CrossWorks TCP/IP Library

Version: 3.2

Copyright 2013 Rowley Associates Limited

CrossWorks TCP/IP Library

CrossWorks TCP/IP Library

Contents

Contents

CrossWorks TCP/IP Library

Preamble

User Manual

API reference

9

10

Object Code Evaluation License 10
Object Code Commercial License 11
Prerequisites 12
14

Before you begin 14
Get on the network 15
Don't break it... 19
Ping by name 22
Resolving host names 25
Retrieving a web page 28
Sending e-mail 33
35

<ctl_net_api.h> 35
CTL_IP_CONFIG_t 39
CTL_NET_ERROR _t 40
CTL_NET_IPv4_ADDR_t 43
CTL_NET_IPv4_LOCAL_BROADCAST_ADDR 44
CTL_NET_MAC_ADDR_t 45
CTL_NET_PORT_t 46
CTL_SOCKET_t 47
CTL_TCP_ACCEPT_FN_t 48

CrossWorks TCP/IP Library Contents

CTL_TCP_GEN_ISS_FN_t 49
CTL_TCP_GET_SOCKETS_FLAG_t 50
CTL_TCP_PORT_OPTIONS_t 51
CTL_TCP_SEND_FLAG_t 52
CTL_TCP_SOCKET_CLOSE_TYPE_t 53
CTL_TCP_SOCKET_CONNECTION_STATE_t 54
CTL_TCP_SOCKET_OPTIONS_t 55
CTL_UDP_CONFIGURATION_t 57
CTL_UDP_INFO_t 58
ctl_arp_cache_entry 59
ctl_arp_clear_entry 60
ctl_arp_get_entry 61
ctl_arp_get_ttl 62
ctl_arp_print_cache 63
ctl_arp_purge_cache 64
ctl_arp_request_entry 65
ctl_arp_set_cache_size 66
ctl_arp_set_memory_allocator 67
ctl_arp_set_ttl 68
ctl_dhcp_init 69
ctl_dhcp_lease_expire_time 70
ctl_dhcp_lease_rebind_time 71
ctl_dhcp_lease_renew_time 72
ctl_dns_get_host_by_name 73
ctl_dns_get_server 74
ctl_dns_init 75
ctl_dns_primary_server_addr 76
ctl_dns_print_cache 77
ctl_dns_purge_cache 78
ctl_dns_secondary_server_addr 79
ctl_dns_set_max_ttl 80
ctl_dns_set_memory_allocator 81
ctl_dns_set_primary_server_addr 82
ctl_dns_set_secondary_server_addr 83
ctl_dns_set_server 84
ctl_eth_get_mac_addr 85
ctl_icmp_init 86
ctl_ip_sprint_addr 87
ctl_mac_addr_is_broadcast 88
ctl_mac_addr_is_null_or_empty 89
ctl_mac_sprint_addr 20

CrossWorks TCP/IP Library Contents

ctl_net_domain_name_suffix 91
ctl_net_get_gateway_address 92
ctl_net_get_host_name 93
ctl_net_get_ip_address 94
ctl_net_get_subnet_mask 95
ctl_net_init 96
ctl_net_interface 97
ctl_net_is_autoip_address 98
ctl_net_is_local_broadcast_address 99
ctl_net_is_local_ip_address 100
ctl_net_is_multicast_ip_address 101
ctl_net_is_private_ip_address 102
ctl_net_is_subnet_broadcast_address 103
ctl_net_mem_alloc_data 104
ctl_net_mem_alloc_xmit 105
ctl_net_mem_free 106
ctl_net_mem_trim 107
ctl_net_register_error_decoder 108
ctl_net_scan_dot_decimal_ip_addr 109
ctl_net_scan_mac_addr 110
ctl_net_set_host_name 111
ctl_ntp_init 112
ctl_ntp_server_addr 113
ctl_ntp_set_time_server 114
ctl_soc_use_callback 115
ctl_soc_use_event 116
ctl_tcp_accept 117
ctl_tcp_bind 118
ctl_tcp_close_socket 119
ctl_tcp_connect 120
ctl_tcp_get_local_ip_addr 121
ctl_tcp_get_local_port 122
ctl_tcp_get_port_options 123
ctl_tcp_get_remote_ip_addr 124
ctl_tcp_get_remote_port 125
ctl_tcp_get_socket_connection_state 126
ctl_tcp_get_socket_error 127
ctl_tcp_get_socket_options 129
ctl_tcp_get_sockets 130
ctl_tcp_init 131
ctl_tcp_look_ahead 132

CrossWorks TCP/IP Library Contents

ctl_tcp_push 133
ctl_tcp_read_line 134
ctl_tcp_recv 135
ctl_tcp_send 136
ctl_tcp_set_port_options 138
ctl_tcp_set_socket_options 139
ctl_tcp_shutdown 140
ctl_tcp_socket 141
ctl_tcp_unbind 142
ctl_tcp_use_callback 143
ctl_tcp_use_event 144
ctl_udp_bind 145
ctl_udp_init 146
ctl_udp_sendto 147
ctl_udp_unbind 148
Implementation 149
<ctl_net_hw.h> 149
CTL_ETH_HEADER_t 151
CTL_ETH_RX_FRAME_t 152
CTL_ETH_TX_FRAME_t 153
CTL_MAC_STATE_t 154
CTL_NET_ETHERNET_HEADER_SIZE 155
CTL_NET_ETHERNET_PDU_SIZE 156
CTL_NET_INTERFACE_t 157
CTL_NET_MAC_DRIVER_t 158
CTL_NET_MAC_MII_DEFERRED_READ_FN_t 160
CTL_NET_MEM_DRIVER_t 161
CTL_NET_PHY_DRIVER_t 163
CTL_PHY_ERROR_t 165
CTL_PHY_STATE_t 166
ctl_mac_get_state 167
ctl_mac_init 168
ctl_mac_mii_deferred_read 169
ctl_mac_mii_deferred_read_result 170
ctl_mac_mii_read 171
ctl_mac_send 172
ctl_mac_update 173
ctl_mac_wake_net_task 174
ctl_net_do_mac_dis_connect 175
ctl_net_get_phy_name 176
ctl_net_process_received_frame 177

CrossWorks TCP/IP Library Contents

ctl_net_read_phy_operating_mode 178
ctl_net_read_phy_register 179
ctl_net_read_phy_state 180
ctl_net_search_for_first_phy 181
ctl_net_set_mem_driver 182
ctl_net_update_phy 183
ctl_phy_Im3s_init_driver 184
ctl_phy_read_id 185
ctl_phy_reset 186
<ctl_net_private.h> 187
CTL_IPV4_HEADER_t 188
CTL_IP_STATS_t 189
ctl_arp_init 190
ctl_dns_register_stats 191
ctl_eth_alloc_tx_frame 192
ctl_eth_free_tx_frame 193
ctl_eth_tx_frame_total_count 194
ctl_ipv4_make_multicast_mac_addr 195
ctl_ipv4_rx_payload_byte_count 196
ctl_ipv4_rx_payload_start 197
ctl_net_calc_cksum 198
ctl_net_normalize_cksum_and_comp 199
ctl_net_sum_bytes 200
ctl_tcp_register_stats 201
<ctl_net_tcp_private.h> 203
CTL_TCP_APP_LAYER_CMD_t 204
CTL_TCP_SEGMENT_t 205
CTL_TCP_SOCKET_STATE_t 206
Devices 208
<designware_emac_v2.h> 208
designware_emac_v2_first_free 209
designware_emac_v2_init_mac_driver 210
designware_emac_v2_isr 211
designware_emac_v2_start 212
<designware_emac_v3.h> 213
designware_emac_v3_first_free 215
designware_emac_v3_init 216
designware_emac_v3_isr 217
designware_emac_v3_start 218
designware_emac_v3_version 219
<enc28j60.h> 220

CrossWorks TCP/IP Library Contents

ENC28J60_PHY_ID 221
enc28j60_mac_setup 222
enc28j60_phy_init_driver 223
<dp83848.h> 224
DP83848_PHY_ID 225
dp83848_phy _init_driver 226
<ksz8721bl.h> 227
KSZ8721BL_PHY_ID 228
ksz8721bl_phy_init_driver 229
<lan8720a.h> 230
LAN8720A_PHY_ID 231
lan8720a_phy_init_driver 232
<lm3s_phy.h> 233
LM3S_PHY_ID 234
Im3s_phy_init_driver 235

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CrossWorks TCP/IP Library

The CrossWorks TCP/IP Library is a collection of functions and device drivers that add TCP/IP networking to
your application. We have primarily designed the TCP/IP Library to work well on reduced-memory real-time
embedded systems that require network connectivity, but you can equally well use the library on faster

processors with more memory.

