CrossWorks loT Library

Version: 3.0

© 2014 Rowley Associates Limited



CrossWorks loT Library



CrossWorks loT Library Contents

Contents

CrossWorks loT Library 5
User Manual 7
Introduction 7

API Reference 8
<ctl_xively.h> 8
CTL_XIVELY_API_t 10
CTL_XIVELY_DATAPOINT_VALUE_t 11
CTL_XIVELY_DATAPOINT_t 12
CTL_XIVELY_DATASTREAM_t 13
CTL_XIVELY_FEED_ID_t 14
CTL_XIVELY_FEED_t 15
CTL_XIVELY_VALUE_TYPE_t 16
ctl_xively_api_initialize_http_csv 17
ctl_xively_datapoint_delete 18
ctl_xively_datapoint_delete_range 19
ctl_xively_datapoint_write_float 20
ctl_xively_datapoint_write_int 21
ctl_xively_datapoint_write_stamped_float 22
ctl_xively_datapoint_write_stamped_int 23
ctl_xively_datastream_create 24
ctl_xively_datastream_delete 25
ctl_xively_datastream_initialize 26
ctl_xively_datastream_post 27




CrossWorks loT Library Contents

ctl_xively_datastream_update 28
ctl_xively_feed_has_pending_data 29
ctl_xively_feed_register_datastream 30
ctl_xively_feed_update 31
ctl_xively_register_error_decoder 32




CrossWorks loT Library CrossWorks loT Library

CrossWorks loT Library

About the CrossWorks loT Library

The CrossWorks loT Library is designed to reduce the development time for customers wishing to send data to an

loT service. This library uses the facilities of other CrossWorks Technology Libraries:

 CrossWorks Tools Library: provides add-ons for CTL such as read-write locks and ring buffers.

 CrossWorks Device Library: provides drivers for common digital sensors, such as accelerometers,
gyroscopes, magnetometers, and so on.

*» CrossWorks TCP/IP Library: provides TCP/IP networking for integrated and external network controllers on

memory-constrained microcontrollers.

Architecture

The CrossWorks IoT Library is one part of the CrossWorks Technology Libraries. Many of the low-level functions
provided by the target library are built using features of the CrossWorks Tasking Library for multi-threaded
operation.

Delivery format

The CrossWorks loT Library is delivered in source form.

Feedback

This facility is a work in progress and may undergo rapid change. If you have comments, observations,
suggestions, or problems, please feel free to air them on the CrossWorks Target and Platform API discussion

forum.


https://rowley.zendesk.com/forums/21762187-the-crossworks-target-and-platform-api

CrossWorks loT Library CrossWorks loT Library

License

The following terms apply to the Rowley Associates loT Library.



CrossWorks loT Library CrossWorks loT Library

Introduction

About the CrossWorks loT Library

The CrossWorks loT Library is a standard API that runs on a collection of popular microprocessors and evaluation

boards. Using the library, you can push data to loT services over a network connection.

The IoT Library requires the CrossWorks Tasking Library for operation. Because the IoT Library, and facilities built
on top of it, use interrupts and background processing, we made the decision to use the CrossWorks Tasking
Library as a foundation stone for all CrossWorks Technology Libraries. We have not abstracted the loT Library to

use a generic RTOS as this adds more complexity to the design.

Why use the loT Library?

The IoT Library is designed to work well on memory-constrained microcontrollers that take measurements or

record data and, in the background, push that data to the loT service.

We intend to support a number of loT services, but we're launching this library with support for Xively.

What the loT Library isn't

The loT Library is not a general-purpose APl supporting every feature offered by the Xively service, nor does
it cater for all types of data your may wish to push to Xively. The loT Library is tested on the microprocessors
and evaluation boards that Rowley Associates deliver examples for. Certainly, you can use it with little or no
modification on boards that have other processors in the families we support, because it is highly portable and
delivered in source code—but, you will need to test, and assure yourself, that the software you ported does

indeed function correctly.

What the loT Library runs on

The IoT Library runs on, and has examples for, the boards that can support the TCP/IP Library. At present, the
following microprocessor families support the loT Library:

LPC1700
* LM3S

STM32F1
STM32F2
STM32F4

The range of boards and microprocessors that run the loT Library continues to expand. Please check the

CrossWorks web site for the latest information.



CrossWorks loT Library

<ctl_xively.h>

Overview

CrossWorks loT Library

This is an interface to push data to the Xively cloud-based service.

