CrossWorks Mass Storage Library

Version: 3.0

Copyright 2013 Rowley Associates Limited

CrossWorks Mass Storage Library

CrossWorks Mass Storage Library

Contents

CrossWorks Mass Storage Library

Contents

Preamble

API reference

7

8

Object Code Evaluation License 8
Object Code Commercial License 9
10

<ctl_ms.h> 10
CTL_MS_DIRENTS_PER_SECTOR 12
CTL_MS_ERROR_t 13
CTL_MS_SECTOR_BUFFER_t 15
CTL_MS_SECTOR_SIZE 16
ctl_ms_borrow_sector_cache_memory 17
ctl_ms_change_current_folder 18
ctl_ms_close_file 19
ctl_ms_create_file 20
ctl_ms_create_folder 21
ctl_ms_decode _access_time 22
ctl_ms_decode_attributes 23
ctl_ms_decode create_time 24
ctl_ms_decode file_size 25
ctl_ms_decode_modify_time 26
ctl_ms_dos_to_timeval 27
ctl_ms_feof 28
ctl_ms_flush_file 29

CrossWorks Mass Storage Library Contents

ctl_ms_flush_sector_cache 30
ctl_ms_fputc 31
ctl_ms_ftell 32
ctl_ms_get_attributes 33
ctl_ms_get_file_length 34
ctl_ms_get_volume_label 35
ctl_ms_is_folder 36
ctl_ms_mount_volume 37
ctl_ms_mount_volume_at_sector 38
ctl_ms_open_file 39
ctl_ms_open_file_relative 40
ctl_ms_print_sector_cache 41
ctl_ms_purge_sector_cache 42
ctl_ms_read_block 43
ctl_ms_read_char 44
ctl_ms_read_cid 45
ctl_ms_read_csd 46
ctl_ms_read_dirent 47
ctl_ms_read_scr 48
ctl_ms_read_sector 49
ctl_ms_read_string 50
ctl_ms_register_error_decoder 51
ctl_ms_remove_file 52
ctl_ms_remove_folder 53
ctl_ms_rename_file 54
ctl_ms_return_sector_cache_memory 55
ctl_ms_sense_total_sectors 56
ctl_ms_set_attributes 57
ctl_ms_set_file_length 58
ctl_ms_set_volume_label 59
ctl_ms_timeval_to_dos 60
ctl_ms_unmount_volume 61
ctl_ms_unused_clusters 62
ctl_ms_update_working_directory 63
ctl_ms_write_block 64
ctl_ms_write_string 65
Implementation 66
<ctl_ms_low_level.h> 66
CTL_MS_BLOCK_DRIVER_t 67
CTL_MS_VOLUME_t 68
ctl_ms_flush_sectors_for_volume 71

CrossWorks Mass Storage Library Contents

ctl_ms_invalidate_sector_cache_range 72
ctl_ms_invalidate_sector_cache_single 73
ctl_ms_read_lock_sector 74
ctl_ms_unlock_buffer 75
ctl_ms_write_lock_sector 76
<ctl_ms_private.h> 77
CTL_MS_INVALID_CLUSTER 78
ctl_ms_check_volume_state 79
ctl_ms_cluster_to_sector 80
ctl_ms_erase_cluster_chain 81
ctl_ms_find_fcb 82
ctl_ms_lock_volume 83
ctl_ms_read_fat_entry 84
ctl_ms_sector_to_cluster 85
ctl_ms_start_enumeration 86
ctl_ms_unlock_volume 87
<ctl_ms_sd.h> 88
ctl_ms_sd_spi_read_cid 89
ctl_ms_sd_spi_read_csd 920
ctl_ms_sd_spi_read_scr 91
ctl_ms_sd_spi_read_sectors 92
ctl_ms_sd_spi_sense_media 93
ctl_ms_sd_spi_write_sectors 94

CrossWorks Mass Storage Library Contents

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

CrossWorks Mass Storage Library

The CrossWorks Mass Storage Library is a collection of functions and device drivers that add mass storage
capability to your application. We have primarily designed the Mass Storage Library to work well on reduced-
memory real-time embedded systems that require mass storage, but you can equally well use the library on

faster processors with more memory.

The Mass Storage Library is designed to run exclusively in the CrossWorks tasking environment; if your
application doesn't use tasking and you wish to use this product then you must convert your application to
run in a tasking environment which is simple enough to do. If you are using some other real time operating
system, then using the Mass Storage Library is not viable and should seek a product that integrates well with

your existing RTOS—or ditch that RTOS and use our excellent CTL tasking environment instead.

As you would expect, the Mass Storage Library integrates with other components in the CrossWorks Target
Library. For instance, the Mass Storage Library uses the CrossWorks Device Library to provide physical-layer I/O

to devices. The Mass Storage Library both integrates with the CrossWorks Streams framework.

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

Object Code Evaluation License

If you are evaluating the Mass Storage Library for use in your product, the following terms apply.

General terms

The source files and object code files in this package are not public domain and are not open source. They
represent a substantial investment undertaken by Rowley Associates to assist CrossWorks customers in
developing solutions using well-written, tested code.

Library Evaluation License

Rowley Associates grants you a license to the Object Code provided in this package solely to evaluate the
performance and suitability of this library for inclusion into your products. You are prohibited from extracting,
disassembling, and reverse engineering the Object Code in this package.

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

Object Code Commercial License

If you have paid to use the Mass Storage Library in your product, the following terms apply.

General terms

The source files and object code files in this package are not public domain and are not open source. They
represent a substantial investment undertaken by Rowley Associates to assist CrossWorks customers in

developing solutions using well-written, tested code.

Object Code Commercial License

If you hold a paid-for Object Code Commercial License for this product, you are free to incorporate the object
code in your own products without royalties and without additional license fees. This Library is licensed to you
PER DEVELOPER and is associated with a CrossWorks Product Key which, when combined, forms the entitlement
to use this library. You must not provide the library to other developers to link against: each developer that links

with this Library requires their own individual license.