The TCP/IP Library is designed to run exclusively in the CrossWorks tasking environment; if your application
doesn't use tasking and you wish to use this product then you must convert your application to run in a tasking
environment which is simple enough to do. If you are using some other real time operating system, then using
the TCP/IP Library is not viable and should seek a product that integrates well with your existing RTOS—or ditch

that RTOS and use our excellent CTL tasking environment instead.

As you would expect, the TCP/IP Library integrates with other components in the CrossWorks Target Library.
For instance, the TCP/IP Library uses the CrossWorks Mass Storage Library to store and retrieve files using FTP,
or serve web pages from files in the file system. The file system and the TCP/IP Library both integrate with the

CrossWorks Streams framework.

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

Object Code Evaluation License

If you are evaluating the TCP/IP Library for use in your product, the following terms apply.

General terms

The source files and object code files in this package are not public domain and are not open source. They
represent a substantial investment undertaken by Rowley Associates to assist CrossWorks customers in
developing solutions using well-written, tested code.

Library Evaluation License

Rowley Associates grants you a license to the Object Code provided in this package solely to evaluate the
performance and suitability of this library for inclusion into your products. You are prohibited from extracting,
disassembling, and reverse engineering the Object Code in this package.

10

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

Object Code Commercial License

If you have paid to use the TCP/IP Library in your product, the following terms apply.

General terms

The source files and object code files in this package are not public domain and are not open source. They
represent a substantial investment undertaken by Rowley Associates to assist CrossWorks customers in

developing solutions using well-written, tested code.

Object Code Commercial License

If you hold a paid-for Object Code Commercial License for this product, you are free to incorporate the object
code in your own products without royalties and without additional license fees. This Library is licensed to you
PER DEVELOPER and is associated with a CrossWorks Product Key which, when combined, forms the entitlement
to use this library. You must not provide the library to other developers to link against: each developer that links

with this Library requires their own individual license.

11

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

Prerequisites

What's in the box?

As delivered the TCP/IP Library provides the following core TCP/IP protocols in object form:
* ARP, UDP, TCP, DHCP, NTP, and DNS

The stack also provides examples of application-level protocols in source form that you can customize:
* FTP, HTTP, SMTP

You can extend the capabilities of the TCP/IP Library by writing your own functions to implement other
application-level UDP and TCP protocols just as we have implemented the existing application-level protocols

using core protocols.

What we assume you know

This user manual is a user manual for our network stack. You don't know anything about our stack or how it
works, so this manual teaches you how to use it. This user manual is not a ‘Dummies Guide to TCP/IP’, because
you don't find that in the title: we expect you to know what you want to do but not how to achieve it using our

software.

You need a good understanding of how TCP/IP and Ethernet work and the underlying concepts. If you know
nothing to very little about TCP/IP, don't know what a datagram is or the difference between a TCP segment and
grapefruit segment, you're not really ready to swim with sharks just yet—then check out the following books to

expand your horizons:

o TCP/IP lllustrated, Volume 1: The Protocols, W. Richard Stevens, ISBN 978-0201633467.
o TCP/IP lllustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX Domain Protocols, W. Richard
Stevens, ISBN 978-0201634952.

In fact, the books above are a great reference for anybody that needs to use TCP/IP on a daily basis, so go and

buy them.

If all you want to do is send an e-mail from the network stack, this manual alone is enough to construct a
solution for that. If you want to write your own TCP and datagram protocol handler, this manual shows you the
mechanisms to achieve that goal. What this manual does not do is tell you how to make UDP protocols ‘reliable’
or how to design your own protocols—that's all up to you, we just provide the necessary parts kit for you to

assemble your application.

This manual tells you how you can use some of the TCP/IP Library's built-in features that help when you're
debugging your code. It doesn't tell you how to go about debugging your application or how to use a network
analyzer to track down rogue packets, how to figure out which rabbit hole a particular packet disappeared

down, or how to tune out noise and dig deep into packets scuttling across the network—you need to acquire

12

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

those skills yourself, it's called ‘being an software developer.’ When you're a true network warrior, buy yourself a

celebration beer and T-shirt. Nobody said this profession was easy.

What's not in the box?

I must also take the opportunity to tell you what is not included in your purchase. No, we do not include your
favorite bizarre protocol for controlling a network coffee pot. There are so many protocols built upon TCP and
UDP that it is impossible to offer implementations for them all, so we offer the useful few. It just means you need
to implement the Coffee Pot Control Protocol yourself for that must-have network-attached Espresso machine,
or find somebody who has the necessary experience and has done so already. Start your search by Googling
‘RFC 2324,

Product support and questions

If you ask us for support about things that you should really know yourself, don't be surprised or offended when
we tell you that product support doesn't include hand-holding, nursemaid duties, or writing your application for

you, no matter how nicely you ask.

If you ask us a question that can be answered by reading the manual, don't be surprised if you receive a short,
to-the-point reply. | am writing this documentation for a reason: if | have taken the time to write it, you really
should take the time to read it, or at least search it. Impending product deadlines do not excuse you from using

our support service as an on-demand oracle.
And as a final request, never end you e-mails with ‘Please advise’ because that really ticks me off.

With all that understood, let's begin.

13

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

Before you begin

Simplify your life

Your intention is to deploy, or evaluate, the CrossWorks TCP/IP Library for use in your product. Before you begin,
there is something very important that | must ask you to do: run on known-good hardware with tested software!
You don't want to make your life complicated to begin with. You don't want to port the TCP/IP Library to an
untested piece of hardware, as well as learn about the TCP/IP Library and, maybe, even learn CrossWorks at the
same time. So, do yourself a favor and spend a little money getting a piece of hardware that is fully tested and
that we know runs the TCP/IP Library well.

Purchase a SolderCore

Suggestions? Well, the TCP/IP Library is primarily developed using the SolderCore, and as Rowley Associates
manufactures the SolderCore we would recommend most highly that you purchase one, or more, of these to
start learning how the TCP/IP Library works. You'll feel so much better running networking examples straight

away, and then you can progress to other hardware and see how it works out for you.

Tested examples

This manual is written using the TCP/IP Library examples that come included with boards that are pre-
configured, ready to run networking, as part of a CrossWorks Board Support Package. Not all Board Support
Packages contain networking examples—they may not have them because we haven't supported the
embedded or external network controller, or because they are too limited to run networking.

If you are familiar with TCP/IP networking, CrossWorks, and are comfortable skipping the manual and diving
straight into code with a reference manual, that's great, go right ahead and try out some of the examples...