The initial implementation of <ct | _xi vel y. h>is somewhat inspired by, and takes some direction from, the

existing C and mbed APIs offered by Xively. However, we believe that the existing APl implementations are not

sufficiently balanced for small systems. The existing mbed APl has a number of shortcomings:

* It uses static buffers and a configuration header file to size them. It builds the static buffers into the

implementation, where necessary, and repurposes the C API, based on dynamic allocation, using them.

» Datastreams and datapoint arrays are statically allocated as a matrix and very large. Every datastream

contains the same number of datapoints, irrespective of the datapoint production rate.

» There is no capability to queue data to be sent to Xively and the APl is not thread safe.

The CrossWorks Xively APl is more flexible, uses memory in a more efficient manner, and supports posting

datapoints to queues from interrupt service routines or from threads.

APl Summary

API

CTL_XIVELY_API_t
ctl_xively_api_initialize_http_csv
Feeds

CTL_XIVELY_FEED_ID_t
CTL_XIVELY_FEED_t
ctl_xively_feed_has_pending_data
ctl_xively_feed_register_datastream
ctl_xively_feed_update
Datastreams
CTL_XIVELY_DATASTREAM_t
ctl_xively_datastream_create
ctl_xively_datastream_delete
ctl_xively_datastream_initialize
ctl_xively_datastream_post
ctl_xively_datastream_update
Datapoints

CTL_XIVELY_DATAPOINT_VALUE _t

Xively APl context

Initialize API context

Feed identifier
Feed controller
Outstanding data?
Register datastream

Push feed data to Xively

Datastream buffer

Create datastream

Delete datastream from server
Initialize datastream

Post datapoint to a datastream

Single-point datastream update

Datapoint value



CrossWorks loT Library

CTL_XIVELY_DATAPOINT_t
CTL_XIVELY_VALUE_TYPE_t
ctl_xively_datapoint_delete
ctl_xively_datapoint_delete_range
ctl_xively_datapoint_write_float
ctl_xively_datapoint_write_int
ctl_xively_datapoint_write_stamped_float
ctl_xively_datapoint_write_stamped_int
Utility

ctl_xively_register_error_decoder

CrossWorks loT Library

Datapoint

Datapoint value type

Delete datapoint from server

Delete datapoints from server

Initialize floating datapoint

Initialize integer datapoint

Initialize timestamped floating datapoint

Initialize timestamped integer datapoint

Register Xively error decoder



CrossWorks loT Library CrossWorks loT Library

CTL_XIVELY_API_t

Synopsis

typedef struct {
const char *api _key;
CTL_XI VELY_FEED t *feed;
const CTL_XI VELY_TRANSPORT_t *transport;
const CTL_XI VELY_DATA ENCODER t *dat a_encoder;
const CTL_XIVELY_COWS_t *comms;
CTL_STRBUF_t strbuf;
} CTL_XI VELY_API _t;

Description

CTL_XIVELY_API_t defines the Xively API context that the library uses to communicate with and present data to
the Xively REST API.

Structure

api _key
The API key that's presented to Xively when accessing the Xively REST API.

f eed
Private pointer to the feed managed by this API context.

transport
Private pointer to the transport layer implementation. At present, this library only implements an HTTP
transport.

dat a_encoder
Private pointer to the data encoder for datapoints and datastreams.

conms
Private pointer to the communications layer to access the Xively API. At present, only the TCP/IP protocol is
implemented using the CrossWorks TCP/IP Library.

10



CrossWorks loT Library CrossWorks loT Library

CTL_XIVELY_DATAPOINT_VALUE_t

Synopsis
typedef struct {
int i;
float f;
} CTL_XI VELY_DATAPO NT_VALUE_ t ;

Description

CTL_XIVELY_DATAPOINT_VALUE_t defines the data held by the datapoint according to the discriminant
CTL_XIVELY_VALUE_TYPE_t.

See Also

CTL_XIVELY_VALUE_TYPE_t

11



CrossWorks loT Library CrossWorks loT Library

CTL_XIVELY_DATAPOINT_t

Synopsis

typedef struct {
CTL_XI VELY_VALUE_TYPE_t type;
CTL_XI VELY_DATAPO NT_VALUE t val ue;

CTL_XI VELY_TI MESTAMP_t st anp;
} CTL_XI VELY_DATAPOI NT t ;

Description
CTL_XIVELY_DATAPOINT_t defines a single datapoint that has data in a specified format and an optional

timestamp.