CrossWorks Mass Storage Library

<ctl_ms.h>

APl Summary

Sector cache

CTL_MS_DIRENTS_PER_SECTOR
CTL_MS_SECTOR_BUFFER _t

CTL_MS_SECTOR_SIZE

ctl_ms_borrow_sector_cache_memory

ctl_ms_flush_sector_cache

ctl_ms_print_sector_cache

ctl_ms_purge_sector_cache

ctl_ms_return_sector_cache_memory

Errors
CTL_MS_ERROR _t

File functions
ctl_ms_close_file
ctl_ms_create_file
ctl_ms_feof
ctl_ms_flush_file
ctl_ms_fputc
ctl_ms_ftell
ctl_ms_get_attributes
ctl_ms_open_file
ctl_ms_open_file_relative
ctl_ms_read_block
ctl_ms_read_char
ctl_ms_read_string
ctl_ms_set_attributes
ctl_ms_write_block
ctl_ms_write_string

Folder functions

ctl_ms_change_current_folder

ctl_ms_create_folder

CrossWorks Mass Storage Library

There are 16 directory entries per sector.
Representation of one 512-byte sector

There are 512 bytes per sector. We do not support
media with

Borrow memory from sector cache
Write sector cache to media

Print the contents of the sector cache
Purge all data from the sector cache

Return borrowed memory to sector cache

Mass Storage library errors

Close an open file

Create a file on a volume
End-of-file predicate

Flush all unwritten data

Write a character to a file

Read current file position

Get the attributes of a file

Open a file for reading or writing
Open a file for reading or writing in a folder
Read a fixed-size block from a file
Read a single character from a file
Read a string from a file

Set the attributes of a file

Write a fixed-size block to a file

Write a string to a file

Change the working folder

Create a folder

10

CrossWorks Mass Storage Library

ctl_ms_get_file_length
ctl_ms_remove_folder
ctl_ms_rename_file
ctl_ms_set_file_length
Volume functions
ctl_ms_get_volume_label

ctl_ms_mount_volume

ctl_ms_mount_volume_at_sector

ctl_ms_remove_file
ctl_ms_set_volume_label
ctl_ms_unmount_volume
ctl_ms_unused_clusters
Utility functions
ctl_ms_decode_access_time
ctl_ms_decode_attributes
ctl_ms_decode_create_time
ctl_ms_decode file_size
ctl_ms_decode_modify_time
ctl_ms_dos_to_timeval
ctl_ms_is_folder
ctl_ms_read_sector
ctl_ms_timeval_to_dos

SD and MMC functions
ctl_ms_read_cid
ctl_ms_read_csd
ctl_ms_read_scr

*** UNASSIGNED GROUP ***
ctl_ms_sense_total_sectors
Status functions
ctl_ms_read_dirent

Global functions

ctl_ms_register_error_decoder

Utility

ctl_ms_update_working_directory

CrossWorks Mass Storage Library

Get the length of a file
Remove a folder
Rename a file

Set the length of afile

Get the volume label of a volume

Mount a super-floppy or the default partition
Mount a volume or partition

Remove a file from a volume

Set the volume label of a volume

Unmount a volume

Calculate the number of unused clusters on a volume
Read file last-access time from directory entry

Read attributes from directory entry

Read file creation time from directory entry

Read file size from directory entry

Read file modification time from directory entry

Convert DOS time to timeval

Read a sector direct from media

Convert timeval to DOS time

Read the card ID from media

Read the card-specific data from media

Read the SD Configuration Register from media

Determine total number of sectors a volume holds

Get information on file or directory

Register mass storage error decoder with runtime

Change working directory

11

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

CTL_MS_DIRENTS_PER_SECTOR

Synopsis

#define CTL_MS_DI RENTS_PER SECTOR (CTL_MS_SECTOR S| ZE/ CTL_MS_DI RENT_SI ZE)

12

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

CTL_MS_ERROR_t

Synopsis

typedef enum {
CTL_MS_NOT_OPEN_ERROCR,
CTL_MS_NAME_ERROR,
CTL_MS_READONLY_ERROR,
CTL_MS_SEEK_ERROR,
CTL_MS_MCODE_ERROR,
CTL_MS_DI SK_FULL_ERROR,
CTL_MS_PATH_NOT_FOUND,
CTL_MS DI R_NOT_EMPTY_ERRCR,
CTL_MS_DI R_FULL_ERRCR,
CTL_MS_NCOT_FOUND_ERROCR,
CTL_MS_I N_USE_ERROR,
CTL_MS_ACCESS_ERROCR,
CTL_MS_EXI STS_ERROCR,
CTL_MS_BAD_FAT_ERROCR,
CTL_MS_READ_PAST_ECF_ERROR,
CTL_MS_MEDI A_ REMOVED_ERROR,
CTL_MS_NO _FI LESYSTEM ERROR,
CTL_MS_UNSUPPORTED_MEDI A_ERROR,
CTL_MS_BAD_VOLUME_ERROR,
CTL_MS_NOT_MOUNTED_ERROR,
CTL_MS_CONFI GURATI ON_ERROR,
CTL_MS_DELAYED WRI TE_ERROR,
CTL_MS_CACHE _FULL,
CTL_MS_I NTERNAL_ERROR,
CTL_MS_UNSUPPORTED_OPERATI ON,
CTL_MS_MEDI A_LOCKED,
CTL_MS_SD_ERROR

} CTL_MS_ERRCR t;

Description
CTL_MS_ERROR_t defines the errors reported by the Mass Storage Library.

CTL_M5_NO_FI LESYSTEM _ERROR
No file system found on media. This this indicates that when attempting to mount the first file system on an

MBR-partitioned disk, the MBR did not contain an active entry for any of the MBR partitions.

CTL_MsS_UNSUPPORTED MEDI A ERRCR
Media is not supported. This indicates that the volume, although it's a FAT volume, is not supported by the
release of the mass storage library. Alternatively, it can be that the low-level media drivers have detected
that the physical format of the media and its interface cannot be supported because of incompatibilities at
the physical layer.

CTL_Ms_BAD VOLUME_ERROR
Volume is invalid. This indicates that the mass storage library detected an error in the format of the FAT
volume when mounting it. This can indicate that the volume is simply not a FAT volume or that there is a
more serious issue with the layout of the volume headers. If you can, mount the volume in a PC and check

its integrity.

13

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

CTL_Ms_NOT_MOUNTED_ERROR
File system is not mounted. This indicates that a file operation was requested on a volume that is not
mounted.

CTL_Ms_CONFI GURATI ON_ERROR
Library configuration error. This indicates that the library has been compiled incorrectly and the internal
checks on data structure layout and sizes has failed. Please check the compilation options you provided that

affect the compiler's data layout.

CTL_Ms_DELAYED WRI TE_ERROR
Write error flushing sector cache. This indicates that the delayed write of a dirty sector to the media failed.

CTL_Ms CACHE FULL
Sector cache is full. This indicates that the mass storage library required a sector to be read into the sector
cache but all sectors in the sector cache are already locked which precludes reading the requested sector.
This can happen if you open may files and simultaneously write to them without ensuring that the sector

cache is created with at least one sector cache entry per open file.