What you need to know

To try out the networking examples, there's very little that you need to know about CrossWorks and the Platform
Library. All you need is a board that we ship examples for and a way to program it. If you want to start delving
a little deeper into the examples, you will need to refer to the Platform Library user manual as the examples use

Platform Library facilities to make the code portable over all the boards we support.

There are many examples that you can extract code from: inheritance by text editor is a tried and tested method
of program development! Because all the support code is provided in source form, you can copy that into your
application to get it working.

14

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

Get on the network

Your first TCP/IP Library application

So you have a board, you have a network, and you're ready to attach your device to the network. The first thing
to dois establish that basic Ethernet communication works between your PC and your evaluation board.
Install board support

Install the board support package for the evaluation board that you have purchased. From now on we will
assume this is the SolderCore, but you can substitute your own board as required. So, install the SolderCore Board

Support Package into CrossWorks using the package manager, Tools > Package Manager.

Load the board examples

The easiest way to load the examples for the board is to open up the Contents window, navigate to Board
Support, expand the SolderCore Board Support Package item, and click the SolderCore Samples Solution.
Select and build the project

In the examples for your board, you'll find a Networking Projects solution, and within that a Minimal Network
with Ping (Fixed IP address) project. Double-click that project to make it active and press F7 to build. This

will compile cleanly: we've tested this before release. If it doesn't build cleanly, that usually means that you're
missing one of the packages that the board support package requires, or you've edited something within a
support package—if this is the case, you'll need to figure out what you've done or get in touch with us.

Find a spare network address

As the example we are going to run uses a fixed IP address, you need to find a free one to assign to the
evaluation board. On Windows, you can use i pconf i g to view your network parameters:

> ipconfig
W ndows | P Configuration

Et her net adapter Local Area Connecti on:

Connection-specific DNS Suffix . : row ey.co.uk

Li nk-local I Pv6 Address : fe80::9c2d: e057:8641:2281%0
IPv4 Address. : 10.0.0.58

Subnet Mask 255.255.255.0

Default Gateway : 10.0.0.3

>

Here we see that the subnet mask is 255. 255. 255. 0 and the PC's IP address is 10. 0. 0. 58.So, let's try a

random IP address, by changing the last number, to see if it's free:

> ping 10.0.0. 32
Pinging 10.0.0.32 with 32 bytes of data:

Reply from 10.0.0.32: bytes=32 tinme<lnms TTL=64
Reply from 10.0.0. 32: bytes=32 tinme<lns TTL=64

15

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

Reply from 10.0.0.32: bytes=32 tinme<lnms TTL=64
Reply from 10.0.0.32: bytes=32 tinme<lns TTL=64

Ping statistics for 10.0.0. 32:

Packets: Sent = 4, Received = 4, Lost = 0 (0% oss),
Approximate round trip tinmes in mlli-seconds:

M ni mum = Ons, Maxi rum = Ons, Average = 0Ons

Ahh, that one's in use. Let's try another:

> ping 10.0.0.44

Pinging 10.0.0.44 with 32 bytes of data:
Request tinmed out.
Request timed out.
Request timed out.
Request timed out.

Ping statistics for 10.0.0. 44:
Packets: Sent = 4, Received = 0, Lost = 4 (100% I oss),

OK, that one seems free as the host is not reachable on the network.
You might see a variation on the above:

> ping 10.0.0. 44

Pinging 10.0.0.44 with 32 bytes of data:

Reply from 10.0.0.58: Destination host unreachabl e.
Reply from 10.0.0.58: Destination host unreachabl e.
Reply from 10.0.0.58: Destination host unreachabl e.
Reply from 10.0.0.58: Destination host unreachabl e.

Ping statistics for 10.0.0. 44:
Packets: Sent = 4, Received = 4, Lost = 0 (0% oss),

This indicates that the ping request was answered, in this case by 10.0.0.58, with a response that says that the IP
address 10.0.0.44 cannot be reached.
Configure the board's network

Double-click the file exanpl e_mi ni mal _pi ng_fi xed_i paddr. c in the Source Files folder and it will open
in the code editor:

/1 Set up network using a fixed |P address.

#include "libnet/ctl_net_private. h"
#include "Iibplatforn platform h"
#include "libplatforn platform network. h"

#i ncl ude "exanpl e_support. h"
#i ncl ude <string. h>

16

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

/] He®e: You nust alter these to match your network!
#define FI XED_| P_ADDRESS " 10.0. 0. 44"
#defi ne FI XED_NETMASK "255. 255. 255. 0"

/'l Assign a fixed MAC address to the NIC. Normally this will be blown into
/1 OTP or sone other nonvol atile nmedi um when the device is personalized as
/1 part of production.

#def i ne FI XED_MAC _ADDRESS "bc-28-d6-ff-ff-ff"

/1l Thread Priority
#define NET_TASK PRIORITY 200

/'l Network interface,
static CTL_NET_I NTERFACE_t nic;

static void
bri ng_up_net wor k(voi d)

{
CTL_IP_CONFIG t ip_config;

/1 Clear network I P configuration for popul ation.
menset (& p_config, 0, sizeof (CTL_IP_CONFIG t));

/'l Assign fixed | P address and subnet nask.
ip_config.ip_addr = ctl_net_scan_dot _deci mal _i p_addr (FlI XED_| P_ADDRESS) ;
i p_config.subnet_mask = ctl_net_scan_dot _deci mal _i p_addr (Fl XED_NETMASK) ;

/'l Assign a fixed MAC address to the N C
exanpl e_check_status(ctl _net_scan_nac_addr (&ni c. mac. mac_addr, FI XED MAC_ADDRESS)) ;

/1 Bring up network.
exanpl e_check_status(ctl_mac_init(&nic));

/1 Bring up the |P network.
exanpl e_check_status(ctl _net_init(NET_TASK PRIORI TY, & p_config));

/1 Bring up only ICVMP to respond to pings.
exanpl e_check_status(ctl __icnp_init());
}

i nt
mai n(voi d)
{
char dot _i paddr[16], dot_net mask[16];

/1 Initialize platform
platforminitialize();

/1 Configure the NIC for this platform
exanpl e_check_st at us(pl at f orm conf i gure_net wor k(&ni c));

/] Start network.
bring_up_network();

/1 Idl e away, the network task responds to pings.
for (;;)
{
/1 Dunp nessage inviting a ping.
printf("IP address is % and subnet mask is %\n",
ctl_ip_sprint_addr(dot_ipaddr, ctl_net _get_ip_address())
ctl _ip_sprint_addr(dot_netmask, ctl_net_get_subnet nmask(

3));

17

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

/1 Don't be too enthusiastic with nmessages.
ctl _del ay(1000);

}

Modify the definition of FI XED_| P_ADDRESS to match your selected IP address and FI XED_NETMASK to
match your subnet mask.

Power up and attach a network cable to your evaluation board, and press F5 to run your code. The application
downloads and, if CrossWorks is configured to stop at mai n, press F5 again to continue running the code.

In the CrossWorks Debug Terminal you should see something similar to the following, but with your selected IP
address and subnet mask:

| P address is 10.0.0.44 and subnet nmask i s 255.255.255.0
| P address is 10.0.0.44 and subnet mask is 255.255.255.0
| P address is 10.0.0.44 and subnet mask i s 255.255.255.0

This is inviting you to ping the board. So, do it:

> ping 10.0.0. 44

Pi nging 10.0.0.44 with 32 bytes of data:

Reply from 10.0. 0. 44: bytes=32 tinme<lns TTL=64
Reply from 10.0.0. 44: bytes=32 tinme<lnms TTL=64
Reply from 10.0.0. 44: bytes=32 tinme<lnms TTL=64
Reply from 10.0. 0. 44: bytes=32 tinme<lns TTL=64

Ping statistics for 10.0.0. 44:

Packets: Sent = 4, Received = 4, Lost = 0 (0% oss),
Approxi mate round trip times in mlli-seconds:

M ni mrum = Ons, Maxi nrum = Ons, Average = Ons

That's it!