Structure

type
The type of data held in the val ue member.

val ue
The value of the datapoint, discriminated by the t ype member.

st anp

The timestamp of the datapoint. An unstamped datapoint has a null stamp (indicated by azerot v_sec

member).

12



CrossWorks loT Library CrossWorks loT Library

CTL_XIVELY_DATASTREAM_t

Synopsis

typedef struct {
const char *id,;
size_t capacity;
vol atil e unsi gned count;
vol atil e unsi gned w,
vol atil e unsigned r
unsi gned u;
CTL_XI VELY_DATAPO NT_t *dat a;
CTL_XI VELY_DATASTREAM t *__next;
CTL_XI VELY_FEED t *_ feed;
} CTL_XI VELY_DATASTREAM t ;

Description

CTL_XIVELY_DATASTREAM_t defines a queue of datapoints that can be pushed to Xively. The queue is
implemented as a ring buffer of datapoints such that datapoints can be posted to the datastream from an

interrupt service routine.
Structure
i d

The datastream identifier.

capacity
The maximum number of datapoints that this datastream buffer can contain.

count

The current number of datapoints held in the datastream buffer.

r
Private read index.
W
Private write index.
u
Private update count.
dat a
Private pointer to the memory that implements the ring buffer.
dat a

Private pointer to the next datastream in the list of feed datastreams.

13



CrossWorks loT Library CrossWorks loT Library

CTL_XIVELY_FEED_ID_t

Synopsis

typedef unsigned CTL_XIVELY_FEED I D t;

Description

CTL_XIVELY_FEED_ID_t defines the Xively-assigned feed ID for the device, which is a 32-bit unsigned integer.

14



CrossWorks loT Library CrossWorks loT Library

CTL_XIVELY_FEED_t

Synopsis
typedef struct {
CTL_XI VELY_FEED ID t id;
CTL_XI VELY_DATASTREAM t *__head;

CTL_XI VELY_API t *__api;
} CTL_XI VELY_FEED t;

Description
CTL_XIVELY_FEED_t defines a Xively feed. Multiple datastreams can be registered with a feed and must be
registered before pushing data to Xively.
Structure
id
The feed identifier.

__head

Private pointer to the first datastream registered with the the feed. Datastreams are threaded using a simple
linked list.

__api
Private pointer to the APl context where the feed is registered.

15



CrossWorks loT Library CrossWorks loT Library

CTL_XIVELY_VALUE_TYPE_t

Synopsis

typedef enum {
CTL_XI VELY_VALUE_TYPE_I NT,
CTL_XI VELY_VALUE_TYPE_FLOAT
} CTL_XI VELY_VALUE TYPE_t ;

Description

CTL_XIVELY_VALUE_TYPE_t defines the type of data held in the datapoint. The encoders use this to present
data to the Xively service in the correct format.

See Also

ctl_xively_datapoint_write_int, ctl_xively_datapoint_write_float

16



CrossWorks loT Library CrossWorks loT Library

ctl_xively_api_initialize_http_csv

Synopsis

void ctl_xively api _initialize http_csv(CTL_XI VELY APl t *self,
const char *api _key,
CTL_XI VELY_FEED t *feed);

Description

ctl_xively_api_initialize_http_csv initializes the Xively API context self with an HTTP transport and CSV data
encoding for the feed feed using API key api_key.

17



CrossWorks loT Library CrossWorks loT Library

ctl_xively_datapoint_delete

Synopsis

CTL_STATUS t ctl _xively datapoi nt_del et e( CTL_XI VELY_DATASTREAM t *stream
const CTL_XI VELY_TI MESTAMP_t *stanp);

Description

ctl_xively_datapoint_delete sends a request to the Xively API to delete the datapoint with timestamp stamp
from the datastream self in the feed that the datastream is registered to. This function does not remove any data

from the local datastream buffer: it is a direct request using a live connection to the Xively server.

Return Value

ctl_xively_datapoint_delete returns a standard status code.

18



CrossWorks loT Library CrossWorks loT Library

ctl_xively_datapoint_delete_range

Synopsis

CTL_STATUS t ctl _xively datapoi nt_del ete_range(CTL_X VELY _DATASTREAM t *sel f,
const CTL_XI VELY_TI MESTAMP_t *start,
const CTL_XI VELY_TI MESTAMP_t *end);

Description

ctl_xively_datapoint_delete_range sends a request to the Xively API to delete the datapoints with timestamps
start through end from the datastream self in the feed that the datastream is registered to. This function does
not remove data from the local datastream buffer: it is a direct request using a live connection to the Xively
server.