CTL_Ms_CACHE FULL
Internal mass storage error. This this indicates that the mass storage library detected an error that should
not happen. Even though the mass storage library is well-tested, there are internal checks in the library to
ensure proper operation. If you receive this error, it could show a real error in the mass storage library, but
more likely is an error in user code that has corrupted the data structures maintained by the mass storage

library.

CTL_Ms_UNSUPPORTED_ OPERATI ON
Unsupported operation. This indicates that an operation was requested and is not appropriate, or cannot
be honored, given the parameters supplied. For instance, requesting the CID from a volume that is not an

SD or MMC card is not appropriate and results in this error.

CTL_Ms_MEDI A LOCKED
Media is locked. This this indicates that a volume cannot be ejected by ctl_ms_unmount_volume because

a client has a sector on the volume locked for read or write.

14

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

CTL_MS_SECTOR_BUFFER_t

Synopsis

typedef struct {
unsi gned char bytes[];
unsi gned short words[];
unsi gned | ong |l ongs[];
CTL_MS DIRENT t dirent[];
} CTL_MS_SECTOR BUFFER t;

15

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

CTL_MS_SECTOR_SIZE

Synopsis
#define CTL_MS_SECTOR Sl ZE 512

any other sector size.

16

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_borrow_sector_cache_memory

Synopsis

void *ctl _ns_borrow sector_cache_nenory(int n);

Description

ctl_ms_borrow_sector_cache_memory borrows n contiguous sector cache entries and
prevents ctl_ms_read_lock_sector and ctl_ms_write_lock_sector from using those buffers.

ctl_ms_borrow_sector_cache_memory returns zero if n contiguous entries cannot be found.

You can borrow as much as you like from the sector cache but in doing so you may starve the file system of
buffers that it requires to manage files and folders on the mounted volume. If the file system is starved, it will fail
gracefully without damaging the volume.

17

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_change_current_folder

Synopsis

CTL_STATUS t ctl _ns_change_current fol der(const char *path);

Description

ctl_ms_change_current_folder changes the current working folder of the task to path.

Return Value

ctl_ms_change_current_folder returns a standard status code.

Thread Safety

ctl_ms_change_current_folder is thread-safe. However, note that the current folder for a volume is shared

between all threads, so changing the current folder in one thread will affect the current folder of all threads.

18

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_close file

Synopsis

CTL_STATUS t ctl _ns_close file(CIL_STREAM t f);

Description
ctl_ms_close_file closes the file f. All unwritten data is flushed to the physical media.

ctl_ms_close_file returns a standard status code.

Thread Safety

ctl_ms_close_file is thread-safe.

19

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_create file

Synopsis

CTL_STREAM t ctl _ns_create _file(const char *nane,
unsi gned attrib);

Description
ctl_ms_create_file creates a file with name name. The file is created with the attributes attrib.

If the file is created without error, f is initialized and can be used for further file operations.

Return Value

ctl_ms_create_file returns a standard status code.

Thread Safety

this is thread-safe.

20

CrossWorks Mass Storage Library

ctl_ms_create folder

Synopsis

CTL_STATUS t ctl _ns_create_fol der(const char *path);

Description

ctl_ms_create_folder creates the folder with the name pointed to by str.

Return Value

ctl_ms_create_folder returns a standard status code.

Thread Safety

ctl_ms_create_folder is thread-safe.

21

CrossWorks Mass Storage Library

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_decode_access time

Synopsis

void ctl_ns_decode_access_tine(const CTL_MS DI RENT_t *dirent,
timeval *tv);

Description

ctl_ms_decode_access_time extracts the last-access time of the file or directory from the directory entry
pointed to by dirent into the struct timeval pointed to by tv.

22

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_decode_attributes

Synopsis

unsi gned ctl _ns_decode_attributes(const CTL_MS DI RENT t *dirent);

Description

ctl_ms_decode_attributes returns the attributes from the directory entry pointed to by dirent.

23

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_decode create time

Synopsis

void ctl_ns_decode create_ tine(const CTL_MS DI RENT_t *dirent,
timeval *tv);

Description

ctl_ms_decode_create_time extracts the creation time of the file or directory from the directory entry pointed

to by dirent into the struct timeval pointed to by tv.

24

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_decode file size

Synopsis

unsigned |l ong ctl_ns_decode file_size(const CTL_M5 DI RENT_ t *dirent);

Description

ctl_ms_decode_file_size returns the file size field of the directory entry pointed to by dirent. No file on a FAT file

system can be larger than 2GB which fits into an unsi gned | ong.

25

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_decode_modify_time

Synopsis

void ctl_ns_decode_nodify tinme(const CTL_MS DI RENT_t *dirent,
timeval *tv);

Description

ctl_ms_decode_modify_time extracts the last-modification time of the file or directory from the directory entry
pointed to by dirent into the struct timeval pointed to by tv.

26

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl._ ms_dos to_ timeval

Synopsis

void ctl_ns_dos_to_tineval (timeval *tp,
unsi gned short date,
unsi gned short tine,
unsi gned short ms);

Description

ctl_ms_dos_to_timeval converts the DOS time used in FAT directory entries into a time pointed to by tp.

27

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_feof

Synopsis

int ctl_ns_feof (CTL_STREAM t s);

Description
ctl_ms_feof indicates whether the file file is positioned at the end of file.

ctl_ms_feof returns zero is file is not positioned at the end of file and non-zero (true) if it is.

Thread Safety

ctl_ms_feof is thread-safe.

28

CrossWorks Mass Storage Library

ctl_ms_flush_file

Synopsis

CTL_STATUS t ctl _ns_flush file(CTL_STREAM t s);

Description

ctl_ms_flush_file flushes all unwritten data of the file s to the media.

Return Value

ctl_ms_flush_file returns a standard status code.

Thread Safety

ctl_ms_flush_file is thread-safe.

29

CrossWorks Mass Storage Library

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_flush _sector cache

Synopsis

CTL_STATUS t ctl _ns_flush_sector_cache(void);

Description

ctl_ms_flush_sector_cache writes all dirty sectors to the storage media. The cache entries remain valid so they

are immediately ready for a subsequent read request.

If you wish to invalidate the whole cache so that it is empty, use ctl_ms_purge_sector_cache.
All sectors are written to the media. If there is an error writing to the media for any sector,
ctl_ms_flush_sector_cache returns CTL_MS_DELAYED_WRITE_ERROR.

See Also

ctl_ms_purge_sector_cache

30

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_fputc

Synopsis

CTL_STATUS t ctl _ns_fputc(CTL_STREAM t s,
int ch);

Description

ctl_ms_fputc writes the character ch to the file f. The character is written without any translation which means

that the C character, "\n', for instance, is not translated to a CR, LF sequence on output.

Return Value

ctl_ms_fputc returns a standard status code.