So, you now have a functioning Ethernet connection between your PC and your target board!

18

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

Don't break it...

Your second TCP/IP Library application

It's not that common to use a fixed IP address for a network-attached device. Modern networks use dynamically-
assigned IP addresses and a DHCP server to manage assignment: when a device powers on, it broadcasts

a request to the network asking for a DHCP server to assign it an IP address. Using a DHCP server is now a
necessity with so many devices attached to a LAN, there is no way that a human can possibly manage a large
network without error.

Select and build the project

In the examples for your board, you'll find a Networking Projects solution, and within that a Minimal Network
with Ping (DHCP IP address) project. Double-click that project to make it active and press F7 to build.

Double-click the file exanpl e_m ni mal _pi ng_fi xed_i paddr . c in the Source Files folder and it will open
in the code editor:

/1 Set up network using a DHCP-assigned |P address.

#include "libnet/ctl_net_private. h"
#include "libplatforn platformh"
#i nclude "libpl atforni platformnetwork. h"

#i ncl ude "exanpl e_support. h"

/1 Assign a fixed MAC address to the NIC. Normally this will be blown into
/1 OTP or sone other nonvol atil e nmedi um when the device is personalized as
/1 part of production.

#def i ne FI XED_MAC_ADDRESS "bc-28-d6-ff-ff-ff"

/] Network task thread priority
#defi ne NET_TASK PRI ORI TY 200

/1l Network interface,
static CTL_NET_| NTERFACE_t nic;

static void
bring_up_networ k(voi d)
{
/'l Assign a fixed MAC address to the N C
exanpl e_check_status(ct|l _net_scan_nec_addr (&ni c. mac. mac_addr, FI XED MAC_ADDRESS)) ;

/1 Initialize NMAC.
exanpl e_check_status(ctl _mac_init(&nic));

/'l Bring up network task and use DHCP to assign an | P address.
exanpl e_check_status(ctl _net_init(NET_TASK PRIORITY, 0));

/] Bring up UDP and | CVP: DHCP requires UDP, and ICWP will respond to pings.
exanpl e_check_status(ctl _udp_init(0));
exanpl e_check_status(ctl _icnmp_init());

/Il Start DHCP to assign us an | P address.
exanpl e_check_status(ctl _dhcp_init());

19

CrossWorks TCP/IP Library

}

i nt
nmei n(voi d)
{
char dot _i paddr[16], dot_net mask[16];

/1 Initialize platform
platforminitialize();

/1 Initialize NIC for this platform
exanpl e_check_stat us(pl atform confi gure_network(&nic));

/1 Start network.
bring_up_network();

/] 1dle away; when we're configured, dunp our network.
for (;;)
{
/1l See if we've acquired an | P address yet...
if (ctl_net_get_ip_address())
{
/1 Dunp nessage inviting a ping.
printf("DHCP: |P address is % and subnet nask is %\n",

CrossWorks TCP/IP Library

ctl_ip_sprint_addr(dot _ipaddr, ctl_net_get_ip_address()),
ctl_ip_sprint_addr(dot_netmask, ctl_net_get_subnet _mask()));

el se
{
// Can't ping ne yet.
printf("DHCP: awaiting |P address assignment\n");
}

// Don't be too enthusiastic wi th nessages.
ctl _del ay(1000);

There's no fixed IP address in this, but there is an option to start up the DHCP client subsystem to manage

acquisition of DHCP-assigned IP addresses.

See if it works

Power up and attach a network cable to your evaluation board, and press F5 to run your code. The application

downloads and, if CrossWorks is configured to stop at mai n, press F5 again to continue running the code.

In the CrossWorks Debug Terminal you should see something similar to the following, but with your DHCP-

assigned IP address and subnet mask:

DHCP: awaiting | P address assignnment
DHCP: awaiting | P address assi gnment
DHCP: awaiting | P address assignment
DHCP: | P address is 10.0.0.44 and subnet nmask is 255.255.255.0
DHCP: | P address is 10.0.0.44 and subnet mask is 255.255.255.0
DHCP: | P address is 10.0.0.44 and subnet mask is 255.255.255.0

You can ping the device to make sure that it does indeed work.

20

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

Job done!

You now have a functioning Ethernet connection between your PC and your target board, using a dynamically-
assigned IP address. However, it's a bit of a bore to type in IP addresses each time, and as the IP address may
change, how do you know which IP address to use?

21

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

Ping by name

Your third TCP/IP Library application

What would be great is if your evaluation board had a name, rather than an address, so we can simply ping the

name of the board. Well, there is a way, and that is to register a name using DHCP.

Select and build the project

In the examples for your board, you'll find a Networking Projects solution, and within that a Ping by Name

project. Double-click that project to make it active and press F7 to build.

Double-click the file exanpl e_pi ng_by_nane. c in the Source Files folder and it will open in the code editor.
In mai n you'll find a call to ctl_net_set_host_name, before the network is brought up, to set the host name of
the evaluation board:

/1 Set our host nane.
ctl _net_set _host _nane("crossworks");

This registers the name of the host with the DHCP server and means that you can ping the board using a friendly
name, whatever the assigned IP address is.

See if it works
Power up the board and run the code. In the CrossWorks Debug Terminal you should see the same as before:

DHCP: awaiting | P address assi gnment
DHCP: awaiting | P address assignment
DHCP: awai ting | P address assignnment
DHCP: | P address is 10.0.0.44 and subnet mask is 255.255.255.0
DHCP: | P address is 10.0.0.44 and subnet mask is 255.255.255.0
DHCP: | P address is 10.0.0.44 and subnet mask is 255.255.255.0

Now you can ping the device by its assigned name, cr osswor ks:

> pi ng crossworks

Pi ngi ng crossworks.row ey. co.uk [10.0.0.44] with 32 bytes of data:
Reply from 10.0.0. 44: bytes=32 time<lns TTL=64
Reply from 10.0. 0. 44: bytes=32 tinme<lns TTL=64
Reply from 10.0.0. 44: bytes=32 time<lns TTL=64
Reply from 10.0.0. 44: bytes=32 time<lnms TTL=64

Ping statistics for 10.0.0. 44:

Packets: Sent = 4, Received = 4, Lost = 0 (0% oss),
Approxi mate round trip tinmes in mlli-seconds:

M ni mum = Ons, Maxi mum = Ons, Average = 0Ons

Notice that the full name of the host is cr osswor ks. r ow ey. co. uk. This is because the LAN that the board
is connected to has a domain name suffix. You might have noticed this in the output from i pconfi g in the first

example:

22

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

> ipconfig
W ndows | P Configuration

Et her net adapter Local Area Connecti on:

Connection-specific DNS Suffix . : row ey.co.uk

Li nk-1ocal IPv6 Address : fe80::9c2d: e057: 8641: 2281%40
IPv4 Address. : 10.0.0.58

Subnet Mask : 255.255.255.0

Default Gateway : 10.0.0.3

The full host name is the name that we assigned to the node, cr osswor ks, with the suffix assigned by the
network, r oM ey. co. uk.

Job done!

You now have a functioning Ethernet connection between your PC and your target board, using a dynamically-

assigned IP address, and with a friendly name to contact the board.

The code

/1 Set up network using a DHCP-assigned |P address.

