you can call ctl_task_reschedule. The following example

turns main into a task and creates a second task. The main task ultimately will be the lowest-priority task that

switches the CPU into a power-saving mode when it is scheduledthis satisfies the requirement of always having

a task to execute and enables a simple, power-saving system to be implemented.

#include <ctl.h>

CrossWorks Tasking Library Tasking Library User Guide

12

void task1(void *p)
{
 // task code; on return, the task will be terminated.
}

static CTL_TASK_t mainTask, task1Task;
static unsigned task1Stack[64];

int main(void)
{
 // Turn myself into a task running at the highest priority.
 ctl_task_init(&mainTask, 255, "main");

 // Initialize the stack of task1.
 memset(task1Stack, 0xba, sizeof(task1Stack));

 // Prepare another task to run.
 ctl_task_run(&task1Task, 1, task1, 0, "task1",
 sizeof(task1Stack) / sizeof(unsigned),
 task1Stack, 0);

 // Now that all the tasks have been created, go to the lowest priority task.
 ctl_task_set_priority(&mainTask, 0);

 // Main task, if activated because task1 is suspended, just
 // enters low-power mode and waits for task1 to run again
 // (for example, because an interrupt wakes it).
 for (;;)
 {
 // Go into low-power mode.
 sleep();
 }
}

Note that, initially, the main task is assigned the highest priority while it creates the other tasks; then it changes

its priority to the lowest value. This technique can be used, when multiple tasks are to be created, to ensure all

the tasks are created before they start to execute.

Note the use of sizeof when passing the stack size to ctl_task_run.

CrossWorks Tasking Library Tasking Library User Guide

13

Event sets
Event sets are a versatile way to communicate between tasks, manage resource allocation, and synchronize

tasks.

An event set is a means to synchronize tasks with other tasks and with interrupt service routines. An event set

contains a set of events (one per bit), and tasks can wait for one or more of these bits to be set (i.e., to have the

value 1). When a task waits on an event set, the events it is waiting for are matched against the current valuesif

they match, the task can still execute. If they don't match, the task is put on the task list with details about the

event set and the events for which the task is waiting.

You allocate an event set by declaring it as C variable:

CTL_EVENT_SET_t e1;

A CTL_EVENT_SET_t is a synonym for an unsigned type. Thus, when an unsigned is 16 bits wide, an event set

will contain 16 events; and when it consists of 32 bits, an event set will contain 32 events.

An event set must be initialized before any tasks can use it. To initialize an event set, use ctl_events_init:

ctl_events_init(&e1, 0);

You can set and clear events in an event set using the ctl_events_set_clear function.

ctl_events_set_clear(&e1, 1<<0, 1<<15);

This example will set the bit-zero event and clear the bit-15 event. If any tasks are waiting on this event set,

the events they are waiting on will be matched against the new event set value, which could cause the task to

become runnable.

You can wait for events to be set using ctl_events_wait. You can wait for any of the events

in an event set to be set (CTL_EVENT_WAIT_ANY_EVENTS) or all of the events to be set

(CTL_EVENT_WAIT_ALL_EVENTS). You can also specify that when events have been set and have been

matched that they should be automatically reset (CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR and

CTL_EVENT_WAIT_ALL_EVENTS_WITH_AUTO_CLEAR). You can associate a timeout with a wait for an event set

to stop your application blocking indefinitely.

ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS,
 &e1, 1<<15,
 CTL_TIMEOUT_NONE, 0);

This example waits for bit 15 of the event set pointed to by e1 to become set.

if (ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS,
 &e1, 1<<15,
 CTL_TIMEOUT_DELAY, 1000) == 0)
 {
 // ...timeout occurred

CrossWorks Tasking Library Tasking Library User Guide

14

 }

This example uses a timeout and tests the return result to see if the timeout occurred.

You can use ctl_events_pulse to set and immediately clear events. A typical use for this would be to wake up

multiple threads and reset the events atomically.

Synchronizing with an ISR

The following example illustrates synchronizing a task with a function called from an ISR.

CTL_EVENT_SET_t e1;
CTL_TASK_s t1;

void ISRfn()
{
 // ...do work, and then...
 ctl_events_set_clear(&e1, 1<<0, 0);
}

void task1(void *p)
{
 for (;;)
 {
 ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS,
 &e1, 1<<0,
 CTL_TIMEOUT_NONE, 0);
 //
 // ...do whatever needs to be done...
 //
 ctl_events_set_clear(&e1, 0, 1<<0);
 }
}

Synchronizing with more than one ISR

The following example illustrates synchronizing a task with functions called from two interrupt service routines.

CTL_EVENT_SET_t e1;
CTL_TASK_s t1;

void ISRfn1(void)
{
 // do work, and then...
 ctl_events_set_clear(&e1, 1<<0, 0);
}

void ISRfn2(void)
{
 // do work, and then...
 ctl_events_set_clear(&e1, 1<<1, 0);
}

CrossWorks Tasking Library Tasking Library User Guide

15

void task1(void *p)
{
 for (;;)
 {
 unsigned e;
 e = ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR,
 &e1, (1<<0) | (1<<1),
 CTL_TIMEOUT_NONE, 0);
 if (e & (1<<0))
 {
 // ISRfn1 completed
 }
 else if (e & (1<<1))
 {
 // ISRfn2 completed
 }
 else
 {
 // error
 }
 }
}

Resource serialization with an event set

The following example illustrates resource serialization of two tasks.

CTL_EVENT_SET_t e1;

void task1(void)
{
 for (;;)
 {
 // Acquire resource.
 ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR,
 &e1, 1<<0,
 CTL_TIMEOUT_NONE, 0);
 // Resource is now been acquired.

 // Now we have exclusive access to the resource.
 do_some_important_work_with_resource();

 // Release acquired resource.
 ctl_events_set_clear(&e1, 1<<0, 0);
 // Resource is now released.
 }
}

void task2(void)
{
 for (;;)
 {
 // Acquire resource.
 ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR,
 &e1, 1<<0,
 CTL_TIMEOUT_NONE, 0);
 // Resource is now acquired.

 // Now we have exclusive access to the resource.

CrossWorks Tasking Library Tasking Library User Guide

16

 do_some_important_work_with_resource();

 // Release acquired resource.
 ctl_events_set_clear(&e1, 1<<0, 0);
 // Resource is now been released.
 }
}

void main(void)
{
 // Initialize event set.
 ctl_events_init(&e1, 1<<0);
 // Create tasks and let them run.
}

Note that e1 is initialized with the event set; without this, neither task would acquire the resource.

CrossWorks Tasking Library Tasking Library User Guide

17

Semaphores
CTL provides semaphores to use for synchronization and resource allocation.

A semaphore is a counter which tasks can wait for to be non-zero. When a semaphore is non-zero and a task

waits on it, the semaphore value is decremented and the task continues executing. When a semaphore is zero

and a task waits on it, the task will be suspended until the semaphore is signaled. When a semaphore is signaled

and no tasks are waiting for it, the semaphore's value is incremented. When a semaphore is signaled and tasks

are waiting, one of the tasks is made runnable.

You allocate a semaphore by declaring it as a C variable. For example:

CTL_SEMAPHORE_t s1;

A CTL_SEMAPHORE_t is a synonym for an unsigned type, so the maximum value of the counter is dependent

upon the word size of the processor (16 or 32 bits).

A semaphore must be initialized done before any tasks can use it. To initialize a semaphore, use

ctl_semaphore_init:

ctl_semaphore_init(&s1, 1);

To signal a semaphore, use ctl_semaphore_signal:

ctl_semaphore_signal(&s1);

The highest-priority task waiting on the semaphore pointed at by s1 will be made runnable by this call. If no

tasks are waiting on the semaphore, the semaphore's value is incremented.

To wait for a semaphore with an optional timeout, use ctl_semaphore_wait:

ctl_semaphore_wait(&s1, CTL_TIMEOUT_NONE, 0);

This example will block the task if the semaphore is zero, otherwise it will decrement the semaphore and

execution will continue.

if (ctl_semaphore_wait(&s1, CTL_TIMEOUT_ABSOLUTE, ctl_get_current_time()+1000) == 0)
 {
 // ...timeout occurred
 }

This example uses a timeout and tests the return result to see if the timeout occurred.

Task synchronization in an interrupt service routine

The following example illustrates synchronizing a task with a function called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

18

CTL_SEMAPHORE_t s1;

void ISRfn()
{
 // Detected something, signal the waiting task.
 ctl_semaphore_signal(&s1);
}

void task1(void *p)
{
 for (;;)
 {
 // Wait for ISR to signal that an event happened.
 ctl_semaphore_wait(&s1, CTL_TIMEOUT_NONE, 0);
 // Deal with the event.
 }
}

Resource serialization with semaphore

The following example illustrates resource serialization of two tasks:

CTL_SEMAPHORE_t s1 = 1;

void task1(void)
{
 for (;;)
 {
 // Wait for resource.
 ctl_semaphore_wait(&s1, CTL_TIMEOUT_NONE, 0);
 // Resource has now been acquired, do something with it.

 // Now we have exclusive access to the resource.
 do_some_important_work_with_resource();

 // And now release it...
 ctl_semaphore_signal(&s1);
 // Resource is now released.
 }
}

void task2(void)
{
 for (;;)
 {
 ctl_semaphore_wait(&s1, CTL_TIMEOUT_NONE, 0);
 // Resource has now been acquired, do something with it.

 // Now we have exclusive access to the resource.
 do_some_important_work_with_resource();

 // And now release it...
 ctl_semaphore_signal(&s1);
 // Resource has now been released.
 }
}

int main(void)

CrossWorks Tasking Library Tasking Library User Guide

19

{
 // Initialize semaphore.
 ctl_semaphore_init(&s1, 1);
}

Note that s1 is initialized to one; without this, neither task would acquire the resource.

CrossWorks Tasking Library Tasking Library User Guide

20

Mutexes
A mutex is a structure that can be used to serialize resource access. Tasks can lock and unlock mutexes. Each

mutex has a lock count that enables a task to recursively lock the mutex. Tasks must ensure that the number

of unlocks matches the number of locks. When a mutex has already been locked by another task, a task that

wants to lock it must wait until the mutex becomes unlocked. The task that locks a mutex is assigned a higher

priority than any other tasks waiting to lock that mutex; this avoids what is often called priority inversion, which

can prevent some tasks from ever getting access to a required resource. Mutexes cannot be used by interrupt

service routines.

You allocate a mutex by declaring it as a C variable. For example:

CTL_MUTEX_t mutex;

A mutex must be intitialized before any task can use it. To initialize a mutex, use ctl_mutex_init as in this

example:

ctl_mutex_init(&mutex);

You can lock a mutex with an optional timeout by using ctl_mutex_lock:

ctl_mutex_lock(&mutex, CTL_TIMEOUT_NONE, 0);

You can unlock a mutex by using ctl_mutex_unlock:

ctl_mutex_unlock(&mutex);

Note: Only the locking task must unlock a successfully-locked mutex.

Resource serialization with mutex

The following example illustrates resource serialization of two tasks.