Thread Safety

ctl_ms_fputc is thread-safe.

31

CrossWorks Mass Storage Library

ctl_ms_ftell

Synopsis

CTL_STATUS t ct| ms ftel | (CTL_STREAMt s);

Description

ctl_ms_ftell returns the current position of the file f.

Thread Safety

ctl_ms_ftell is thread-safe.

32

CrossWorks Mass Storage Library

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_get_attributes

Synopsis

CTL_STATUS t ctl _ns_get_attributes(const char *name,
unsi gned *attrib);

Description

ctl_ms_get_attributes gets the attributes of the file with name name on volume vol and writes them to the

object attrib.

Return Value

ctl_ms_get_attributes returns a standard status code.

Thread Safety

ctl_ms_get_attributes is thread-safe.

33

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_get_file_length

Synopsis

CTL_STATUS t ctl _ns_get file_ | ength(CTL_STREAMt s);

Description

ctl_ms_get_file_length gets the length of the open file s and returns it.

34

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_get_volume_label

Synopsis

CTL_STATUS t ctl _ns_get _vol une_l abel (const char *vol,
char *name);

Description

ctl_ms_get_volume_label reads the volume label of volume vol to the string pointed to by name. name must

be able to hold at least 13 characters.

Return Value

ctl_ms_get_volume_label returns a standard status code.

Thread Safety

ctl_ms_get_volume_label is thread-safe.

35

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_is folder

Description

ctl_ms_is_folder inquires whether the path str designates a folder.

Return Value

ctl_ms_is_folder returns an extended status code: negative if there is an error accessing the path, 0 if the path

does not designate a folder, and a positive value if the path does designate a folder.

36

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl._ms_mount_volume

Synopsis

CTL_STATUS t ctl _ns_nount _vol ume(const char *vol une);

Description

ctl_ms_mount_volume mounts the volume vol using the FAT block driver driver. vol must be first initialized

using ctl_ms_init_volume.

ctl_ms_mount_volume first reads boot sector (sector zero) of the volume and tries to determine if the volume
is in super-floppy format or has a partition table. If the volume is in super-floppy format, it is mounted directly. If

the volume has a partition map, the first valid partition on the drive is mounted.

If you need to mount a particular partition or a partition at a non-standard address, you can use

ctl_ms_mount_volume.

Return Value

ctl_ms_mount_volume returns a standard status code.

Thread Safety

ctl_ms_mount_volume is thread-safe.

37

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_mount_volume_at_sector

Synopsis

CTL_STATUS t ctl _ns_nount _vol ume_at _sector(const char *vol ung,
CTL_MS LBA t start_sector);

Description

ctl_ms_mount_volume_at_sector mounts the super-floppy volume without a master boot record or an MBR-
partitioned volume on a disk. start_sector is the LBA of the first sector of the volume on the media for a super-

floppy, or the LBA of the first sector of the partition to mount for a volume with an MBR.

Return Value

ctl_ms_mount_volume_at_sector returns a standard status code.

Thread Safety

ctl_ms_mount_volume_at_sector is thread-safe.

38

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_open_file

Synopsis

CTL_STREAM t ctl _ns_open_fil e(const char *nane,
CTL_MS_MODE t node) ;

Description

ctl_ms_open_file opens the file name name on the volume vol for reading or writing according to the

parameter mode.

Return Value

ctl_ms_open_{file returns a standard status code.

Thread Safety

ctl_ms_open_file is thread-safe.

39

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_open_file_relative

Synopsis

CTL_STREAM t ctl _ns_open_file_relative(const char *base,
const char *nane,
CTL_MS_MODE t node) ;

Description

ctl_ms_open_file_relative opens the file name name relative to the directory base on the volume vol for

reading or writing according to the parameter mode.

The effect of this is to open the file whose path is the concatenation of base, a directory separator, and name.

Return Value

ctl_ms_open_file_relative returns a standard status code.

Thread Safety

ctl_ms_open_file_relative is thread-safe.

40

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_print_sector_cache

Synopsis

void ctl_ns_print_sector_cache(CTL_STREAMt s);

Description
ctl_ms_print_sector_cache prints the management data for the sector cache to the streams.

Note that the sector cache mutex is locked when the sector cache is being printed and, hence, if you direct
output to a file stream there is a possibility of deadlock if the file system requests a new sector buffer from the

sector cache.

141

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_purge_sector_cache

Synopsis

CTL_STATUS t ctl _ns_purge_sector_cache(voi d);

Description

ctl_ms_purge_sector_cache writes all dirty sectors to the storage media and then invalidates all cache entries
so that nothing remains in the cache. Before ejecting the media you should call ctl_ms_purge_sector_cache to

ensure that all cached data is written and the physical storage media is consistent.

If you wish to only ensure that unwritten data is flushed such that the storage media is consistent, but allow the

cache to remain valid, use ctl_ms_flush_sector_cache.

If there is an error writing to the media for any sector, ctl_ms_purge_sector_cache returns
CTL_MS_DELAYED_WRITE_ERROR.

See Also

ctl_ms_flush_sector_cache

42

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_read block

Synopsis

CTL_STATUS t ctl _ns_read_bl ock(CTL_STREAM t s,
voi d *data,
size_t len);

Description
ctl_ms_read_block reads bytes from the file s into the memory pointed to by data.

ctl_ms_read_block returns the number of bytes read or a CTL error code if an error occurred whilst reading.

Thread Safety

ctl_ms_read_block is thread-safe.

43

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_read_char

Synopsis

CTL_STATUS t ctl _ns_read_char (CTL_STREAM t s);

Description

ctl_ms_read_char reads one character from the file f. Operating-system-specific end-of-line combinations are

not translated to the C'\n' character; this must be done by the client.

ctl_ms_read_char returns a non-negative character if the character was read without error, otherwise otherwise
an error code. Specifically, reading beyond the end of file returns the error CTL_MS_READ_PAST_EOF_ERROR.

Thread Safety

ctl_ms_read_char is thread-safe.

44

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_read cid

Synopsis

CTL_STATUS t ctl _ns_read_cid(const char *vol ure,
unsi gned char *cid);

Description

ctl_ms_read_cid reads the card ID for the the volume vol. The volume vol must refer to a mounted device that

has an SD card or MMC card mounted. If vol is some other type of device, ctl_ms_read_cid returns an error.

45

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_read csd

Synopsis

CTL_STATUS t ctl _ns_read_csd(const char *vol ure,
unsi gned char *csd);

Description

ctl_ms_read_csd reads the card-specific data for the the volume vol. The volume vol must refer to a mounted
device that has an SD card or MMC card mounted. If vol is some other type of device, ctl_ms_read_csd returns

an error.