#include "libnet/ctl_net_private.h"
#include "libplatforn platformh"
#include "libplatforn platform network. h"

#i ncl ude "exanpl e_support. h"

/] Assign a fixed MAC address to the NIC. Normally this will be blown into
/1 OTP or sone other nonvol atil e nmedi um when the device is personalized as
/1 part of production.

#def i ne FI XED_MAC_ADDRESS "bc-28-d6-ff-ff-ff"

/] Network task thread priority
#defi ne NET_TASK PRI ORI TY 200

/1 Network interface,
static CTL_NET_I NTERFACE t nic;

static void
bring_up_networ k(voi d)

{
/'l Assign a fixed MAC address to the N C

exanpl e_check_status(ctl _net_scan_nac_addr (&ni c. mac. mac_addr, FlIXED MAC ADDRESS)) ;

/1 Initialize MAC
exanpl e_check_status(ctl _mac_init(&nic));

/1 Bring up network task and use DHCP to assign an | P address.
exanpl e_check_status(ctl _net_init(NET_TASK PRICRITY, 0));

/1 Bring up UDP and | CVP: DHCP requires UDP, and ICMP will respond to pings.
exanpl e_check_status(ctl _udp_init(0));
exanpl e_check_status(ctl _icnp_init());

/'l Start DHCP to assign us an |P address.

23

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

exanpl e_check_status(ctl _dhcp_init());

}
int
mai n(voi d)
{
char dot_i paddr[16], dot_net mask[16];
/1 Initialize platform
platforminitialize();
// Initialize NIC for this platform
exanpl e_check_st at us(pl at form confi gure_networ k(&ni c));
/] Set our host nane.
ctl _net_set _host _nane("crossworks");
/] Start network.
bring_up_network();
/1 1dl e away; when we're configured, dunp our network.
for (;;)
{
/1l See if we've acquired an | P address yet...
if (ctl_net_get_ip_address())
{
/1 Dunp nessage inviting a ping.
printf("DHCP: |P address is % and subnet nask is %\n",
ctl_ip_sprint_addr(dot_ipaddr, ctl_net_get_ip_address()),
ctl_ip_sprint_addr(dot_netmask, ctl_net_get_subnet _nmask()));
}
el se
{
/] Can't ping ne yet.
printf("DHCP: awaiting |IP address assignment\n");
}
/1 Don't be too enthusiastic with nessages.
ctl _del ay(1000);
}
}
See Also

ctl_net_set_host_name

24

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

Resolving host names

Finding IP addresses

You've seen how to get your board registered with a name on the LAN. Now it's time to step outside and
get onto the Internet. This example is how to resolve the IP address of the Rowley Associates web server,
WWW. r oW ey. co. uk.

Select and build the project

In the examples for your board, you'll find a Networking Projects solution, and within that a Resolve Domain
Name project. Double-click that project to make it active and press F7 to build.

Hiding some details

Rather than repeat all the boilerplate code that brings up the network and waits for an IP address, that code
is moved into exanpl e_net wor k_suppor t. c. This example, and all following examples, assume that
exanpl e_networ k_support. cisincluded in the project.

Double-click the file exanpl e_net wor k_suppor t . c in the Source Files folder and it will open in the code
editor. Because this example needs to resolve a domain name, it initializes the Domain Name System component
of the TCP/IP Library:

/1 Start DNS for domain nanme | ookup.
stat = ctl _dns_init();
if (stat < CTL_NO_ERROR)

return stat;

Initializing the DNS part of the TCP/IP Library enables you to resolve human-readable domain names, such as
WWW. r oW ey. co. uk into an IP address you can communicate with.

About DNS

In order to resolve a domain name to an IP address, you must have already set the domain name server (or
servers) that the TCP/IP Library communicates with to resolve the domain name. If you are using DHCP to
configure the TCP/IP Library, which we assume from here on, the domain name servers are automatically set as
part of IP address assignment with DHCP.

If you are using a static IP address then you must configure the DNS servers the stack uses by passing in the IP
addresses of the primary and (optional) secondary server when initializing the network (see ctl_net_init and
CTL_IP_CONFIG_t).

Client code

Double-click the file exanpl e_r esol ve_donai n_nane. c in the Source Files folder and it will open in the

code editor. The example is now much smaller:

25

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

/! Resol ve a domai n nane.

#include "libnet/ctl_net_api.h"
#i nclude "libplatforn platformh"
#i nclude "libpl atforni pl atform network. h"

#i ncl ude "exanpl e_support.h"

i nt
mai n(voi d)
{
CTL_STATUS t stat;

CTL_NET_| Pv4_ADDR t addr;
char dot _i paddr[16];

/1 Initialize platform
platforminitialize();

/Il Start networking, wait for an | P address.
exanpl e_check_st at us(exanpl e_bring_up_full_networking());
exanpl e_check_st at us(exanpl e_awai t _assi gned_i p_address());

/1 Dunp the primary donmi n name server, for reference.
printf("Using DNS server %s\n",
ctl _ip_sprint_addr(dot _ipaddr, ctl _dns_prinmary_server_addr()));

/1l Try to resolve ww.row ey.co.uk. Wait a maxi mum of two
/| seconds for an answer.
stat = ctl _dns_get _host by name("ww. row ey. co. uk", &addr, 2000);

// Did this resolve?
if (stat < CTL_NO _ERROR)

{
Il No.

printf("Could not resolve www.row ey. co.uk!\n");
el se

{

/1 Yes, print the resolved |P address.
printf("ww.row ey.co.uk resolved to %\n",
ctl_ip_sprint_addr(dot_i paddr, addr));
}

/| Done.
return exanpl e_finish();

The part of interest is:

stat = ctl_dns_get host_by nane("ww.row ey. co. uk", &addr, 2000);

This sends a request to the DNS server to resolve the domain name www. r ow ey. c. uk and deliver the result
to addr. The third parameter, 2000, indicates the maximum duration we're prepare to wait for—in this case, two

seconds.

See if it works

Power up the board and run the code. In the CrossWorks Debug Terminal you will see something similar to this:

DHCP: awaiting | P address assi gnment

26

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

DHCP: awaiting | P address assignment

DHCP: awaiting | P address assignnment

DHCP: | P address is 10.0.0.44 and subnet mask is 255.255.255.0
Usi ng DNS server 10.0.0.8

www. row ey. co. uk resolved to 178. 236. 4. 60

Fi ni shed.

See Also

ctl_dns_get_host_by_name

27

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

Retrieving a web page

Start of a web browser...

We build upon the capabilities of previous examples by showing how to grab the contents of a web page
from the Internet. This example shows how to dump the HTML data of the Rowley Associates home page at
wWww. r oW ey. co. uk/i ndex. ht m

Select and build the project

In the examples for your board, you'll find a Networking Projects solution, and within that a Retrieve Web Page

project. Double-click that project to make it active and press F7 to build.

Sockets

Double-click the file exanpl e_retri eve_web_page. ¢ in the Source Files folder and it will open in the
code editor. This example is longer than before, but then it does much more than previous examples.

Once the domain name is resolved, the example needs to communicate with the web server in order to

download the web page. It does this by creating a socket and connecting the socket to the server:

/'l Open a socket to the host on port 80.
s = ctl_tcp_socket();
if (s < CTL_NO _ERROR)
exanpl e_term nate("No sockets avail abl e\n");
exanpl e_check_status(ctl _tcp_connect (s, addr, HTONS(80), 1000));

ctl_tcp_socket creates a new socket and ctl_tcp_connect connects that socket to the server. The parameters to
ctl _tcp_connect are:

* The socket, created by ctl_tcp_socket.