Return Value

ctl_xively_datapoint_delete_range returns a standard status code.

19



CrossWorks loT Library CrossWorks loT Library

ctl_xively_datapoint_write_float

Synopsis

void ctl_xively datapoint_wite float(CTL_XI VELY_DATAPO NT_t *self,
float val ue);

Description

ctl_xively_datapoint_write_float initializes the datapoint self to contain the floating-point value value with a
null timestamp.

20



CrossWorks loT Library CrossWorks loT Library

ctl_xively_datapoint_write_int

Synopsis

void ctl_xively datapoint_wite_int(CTL_X VELY DATAPO NT_t *sel f,
int val ue);

Description

ctl_xively_datapoint_write_int initializes the datapoint self to contain the integer value value with a null

timestamp.

21



CrossWorks loT Library CrossWorks loT Library

ctl_xively_datapoint_write_stamped_float

Synopsis

void ctl_xively datapoint_wite_stanped_float(CTL_X VELY_DATAPO NT_t *self,
CTL_XI VELY_TI MESTAMP_t *st anp,
fl oat val ue);

Description

ctl_xively_datapoint_write_stamped_float initializes the datapoint self to contain the floating-point value
value with the timestamp stamp. If stamp is zero, the datapoint is initialized with a null timestamp.

22



CrossWorks loT Library CrossWorks loT Library

ctl_xively_datapoint_write_stamped_int

Synopsis

void ctl_xively datapoint_wite_ stanped_int(CTL_XI VELY DATAPO NT_t *sel f,
CTL_XI VELY_TI MESTAMP_t *st anp,
int val ue);

Description

ctl_xively_datapoint_write_stamped_int initializes the datapoint self to contain the integer value value with
the timestamp stamp. If stamp is zero, the datapoint is initialized with a null timestamp.

23



CrossWorks loT Library CrossWorks loT Library

ctl_xively_datastream_create

Synopsis

CTL_STATUS t ctl _xively datastream create(CTL_XI VELY DATASTREAM t *sel f,
const CTL_XI VELY_DATAPQO NT_t *point);

Description

ctl_xively_datastream_create sends a request to the Xively API to create the datastream self with a single
datapoint point in the feed that the datastream is registered to. This function does not store any data in the local

datastream buffer: it is a direct request using a live connection to the Xively server.

Return Value

ctl_xively_datastream_create returns a standard status code.

See Also

ctl_xively_feed_update

24



CrossWorks loT Library CrossWorks loT Library

ctl_xively_datastream_delete

Synopsis

CTL_STATUS t ctl _xively datastream del et e( CTL_XI VELY _DATASTREAM t *sel f);

Description

ctl_xively_datastream_delete sends a request to the Xively API to delete the datastream self in the feed that
the datastream is registered to. This function does remove any data in the local datastream buffer: it is a direct

request using a live connection to the Xively server.

Return Value

ctl_xively_datastream_delete returns a standard status code.

25



CrossWorks loT Library CrossWorks loT Library

ctl_xively_datastream_initialize

Synopsis

CTL_STATUS t ctl _xively datastream.initialize(CTL_XI VELY DATASTREAM t *sel f,
const char *id,
size_t capacity,
CTL_XI VELY_DATAPO NT_t *data);

Description

ctl_xively_datastream_initialize initializes the local datastream self using the datastream ID id to contain at

most capacity datapoints in the array pointed to by data.

Once the datastream is initialized, it must be registered with a feed using ctl_xively_feed_register_datastream.

Return Value

ctl_xively_datastream_initialize returns a standard status code.

See Also

ctl_xively_feed_register_datastream

26



CrossWorks loT Library CrossWorks loT Library

ctl_xively_datastream_post

Synopsis

CTL_STATUS t ctl _xively datastream post (CTL_XI VELY _DATASTREAM t *sel f,
CTL_XI VELY_DATAPO NT_t *point);

Description

ctl_xively_datastream_post posts the datapoint point to the datastream self.

Return Value

ctl_xively_datastream_post returns a standard status code. If there is not enough space in the stream to post
the point, ctl_xively_datastream_post return CTL_OUT_OF_MEMORY.

Thread Safety

This is safe to call from a thread or CTL interrupt handler.

27



CrossWorks loT Library CrossWorks loT Library

ctl_xively_datastream_update

Synopsis

CTL_STATUS t ctl _xively datastream update(CTL_XI VELY DATASTREAM t *sel f,
const CTL_XI VELY_DATAPQO NT_t *point);

Description

ctl_xively_datastream_update sends a request to the Xively API to write the datapoint point to the datastream
self in the feed that the datastream is registered to. This function does not store any data in the local datastream

buffer: it is a direct request using a live connection to the Xively server.