CTL_MUTEX_t mutex;

void fn1(void)
{
 ctl_mutex_lock(&mutex, CTL_TIMEOUT_NONE, 0);

 ctl_mutex_unlock(&mutex);
}

void fn2(void)
{
 ctl_mutex_lock(&mutex, CTL_TIMEOUT_NONE, 0);

 fn1();

 ctl_mutex_unlock(&mutex);

CrossWorks Tasking Library Tasking Library User Guide

21

}

void task1(void)
{
 for (;;)
 {
 fn2()
 }
}

void task2(void)
{
 for (;;)
 {
 fn1();
 }
}

int main(void)
{

 ctl_mutex_init(&mutex);

}

Note that task1 locks the mutex twice by calling fn2 which then calls fn1.

CrossWorks Tasking Library Tasking Library User Guide

22

Message queues
Message queues provide buffers between tasks and interrupt service routines.

A message queue is a structure that enables tasks to post and receive messages. A message is a generic (void)

pointer and, as such, can be used to send data that will fit into a pointer type (two or four bytes, depending upon

the processor's word size) or to pass a pointer to a block of memory. The message queue uses a buffer to enable

a number of posts to be completed without receives occurring. The buffer keeps the posted messages in FIFO

order, so the oldest message is received first. When the buffer isn't full, a post will put the message at the back of

the queue and the calling task continues execution. When the buffer is full, a post will block the calling task until

there is room for the message. When the buffer isn't empty, a receive will return the message from the front of

the queue and continue execution of the calling task. When the buffer is empty, a receive will block the calling

task until a message is posted.

Initializing a message queue

You allocate a message queue by declaring it as a C variable:

CTL_MESSAGE_QUEUE_t m1;

A message queue is initialized using ctl_message_queue_init:

void *queue[20];

ctl_message_queue_init(&m1, queue, 20);

This example uses a 20-element array for the message queue. The array is a void * so pointers to memory or

(cast) integers can be communicated via a message queue.

Posting to a message queue

You can post a message to a message queue with an optional timeout by using the ctl_message_queue_post

function.

ctl_message_queue_post(&m1, (void *)45, CTL_TIMEOUT_NONE, 0);

This example posts the integer 45 to the message queue.

You can post multiple messages to a message queue with an optional timeout using

ctl_message_queue_post_multi:

if (ctl_message_queue_post_multi(&m1, 4, messages, CTL_TIMEOUT_ABSOLUTE, ctl_get_current_time()+1000) !
= 4)
 {
 // timeout occurred
 }

CrossWorks Tasking Library Tasking Library User Guide

23

This example tests the return result to see if the timeout occurred.

If you want to post a message and you cannot afford to block (e.g. inside an interrupt service routine), you

can use ctl_message_queue_post_nb (or ctl_message_queue_post_multi_nb if you want to post multiple

messages):

if (ctl_message_queue_post_nb(&m1, (void *)45) == 0)
 {
 // queue is full
 }

This example tests the return result to see if the post failed.

Receiving from a message queue

You can use ctl_message_queue_receive to receive a message with an optional timeout:

void *msg;
ctl_message_queue_receive(&m1, &msg, CTL_TIMEOUT_NONE, 0);

This example receives the oldest message in the message queue.

Use ctl_message_queue_receive_multi to receive multiple messages from a message queue with an optional

timeout:

if (ctl_message_queue_multi_receive(&m1, 4, msgs, CTL_TIMEOUT_DELAY, 1000) != 4)
 {
 // timeout occurred
 }

This example tests the return result to see if the timeout occurred.

If you want to receive a message and you don't want to block (e.g., when executing interrupt service routine),

you can use ctl_message_queue_receive_nb (or ctl_message_queue_receive_multi_nb to receive multiple

messages).

if (ctl_message_queue_receive_nb(&m1, &msg) == 0)
 {
 // queue is empty
 }

Producer-consumer example

The following example uses a message queue to implement the producer-consumer problem.

CTL_MESSAGE_QUEUE_t m1;
void *queue[20];

void task1(void)
{

CrossWorks Tasking Library Tasking Library User Guide

24

 ctl_message_queue_post(&m1, (void *)i, CTL_TIMEOUT_NONE, 0);

}

void task2(void)
{
 void *msg;

 ctl_message_queue_receive(&m1, &msg, CTL_TIMEOUT_NONE, 0);

}

int main(void)
{

 ctl_message_queue_init(&m1, queue, 20);

}

Advanced use

You can associate event flags with a message queue that are set (and similarly cleared) when the message queue

is not full and not empty using the function ctl_message_queue_setup_events.

For example, you can use this to wait for messages to arrive from multiple message (or byte) queues:

CTL_MESSAGE_QUEUE_t m1, m2;
CTL_EVENT_SET_t e;
ctl_message_queue_setup_events(&m1, &e, 1<<0, 1<<1));
ctl_message_queue_setup_events(&m2, &e, 1<<2, 1<<3));

switch (ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS,
 &e, (1<<0) | (1<<2),
 CTL_TIMEOUT_NONE, 0))
 {
 case 1<<0:
 ctl_message_queue_receive(&m1,
 break;
 case 1<<2:
 ctl_message_queue_receive(&m2,
 break;
 }

This example sets up and waits for the not-empty event of message queue m1 and the not-empty event of

message queue m2. When the wait completes, it reads from the appropriate message queue. Note that you

should not use a with auto clear event wait type when waiting for events associated with a message queue.

You can use ctl_message_queue_num_used to test how many messages are in a message queue and

ctl_message_queue_num_free to learn how many free messages are in a message queue. With these functions

you can poll the message queue:

while (ctl_message_queue_num_free(&m1) < 10)
 ctl_task_timeout_wait(ctl_get_current_time() + 1000);
ctl_message_queue_post_multi(&m1, 10,

CrossWorks Tasking Library Tasking Library User Guide

25

This example waits for 10 elements to be free before it posts 10 elements.

CrossWorks Tasking Library Tasking Library User Guide

26

Byte queues
Byte queues provide byte-based buffers between tasks and interrupt service routines.

A byte queue is a structure that enables tasks to post and receive data bytes. The byte queue has a buffer, which

enables a number of posts to be completed without receives occurring. The buffer keeps the posted bytes in

FIFO order, so the oldest byte is received first. When the buffer isn't full, a post will put the byte at the back of

the queue and the calling task continues execution. When the buffer is full, a post will block the calling task until

there is room for the byte. When the buffer isn't empty, a receive will return the byte from the front of the queue

and continue execution of the calling task. When the buffer is empty, a receive will block the calling task until a

byte is posted.

Initializing a byte queue

You allocate a byte queue by declaring it as a C variable:

CTL_BYTE_QUEUE_t m1;

A byte queue is initialized using ctl_byte_queue_init:

unsigned char queue[20];

ctl_byte_queue_init(&m1, queue, 20);

This example uses an 20-element array for the byte queue.

Posting to a byte queue

You can post a byte to a byte queue with an optional timeout using ctl_byte_queue_post:

ctl_byte_queue_post(&m1, 45, CTL_TIMEOUT_NONE, 0);

This example posts the byte 45 to the byte queue.

You can post multiple bytes to a byte queue with an optional timeout using ctl_byte_queue_post_multi:

if (ctl_byte_queue_post(&m1, 4, bytes, CTL_TIMEOUT_ABSOLUTE, ctl_get_current_time()+1000) !
= 4)
 {
 // timeout occurred
 }

This example uses a timeout and tests the return result to see if the timeout occurred.

If you want to post a byte and you don't want to block access (e.g., from an interrupt service routine), you can

use ctl_byte_queue_post_nb (or ctl_byte_queue_post_multi_nb to post multiple bytes).

CrossWorks Tasking Library Tasking Library User Guide

27

if (ctl_byte_queue_post_nb(&m1, 45) == 0)
 {
 // queue is full
 }

This example tests the return result to see if the post failed.

Receiving from a byte queue

You can receive a byte with an optional timeout by using ctl_byte_queue_receive:

unsigned char msg;
ctl_byte_queue_receive(&m1, &msg, CTL_TIMEOUT_NONE, 0);

This example receives the oldest byte in the byte queue.

You can receive multiple bytes from a byte queue with an optional timeout using

ctl_byte_queue_receive_multi:

if (ctl_byte_queue_receive_multi(&m1, 4, bytes, CTL_TIMEOUT_DELAY, 1000) != 4)
 {
 // timeout occurred
 }

This example tests the return result to see if the timeout occurred.

If you want to receive a byte and you don't want to block (e.g., from an interrupt service routine), you can use

ctl_byte_queue_receive_nb (or ctl_byte_queue_receive_multi_nb to receive multiple bytes).

if (ctl_byte_queue_receive_nb(&m1, &msg) == 0)
 {
 // queue is empty
 }

Producer-consumer example

The following example uses a byte queue to implement the producer-consumer problem.

CTL_BYTE_QUEUE_t m1;
void *queue[20];

void task1(void)
{

 ctl_byte_queue_post(&m1, (void *)i, CTL_TIMEOUT_NONE, 0);

}

void task2(void)
{

CrossWorks Tasking Library Tasking Library User Guide

28

 void *msg;

 ctl_byte_queue_receive(&m1, &msg, CTL_TIMEOUT_NONE, 0);

}

int main(void)
{

 ctl_byte_queue_init(&m1, queue, 20);

}

Advanced Use

You can associate event flags with a byte queue that are set (and similarly cleared) when the byte queue is not

full and not empty using the function ctl_byte_queue_setup_events.

For example, you can use this to wait for messages to arrive from multiple byte (or message) queues.

CTL_BYTE_QUEUE_t m1, m2;
CTL_EVENT_SET_t e;
ctl_byte_queue_setup_events(&m1, &e, 1<<0, 1<<1);
ctl_byte_queue_setup_events(&m2, &e, 1<<2, 1<<3);

switch (ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS,
 &e, (1<<0) | (1<<2),
 CTL_TIMEOUT_NONE, 0))
 {
 case 1<<0:
 ctl_byte_queue_receive(&m1,
 break;
 case 1<<2:
 ctl_byte_queue_receive(&m2,
 break;
 }

This example sets up and waits for the not-empty event of byte queue m1 and the not-empty event of byte

queue m2. When the wait completes, it reads from the appropriate byte queue. Note that you must not use a

with auto clear event wait type when waiting on events associated with a byte queue.

You can use ctl_byte_queue_num_used to test how many bytes are in a byte queue and

ctl_byte_queue_num_free to learn how many free bytes are in a byte queue. With these functions, you can poll

the byte queue:

while (ctl_byte_queue_num_free(&m1) < 10)
 ctl_task_timeout_wait(ctl_get_current_time()+1000);
ctl_byte_queue_post_multi(&m1, 10,

This example waits for 10 elements to be free before it posts 10 elements.

CrossWorks Tasking Library Tasking Library User Guide

29

Global interrupts control
CTL provides functions that enable and disable the global interrupt enables of the processor. CTL uses this

mechanism when accessing the task list. It can also be used to provide a fast, mutual-exclusion facility for time-

critical uses.