46

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_read_dirent

Synopsis

CTL_STATUS t ctl _ns_read_dirent(const char *path,
CTL_MS_ DI RENT_t *dirent);

47

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_read_scr

Synopsis

CTL_STATUS t ctl _ns_read_scr(const char *vol ure,
unsi gned char *scr);

Description

ctl_ms_read_scr reads the SCR from the media in volume vol. The volume vol must refer to a mounted device

that has an SD card or MMC card mounted. If vol is some other type of device, ctl_ms_read_scr returns an error.

48

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_read_sector

Synopsis

CTL_STATUS t ctl _ns_read_sector(const char *vol une,
CTL_MS_LBA t | ba,
CTL_MS_SECTOR BUFFER t **buf);

Description

ctl_ms_read_sector reads the sector with LBA Iba on the volume volume into the sector cache and writes a
buffer pointer to the sector into buf.

49

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_read_string

Synopsis

CTL_STATUS t ctl _ns_read_string(char *str,
size t n,
CTL_STREAM t file);

Description

ctl_ms_read_string reads a string from the file file into the string pointed to by str. The buffer for the string str is
n characters long. str is terminated with a null character.

Return Value

ctl_ms_read_string returns a standard status code.

Thread Safety

ctl_ms_read_string is thread-safe.

50

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_register_error_decoder

Synopsis

void ctl_ns_register_error_decoder (void);

Description

ctl_ms_register_error_decoder registers an error decoder with the CrossWorks runtime system such that

strerror will correctly decode errors produced by the mass storage library.

51

CrossWorks Mass Storage Library

ctl_ms_remove file

Synopsis

CTL_STATUS t ctl _ns_renove_file(const char *nane);

Description

ctl_ms_remove_file removes the file name from the file system.

Return Value

ctl_ms_remove_file returns a standard status code.

Thread Safety

ctl_ms_remove_file is thread-safe.

52

CrossWorks Mass Storage Library

CrossWorks Mass Storage Library

ctl_ms_remove_folder

Synopsis

CTL_STATUS t ctl _ns_renove_fol der(const char *path);

Description

ctl_ms_remove_folder removes the folder with the name pointed to by str.

Return Value

ctl_ms_remove_folder returns a standard status code.

Thread Safety

ctl_ms_remove_folder is thread-safe.

53

CrossWorks Mass Storage Library

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_rename file

Synopsis

CTL_STATUS t ctl _ns_renane_file(const char *ol d_nane,
const char *new_nane);

Description

ctl_ms_rename_file renames the file with name old_name to new_name. old_name can be a full path name to

afile, but new_name must only be a file name.

Return Value

ctl_ms_rename_file returns a standard status code.

Thread Safety

ctl_ms_rename_file is thread-safe.

54

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_return_sector_cache_memory

Synopsis

CTL_STATUS t ctl _ns_return_sector_cache_nenory(voi d *addr,
int n);

Description

ctl_ms_return_sector_cache_memory returns the previously-borrowed sector cache memory addr to the
cache. n is the number of sectors that were borrowed.

55

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_sense_total sectors

Synopsis
CTL_STATUS t ctl _ns_sense_total sectors(const char *vol une);

ctl_ms_sense_total_sectors senses the total number of sectors that the volume volume can hold. For MMC and
SD cards, ctl_ms_sense_total_sectors reads the appropriate registers from the media and computes the total
number of 512-byte sectors.

ctl_ms_sense_total_sectors will return an error code if the total number of sectors cannot be determined.

56

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_set attributes

Synopsis

CTL_STATUS t ctl _ns_set_attributes(const char *name,
unsi gned attrib);

Description

ctl_ms_set_attributes sets the attributes of the file with name name on volume vol to attrib.

Return Value

ctl_ms_set_attributes returns a standard status code.

Thread Safety

ctl_ms_set_attributes is thread-safe.

57

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_set_file_length

Synopsis

CTL_STATUS t ctl _ns_set file_ | ength(CTL_STREAMt s,
unsi gned | ong | ength);

Description

ctl_ms_set_file_length sets the length of the open file s to length. You cannot extend the file beyond its written
length, but you can truncate it.

58

CrossWorks Mass Storage Library

ctl_ ms_set volume label

Synopsis

CTL_STATUS t ctl _ns_set _vol une_l abel (const char *path,
const char *nane);

Description

ctl_ms_set_volume_label sets the volume label of volume vol to name.

Return Value

ctl_ms_set_volume_label returns a standard status code.

Thread Safety

ctl_ms_set_volume_label is thread-safe.

59

CrossWorks Mass Storage Library

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_timeval to dos

Synopsis

void ctl_ns_tineval to_dos(unsigned short *date,
unsi gned short *time,
unsi gned short *ns,
const tineval *tp);

Description

ctl_ms_timeval_to_dos converts the time pointed to by tp into ‘DOS time’ used in FAT directory entries.

60

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_unmount_volume

Synopsis
CTL_STATUS t ctl _ns_unnount _vol une(const char *vol une);

ctl_ms_unmount_volume unmounts the volume vol. Before the volume is unmounted, any dirty sectors in the

sector cache are flushed to the media and then cleared.

If any file is open on the volume, ctl_ms_unmount_volume will fail with an error.

Return Value

ctl_ms_unmount_volume returns a standard status code.

Thread Safety

ctl_ms_unmount_volume is thread-safe.

61

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_unused_clusters

Synopsis

CTL_STATUS t ctl _ns_unused_cl usters(const char *vol une,
CTL_MS _CLUSTER t *unused);

Description
ctl_ms_unused_clusters computes the number of unused clusters on the volume named volume.

On volumes with large FAT tables, ctl_ms_unused_clusters may take a long time as the whole of the FAT is

traversed to calculate the unused clusters.

Thread Safety

ctl_ms_unused_clusters is thread-safe. Note that although this function is thread-safe, it will lock out all file

operations on the volume vol while computing the number of free clusters.

62

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_update_working_directory

Synopsis

voi d ctl_ns_updat e_wor ki ng_di rectory(char *path,
size_t path_size,
const char *dir);

Description

ctl_ms_update_working_directory changes the path path, which is a directory specification, by processing dir,
which is a relative directory specification.

63

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_write block

Synopsis

CTL_STATUS t ctl _nms_write bl ock(CTL_STREAM t s,
const void *data,
size_t len);

Description
ctl_ms_write_block writes bytes from the memory pointed to by data to the file s.

ctl_ms_write_block returns the number of bytes written or a CTL error code if an error occurred whilst writing.

Thread Safety

ctl_ms_write_block is thread-safe.