» The IP address of the server to connect to. The IP address in this example is resolved using DNS using
ctl_dns_get_host_by_name.

» The TCP/IP port to connect to. HTTP connections use port 80, and HTONS converts the port number from
host byte order to network byte order as required by the TCP/IP Library.

* The maximum time to wait for the connection to be made. In this example we are prepared to wait one

second for the connection to be established.

Sending the request

Once the socket is established, you start to communicate with the server using a GET request. For reference, the
HTTP protocol is fully described in RFC2616.

The GET request consists of the command, the headers, and a blank line to terminate the headers:

ctl _tcp_printf(s, "GET http://%/% HITP/1.0\r\n", host, nane);
ctl _tcp_printf(s, "Accept: text/plain\r\n");

ctl _tcp_printf(s, "Host: %\r\n", host);

ctl _tcp_printf(s, "\r\n");

28

http://www.w3.org/Protocols/rfc2616/rfc2616.html

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl _tcp_push(s);
The application sends:

» The GET command specifying the URL and the protocol to use. In this case, the URL is composed of the
host name and the page we are interested in. Following that is the protocol to use, HTTP/ 1. 0, which
simplifies the following code somewhat.

* The headers. This tells the server the MIME type of the response and the host we are addressing.

* Ablank line which indicates that the headers are complete.

An important difference

One thing to notice is the call to ctl_tcp_push: this ensures that the data sent to the socket gets pushed to the
network and sent out on the wire. The TCP/IP Library buffers data on a socket until a TCP segment is full, when
it is pushed to the network—to flush a partially-filled segment, call ctl_tcp_flush. This makes the TCP/IP Library
different from classic TCP stacks which will typically flush a partially-filled segment to the network after a short
timeout.

Reading the response

Once the headers are sent, the example reads the response from the server using repeated calls to
tcp_read_I i ne. We specified HTTP/ 1. 0 which requests the server to close the connection after sending all
its data, and take advantage of the fact that when a socket is closed, we'll receive an error if we try to read more

from it, and we exit the loop:

/'l Process response.
for (;;)
{
/1l Try to read a whole line fromthe web server.
stat = ctl _tcp_read_line(s, line_buffer, sizeof(line_buffer)-1);

/'l Ensure the buffer is term nated.
I'ine_buffer[sizeof (line_buffer)-1] = 0;

/'l Process return status.
if (stat == CTL_NET_ERR TI MEDOUT)

{
/1 Didn't get anything, loiter...
}
else if (stat < CTL_NO_ERROR)
{
/1 Error reading the socket or the socket closed?
br eak;
}
el se
{
/] Dunp response.
printf("%\n", line_buffer);
}

}

/'l Make sure socket is closed.
ctl _tcp_shutdown(s);

29

CrossWorks TCP/IP Library

CrossWorks TCP/IP Library

Before exiting, we close the socket. If the socket is already closed because the server closed it, closing it a second

time makes no difference.

See if it works

Power up the board and run the code. In the CrossWorks Debug Terminal you will see something similar to this:

DHCP: awaiting | P address assi gnment

DHCP: awaiting | P address assi gnment

DHCP: awaiting | P address assignment

DHCP: | P address is 10.0.0.44 and subnet mask is 255.255.255.0
Usi ng DNS server 10.0.0.8

Www. r ow ey. co. uk resolved to 178.236. 4. 60
Connecting to www. row ey. co. uk (178.236.4.60)...

Requesting ...
HTTP/ 1.1 200 OK

Date: Mon, 09 Sep 2013 13:17: 33 GMI

Last - Modi fied: Thu, 29 Aug 2013 08: 37: 15 GMVI

Cont ent - Type: text/htm
Cont ent - Lengt h: 13841
Connection: keep-alive
Server: AmazonS3

<! DOCTYPE HTM_>
<htm >

Job done!

You now have a way to communicate with an HTTP server. You'll find that many servers will communicate in

much the same way: a command, some headers, a blank line, and read the response, so you have a starting point

at least.

The code

/'l Retrieve a web page.

#include "libnet/ctl_net_api.
#include "Iibplatforn platform h"

#i nclude "libpl atforni platformnetwork. h"

#i ncl ude "exanpl e_support. h"

/] Static data.

static char line_buffer[512];

static void

exanpl e_retri eve_web_page(const

{

CTL_NET_| Pv4_ADDR t addr;

CTL_SOCKET_t s;
CTL_STATUS_ t stat;
char str[16];

/1l Try to resolve host.
stat = ctl_dns_get _host by name(host,

// Didthis resolve?

if (stat < CTL_NO _ERROR)

char *host,

&addr, 2000);

30

const char

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

{
/1" No.

exanpl e_term nate(" Coul d not resol ve ww. row ey. co. uk!'\n");

el se
{
/1 Yes, print the resolved |P address.
printf("% resolved to %\n",
host ,
ctl ip_sprint_addr(str, addr));
}

/'l User needs to know. ..
printf("Connecting to % (%)...\n",
host ,
ctl ip_sprint_addr(str, addr));

/'l Open a socket to the host on port 80.
s = ctl _tcp_socket();
if (s < CTL_NO _ERROR)
exanpl e_term nate("No sockets avail able\n");
exanpl e_check_status(ctl _tcp_connect(s, addr, HTONS(80), 1000));

/1 Send the request

printf("Requesting %...\n", nane);

ctl _tcp_printf(s, "CET http://%/% HITP/1.0\r\n", host, nane);
ctl _tcp_printf(s, "Accept: text/plain\r\n");

ctl _tcp_printf(s, "Host: %\r\n", host);

ctl _tcp_printf(s, "\r\n");

ctl_tcp_push(s);

/| Process response.
for (;7)
{
/1l Try to read a whole line fromthe web server.
stat = ctl _tcp_read_line(s,
I'ine_buffer, sizeof(line_buffer)-1,
CTL_TI MEQUT_DELAY, 4000);

/'l Ensure the buffer is term nated.
l'ine_buffer[sizeof (line_buffer)-1] = 0;

/1 Process return status.
if (stat == CTL_NET_ERR_ TI MEDOUT)

{
/1 Didn't get anything, loiter...

}
else if (stat < CTL_NO ERROR)

{
/1 Error reading the socket or the socket closed?
br eak;

}

el se

{
/1 Dunp response.
printf("%\n", line_buffer);

}

}

/'l Make sure socket is closed.
ctl _tcp_shut down(s);

}

31

CrossWorks TCP/IP Library

i nt
mai n(voi d)

{

/1 Initialize platform
platforminitialize();

/] Start networking, wait for an |P address.
exanpl e_check_st at us(exanpl e_bring_up_full _networking());
exanpl e_check_st at us(exanpl e_awai t _assi gned_i p_address());

/1 Send headers, read web page.
exanpl e_retrieve_web_page("ww.row ey. co. uk", "");

/| Done.
return exanpl e_finish();

32

CrossWorks TCP/IP Library

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

Sending e-mail

Send a mail...

As a more complex example of interacting with a server, here is an example of how to send e-mail using an open
relay. You can send e-mail

Select and build the project

In the examples for your board, you'll find a Networking Projects solution, and within that a Send E-mail project.

Double-click that project to make it active and press F7 to build.

SMTP server

You need to configure the SMTP server for this example to work. In the example you will need to configure
SMTIP_SERVER with the domain name or dotted-decimal IP address of your SMTP server, and also set
USER_EMAI L_ ADDRESS to the e-mail address of the recipient.

The code

There is nothing new in this example, it's just a little longer than retrieving a web page in the previous example.