You can disable interrupts by using ctl_global_interrupts_disable and you can enable interrupts by using

ctl_global_interrupts_enable.

int en = ctl_global_interrupts_disable(); // disable

if (en)
 ctl_global_interrupts_enable(); // set to previous state

You can call a tasking library function that causes a task switch with global interrupts disabled. The tasking

library will ensure that, when the next task is scheduled, global interrupts are enabled.

CrossWorks Tasking Library Tasking Library User Guide

30

Timer support
The current time is held as a 32-bit value in the variable ctl_current_time. This variable is incremented by the

number held in ctl_time_increment each time an ISR calls ctl_increment_tick_from_isr.

void timerISR{void)
{
 ctl_increment_tick_from_isr();
 // Your timer code goes here.
}

int main(void)
{
 ctl_time_increment = 10;
 // User must set up timerISR to be called every 100 ms.

By convention, the timer implements a millisecond counter, but you can set the timer's interrupt-and-increment

rate to a value that is appropriate for your application.

You can atomically read ctl_current_time by using the ctl_get_current_time function on systems whose word

size is not 32 bits.

You can use ctl_timeout_wait to suspend execution of a task for a fixed period. Note: ctl_timeout_wait

takes as its parameter the time to resume execution, not the duration: always call this function with

ctl_get_current_time()+duration.

ctl_timeout_wait(ctl_get_current_time()+100);

This example suspends execution of the calling task for 100 ticks of the ctl_current_time variable.

The counter is implemented as a 32-bit number, so you can delay for a maximum of a 31-bit number.

ctl_timeout_wait(ctl_get_current_time() + 0x7fffffff);

This example suspends execution of the calling task for the maximum possible time.

CrossWorks Tasking Library Tasking Library User Guide

31

Interrupt service routines
Interrupt service routines (ISR) can communicate with CTL tasks using a subset of the CTL programming

interface. An ISR should not call any of the CTL functions that can block; if your ISR calls a blocking function,

ctl_handle_error will be called. To detect whether a task or an ISR has called a function, CTL uses the

global variable ctl_interrupt_count. Interrupt service routines must increment this variable on entry and

decrement it on exit. Any CTL functions called by an ISR that require a task reschedule will set the variable

ctl_reschedule_on_last_isr_exit.

On exit from an interrupt service routine, ctl_interrupt_count is decremented to zero and, if

ctl_reschedule_on_last_isr_exit is set (after resetting ctl_reschedule_on_last_isr_exit), a CTL reschedule

operation occurs. The support for writing ISRs differs, depending on the target. In general, on entry to an ISR the

following is required:

// ...preserve register state here
++ctl_interrupt_count;

and, on exit from an ISR:

ctl_interrupt_count--;
if (ctl_interrupt_count == 0 && ctl_reschedule_on_last_isr_exit)
 {
 ctl_reschedule_on_last_isr_exit = 0;
 // reschedule
 }
else
 {
 // ...restore register state here
 }

CrossWorks Tasking Library Tasking Library User Guide

32

Memory areas
Memory areas provide your application with dynamic allocation of fixed-sized memory blocks. Memory areas

should be used in preference to the standard C library malloc and free functions if the calling task cannot block

or if memory allocation is done by an ISR.

You allocate a memory area by declaring it as a C variable:

CTL_MEMORY_AREA_t m1;

Before using a memory area, you must initialize it using ctl_memory_area_init:

unsigned mem[20];

ctl_memory_area_init(&m1, mem, 2, 10);

This example uses a 20-element array for the memory area's working storage. The array is split into 10 blocks,

each block being two words in size.

To allocate a block from a memory area, use ctl_memory_area_allocate. If the memory block cannot be

allocated, zero is returned.

unsigned *block = ctl_memory_area_allocate(&m1);
if (block)
 {
 // Block has been allocated.
 }
else
 {
 // No block has been allocated.
 }

When you have finished with a memory block, use ctl_memory_area_free to return it to the memory area from

which it was allocated so it can be reused:

ctl_memory_area_free(&m1, block);

You can associate an event flag with the block available state of a memory queue to wait for a memory block to

become available:

CTL_MEMORY_AREA_t m0, m1, m2;
CTL_EVENT_SET_t e;

ctl_memory_area_setup_events(&m0, &e, 1<<0);
ctl_memory_area_setup_events(&m1, &e, 1<<1);
ctl_memory_area_setup_events(&m2, &e, 1<<2);

switch (ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS,
 &e, (1<<0)|(1<<1)|(1<<2),
 0, 0))
 {
 case 1<<0:

CrossWorks Tasking Library Tasking Library User Guide

33

 x = ctl_memory_area_allocate(&m0,
 break;
 case 1<<1:
 x = ctl_memory_area_allocate(&m1,
 break;
 case 1<<2:
 x = ctl_memory_area_allocate(&m2,
 break;
 }

This example sets up and waits for the block-available events of memory areas m0, m1, and m2. When the wait

completes, it attempts to allocate memory from the appropriate memory area. Note that you should not use a

with-auto-clear event wait type when waiting on events associated with a memory area.

CrossWorks Tasking Library Tasking Library User Guide

34

Task scheduling example
An example task list could be:

task1, priority 2, waiting

task2, priority 1, runnable

task3, priority 1, executing

task4, priority 1, runnable

task5, priority 0, runnable

task2 waits, so task3 is selected to execute:

task1, priority 2, waiting

task2, priority 1, waiting

task3, priority 1, executing

task4, priority 1, runnable

task5, priority 0, runnable

An interrupt occurs that makes task1 runnable, which is higher priority than task3 so task1 executes:

task1, priority 2, executing

task2, priority 1, waiting

task3, priority 1, runnable

task4, priority 1, runnable

task5, priority 0, runnable

task1 waits, causing task3 to execute:

task1, priority 2, waiting

task2, priority 1, waiting

task3, priority 1, executing

task4, priority 1, runnable

task5, priority 0, runnable

An interrupt occurs and task3 has used its timeslice period, so task4 is selected to execute:

task1, priority 2, waiting

task2, priority 1, waiting

task3, priority 1, runnable

task4, priority 1, executing

task5, priority 0, runnable

An interrupt occurs and makes task2 runnable, but task4 hasn't used its timeslice period, so it is left to execute:

task1, priority 2, waiting

task2, priority 1, runnable

CrossWorks Tasking Library Tasking Library User Guide

35

task3, priority 1, runnable

task4, priority 1, executing

task5, priority 0, runnable

A interrupt occurs and task4 has used its timeslice period:

task1, priority 2, waiting

task2, priority 1, executing

task3, priority 1, runnable

task4, priority 1, runnable

task5, priority 0, runnable

CrossWorks Tasking Library Tasking Library User Guide

36

ARM implementation details

Processor modes

The ARM implementation of CTL uses System and IRQ processor modes. Other processor modes are not used

and, therefore, are available for use by the application. In normal execution, tasks run in System mode with IRQ

interrupts enabled.

When CTL requires exclusive access to variables, for example when traversing the task list, IRQ interrupts are

disabled. FIQ interrupts are always enabled by CTL. Co-operative context switching is done by changing to IRQ

mode (with IRQ interrupts disabled) and, consequently, uses the IRQ mode stack. Preemptive context switching

is done from an IRQ handler, which by definition is running in IRQ mode.

Register save order

When a task is not executing, the ARM register context is saved on the task's stack in the following order:

PSR

R15

R14

R12

R3R0

R11R4

with the stack_pointer member of the task structure pointing to the R4 entry which requires 16 words of

memory.

For devices that have a VFP with 16 double precision registers the floating point registers are also saved as

follows:

FPSR

D7D0

PSR

R15

R14

R12

R3R0

R11R4

D15D8

with the stack_pointer member of the task structure pointing to the D8 entry (with 1 added to indicate that the

floating point registers have been saved) which requires 49 words of memory.

CrossWorks Tasking Library Tasking Library User Guide

37

For devices that have a VFP with 32 double precision registers the floating point registers are also saved as

follows:

FPSR

D7D0

PSR

R15

R14

R12

R3R0

R11R4

D31D8

with the stack_pointer member of the task structure pointing to the D8 entry (with 3 added to indicate that the

32 double precision floating point registers have been saved) which requires 81 words of memory.

IRQ handler

On entry to an IRQ handler, the ctl_interrupt_count variable should be incremented. On exit from an IRQ

handler, the ctl_exit_isr routine should be called with a parameter in R0 specifying which registers have been

saved by the IRQ handler.

If ctl_exit_isr(0) is called, the registers should be saved, as in the following example:

irq_handler:
 \vdots
 // store the APCS registers
 sub lr, lr, #4
 stmfd sp!, {r0-r3, r12, lr}

 // ctl_interrupt_count++
 ldr r2, =ctl_interrupt_count
 ldrb r3, [r2]
 add r3, r3, #1
 strb r3, [r2]
 \vdots
 // handle interrupt, possibly re-enabling interrupts
 \vdots
 // ctl_exit_isr(0)
 mov r0, #0
 ldr r1, =ctl_exit_isr
 bx r1

If ctl_exit_isr(!0) is called, the registers should be saved, as in the following example:

irq_handler:
 \vdots
 // store all the registers
 stmfd sp!, {r0-r12, lr}
 mrs r0, spsr

CrossWorks Tasking Library Tasking Library User Guide

38

 stmfd sp!, {r0}

 // ctl_interrupt_count++
 ldr r2, =ctl_interrupt_count
 ldrb r3, [r2]
 add r3, r3, #1
 strb r3, [r2]
 \vdots
 // handle interrupt, possibly re-enabling interrupts
 \vdots
 // ctl_exit_isr(!0)
 mov r0, sp
 ldr r1, =ctl_exit_isr
 bx r1

The first form (ctl_exit_isr(0)) is recommended because it uses less stack space and takes fewer machine

cycles. The second form (ctl_exit_isr(!0)) is provided for backwards compatibility with earlier releases of

CTL.

CrossWorks Tasking Library Tasking Library User Guide

39

Cortex-M implementation details

Processor modes and interrupts

All CTL threads run in privileged thread mode.

When CTL requires exclusive access to variablesfor example when traversing the task listinterrupts are disabled

using calls to ctl_global_interrupts_disable and ctl_global_interrupts_enable.

The default implementation of global interrupt disable and enable for the Cortex-M3/M4 will set or clear the top

bit of the BASEPRI register. This enables interrupts that have the highest half of the available priority numbers

(lowest priority levels) to use CTL API calls. The lowest half of the available priority numbers (highest priority

levels) cannot use CTL API calls but will not be disabled during CTL API calls. If, for example, the device has four

priority bits, then priority numbers 8 through 15 can be used for interrupts that make CTL API calls and priorities

0 through 7 can be used for interrupts that cannot make CTL API calls.

The default implementation of global interrupts and enable for the Cortex-M0/M1 will set or clear the PRIMASK

register.

Exceptions

Context switching is implemented using the PendSV exception handler which should be set to run at the lowest

exception priority i.e. the highest exception priority number. The SVCall exception handler is not used.

Stacks

CTL threads use the Cortex-M process stack pointer (psp) and exceptions use the main stack pointer (msp). This

means that you don't have to allocate space for exceptions in the thread stacks.