64

CrossWorks Mass Storage Library

ctl_ms_write_string
Synopsis
CTL_STATUS t ctl _nms_wite string(CTL_STREAM t f

const char *str);

Description

ctl_ms_write_string writes the string pointed to by str to the file f.

Return Value

ctl_ms_write_string returns a standard status code.

Thread Safety

ctl_ms_write_string is thread-safe.

65

CrossWorks Mass Storage Library

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

<ctl_ ms low level.h>

APl Summary

Types

CTL_MS_BLOCK_DRIVER _t Mass storage low-level block driver
CTL_MS_VOLUME _t Internal volume structure

Sector cache functions

ctl_ms_flush_sectors_for_volume Flush all sector cache entries for a volume
ctl_ms_invalidate_sector_cache_range Invalidate a range of sectors
ctl_ms_invalidate_sector_cache_single Invalidate a single sector
ctl_ms_read_lock_sector Lock a sector into the cache for reading
ctl_ms_unlock_buffer Unlock a sector buffer
ctl_ms_write_lock_sector Lock a sector into the cache for writing

66

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

CTL_MS_BLOCK_DRIVER__t

Synopsis

typedef struct {
CTL_MS_MEDI A TYPE t nedi a;
CTL_STATUS t (*read_sectors)(void *, CTL_MS LBA t , void *, unsigned);
CTL_STATUS t (*write_sectors)(void *, CIL_M5 LBA't , const void *, unsigned);
CTL_STATUS t (*init)(void *);
CTL_STATUS t (*fini)(void *);

} CTL_MS BLOCK DRI VER t;

Description

CTL_MS_BLOCK_DRIVER_t contains the functions needed to read and write data on a volume.

Member Description

medi a The underlying technology for the media.

read _sectors The method called to read multiple sectors from the
media.

write sectors The method called to write multiple sectors to the
media.

67

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

CTL_MS_VOLUME_t

Synopsis

typedef struct {
CTL_MS_BLOCK DRI VER_ t *bl ock_dri ver;
CTL_MJTEX_t nut ex;
CTL_MS_VOLUME_STATE_t state;
unsi gned sectors_per_cl uster;
unsi gned reserved_sector_count;
unsi gned root _entry_count;
unsi gned nunber _of fats;
CTL_MS_FI LE_SYSTEM FORVAT_t format;
CTL_MS LBA t second_fat_offset;
CTL_MS_ LBA t partition_addr;
CTL_MS LBA t root _dir_sector;
CTL_MS LBA t current_dir_sector;
CTL_MS_LBA t working_dir_sector;
CTL_MS LBAt fatl_ sector;
CTL_MS LBA t fat2_sector;
CTL_MS LBA t first_data_sector;
CTL_MS CLUSTER t total data clusters;
CTL_MS_CLUSTER t free_cluster;
CTL_MS_CLUSTER t root_cluster;
CTL_MS LBA t fsinfo_sector;
CTL_STATUS t error;
char tenp_name[];
CTL_MS_FILE tag *__open_files;
CTL_MS_VOLUME_s *__next;
const char *__ nane;
const CTL_STREAM DRI VER t *net hods;
CTL_STATUS t (*open_fchb) (CTL_M5_VOLUME_ s *,
CTL_MS_FCB t *, const char *, const char *, CTL_M5 _MODE t);
} CTL_MS_VOLUME t;

Description

CTL_MS_VOLUME_t describes the internal state of a volume which the mass storage library uses. It is not
publicized by any function and all data inside it, if you wish to examine members, should be considered read-

only. We do not guarantee that the structure will be stable across releases of the mass storage library.

Only the members block_driver, mutex, and state are valid for volumes that are not mounted; all other

members should be considered invalid for offline volumes.

Member Description

This is public knowledge and you're responsible for
bl ock_dri ver populating it. Methods to read and write a single 512-
byte sector.

nmut ex Volume mutex; this is a per-volume mutex that is
locked when the volume is accessed by the mass
storage library.

state The internal state of the volume. A volume can be in
offline, online, and mounted states.

68

CrossWorks Mass Storage Library

sectors_per_cl uster

reserved_sect or _count

root _entry_count

nunber _of fats

fat_type

second_fat of fset

partition_addr

root _dir_sector

current _dir_sector

wor ki ng_di r_sect or

fatl sector

fat2_sector

first _data_sector

total data clusters

free_cluster

root cluster

fsinfo_sector

CrossWorks Mass Storage Library

The number of 512-byte sectors per FAT cluster.

The number of sectors that are marked as reserved at
the start of the media.

The number of directory entries in the root directory
for FAT12 and FAT16 volumes.

The number of FATs contained on the volume. This is
either one or two.

The type of FAT volume, either FAT12, FAT16, or
FAT32.

The LBA offset from the start of the volume for the
second FAT.

The LBA of the first sector of the volume on the media.

The LBA of the first sector of the volume's root
directory.

The LBA of the internal current working directory. This
does not correspond to the ‘current directory’ that
operating systems such as MS-DOS, Windows, and
Unix have. This is purely an internal convenience for
the implementation of the mass storage library.

The LBA of the internal working directory. This is purely
an internal convenience for the implementation of the
mass storage library.

The LBA of the first sector of the first FAT.

The LBA of the first sector of the second FAT; if there is
no second FAT, this member is undefined.

The LBA of the first data sector relative to the start of
the volume. The first data sector follows the reserved
sectors, FATs, and root directory entries.

The number of data clusters for the volume.

The index of the first potentially-free cluster on the
volume. The first two clusters of a FAT volume are
reserved. This member is maintained internally by the
mass storage library to accelerate finding free clusters
in the FAT.

The cluster index of the root directory for FAT32
volumes. This member is undefined for FAT12 and
FAT16 volumes.

The LBA of the FSInfo sector relative to the start of
the volume. This member is undefined for FAT12 and
FAT16 volumes.

69

CrossWorks Mass Storage Library

error

t enp_name

open_files

70

CrossWorks Mass Storage Library

The last reported error for the volume. This is
maintained internally by the mass storage library and
has no relevance for any client.

A temporary working name store for the mass storage
library. This is maintained internally by the mass
storage library and has no relevance for any client.

A linked list of files that are open on the volume.

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_flush_sectors for volume

Synopsis

CTL_STATUS t ctl _ns_flush_sectors_for_vol une(CTL_MS VOLUME t *vol);

Description

ctl_ms_flush_sectors_for_volume flushes all sectors in the cache associated with the volume vol to the media.
If a sector on the volume is locked for read or write, ctl_ms_flush_sectors_for_volume fails immediately,

without writing any sector to the media, and the sector cache is unmodified.