Return Value

ctl_xively_datastream_update returns a standard status code.

See Also

ctl_xively_feed_update

28



CrossWorks loT Library CrossWorks loT Library

ctl_xively_feed_has_pending_data

Synopsis

int ctl_xively feed has_pendi ng data(CTL_XIVELY FEED t *self);

Description

ctl_xively_feed_has_pending_data returns non-zero if any of the datastreams registered with the feed self

have outstanding data that has not been pushed to Xively using ctl_xively_feed_update.

Note that a feed may well have data outstanding even if ctl_xively_feed_update completes successfully as only

a subset of outstanding data in the feed may have been sent to Xively.

Return Value

ctl_xively_feed_has_pending_data returns non-zero if there is outstanding data to push to Xively and zero if

there is none.

See Also

ctl_xively_feed_update

29



CrossWorks loT Library CrossWorks loT Library

ctl_xively_feed_register_datastream

Synopsis

CTL_STATUS t ctl _xively feed regi ster_datastrean(CTL_XIVELY _FEED t *sel f,
CTL_XI VELY_DATASTREAM t *strean) ;

Description

ctl_xively_feed_register_datastream registers an initialized datastream stream with the feed self. You
must register datastreams with a feed before posting datapoints to the datastream and before pushing the

datastreams to Xively.

Return Value

ctl_xively_feed_register_datastream returns a standard status code.

See Also

ctl_xively_datastream_initialize

30



CrossWorks loT Library CrossWorks loT Library

ctl_xively_feed_update

Synopsis

CTL_STATUS t ctl _xively feed update(CTL_XIVELY FEED t *self);

Description
ctl_xively_feed_update pushes as much data as it can from feed to the Xively service.

A feed may well have data outstanding even if ctl_xively_feed_update completes successfully as only a subset
of outstanding data in the feed may have been sent to Xively. ctl_xively_feed_update uses the string buffer in
the feed's context to encode the data to send to Xively, so smaller string buffers will mean that fewer datapoints
can be encoded without overflowing the buffer and, hence, there is a possibility that not all outstanding
datapoints in the feed will be pushed to Xively.

After encoding the datapoints, the datapoints are sent to Xively using the selected transport—only the HTTP
transport is implemented at present. If there is an error sending the encoded datapoints to Xively, the datapoints
buffered in the feed self are not discarded, they remain in the datastream buffers such that they can be pushed
to Xively by invoking ctl_xively_feed_update again.

The way to ensure that all datapoints are sent to Xively is to inquire whether there are more outstanding
datapoints after successfully pushing to Xively, for instance:

while (ctl _xively feed_has_pendi ng_dat a( & eed))

{
/'l Send as much data to Xively as we can.
ctl _xively feed_update(&feed);
/1 Wait a little before sending nore.
ctl _del ay(1000);
}
See Also

ctl_xively_feed_has_pending_data

31



CrossWorks loT Library CrossWorks loT Library

ctl_xively_register_error_decoder

Synopsis

void ctl_xively_register_error_decoder (void);

Description

ctl_xively_register_error_decoder registers an error decoder with the CrossWorks runtime to decode errors
generated by Xively API calls.

32



	Contents
	CrossWorks IoT Library
	User Manual
	Introduction

	API Reference
	<ctl_xively.h>
	CTL_XIVELY_API_t
	CTL_XIVELY_DATAPOINT_VALUE_t
	CTL_XIVELY_DATAPOINT_t
	CTL_XIVELY_DATASTREAM_t
	CTL_XIVELY_FEED_ID_t
	CTL_XIVELY_FEED_t
	CTL_XIVELY_VALUE_TYPE_t
	ctl_xively_api_initialize_http_csv
	ctl_xively_datapoint_delete
	ctl_xively_datapoint_delete_range
	ctl_xively_datapoint_write_float
	ctl_xively_datapoint_write_int
	ctl_xively_datapoint_write_stamped_float
	ctl_xively_datapoint_write_stamped_int
	ctl_xively_datastream_create
	ctl_xively_datastream_delete
	ctl_xively_datastream_initialize
	ctl_xively_datastream_post
	ctl_xively_datastream_update
	ctl_xively_feed_has_pending_data
	ctl_xively_feed_register_datastream
	ctl_xively_feed_update
	ctl_xively_register_error_decoder