Register save order

When a task is not executing, the register context is saved on the task's stack in the following order:

PSR

R15

R14

R12

R3R0

R11R4

with the stack_pointer member of the task structure pointing to the R4 entry which requires 16 words of

memory.

CrossWorks Tasking Library Tasking Library User Guide

40

For Cortex-M4F the 32 single precision floating point registers are also saved when they have been used by a

task. This changes the register context saved on the task's stack to:

FPSR

S15S0

PSR

R15

R14

R12

R3R0

R11R4

S31S16

with the stack_pointer member of the task structure pointing to the S16 entry (with 1 added to indicate that the

floating point registers have been saved) which requires 49 words of memory.

Interrupt handlers

A Cortex-M interrupt handler that uses CTL services should use the following template code for entry and exit:

void SysTick_ISR(void)
{
 ctl_enter_isr();

 // handle interrupt here

 ctl_exit_isr();
}

The call to ctl_enter_isr will increment the ctl_interrupt_count and the call to ctl_exit_isr will decrement the

ctl_interrupt_count and, if required, trigger the PendSV exception.

Note that you must ensure that an interrupt handler that uses CTL services cannot interrupt an interrupt handler

that does not use CTL services. You can do this by setting the interrupt priority of interrupt handlers that do not

use CTL services to be higher than those that do.

Interrupt handler support code (including ctl_enter_isr and ctl_exit_isr) is not part of CTL, but there are

common definitions that are available in ctl_api.h and will be defined by code or libraries supplied by the

CPU support package you are using.

System timer

The CPU support package you are using will use the Cortex-M SysTick timer to implement the CTL timer.

Typically, the timer will be programmed to interrupt at 10 millisecond intervals and increment the CTL timer by

10 to create the millisecond CTL timer.

CrossWorks Tasking Library Tasking Library User Guide

41

Complete API reference
This section contains a complete reference to the CrossWorks Tasking Library (CTL) API.

CrossWorks Tasking Library Tasking Library User Guide

42

<ctl.h>

API Summary

Bytes queues

ctl_byte_queue_init Initialize a byte queue

ctl_byte_queue_num_free Return number of free bytes in a byte queue

ctl_byte_queue_num_used Return number of used bytes in a byte queue

ctl_byte_queue_post Post byte to a byte queue with optional timeout

ctl_byte_queue_post_multi Post bytes to a byte queue with optional timeout

ctl_byte_queue_post_multi_nb Post bytes to a byte queue without blocking

ctl_byte_queue_post_multi_uc Post bytes to a byte queue

ctl_byte_queue_post_nb Post byte to a byte queue without blocking

ctl_byte_queue_post_uc Post byte to a byte queue

ctl_byte_queue_receive Receive a byte from a byte queue with optional
timeout

ctl_byte_queue_receive_multi Receive multiple bytes from a byte queue with
optional timeout

ctl_byte_queue_receive_multi_nb Receive multiple bytes from a byte queue without
blocking

ctl_byte_queue_receive_multi_uc Receive multiple bytes from a byte queue,
unconditional

ctl_byte_queue_receive_nb Receive a byte from a byte queue without blocking

ctl_byte_queue_receive_uc Receive a byte from a byte queue

ctl_byte_queue_setup_events Associate events with the not-full and not-empty state
of a byte queue

Types

CTL_BYTE_QUEUE_t Byte queue struct definition

CTL_ERROR_CODE_t Error cause

CTL_EVENT_SET_t Event set definition

CTL_EVENT_WAIT_TYPE_t Event set wait types

CTL_MEMORY_AREA_t Memory area struct definition

CTL_MESSAGE_QUEUE_t Message queue struct definition

CTL_MUTEX_t Mutex struct definition

CTL_SEMAPHORE_t Semaphore definition

CTL_STATE_t Task states

CrossWorks Tasking Library Tasking Library User Guide

43

CTL_TASK_t Task struct definition

CTL_TIMEOUT_t Type of wait

CTL_TIME_t Time definition

Mutexes

ctl_mutex_init Initialize a mutex

ctl_mutex_lock Lock a mutex with optional timeout

ctl_mutex_lock_nb Lock a mutex without blocking

ctl_mutex_lock_uc Lock a mutex, unconditional

ctl_mutex_unlock Unlock a mutex

Message queues

ctl_message_queue_init Initialize a message queue

ctl_message_queue_num_free Return number of free elements in a message queue

ctl_message_queue_num_used Return number of used elements in a message queue

ctl_message_queue_post Post message to a message queue with optional
timeout

ctl_message_queue_post_multi Post messages to a message queue with optional
timeout

ctl_message_queue_post_multi_nb Post messages to a message queue without blocking

ctl_message_queue_post_multi_uc Post messages to a message queue

ctl_message_queue_post_nb Post message to a message queue without blocking

ctl_message_queue_post_uc Post message to a message queue

ctl_message_queue_receive Receive message from a message queue with optional
timeout

ctl_message_queue_receive_multi Receive messages from a message queue with
optional timeout

ctl_message_queue_receive_multi_nb Receive messages from a message queue without
blocking

ctl_message_queue_receive_multi_uc Receive messages from a message queue

ctl_message_queue_receive_nb Receive message from a message queue without
blocking

ctl_message_queue_receive_uc Receive message from a message queue

ctl_message_queue_setup_events Associate events with the not-full and not-empty state
of a message queue

Tasks

ctl_task_die Terminate the executing task

ctl_task_init Create the initial task

ctl_task_remove Remove a task from the task list

CrossWorks Tasking Library Tasking Library User Guide

44

ctl_task_reschedule Cause a reschedule

ctl_task_restore Put back a task on to the task list

ctl_task_run Start a task

ctl_task_set_priority Set the priority of a task

Memory areas

ctl_memory_area_allocate Allocate a block from a memory area

ctl_memory_area_free Free a memory area block

ctl_memory_area_init Initialize a memory area

ctl_memory_area_setup_events Set memory area events

System state variables

ctl_current_time The current time in ticks

ctl_interrupt_count Nested interrupt count

ctl_last_schedule_time The time (in ticks) of the last task schedule

ctl_reschedule_on_last_isr_exit Reschedule is required on last ISR exit

ctl_task_executing The task that is currently executing

ctl_task_list List of tasks sorted by priority

ctl_task_switch_callout A function pointer called on a task switch

ctl_time_increment Current time tick increment

ctl_timeslice_period Time slice period in ticks

Event sets

ctl_events_init Initialize an event set

ctl_events_pulse Pulse events in an event set

ctl_events_set_clear Set and clear events in an event set

ctl_events_wait Wait for events in an event set with optional timeout

ctl_events_wait_nb Wait for events in an event set without blocking

ctl_events_wait_uc Wait for events in an event set

Error handling

ctl_handle_error Handle a CTL error condition

Semaphores

ctl_semaphore_init Initialize a semaphore

ctl_semaphore_signal Signal a semaphore

ctl_semaphore_wait Wait for a semaphore with optional timeout

ctl_semaphore_wait_nb Wait for a semaphore without blocking

ctl_semaphore_wait_uc Wait for a semaphore

Timer

CrossWorks Tasking Library Tasking Library User Guide

45

ctl_get_current_time Atomically return the current time

ctl_get_sleep_delay Return the sleep delay

ctl_increment_tick_from_isr Increment tick timer

ctl_timeout_wait Wait until timeout has occurred

Interrupts

ctl_global_interrupts_disable Disable global interrupts

ctl_global_interrupts_enable Enable global interrupts

ctl_global_interrupts_set Enable/disable interrupts

CrossWorks Tasking Library Tasking Library User Guide

46

CTL_BYTE_QUEUE_t

Synopsis

typedef struct {
 unsigned char *q;
 unsigned s;
 unsigned front;
 unsigned n;
 CTL_EVENT_SET_t *e;
 CTL_EVENT_SET_t notempty;
 CTL_EVENT_SET_t notfull;
} CTL_BYTE_QUEUE_t;

Description

CTL_BYTE_QUEUE_t defines the byte queue structure. The byte queue structure contains:

Member Description

q pointer to the array of bytes

s size of the array of bytes

front the next byte to leave the byte queue

n the number of elements in the byte queue

e the event set to use for the not empty and not full
events

notempty the event number for a not empty event

notfull the event number for a not full event

CrossWorks Tasking Library Tasking Library User Guide

47

CTL_ERROR_CODE_t

Synopsis

typedef enum {
 CTL_ERROR_NO_TASKS_TO_RUN,
 CTL_UNSUPPORTED_CALL_FROM_ISR,
 CTL_MUTEX_UNLOCK_CALL_ERROR,
 CTL_UNSPECIFIED_ERROR,
 CTL_STACK_OVERFLOW
} CTL_ERROR_CODE_t;

Description

CTL_ERROR_CODE_t defines the set of errors that are detected by the CrossWorks tasking library; the errors are

reported by a call to ctl_handle_error.

Constant Description

CTL_ERROR_NO_TASKS_TO_RUN
A reschedule has occurred but there are no tasks
which are runnable.

CTL_UNSUPPORTED_CALL_FROM_ISR An interrupt service routine has called a tasking library
function that could block or is otherwise unsupported
when called from inside an interrupt service routine.

CTL_MUTEX_UNLOCK_CALL_ERROR A task called ctl_mutex_unlock passing a mutex which
it has not locked, or which a different task holds a lock
on. Only the task that successfully acquired a lock on a
mutex can unlock that mutex.

CTL_STACK_OVERFLOW Inusufficient space to save the CPU register state to the
stack of ctL_currently_executing_task

CTL_UNSPECIFIED_ERROR An unspecified error has occurred.

CrossWorks Tasking Library Tasking Library User Guide

48

CTL_EVENT_SET_t

Synopsis

typedef unsigned CTL_EVENT_SET_t;

Description

CTL_EVENT_SET_t defines an event set. Event sets are word sized 16 or 32 depending on the machine.

CrossWorks Tasking Library Tasking Library User Guide

49

CTL_EVENT_WAIT_TYPE_t

Synopsis

typedef enum {
 CTL_EVENT_WAIT_ANY_EVENTS,
 CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR,
 CTL_EVENT_WAIT_ALL_EVENTS,
 CTL_EVENT_WAIT_ALL_EVENTS_WITH_AUTO_CLEAR
} CTL_EVENT_WAIT_TYPE_t;

Description

CTL_EVENT_WAIT_TYPE_t defines how to wait for an event set.

Constant Description

CTL_EVENT_WAIT_ANY_EVENTS
Wait for any of the specified events to be set in the
event set.

CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR Wait for any of the specified events to be set in the
event set and reset (clear) them.

CTL_EVENT_WAIT_ALL_EVENTS Wait for all of the specified events to be set in the
event set.

CTL_EVENT_WAIT_ALL_EVENTS_WITH_AUTO_CLEAR Wait for all of the specified events to be set in the
event set and reset (clear) them.