/* Copyright (c) 2004-2013 Row ey Associates Linited.
*/

#i ncl ude <string. h>
#i ncl ude "exanpl e_support. h"

#include "libnet/ctl_net_api.h"

#include "libnet/extras/ctl _sntp_client.h"
#include "libplatforn platformh"

#include "libpl atforniplatformnetwork. h"

/] Hede: Exanple SMIP server address. Replace with yours, either
/| dotted-deci mal or DNS nane.
#def i ne SMIP_SERVER \

"your. nai | server. here"

/] Hede: Exanple e-mail delivery address. Replace with yours.
#def i ne USER_EMAI L_ADDRESS \
"sonebody @one. cont

/'l Resol ved SMIP server.
static CTL_NET_I Pv4_ADDR t sntp_server_addr;

i nt

mai n(voi d)

{
CTL_STATUS t stat;
char dot _i paddr[16];

/1 Initialize platform

platforminitialize();
exanmple_initialize();

33

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

/1 Start networking, wait for an |P address.
exanpl e_check_stat us(exanpl e_bring up_full _networking());
exanpl e_check_st at us(exanpl e_awai t _assi gned_i p_address());

/l Wait 5s to see if we can resolve our nmail server. |If you
/'l use a dotted-decimal |Pv4 address, there is no nane | ookup
/1 and this conpletes inmediately.
printf("DNS: Resolving %, maximumwait for DNS reply is 5 seconds.\n",
SMIP_SERVER) ;
exanpl e_check_status(ctl _dns_get _host _by_nanme(SMIP_SERVER,
&snt p_server _addr,
5000)) ;
printf("DNS: Resolved % to %s\n",
SMIP_SERVER,
ctl_ip_sprint_addr(dot_ipaddr, sntp_server_addr));

/1l Attenpt to send sone mail .
stat = ctl_snmtp_client_send_nail (sntp_server_addr,
USER_EMAI L_ADDRESS,
"crossworks@ow ey. co. uk", // fake
"Hello fromthe CrossWrks TCP/IP Library!",
0,
"Hel l o'\ n\nThis is the CrossWrks TCP/IP Library"
"sending an e-mail to you.\n\n"
"Regards,\n\n-- The CrossWrks Team");

/1 Say whether it worked.
if (stat < CTL_NO_ERROR)

exanpl e_term nate("SMIP: Didn't send that e-mail correctly. Sorry.");
el se

printf("SMIP: E-nail sent OKI\n");

/| Done.
return exanpl e_finish();

34

CrossWorks TCP/IP Library
<ctl_net_api.h>

Overview

TCP/IP Library public interface.

APl Summary

Network
CTL_NET_ERROR _t
CTL_NET_PORT _t
ctl_net_get_host_name
ctl_net_init
ctl_net_interface
ctl_net_set _host_name
Sockets

CTL_SOCKET _t
CTL_TCP_ACCEPT_FN_t
CTL_TCP_GEN_ISS_FN_t

CTL_TCP_GET_SOCKETS_FLAG_t

CrossWorks TCP/IP Library

Network Library errors
A network port

Get host name

Initialize network library
Network interface

Set host name

A TCP socket
Accept callback
Initial send segment generation

Flags for enumerating sockets

CTL_TCP_PORT_OPTIONS t TCP port options

CTL_TCP_SEND_FLAG_t Socket send options
CTL_TCP_SOCKET_CLOSE_TYPE_t Socket close options
CTL_TCP_SOCKET_CONNECTION_STATE_t Logical socket state

CTL_TCP_SOCKET_OPTIONS _t Socket options

ctl_soc_use_callback Assign a server callback function on a per-socket basis
ctl_soc_use_event Assign event group to socket

ctl_tcp_accept Register an accept callback for a port

ctl_tcp_bind Reserve TCP listener for TCP port

ctl_tcp_close_socket
ctl_tcp_connect
ctl_tcp_get_local_ip_addr
ctl_tcp_get_local_port
ctl_tcp_get_port_options
ctl_tcp_get_remote_ip_addr

ctl_tcp_get_remote_port

Close a socket

Connect a socket to port on a remote host

Get socket's local IP address
Get socket's local port

Get options for a TCP port
Get socket's local IP address

Get socket's remote port

35

CrossWorks TCP/IP Library

ctl_tcp_get_socket_connection_state

ctl_tcp_get_socket_error
ctl_tcp_get_socket_options
ctl_tcp_get_sockets
ctl_tcp_init
ctl_tcp_look_ahead
ctl_tcp_push
ctl_tcp_read_line
ctl_tcp_recv

ctl_tcp_send
ctl_tcp_set_port_options
ctl_tcp_set_socket_options
ctl_tcp_shutdown
ctl_tcp_socket
ctl_tcp_unbind
ctl_tcp_use_callback
ctl_tcp_use_event

uDP
CTL_UDP_CONFIGURATION_t
CTL_UDP_INFO_t
ctl_udp_bind

ctl_udp_init
ctl_udp_sendto
ctl_udp_unbind

DHCP

ctl_dhcp_init
ctl_dhcp_lease_expire_time
ctl_dhcp_lease_rebind_time
ctl_dhcp_lease_renew_time
ctl_net_domain_name_suffix
DNS
ctl_dns_get_host_by_name
ctl_dns_get_server
ctl_dns_init

ctl_dns_primary_server_addr

CrossWorks TCP/IP Library

Get socket state

Get socket error

Get socket options

Enumerate sockets for port

Initialize TCP layer

Look ahead in socket data

Push data on socket to network

Read a line of text from a socket

Receive from socket

Send data to socket

Set options for a TCP port

Set socket options

Shut down a socket

Fetch a TCP socket from the pool of unused sockets
Releases TCP listener resources for a TCP port
Assign a server callback function to a bound TCP port

Assign a server event

UDP layer configuration parameters
UDP packet information

Register a UDP port callback
Initialize UDP layer

Send a UDP datagram

Release a UDP port callback

Initialize DHCP client subsystem
Get lease renewal time

Get lease rebind time

Get lease renewal time

Return assigned domain name suffix

Look up a host name
Get DNS server address
Initialize DNS Client subsystem

Get primary DNS server address

36

CrossWorks TCP/IP Library

ctl_dns_print_cache
ctl_dns_purge_cache
ctl_dns_secondary_server_addr
ctl_dns_set_max_ttl
ctl_dns_set_memory_allocator
ctl_dns_set_primary_server_addr
ctl_dns_set_secondary_server_addr
ctl_dns_set_server

NTP

ctl_ntp_init

ctl_ntp_server_addr
ctl_ntp_set_time_server

ICMP

ctl_icmp_init

IP

CTL_IP_CONFIG_t
CTL_NET_IPv4_ADDR_t
CTL_NET_IPv4_LOCAL_BROADCAST_ADDR
ctl_net_get_gateway_address
ctl_net_get_ip_address
ctl_net_get_subnet_mask
ctl_net_is_autoip_address
ctl_net_is_local broadcast_address
ctl_net_is_local_ip_address
ctl_net_is_multicast_ip_address
ctl_net_is_private_ip_address
ctl_net_is_subnet_broadcast_address
ctl_net_scan_dot_decimal_ip_addr
ARP

ctl_arp_cache_entry
ctl_arp_clear_entry
ctl_arp_get_entry

ctl_arp_get_ttl

ctl_arp_print_cache

ctl_arp_purge_cache

CrossWorks TCP/IP Library

Display the DNS cache

Purge the DNS cache

Get secondary DNS server address
Set DNS time to live

Set DNS request memory allocator
Set primary DNS server IP address
Set secondary DNS server IP address

Set DNS server list entry

Initialize NTP subsystem
Return IPv4 address of NTP server

Set IPv4 address of NTP server

Initialize ICMP

IP configuration structure

IPv4 network address

IP local network broadcast address

Get gateway IP address

Get system IP address

Get system subnet mask

Is an IP address a link-local Auto-IP address?
Is an IP address a local broadcast IP address?
Is an IP address on the local subnet?