71

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_invalidate_sector_cache_range

Synopsis

void ctl_ns_invalidate_sector_cache_range(CIL_M5 VOLUME t *vol,
CTL_MS_LBA t first,
CTL_MS_LBA t last);

Description

ctl_ms_invalidate_sector_cache_range invalidates the sectors first to last inclusive on volume vol. If the sectors

are marked dirty, they are not written to the media.

You can use ctl_ms_invalidate_sector_cache_range function to notify the sector cache of changes that happen
outside of its control. An example of this is if you write or modify the media directly using device driver functions
without going through the sector cache functions ctl_ms_read_lock_sector or ctl_ms_write_lock_sector—
because the media is written without the sector cache being aware of the changes you must invalidate all the
sectors in the cache that you have changed or the media will become inconsistent and you may lose data on the

volume.

72

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_invalidate_sector_cache_single

Synopsis

void ctl_ns_invalidate_sector_cache_singl e(CTL_MS_VOLUME t *vol ,
CTL_MS LBA t first);

Description

ctl_ms_invalidate_sector_cache_single invalidates a single sector first on volume vol. If the sectors is marked

dirty, it is not written to the media.

See Also

ctl_ms_invalidate_sector_cache_range.

73

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_read _lock sector

Synopsis

CTL_MS_SECTOR BUFFER t *ctl _ns_read_| ock_sector (CTL_MS_VOLUME t *vol ,
CTL_MS LBA t sector);

Description

ctl_ms_read_lock_sector reads sector sector from volume vol into the sector cache if not already present.
Sectors will be flushed to the media as necessary in order to make space in the cache for the requested sector.
ctl_ms_read_lock_sector will return zero if there is an error reading the sector from the volume or if there was
an error flushing a sector in order to make room for this one.

See Also

ctl_ms_unlock_buffer.

74

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_unlock buffer

Synopsis

CTL_STATUS t ctl _ns_unl ock_buffer (CTL_Ms_SECTOR BUFFER t *buf);

Description

ctl_ms_unlock_buffer releases the sector buffer buf so that it can be flushed from the cache. Note that the
buffer, if marked as dirty, is not immediately flushed to the media: you must call ctl_ms_flush_sector_cache in

order to ensure that the contents of the media and the match the sector cache.

75

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_write lock sector

Synopsis
CTL_MS_SECTOR BUFFER t *ctl _ns_wite | ock_sector(CTL_MS VOLUVE t *vol ,
CTL_MS LBA t sector);
Description

ctl_ms_write_lock_sector reads sector sector from volume vol into the sector cache if not already present.
Sectors will be flushed to the media as necessary in order to make space in the cache for the requested

sector. The sector buffer associated with the sector will be marked dirty so that it will be flushed by
ctl_ms_flush_sector_cache or when space is needed in the sector cache. ctl_ms_write_lock_sector will return

zero if there is an error reading the sector from the volume.

See Also

ctl_ms_unlock_buffer.

76

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

<ctl_ms_private.h>

APl Summary

*** UNASSIGNED GROUP ***

CTL_MS_INVALID_CLUSTER This is a private API for the core library. Please don't
use this

ctl_ms_erase_cluster_chain Erase a cluster chain and return it to the free list.

ctl_ms_start_enumeration Start directory contents enumeration.

Private functions

ctl_ms_check_volume_state Checks the state of a volume

ctl_ms_cluster_to_sector Converts a cluster number to a sector address

ctl_ms_find_fcb Get file control block for stream

ctl_ms_lock_volume Locks a volume for exclusive access

ctl_ms_read_fat_entry Reads a cluster entry from the FAT

ctl_ms_sector_to_cluster Converts a sector address to a cluster number

ctl_ms_unlock_volume Unlocks a previously-locked volume

77

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

CTL_MS_INVALID_CLUSTER

because you'll only come to grief.

78

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_check volume_state

Synopsis
CTL_STATUS t ctl _ns_check_vol ume_state(CTL_MS VOLUME t *vol);

ctl_ms_check_volume_state checks to see whether vol has been properly mounted. If the volume is properly
mounted, ctl_ms_check_volume_state returns CTL_NO_ERROR otherwise CTL_MS_NOT_MOUNTED_ERROR.

79

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_cluster to_sector

Synopsis

CTL_MS LBA t ctl _ns_cluster_to_sector(const CTL_MS VOLUME t *vol,
CTL_MS_CLUSTER t n);

Description

ctl_ms_cluster_to_sector converts the cluster number n on volume vol to a sector address on the same volume.

See Also

ctl_ms_cluster_to_sector

80

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_erase cluster chain

Synopsis

CTL_STATUS t ctl _ns_erase_cluster_chain(CTL_MS_VOLUME t *vol ,
CTL_MS CLUSTER t start_cluster);

Description

ctl_ms_erase_cluster_chain returns the cluster chain starting at start_cluster to the set of free clusters.

81

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_find fcb

Synopsis

CTL_MB_FCB t *ctl _ms_find fch(CTL_STREAMt s);

82

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ ms_lock volume

Synopsis

void ctl_ns_| ock_vol ume(CTL_M5_VOLUME_t *vol);

Description

ctl_ms_lock_volume locks the volume vol for exclusive access. The mutex associated with the volume is
claimed and, as such, each call to ctl_ms_lock_volume to lock the volume must be paired with a call to

ctl_ms_unlock_volume.

See Also

ctl_ms_unlock_volume

83

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_read_fat_entry

Synopsis

CTL_MS CLUSTER t ctl _ns_read fat_entry(CTL_M5 VOLUME t *vol ,
CTL_MS CLUSTER t cluster);

Description

ctl_ms_read_fat_entry reads the FAT to find the next cluster after the cluster cluster in the linked list of clusters
(the ‘cluster’ chain).

84

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_sector _to_cluster

Synopsis

CTL_MS CLUSTER t ctl _ns_sector_to_cluster(const CTL_MS VOLUME t *vol,
CTL_MS LBA t addr);

Description

ctl_ms_sector_to_cluster converts the sector address addr on volume vol to a cluster number on the same

volume.

See Also

ctl_ms_sector_to_cluster

85

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_start_enumeration

Synopsis

CTL_STATUS t ctl _ns_start_enuneration(CTL_M5 VOLUME t *vol,
const char *filenane,
unsi gned attrib,
CTL_MS_DIR_ENUM t *dir);

Description

ctl_ms_start_enumeration searches the volume vol in the folder starting at sector sector for entries that match

filename and attrib.

You must provide a pointer to a directory entry structure, dir, to hold contextual information when enumerating

the directory.

86

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_unlock volume

Synopsis

CTL_STATUS t ctl _ns_unl ock_vol ume(CTL_MS VOLUME_ t *vol);

Description

ctl_ms_unlock_volume unlocks the previously-locked volume vol. Each call to ctl_ms_unlock_volume must be

paired with a call to ctl_ms_lock_volume.