See Also

ctl_events_wait

CrossWorks Tasking Library Tasking Library User Guide

50

CTL_MEMORY_AREA_t

Synopsis

typedef struct {
 unsigned *head;
 CTL_EVENT_SET_t *e;
 CTL_EVENT_SET_t blockavailable;
} CTL_MEMORY_AREA_t;

Description

CTL_MEMORY_AREA_t defines the memory area structure. The memory area structure contains:

Member Description

head the next free memory block

e the event set containing the blockavailable event

blockavailable the blockavailable event

CrossWorks Tasking Library Tasking Library User Guide

51

CTL_MESSAGE_QUEUE_t

Synopsis

typedef struct {
 void ** q;
 unsigned s;
 unsigned front;
 unsigned n;
 CTL_EVENT_SET_t *e;
 CTL_EVENT_SET_t notempty;
 CTL_EVENT_SET_t notfull;
} CTL_MESSAGE_QUEUE_t;

Description

CTL_MESSAGE_QUEUE_t defines the message queue structure. The message queue structure contains:

Member Description

q pointer to the array of message queue objects

s size of the array of message queue objects

front the next element to leave the message queue

n the number of elements in the message queue

e the event set to use for the not empty and not full
events

notempty the event number for a not empty event

notfull the event number for a not full event

CrossWorks Tasking Library Tasking Library User Guide

52

CTL_MUTEX_t

Synopsis

typedef struct {
 unsigned lock_count;
 CTL_TASK_t *locking_task;
 unsigned locking_task_priority;
} CTL_MUTEX_t;

Description

CTL_MUTEX_t defines the mutex structure. The mutex structure contains:

Member Description

lock_count number of times the mutex has been locked

locking_task the task that has locked the mutex

locking_task_priority the priority of the task at the time it locked the mutex

CrossWorks Tasking Library Tasking Library User Guide

53

CTL_SEMAPHORE_t

Synopsis

typedef unsigned CTL_SEMAPHORE_t;

Description

CTL_SEMAPHORE_t defines the semaphore type. Semaphores are held in one word, 16 or 32 bits depending on

the machine.

CrossWorks Tasking Library Tasking Library User Guide

54

CTL_STATE_t

Synopsis

typedef enum {
 CTL_STATE_RUNNABLE,
 CTL_STATE_TIMER_WAIT,
 CTL_STATE_EVENT_WAIT_ALL,
 CTL_STATE_EVENT_WAIT_ALL_AC,
 CTL_STATE_EVENT_WAIT_ANY,
 CTL_STATE_EVENT_WAIT_ANY_AC,
 CTL_STATE_SEMAPHORE_WAIT,
 CTL_STATE_MESSAGE_QUEUE_POST_WAIT,
 CTL_STATE_MESSAGE_QUEUE_RECEIVE_WAIT,
 CTL_STATE_MUTEX_WAIT,
 CTL_STATE_SUSPENDED
} CTL_STATE_t;

Description

CTL_STATE_t defines the states the task can be on.

Constant Description

CTL_STATE_RUNNABLE Task can run.

CTL_STATE_TIMER_WAIT Waiting for a time value.

CTL_STATE_EVENT_WAIT_ALL Waiting for all events to be set.

CTL_STATE_EVENT_WAIT_ALL_AC Waiting for all events to be set with auto clear.

CTL_STATE_EVENT_WAIT_ANY Waiting for any events to be set.

CTL_STATE_EVENT_WAIT_ANY_AC Waiting for any events to be set with auto clear.

CTL_STATE_SEMAPHORE_WAIT Task is waiting for a semaphore.

CTL_STATE_MESSAGE_QUEUE_POST_WAIT Task is waiting to post to a message queue.

CTL_STATE_MESSAGE_QUEUE_RECEIVE_WAIT Task is waiting to receive from a message queue.

CTL_STATE_MUTEX_WAIT Task is waiting for a mutex.

CTL_STATE_SUSPENDED Task cannot run.

CrossWorks Tasking Library Tasking Library User Guide

55

CTL_TASK_t

Synopsis

typedef struct {
 unsigned *stack_pointer;
 unsigned *thread_local_storage;
 unsigned *stack_start;
 unsigned char priority;
 unsigned char state;
 unsigned char timeout_occured;
 CTL_TASK_s *next;
 CTL_TIME_t timeout;
 void *wait_object;
 CTL_EVENT_SET_t wait_events;
 void *data;
 CTL_TIME_t execution_time;
 const char *name;
} CTL_TASK_t;

Description

CTL_TASK_t defines the task structure. The task structure contains:

Member Description

stack_pointer
the saved register state of the task when it is not
scheduled

thread_local_storage pointer to the thread local storage of this task

priority the priority of the task

state the state of task CTL_STATE_RUNNABLE or
(CTL_STATE_*_WAIT_* | CTL_STATE_TIMER_WAIT) or
CTL_STATE_SUSPENDED

timeout_occured 1 if a wait timed out otherwise 0 - when state is
CTL_RUNNABLE

next next pointer for wait queue

timeout wait timeout value or time slice value when the task is
executing

wait_object the event set, semaphore, message queue or mutex to
wait on

wait_events the events to wait for

data task specific data pointer

execution_time number of ticks the task has executed for

stack_start the start (lowest address) of the stack

name task name

CrossWorks Tasking Library Tasking Library User Guide

56

CTL_TIMEOUT_t

Synopsis

typedef enum {
 CTL_TIMEOUT_NONE,
 CTL_TIMEOUT_INFINITE,
 CTL_TIMEOUT_ABSOLUTE,
 CTL_TIMEOUT_DELAY,
 CTL_TIMEOUT_NOW
} CTL_TIMEOUT_t;

Description

CTL_TIMEOUT_t defines the type of timeout for a blocking function call.

Constant Description

CTL_TIMEOUT_NONE No timeout block indefinitely.

CTL_TIMEOUT_INFINITE Identical to CTL_TIMEOUT_NONE.

CTL_TIMEOUT_ABSOLUTE The timeout is an absolute time.

CTL_TIMEOUT_DELAY The timeout is relative to the current time.

CTL_TIMEOUT_NOW The timeout happens immediately no rescheduling
occurs.

CrossWorks Tasking Library Tasking Library User Guide

57

CTL_TIME_t

Synopsis

typedef unsigned long CTL_TIME_t;

Description

CTL_TIME_t defines the base type for times that CTL uses.

CrossWorks Tasking Library Tasking Library User Guide

58

ctl_byte_queue_init

Synopsis

void ctl_byte_queue_init(CTL_BYTE_QUEUE_t *q,
 unsigned char *queue,
 unsigned queue_size);

Description

ctl_byte_queue_init is given a pointer to the byte queue to initialize in q. The array that will be used to

implement the byte queue pointed to by queue and its size in queue_size are also supplied.

CrossWorks Tasking Library Tasking Library User Guide

59

ctl_byte_queue_num_free

Synopsis

unsigned ctl_byte_queue_num_free(CTL_BYTE_QUEUE_t *q);

Description

ctl_byte_queue_num_free returns the number of free bytes in the byte queue q.

CrossWorks Tasking Library Tasking Library User Guide

60

ctl_byte_queue_num_used

Synopsis

unsigned ctl_byte_queue_num_used(CTL_BYTE_QUEUE_t *q);

Description

ctl_byte_queue_num_used returns the number of used elements in the byte queue q.

CrossWorks Tasking Library Tasking Library User Guide

61

ctl_byte_queue_post

Synopsis

unsigned ctl_byte_queue_post(CTL_BYTE_QUEUE_t *q,
 unsigned char b,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_byte_queue_post posts b to the byte queue pointed to by q. If the byte queue is full then the caller will

block until the byte can be posted or, if timeoutType is non-zero, the current time reaches timeout value.

ctl_byte_queue_post returns zero if the timeout occurred otherwise it returns one.

Note

ctl_byte_queue_post must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

62

ctl_byte_queue_post_multi

Synopsis

unsigned ctl_byte_queue_post_multi(CTL_BYTE_QUEUE_t *q,
 unsigned n,
 unsigned char *b,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_byte_queue_post_multi posts n bytes to the byte queue pointed to by q. The caller will block until the bytes

can be posted or, if timeoutType is non-zero, the current time reaches timeout value.

ctl_byte_queue_post_multi returns the number of bytes that were posted.

Note

ctl_byte_queue_post_multi must not be called from an interrupt service routine.

ctl_byte_queue_post_multi does not guarantee that the bytes will be all be posted to the byte queue

atomically. If you have multiple tasks posting (multiple bytes) to the same byte queue then you may get

unexpected results.

CrossWorks Tasking Library Tasking Library User Guide

63

ctl_byte_queue_post_multi_nb

Synopsis

unsigned ctl_byte_queue_post_multi_nb(CTL_BYTE_QUEUE_t *q,
 unsigned n,
 unsigned char *b);

Description

ctl_byte_queue_post_multi_nb posts n bytes to the byte queue pointed to by q.

ctl_byte_queue_post_multi_nb returns the number of bytes that were posted.

CrossWorks Tasking Library Tasking Library User Guide

64

ctl_byte_queue_post_multi_uc

Synopsis

void ctl_byte_queue_post_multi_uc(CTL_BYTE_QUEUE_t *q,
 unsigned n,
 unsigned char *b);

Description

ctl_byte_queue_post_multi_uc posts n bytes to the byte queue pointed to by q. The caller will unconditionally

block until all bytes are posted.

Note

ctl_byte_queue_post_multi_uc must not be called from an interrupt service routine.

ctl_byte_queue_post_multi_uc does not guarantee that the bytes will be all be posted to the byte queue

atomically. If you have multiple tasks posting (multiple bytes) to the same byte queue then you may get

unexpected results.

CrossWorks Tasking Library Tasking Library User Guide

65

ctl_byte_queue_post_nb

Synopsis

unsigned ctl_byte_queue_post_nb(CTL_BYTE_QUEUE_t *q,
 unsigned char b);

Description

ctl_byte_queue_post_nb posts b to the byte queue pointed to by q. If the byte queue is full then the function

will return zero otherwise it will return one.

CrossWorks Tasking Library Tasking Library User Guide

66

ctl_byte_queue_post_uc

Synopsis

void ctl_byte_queue_post_uc(CTL_BYTE_QUEUE_t *q,
 unsigned char b);

Description

ctl_byte_queue_post_uc posts b to the byte queue pointed to by q. If the byte queue is full then the caller will

unconditionally block until the byte can be posted.

Note

ctl_byte_queue_post_uc must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

67

ctl_byte_queue_receive

Synopsis

unsigned ctl_byte_queue_receive(CTL_BYTE_QUEUE_t *q,
 unsigned char *b,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_byte_queue_receive pops the oldest byte in the byte queue pointed to by q into the memory pointed to by

b. ctl_byte_queue_receive will block if no bytes are available unless timeoutType is non-zero and the current

time reaches the timeout value.

ctl_byte_queue_receive returns zero if a timeout occurs otherwise 1.

Note

ctl_byte_queue_receive must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

68

ctl_byte_queue_receive_multi

Synopsis

unsigned ctl_byte_queue_receive_multi(CTL_BYTE_QUEUE_t *q,
 unsigned n,
 unsigned char *b,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_byte_queue_receive_multi pops the oldest n bytes in the byte queue pointed to by q into the memory

pointed at by b. ctl_byte_queue_receive_multi will block until the number of bytes are available unless

timeoutType is non-zero and the current time reaches the timeout value.

ctl_byte_queue_receive_multi returns the number of bytes that have been received.

Note

ctl_byte_queue_receive_multi must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

69

ctl_byte_queue_receive_multi_nb

Synopsis

unsigned ctl_byte_queue_receive_multi_nb(CTL_BYTE_QUEUE_t *q,
 unsigned n,
 unsigned char *b);

Description

ctl_byte_queue_receive_multi_nb pops the oldest n bytes in the byte queue pointed to by q into the memory

pointed to by b.

ctl_byte_queue_receive_multi_nb returns the number of bytes that have been received.

CrossWorks Tasking Library Tasking Library User Guide

70

ctl_byte_queue_receive_multi_uc

Synopsis

void ctl_byte_queue_receive_multi_uc(CTL_BYTE_QUEUE_t *q,
 unsigned n,
 unsigned char *b);

Description

ctl_byte_queue_receive_multi_uc pops the oldest n bytes in the byte queue pointed to by q into the memory

pointed at by b. ctl_byte_queue_receive_multi_uc will unconditionally block until all bytes are received.

Note

ctl_byte_queue_receive_multi_uc must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

71

ctl_byte_queue_receive_nb

Synopsis

unsigned ctl_byte_queue_receive_nb(CTL_BYTE_QUEUE_t *q,
 unsigned char *b);

Description

ctl_byte_queue_receive_nb pops the oldest byte in the byte queue pointed to by m into the memory pointed

to by b. If no bytes are available the function returns zero otherwise it returns 1.

CrossWorks Tasking Library Tasking Library User Guide

72

ctl_byte_queue_receive_uc

Synopsis

void ctl_byte_queue_receive_uc(CTL_BYTE_QUEUE_t *q,
 unsigned char *b);

Description

ctl_byte_queue_receive_uc pops the oldest byte in the byte queue pointed to by q into the memory pointed to

by b. ctl_byte_queue_receive_uc will unconditionally block if no bytes are available.

Note

ctl_byte_queue_receive_uc must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

73

ctl_byte_queue_setup_events

Synopsis

void ctl_byte_queue_setup_events(CTL_BYTE_QUEUE_t *q,
 CTL_EVENT_SET_t *e,
 CTL_EVENT_SET_t notempty,
 CTL_EVENT_SET_t notfull);

Description

ctl_byte_queue_setup_events registers events in the event set e that are set when the byte queue q becomes

notempty or becomes notfull. No scheduling will occur with this operation, you need to do this before waiting

for events.

CrossWorks Tasking Library Tasking Library User Guide

74

ctl_current_time

Synopsis

CTL_TIME_t ctl_current_time;

Description

ctl_current_time holds the current time in ticks. ctl_current_time is incremented by

ctl_increment_ticks_from_isr.

Note

For portable programs without race conditions you should not read this variable directly, you should use

ctl_get_current_time instead. As this variable is changed by an interrupt, it cannot be read atomically on

processors whose word size is less than 32 bits without first disabling interrupts. That said, you can read this

variable directly in your interrupt handler as long as interrupts are still disabled.

Note

ctl_current_time is not declared volatile because doing so would cause the internal implementation of CTL

to be less efficient. We advise you to use the access function ctl_get_current_time which provides clean and

efficient access to the current time.

See Also

ctl_get_current_time.

CrossWorks Tasking Library Tasking Library User Guide

75

ctl_events_init

Synopsis

void ctl_events_init(CTL_EVENT_SET_t *e,
 CTL_EVENT_SET_t set);

Description

ctl_events_init initializes the event set e with the set values.

CrossWorks Tasking Library Tasking Library User Guide

76

ctl_events_pulse

Synopsis

void ctl_events_pulse(CTL_EVENT_SET_t *e,
 CTL_EVENT_SET_t set_then_clear);

Description

ctl_events_pulse will set the events defined by set_then_clear in the event set pointed to by e.

ctl_events_pulse will then search the task list, matching tasks that are waiting on the event set e, and make

them runnable if the match is successful. The events defined by set_then_clear are then cleared.

See Also

ctl_events_set_clear.

CrossWorks Tasking Library Tasking Library User Guide

77

ctl_events_set_clear

Synopsis

void ctl_events_set_clear(CTL_EVENT_SET_t *e,
 CTL_EVENT_SET_t set,
 CTL_EVENT_SET_t clear);

Description

ctl_events_set_clear sets the events defined by set and clears the events defined by clear of the event set

pointed to by e. ctl_events_set_clear will then search the task list, matching tasks that are waiting on the event

set e and make them runnable if the match is successful.

See Also

ctl_events_pulse.

CrossWorks Tasking Library Tasking Library User Guide

78

ctl_events_wait

Synopsis

unsigned ctl_events_wait(CTL_EVENT_WAIT_TYPE_t waitType,
 CTL_EVENT_SET_t *eventSet,
 CTL_EVENT_SET_t events,
 CTL_TIMEOUT_t timeoutType,
 CTL_TIME_t timeout);

Description

ctl_events_wait waits for events to be set (value 1) in the event set pointed to by eventSet with an optional

timeout applied if timeoutType is non-zero.

The waitType can be one of:

CTL_EVENT_WAIT_ANY_EVENTS wait for any of events in eventSet to be set.

CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR wait for any of events in eventSet to be set and

reset (clear) them.

CTL_EVENT_WAIT_ALL_EVENTS wait for all events in eventSet to be set.

CTL_EVENT_WAIT_ALL_EVENTS_WITH_AUTO_CLEAR wait for all events in eventSet to be set and reset

(clear) them.

ctl_events_wait returns the value pointed to by eventSet before any auto-clearing occurred or zero if the

timeout occurred.

Note

ctl_events_wait must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

79

ctl_events_wait_nb

Synopsis

unsigned ctl_events_wait_nb(CTL_EVENT_WAIT_TYPE_t waitType,
 CTL_EVENT_SET_t *eventSet,
 CTL_EVENT_SET_t events);

Description

ctl_events_wait_nb waits for events to be set (value 1) in the event set pointed to by eventSet without

blocking.

The waitType can be one of:

CTL_EVENT_WAIT_ANY_EVENTS wait for any of events in eventSet to be set.

CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR wait for any of events in eventSet to be set and

reset (clear) them.

CTL_EVENT_WAIT_ALL_EVENTS wait for all events in eventSet to be set.

CTL_EVENT_WAIT_ALL_EVENTS_WITH_AUTO_CLEAR wait for all events in eventSet to be set and reset

(clear) them.

ctl_events_wait_nb returns the value pointed to by eventSet before any auto-clearing occurred.

Note

ctl_events_wait_nb must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

80

ctl_events_wait_uc

Synopsis

unsigned ctl_events_wait_uc(CTL_EVENT_WAIT_TYPE_t waitType,
 CTL_EVENT_SET_t *eventSet,
 CTL_EVENT_SET_t events);

Description

ctl_events_wait_uc unconditionally waits for events to be set (value 1) in the event set pointed to by eventSet.

The waitType can be one of:

CTL_EVENT_WAIT_ANY_EVENTS wait for any of events in eventSet to be set.

CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR wait for any of events in eventSet to be set and

reset (clear) them.

CTL_EVENT_WAIT_ALL_EVENTS wait for all events in eventSet to be set.

CTL_EVENT_WAIT_ALL_EVENTS_WITH_AUTO_CLEAR wait for all events in eventSet to be set and reset

(clear) them.

ctl_events_wait_uc returns the value pointed to by eventSet before any auto-clearing occurred.

Note

ctl_events_wait_uc must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

81

ctl_get_current_time

Synopsis

CTL_TIME_t ctl_get_current_time(void);

Description

ctl_get_current_time atomically reads the value of ctl_current_time.

CrossWorks Tasking Library Tasking Library User Guide

82

ctl_get_sleep_delay

Synopsis

unsigned ctl_get_sleep_delay(void);

Description

ctl_get_sleep_delay returns the minimal sleep delay for the tasks on the task list. This is intended for use by

tickless CTL implementations.

CrossWorks Tasking Library Tasking Library User Guide

83

ctl_global_interrupts_disable

Synopsis

int ctl_global_interrupts_disable(void);

Description

ctl_global_interrupts_disable disables global interrupts. If ctl_global_interrupts_disable is called and

interrupts are already disabled then it will return 0. If ctl_global_interrupts_disable is called and interrupts

are enabled then it will return non-zero which may or may not represent the true interrupt disabled state.

ctl_global_interrupts_disable is used to provide exclusive access to CTL data structures the implementation of it

may or may not disable global interrupts.

CrossWorks Tasking Library Tasking Library User Guide

84

ctl_global_interrupts_enable

Synopsis

void ctl_global_interrupts_enable(void);

Description

ctl_global_interrupts_enable enables global interrupts. ctl_global_interrupts_enable is used to provide

exclusive access to CTL data structures the implementation of it may or may not disable global interrupts.

CrossWorks Tasking Library Tasking Library User Guide

85

ctl_global_interrupts_set

Synopsis

int ctl_global_interrupts_set(int enable);

Description

ctl_global_interrupts_set disables or enables global interrupts according to the state enable. If enable is zero,

interrupts are disabled and if enable is non-zero, interrupts are enabled. If ctl_global_interrupts_set is called

and interrupts are already disabled then it will return 0. If ctl_global_interrupts_set is called and interrupts

are enabled then it will return non-zero which may or may not represent the true interrupt disabled state.

ctl_global_interrupts_set is used to provide exclusive access to CTL data structures the implementation of it may

or may not disable global interrupts.

CrossWorks Tasking Library Tasking Library User Guide

86

ctl_handle_error

Synopsis

void ctl_handle_error(CTL_ERROR_CODE_t e);

Description

ctl_handle_error is a function that you must supply in your application that handles errors detected by the

CrossWorks tasking library.

The errors that can be reported in e are are described in CTL_ERROR_CODE_t.

CrossWorks Tasking Library Tasking Library User Guide

87

ctl_increment_tick_from_isr

Synopsis

void ctl_increment_tick_from_isr(void);

Description

ctl_increment_tick_from_isr increments ctl_current_time by the number held in ctl_time_increment and does

rescheduling.

Note

ctl_increment_tick_from_isr must only be invoked by an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

88

ctl_interrupt_count

Synopsis

unsigned char ctl_interrupt_count;

Description

ctl_interrupt_count contains a count of the interrupt nesting level. This variable must be incremented

immediately on entry to an interrupt service routine and decremented immediately before return from the

interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

89

ctl_last_schedule_time

Synopsis

CTL_TIME_t ctl_last_schedule_time;

Description

ctl_last_schedule_time contains the time (in ticks) of the last task schedule.

Description

ctl_last_schedule_time contains the time of the last reschedule in ticks.