See Also

ctl_ms_lock_volume

87

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

<ctl_ ms_sd.h>

APl Summary

SPI Device Drivers

ctl_ms_sd_spi_read_sectors Read sectors from a media card in SPl mode

ctl_ms_sd_spi_write_sectors Write sectors from a media card in SPI mode

SPI

ctl_ms_sd_spi_read_cid Reads the CID register from a media card in SPI mode

ctl_ms_sd_spi_read_csd Reads the CSD register from a media card in SPI mode

ctl_ms_sd_spi_read_scr Reads the SCR register from a media card in SPI mode

ctl_ms_sd_spi_sense_media Sense the media type (SD or MMC) attached to the
drive

88

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_sd_spi_read_cid

Synopsis

CTL_STATUS t ctl _ns_sd_spi _read _cid(CTL_MS _SD DRI VER t *dri ver,
unsi gned char *cid);

Description

ctl_ms_sd_spi_read_cid reads the card ID (CID) register from the media card into cid using the device driver

driver. cid must point to a buffer that is at least 16 characters in size.

Thread Safety

ctl_ms_sd_spi_read_cid is thread-safe.

89

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_sd_spi_read_csd

Synopsis

CTL_STATUS t ctl _ns_sd_spi _read_csd(CTL_MS SD DRI VER t *dri ver,
unsi gned char *csd);

Description

ctl_ms_sd_spi_read_csd reads the card-specific data (CSD) register from the media card into ¢sd using the

device driver driver. csd must point to a buffer that is at least 16 bytes in size.

Thread Safety

ctl_ms_sd_spi_read_csd is thread-safe.

90

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_sd_spi_read_scr

Synopsis

CTL_STATUS t ctl _ns_sd_spi _read_scr(CTL_MS _SD DRI VER t *dri ver,
unsi gned char *scr);

Description

ctl_ms_sd_spi_read_scr reads the system control register (SCR) from the media card into scr using the device

driver driver. scr must point to a buffer that is at least 8 bytes in size.

Thread Safety

ctl_ms_sd_spi_read_scr is thread-safe.

91

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_sd_spi_read_sectors

Synopsis

CTL_STATUS t ctl _ns_sd_spi _read_sectors(void *driver,
CTL_MS LBA t addr,
voi d *buf,
unsi gned count)

Description

ctl_ms_sd_spi_read_sectors reads count sectors at sector address addr into memory at buf using the SPI driver

driver.

Thread Safety

ctl_ms_sd_spi_read_sectors is thread-safe.

92

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_sd_spi_sense_media

Synopsis

CTL_STATUS t ctl _ns_sd_spi _sense_nedi a(CTL_MS_SD DRI VER t *dri ver,
int sense);

93

CrossWorks Mass Storage Library CrossWorks Mass Storage Library

ctl_ms_sd_spi_write_sectors

Synopsis
CTL_STATUS t ctl _ns_sd_spi_wite_sectors(void *driver,
CTL_MS LBA t addr,

const void *buf,
unsi gned count) ;

Description

ctl_ms_sd_spi_write_sectors reads count sectors at sector address addr into memory at buf using the SPI driver

driver.

Thread Safety

ctl_ms_sd_spi_write_sectors is thread-safe.

94

	Contents
	CrossWorks Mass Storage Library
	Preamble
	Object Code Evaluation License
	Object Code Commercial License

	API reference
	<ctl_ms.h>
	CTL_MS_DIRENTS_PER_SECTOR
	CTL_MS_ERROR_t
	CTL_MS_SECTOR_BUFFER_t
	CTL_MS_SECTOR_SIZE
	ctl_ms_borrow_sector_cache_memory
	ctl_ms_change_current_folder
	ctl_ms_close_file
	ctl_ms_create_file
	ctl_ms_create_folder
	ctl_ms_decode_access_time
	ctl_ms_decode_attributes
	ctl_ms_decode_create_time
	ctl_ms_decode_file_size
	ctl_ms_decode_modify_time
	ctl_ms_dos_to_timeval
	ctl_ms_feof
	ctl_ms_flush_file
	ctl_ms_flush_sector_cache
	ctl_ms_fputc
	ctl_ms_ftell
	ctl_ms_get_attributes
	ctl_ms_get_file_length
	ctl_ms_get_volume_label
	ctl_ms_is_folder
	ctl_ms_mount_volume
	ctl_ms_mount_volume_at_sector
	ctl_ms_open_file
	ctl_ms_open_file_relative
	ctl_ms_print_sector_cache
	ctl_ms_purge_sector_cache
	ctl_ms_read_block
	ctl_ms_read_char
	ctl_ms_read_cid
	ctl_ms_read_csd
	ctl_ms_read_dirent
	ctl_ms_read_scr
	ctl_ms_read_sector
	ctl_ms_read_string
	ctl_ms_register_error_decoder
	ctl_ms_remove_file
	ctl_ms_remove_folder
	ctl_ms_rename_file
	ctl_ms_return_sector_cache_memory
	ctl_ms_sense_total_sectors
	ctl_ms_set_attributes
	ctl_ms_set_file_length
	ctl_ms_set_volume_label
	ctl_ms_timeval_to_dos
	ctl_ms_unmount_volume
	ctl_ms_unused_clusters
	ctl_ms_update_working_directory
	ctl_ms_write_block
	ctl_ms_write_string

	Implementation
	<ctl_ms_low_level.h>
	CTL_MS_BLOCK_DRIVER_t
	CTL_MS_VOLUME_t
	ctl_ms_flush_sectors_for_volume
	ctl_ms_invalidate_sector_cache_range
	ctl_ms_invalidate_sector_cache_single
	ctl_ms_read_lock_sector
	ctl_ms_unlock_buffer
	ctl_ms_write_lock_sector

	<ctl_ms_private.h>
	CTL_MS_INVALID_CLUSTER
	ctl_ms_check_volume_state
	ctl_ms_cluster_to_sector
	ctl_ms_erase_cluster_chain
	ctl_ms_find_fcb
	ctl_ms_lock_volume
	ctl_ms_read_fat_entry
	ctl_ms_sector_to_cluster
	ctl_ms_start_enumeration
	ctl_ms_unlock_volume

	<ctl_ms_sd.h>
	ctl_ms_sd_spi_read_cid
	ctl_ms_sd_spi_read_csd
	ctl_ms_sd_spi_read_scr
	ctl_ms_sd_spi_read_sectors
	ctl_ms_sd_spi_sense_media
	ctl_ms_sd_spi_write_sectors