CrossWorks Tasking Library Tasking Library User Guide

90

ctl_memory_area_allocate

Synopsis

unsigned *ctl_memory_area_allocate(CTL_MEMORY_AREA_t *memory_area);

Description

ctl_memory_area_allocate allocates a block from the initialized memory area memory_area.

ctl_memory_area_allocate returns a block of the size specified in the call to ctl_memory_area_init or zero if no

blocks are available.

ctl_memory_area_allocate executes in constant time and is very fast. You can call ctl_memory_area_allocate

from an interrupt service routine, from a task, or from initialization code.

CrossWorks Tasking Library Tasking Library User Guide

91

ctl_memory_area_free

Synopsis

void ctl_memory_area_free(CTL_MEMORY_AREA_t *memory_area,
 unsigned *block);

Description

ctl_memory_area_free is given a pointer to a memory area memory_area which has been initialized and a

block that has been returned by ctl_memory_area_allocate. The block is returned to the memory area so that it

can be allocated again.

CrossWorks Tasking Library Tasking Library User Guide

92

ctl_memory_area_init

Synopsis

void ctl_memory_area_init(CTL_MEMORY_AREA_t *memory_area,
 unsigned *memory,
 unsigned block_size_in_words,
 unsigned num_blocks);

Description

ctl_memory_area_init is given a pointer to the memory area to initialize in memory_area. The array that is

used to implement the memory area is pointed to by memory. The size of a memory block is given supplied in

block_size_in_words and the number of block is supplied in num_blocks.

Note

memory must point to a block of memory that is at least block_size_in_words num_blocks words long.

CrossWorks Tasking Library Tasking Library User Guide

93

ctl_memory_area_setup_events

Synopsis

void ctl_memory_area_setup_events(CTL_MEMORY_AREA_t *m,
 CTL_EVENT_SET_t *e,
 CTL_EVENT_SET_t blockavailable);

Description

ctl_memory_area_setup_events registers the events blockavailable in the event set e that are set when a block

becomes available in the the memory area m.

CrossWorks Tasking Library Tasking Library User Guide

94

ctl_message_queue_init

Synopsis

void ctl_message_queue_init(CTL_MESSAGE_QUEUE_t *q,
 void **queue,
 unsigned queue_size);

Description

ctl_message_queue_init is given a pointer to the message queue to initialize in q. The array that will be used to

implement the message queue pointed to by queue and its size in queue_size are also supplied.

CrossWorks Tasking Library Tasking Library User Guide

95

ctl_message_queue_num_free

Synopsis

unsigned ctl_message_queue_num_free(CTL_MESSAGE_QUEUE_t *q);

Description

ctl_message_queue_num_free returns the number of free elements in the message queue q.

CrossWorks Tasking Library Tasking Library User Guide

96

ctl_message_queue_num_used

Synopsis

unsigned ctl_message_queue_num_used(CTL_MESSAGE_QUEUE_t *q);

Description

ctl_message_queue_num_used returns the number of used elements in the message queue q.

CrossWorks Tasking Library Tasking Library User Guide

97

ctl_message_queue_post

Synopsis

unsigned ctl_message_queue_post(CTL_MESSAGE_QUEUE_t *q,
 void *message,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_message_queue_post posts message to the message queue pointed to by q. If the message queue is

full then the caller will block until the message can be posted or, if timeoutType is non-zero, the current time

reaches timeout value.

ctl_message_queue_post returns zero if the timeout occurred otherwise it returns one.

Note

ctl_message_queue_post must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

98

ctl_message_queue_post_multi

Synopsis

unsigned ctl_message_queue_post_multi(CTL_MESSAGE_QUEUE_t *q,
 unsigned n,
 void **messages,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_message_queue_post_multi posts n messages to the message queue pointed to by q. The caller will block

until the messages can be posted or, if timeoutType is non-zero, the current time reaches timeout value.

ctl_message_queue_post_multi returns the number of messages that were posted.

Note

ctl_message_queue_post_multi must not be called from an interrupt service routine.

ctl_message_queue_post_multi function does not guarantee that the messages will be all be posted to the

message queue atomically. If you have multiple tasks posting (multiple messages) to the same message queue

then you may get unexpected results.

CrossWorks Tasking Library Tasking Library User Guide

99

ctl_message_queue_post_multi_nb

Synopsis

unsigned ctl_message_queue_post_multi_nb(CTL_MESSAGE_QUEUE_t *q,
 unsigned n,
 void **messages);

Description

ctl_message_queue_post_multi_nb posts n messages to the message queue pointed to by m.

ctl_message_queue_post_multi_nb returns the number of messages that were posted.

CrossWorks Tasking Library Tasking Library User Guide

100

ctl_message_queue_post_multi_uc

Synopsis

void ctl_message_queue_post_multi_uc(CTL_MESSAGE_QUEUE_t *q,
 unsigned n,
 void **messages);

Description

ctl_message_queue_post_multi_uc posts n messages to the message queue pointed to by q. The caller will

unconditionally block until all messages are posted.

Note

ctl_message_queue_post_multi_uc must not be called from an interrupt service routine.

ctl_message_queue_post_multi_uc function does not guarantee that the messages will be all be posted to the

message queue atomically. If you have multiple tasks posting (multiple messages) to the same message queue,

then you may get unexpected results.

CrossWorks Tasking Library Tasking Library User Guide

101

ctl_message_queue_post_nb

Synopsis

unsigned ctl_message_queue_post_nb(CTL_MESSAGE_QUEUE_t *q,
 void *message);

Description

ctl_message_queue_post_nb posts message to the message queue pointed to by q. If the message queue is

full then the function will return zero otherwise it will return one.

CrossWorks Tasking Library Tasking Library User Guide

102

ctl_message_queue_post_uc

Synopsis

void ctl_message_queue_post_uc(CTL_MESSAGE_QUEUE_t *q,
 void *message);

Description

ctl_message_queue_post_uc posts message to the message queue pointed to by q. If the message queue is full

then the caller will unconditionally block until the message can be posted.

Note

ctl_message_queue_post_uc must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

103

ctl_message_queue_receive

Synopsis

unsigned ctl_message_queue_receive(CTL_MESSAGE_QUEUE_t *q,
 void **message,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_message_queue_receive pops the oldest message in the message queue pointed to by q into the

memory pointed to by message. ctl_message_queue_receive will block if no messages are available unless

timeoutType is non-zero and the current time reaches the timeout value.

ctl_message_queue_receive returns zero if a timeout occurs otherwise 1.

Note

ctl_message_queue_receive must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

104

ctl_message_queue_receive_multi

Synopsis

unsigned ctl_message_queue_receive_multi(CTL_MESSAGE_QUEUE_t *q,
 unsigned n,
 void **messages,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_message_queue_receive_multi pops the oldest n messages in the message queue pointed to by q into

the memory pointed to by message. ctl_message_queue_receive_multi will block until all the messages are

available unless timeoutType is non-zero and the current time reaches the timeout value.

ctl_message_queue_receive_multi returns the number of messages that were received.

Note

ctl_message_queue_receive_multi must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

105

ctl_message_queue_receive_multi_nb

Synopsis

unsigned ctl_message_queue_receive_multi_nb(CTL_MESSAGE_QUEUE_t *q,
 unsigned n,
 void **messages);

Description

ctl_message_queue_receive_multi_nb pops the oldest n messages in the message queue pointed to by q into

the memory pointed to by message.

ctl_message_queue_receive_multi_nb returns the number of messages that were received.

CrossWorks Tasking Library Tasking Library User Guide

106

ctl_message_queue_receive_multi_uc

Synopsis

void ctl_message_queue_receive_multi_uc(CTL_MESSAGE_QUEUE_t *q,
 unsigned n,
 void **messages);

Description

ctl_message_queue_receive_multi_uc pops the oldest n messages in the message queue pointed to by q into

the memory pointed to by message. ctl_message_queue_receive_multi_uc will unconditionally block until all

the messages are received.

Note

ctl_message_queue_receive_multi_uc must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

107

ctl_message_queue_receive_nb

Synopsis

unsigned ctl_message_queue_receive_nb(CTL_MESSAGE_QUEUE_t *q,
 void **message);

Description

ctl_message_queue_receive_nb pops the oldest message in the message queue pointed to by q into the

memory pointed to by message. If no messages are available the function returns zero otherwise it returns 1.

CrossWorks Tasking Library Tasking Library User Guide

108

ctl_message_queue_receive_uc

Synopsis

void ctl_message_queue_receive_uc(CTL_MESSAGE_QUEUE_t *q,
 void **message);

Description

ctl_message_queue_receive_uc pops the oldest message in the message queue pointed to by q into the

memory pointed to by message. ctl_message_queue_receive_uc will unconditionally block if no messages are

available.

Note

ctl_message_queue_receive_uc must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

109

ctl_message_queue_setup_events

Synopsis

void ctl_message_queue_setup_events(CTL_MESSAGE_QUEUE_t *q,
 CTL_EVENT_SET_t *e,
 CTL_EVENT_SET_t notempty,
 CTL_EVENT_SET_t notfull);

Description

ctl_message_queue_setup_events registers events in the event set e that are set when the message queue q

becomes notempty or becomes notfull. No scheduling will occur with this operation, you need to do this before

waiting for events.

CrossWorks Tasking Library Tasking Library User Guide

110

ctl_mutex_init

Synopsis

void ctl_mutex_init(CTL_MUTEX_t *m);

Description

ctl_mutex_init initializes the mutex pointed to by m.

CrossWorks Tasking Library Tasking Library User Guide

111

ctl_mutex_lock

Synopsis

unsigned ctl_mutex_lock(CTL_MUTEX_t *m,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_mutex_lock locks the mutex pointed to by m to the calling task. If the mutex is already locked by the calling

task then the mutex lock count is incremented. If the mutex is already locked by a different task then the caller

will block until the mutex is unlocked. In this case, if the priority of the task that has locked the mutex is less than

that of the caller the priority of the task that has locked the mutex is raised to that of the caller whilst the mutex

is locked.

If timeoutType is non-zero and the current time reaches the timeout value before the lock is acquired the

function returns zero otherwise it returns one.

Note

ctl_mutex_lock must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

112

ctl_mutex_lock_nb

Synopsis

unsigned ctl_mutex_lock_nb(CTL_MUTEX_t *m);

Description

ctl_mutex_lock_nb locks the mutex pointed to by m to the calling task. If the mutex is already locked by the

calling task then the mutex lock count is incremented. If the mutex is already locked by a different task then zero

is returned otherwise 1 is returned.

Note

ctl_mutex_lock_nb must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

113

ctl_mutex_lock_uc

Synopsis

void ctl_mutex_lock_uc(CTL_MUTEX_t *m);

Description

ctl_mutex_lock_uc locks the mutex pointed to by m to the calling task. If the mutex is already locked by the

calling task then the mutex lock count is incremented. If the mutex is already locked by a different task then the

caller will unconditionally block until the mutex is unlocked. In this case, if the priority of the task that has locked

the mutex is less than that of the caller, the priority of the task that has locked the mutex is raised to that of the

caller whilst the mutex is locked.

Note

ctl_mutex_lock_uc must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

114

ctl_mutex_unlock

Synopsis

void ctl_mutex_unlock(CTL_MUTEX_t *m);

Description

ctl_mutex_unlock unlocks the mutex pointed to by m. The mutex must have previously been locked by the

calling task. If the calling task's priority has been raised (by another task calling ctl_mutex_unlock whilst the

mutex was locked), then the calling tasks priority will be restored.

Note

ctl_mutex_unlock must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

115

ctl_reschedule_on_last_isr_exit

Synopsis

unsigned char ctl_reschedule_on_last_isr_exit;

Description

ctl_reschedule_on_last_isr_exit is set to a non-zero value if a CTL call is made from an interrupt service routine

that requires a task reschedule. This variable is checked and reset on exit from the last nested interrupt service

routine.

CrossWorks Tasking Library Tasking Library User Guide

116

ctl_semaphore_init

Synopsis

void ctl_semaphore_init(CTL_SEMAPHORE_t *s,
 unsigned value);

Description

ctl_semaphore_init initializes the semaphore pointed to by s to value.

CrossWorks Tasking Library Tasking Library User Guide

117

ctl_semaphore_signal

Synopsis

void ctl_semaphore_signal(CTL_SEMAPHORE_t *s);

Description

ctl_semaphore_signal signals the semaphore pointed to by s. If tasks are waiting for the semaphore then the

highest priority task will be made runnable. If no tasks are waiting for the semaphore then the semaphore value

will be incremented.

CrossWorks Tasking Library Tasking Library User Guide

118

ctl_semaphore_wait

Synopsis

unsigned ctl_semaphore_wait(CTL_SEMAPHORE_t *s,
 CTL_TIMEOUT_t t,
 CTL_TIME_t timeout);

Description

ctl_semaphore_wait waits for the semaphore pointed to by s to be non-zero. If the semaphore is zero then the

caller will block unless timeoutType is non-zero and the current time reaches the timeout value. If the timeout

occurred ctl_semaphore_wait returns zero otherwise it returns one.

Note

ctl_semaphore_wait must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

119

ctl_semaphore_wait_nb

Synopsis

unsigned ctl_semaphore_wait_nb(CTL_SEMAPHORE_t *s);

Description

ctl_semaphore_wait_nb waits for the semaphore pointed to by s without blocking. Returns returns one on

success.

Note

ctl_semaphore_wait_nb must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

120

ctl_semaphore_wait_uc

Synopsis

void ctl_semaphore_wait_uc(CTL_SEMAPHORE_t *s);

Description

ctl_semaphore_wait_uc unconditionally waits for the semaphore pointed to by s to be non-zero. If the

semaphore is zero then the caller will block.

Note

ctl_semaphore_wait_uc must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

121

ctl_task_die

Synopsis

void ctl_task_die(void);

Description

ctl_task_die terminates the currently executing task and schedules the next runnable task.

CrossWorks Tasking Library Tasking Library User Guide

122

ctl_task_executing

Synopsis

CTL_TASK_t *ctl_task_executing;

Description

ctl_task_executing points to the CTL_TASK_t structure of the currently executing task. The priority field

is the only field in the CTL_TASK_t structure that is defined for the task that is executing. It is an error if

ctl_task_executing is NULL.

CrossWorks Tasking Library Tasking Library User Guide

123

ctl_task_init

Synopsis

void ctl_task_init(CTL_TASK_t *task,
 unsigned char priority,
 const char *name);

Description

ctl_task_init turns the main program into a task. This function takes a pointer in task to the CTL_TASK_t

structure that represents the main task, its priority (0 is the lowest priority, 255 the highest), and a zero-

terminated string pointed by name. On return from this function global interrupts will be enabled.

The function must be called before any other CrossWorks tasking library calls are made.

CrossWorks Tasking Library Tasking Library User Guide

124

ctl_task_list

Synopsis

CTL_TASK_t *ctl_task_list;

Description

ctl_task_list points to the CTL_TASK_t structure of the highest priority task that is not executing. It is an error if

ctl_task_list is NULL.

CrossWorks Tasking Library Tasking Library User Guide

125

ctl_task_remove

Synopsis

void ctl_task_remove(CTL_TASK_t *task);

Description

ctl_task_remove removes the task task from the waiting task list. Once you you have removed a task the only

way to re-introduce it to the system is to call ctl_task_restore.

CrossWorks Tasking Library Tasking Library User Guide

126

ctl_task_reschedule

Synopsis

void ctl_task_reschedule(void);

Description

ctl_task_reschedule causes a reschedule to occur. This can be used by tasks of the same priority to share the

CPU without using timeslicing.

CrossWorks Tasking Library Tasking Library User Guide

127

ctl_task_restore

Synopsis

void ctl_task_restore(CTL_TASK_t *task);

Description

ctl_task_restore adds a task task that was removed (using ctl_task_remove) onto the task list and do

scheduling.

CrossWorks Tasking Library Tasking Library User Guide

128

ctl_task_run

Synopsis

void ctl_task_run(CTL_TASK_t *task,
 unsigned char priority,
 void (*entrypoint)(void *),
 void *parameter,
 const char *name,
 unsigned stack_size_in_words,
 unsigned *stack,
 unsigned call_size_in_words);

Description

ctl_task_run takes a pointer in task to the CTL_TASK_t structure that represents the task. The priority can be

zero for the lowest priority up to 255 which is the highest. The entrypoint parameter is the function that the task

will execute which has the parameter passed to it.

name is a pointer to a zero-terminated string used for debug purposes.

The start of the memory used to hold the stack that the task will execute in is stack and the size of the memory is

supplied in stack_size_in_words. On systems that have two stacks (e.g. Atmel AVR) then the call_size_in_words

parameter must be set to specify the number of stack elements to use for the call stack.

CrossWorks Tasking Library Tasking Library User Guide

129

ctl_task_set_priority

Synopsis

unsigned char ctl_task_set_priority(CTL_TASK_t *task,
 unsigned char priority);

Description

ctl_task_set_priority changes the priority of task to priority. The priority can be 0, the lowest priority, to 255,

which is the highest priority.

You can change the priority of the currently executing task by passing ctl_task_executing as the task

parameter.

ctl_task_set_priority returns the previous priority of the task.

CrossWorks Tasking Library Tasking Library User Guide

130

ctl_task_switch_callout

Synopsis

void (*ctl_task_switch_callout)(CTL_TASK_t *);

Description

ctl_task_switch_callout contains a pointer to a function that is called (if it is set) when a task schedule occurs.

The task that will be scheduled is supplied as a parameter to the function (ctl_task_executing will point to the

currently scheduled task).

Note that the callout function is called from the CTL scheduler and as such any use of CTL services whilst

executing the callout function has undefined behavior.

Note

Because this function pointer is called in an interrupt service routine, you should assign it before interrupts are

started or with interrupts turned off.

CrossWorks Tasking Library Tasking Library User Guide

131

ctl_time_increment

Synopsis

unsigned ctl_time_increment;

Description

ctl_time_increment contains the value that ctl_current_time is incremented when

ctl_increment_tick_from_isr is called.

CrossWorks Tasking Library Tasking Library User Guide

132

ctl_timeout_wait

Synopsis

void ctl_timeout_wait(CTL_TIME_t timeout);

Description

ctl_timeout_wait takes the timeout (not the duration) as a parameter and suspends the calling task until the

current time reaches the timeout.

Note

ctl_timeout_wait must not be called from an interrupt service routine.

CrossWorks Tasking Library Tasking Library User Guide

133

ctl_timeslice_period

Synopsis

CTL_TIME_t ctl_timeslice_period;

Description

ctl_timeslice_period contains the number of ticks to allow a task to run before it will be preemptively

rescheduled by a task of the same priority. The variable is set to zero by default so that only higher priority tasks

will be preemptively scheduled.

	Contents
	Tasking Library User Guide
	Overview
	Tasks
	Event sets
	Semaphores
	Mutexes
	Message queues
	Byte queues
	Global interrupts control
	Timer support
	Interrupt service routines
	Memory areas
	Task scheduling example
	ARM implementation details
	Cortex-M implementation details
	Complete API reference
	<ctl.h>
	CTL_BYTE_QUEUE_t
	CTL_ERROR_CODE_t
	CTL_EVENT_SET_t
	CTL_EVENT_WAIT_TYPE_t
	CTL_MEMORY_AREA_t
	CTL_MESSAGE_QUEUE_t
	CTL_MUTEX_t
	CTL_SEMAPHORE_t
	CTL_STATE_t
	CTL_TASK_t
	CTL_TIMEOUT_t
	CTL_TIME_t
	ctl_byte_queue_init
	ctl_byte_queue_num_free
	ctl_byte_queue_num_used
	ctl_byte_queue_post
	ctl_byte_queue_post_multi
	ctl_byte_queue_post_multi_nb
	ctl_byte_queue_post_multi_uc
	ctl_byte_queue_post_nb
	ctl_byte_queue_post_uc
	ctl_byte_queue_receive
	ctl_byte_queue_receive_multi
	ctl_byte_queue_receive_multi_nb
	ctl_byte_queue_receive_multi_uc
	ctl_byte_queue_receive_nb
	ctl_byte_queue_receive_uc
	ctl_byte_queue_setup_events
	ctl_current_time
	ctl_events_init
	ctl_events_pulse
	ctl_events_set_clear
	ctl_events_wait
	ctl_events_wait_nb
	ctl_events_wait_uc
	ctl_get_current_time
	ctl_get_sleep_delay
	ctl_global_interrupts_disable
	ctl_global_interrupts_enable
	ctl_global_interrupts_set
	ctl_handle_error
	ctl_increment_tick_from_isr
	ctl_interrupt_count
	ctl_last_schedule_time
	ctl_memory_area_allocate
	ctl_memory_area_free
	ctl_memory_area_init
	ctl_memory_area_setup_events
	ctl_message_queue_init
	ctl_message_queue_num_free
	ctl_message_queue_num_used
	ctl_message_queue_post
	ctl_message_queue_post_multi
	ctl_message_queue_post_multi_nb
	ctl_message_queue_post_multi_uc
	ctl_message_queue_post_nb
	ctl_message_queue_post_uc
	ctl_message_queue_receive
	ctl_message_queue_receive_multi
	ctl_message_queue_receive_multi_nb
	ctl_message_queue_receive_multi_uc
	ctl_message_queue_receive_nb
	ctl_message_queue_receive_uc
	ctl_message_queue_setup_events
	ctl_mutex_init
	ctl_mutex_lock
	ctl_mutex_lock_nb
	ctl_mutex_lock_uc
	ctl_mutex_unlock
	ctl_reschedule_on_last_isr_exit
	ctl_semaphore_init
	ctl_semaphore_signal
	ctl_semaphore_wait
	ctl_semaphore_wait_nb
	ctl_semaphore_wait_uc
	ctl_task_die
	ctl_task_executing
	ctl_task_init
	ctl_task_list
	ctl_task_remove
	ctl_task_reschedule
	ctl_task_restore
	ctl_task_run
	ctl_task_set_priority
	ctl_task_switch_callout
	ctl_time_increment
	ctl_timeout_wait
	ctl_timeslice_period