Is an IP address a multicast IP address?

Is an IP address a private address?

Is an IP address a subnet broadcast IP address?

Scan a dotted-decimal IPv4 address

Replace ARP cache entry
Clear ARP cache entry
Get ARP cache entry

Get the ARP time to live
Display the ARP cache
Purge ARP cache

37

CrossWorks TCP/IP Library

ctl_arp_request_entry
ctl_arp_set_cache_size
ctl_arp_set_memory_allocator
ctl_arp_set_ttl

MAC

CTL_NET_MAC_ADDR_t
ctl_eth_get_mac_addr
ctl_mac_addr_is_broadcast
ctl_mac_addr_is_null_or_empty
ctl_net_scan_mac_addr
Memory
ctl_net_mem_alloc_data
ctl_net_mem_alloc_xmit
ctl_net_mem_free
ctl_net_mem_trim

Utility

ctl_ip_sprint_addr
ctl_mac_sprint_addr

ctl_net_register_error_decoder

CrossWorks TCP/IP Library

Generate an ARP request for an IP address
Set maximum ARP cache size
Set ARP cache memory allocator

Set ARP time to live

Ethernet MAC address

Return interface's MAC address

Is this MAC address a broadcast address?
Is this MAC address a null address?

Scan a textual MAC address

Allocate network memory
Allocate network memory
Deallocate network memory

Trim allocated network memory
Convert IPv4 address to dotted decimal string

Convert Ethernet MAC address to string

Register network error decoder

38

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_IP_CONFIG_t

Synopsis

typedef struct {
CTL_NET_I Pv4_ADDR t i p_addr;
CTL_NET_| Pv4_ADDR t subnet mask;
CTL_NET_I Pv4_ADDR t gat eway;
CTL_NET_ | Pv4_ADDR t dns_pri mary_server;
CTL_NET_I Pv4_ADDR t dns_secondary_server;
unsi gned char ttl;

} CTL_I P_CONFI G t;

Description

CTL_IP_CONFIG_t contains the values needed to configure the IPv4 layer of the network library. If DHCP is not

used, the application code must supply one of these structures to ctl_net_init during startup.

i p_addr

Our IP address in network byte order.

subnet _nask
Our subnet mask in network byte order.

gat eway
Local router (gateway) address in network byte order. This can be zero if packets never leave the LAN.

dns_primary_server
Primary DNS server IP address in network byte order. This can be zero if DNS is not used.

dns_secondary_server
Secondary DNS server IP address in network byte order. This can be zero if DNS is not used or there is no

secondary DNS server.

ttl
Time to live for outgoing IP packets. Generally a ‘don't care’ for use on a LAN.

See Also

ctl_net_init

39

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_NET_ERROR_t

Synopsis

typedef enum {
CTL_NET_CONFI GURATI ON_ERROCR,
CTL_NET_NOT_UP,
CTL_NET_UNREACHABLE,
CTL_DNS_HOST_NAME_ERROR,
CTL_DNS_RESOLVE_| N_PROGRESS,
CTL_DNS_QUT_OF_MEMORY,
CTL_DNS_NAME_UNKNOWN,
CTL_DNS_NO DNS_SERVER,
CTL_UDP_TOO_MANY_PORTS,
CTL_UDP_PORT_| N_USE,
CTL_TCP_PORT_ACTI VE,
CTL_UDP_BAD_PORT,
CTL_TCP_TOO_MANY_PORTS,
CTL_TCP_BAD_PORT,
CTL_TCP_PORT_NOT_BOUND,
CTL_TCP_PORT_| N_USE,
CTL_TCP_BAD_SOCKET,
CTL_TCP_TOO_MANY_OPEN_SOCKETS,
CTL_TCP_SOCKET_CLOSED,
CTL_NET_ERR WOULD_ BLQOCK,
CTL_NET_ERR_ALREADY,
CTL_NET_ERR_NOTSOCK,
CTL_NET_ERR_OPNOTSUPP,
CTL_NET_ERR_NETDOWN,
CTL_NET_ERR_NETUNREACH,
CTL_NET_ERR_CONNABORTED,
CTL_NET_ERR_CONNRESET,
CTL_NET_ERR_NOTCONN,
CTL_NET_ERR_TI MEDOUT,
CTL_NET_ERR_CONNREFUSED,
CTL_NET_ERR_HOSTUNREACH,
CTL_NET_ERR _NOTEMPTY,
CTL_NET_ERR DI SCON

} CTL_NET_ERROR t;

Description

CTL_NET_ERROR_t enumerates the errors that the TCP/IP Library generates.

CTL_NET_CONFI GURATI ON_ERROR
Indicates that the network library is not configured correctly. As delivered, the CTL network library is
correctly configured and tested, so this error should not be seen by users. If you do see this error, please

check your configuration.

CTL_NET_NOT_UP
Indicates that a call to ctl_dns_get_host_by_name timed out without the network stack coming up.

40

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_NET_UNREACHABLE
Indicates that a network packet needs to be delivered to an IP address that has no route. This can happen,
for instance, when the packet has a non-local IP address which must be delivered to the gateway and no

gateway has been configured either statically or by DHCP.

CTL_DNS HOST NAME ERROR
Indicates that a host name is invalid, for instance it has a trailing period (f 00. bar . isinvalid), or the host

name has more than 47 characters.

CTL_DNS RESOLVE | N PROGRESS
Indicates that the requested host name is already being resolved. Typically, this status is returned by
ctl_dns_get_host_by_name when a non-zero timeout is specified and the name did not resolve before the

timeout.

CTL_DNS_OUT_OF_MEMORY
Indicates that the DNS resolver could not allocate memory using the DNS memory allocator when queuing

a DNS request.

CTL_DNS_NAME_UNKNOWN
Indicates that the DNS resolver could not resolve the host name.

CTL_DNS_NO DNS_SERVER
Indicates that no DNS server has been defined in order to resolve requests.

CTL_UDP_TOO_MANY_PORTS
Indicates that all UDP ports are bound and no unused port exists when using ctl_udp_bind.

CTL_UDP_PORT_I N_USE
Indicates that the client tried to bind a port using ctl_udp_bind but that port has already been bound.

CTL_UDP_BAD_PORT
Indicates that the port passed to ctl_udp_unbind is invalid or is not currently bound.

CTL_TCP_TOO_MANY_PORTS
Indicates that you have requested to bind a TCP ports using ctl_tcp_bind but there are no TCP ports leftin
the TCP port pool. You will need to increase the number of ports when calling ctl_tcp_init to initialize the

TCP subsystem.

CTL_TCP_PORT_ACTI VE
Indicates that there are active, open sockets associated with a port when the port is unbound with

ctl_tcp_unbind.

CTL_TCP_BAD PORT
Indicates that an invalid TCP port has been provided as a parameter. Port numbers in API calls must be in

network byte order and must specify a valid TCP port number, usually between 1 and 65535.

141

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_TCP_PORT_NOT_BOUND
Indicates that an unbound port parameter has been passed to an API call that requires a bound TCP port.
Many API calls require bound ports, and you try to operate on a port that has not been bound using

ctl_tcp_bind you will receive this error.

CTL_TCP_PORT_I N_USE
Indicates that a call to ctl_tcp_bind failed because the port provided is already being listened to. In order to

specify a different listener for a port, the port must be first be unbound using ctl_tcp_unbind.

CTL_TCP_BAD_ SOCKET
Indicates that the socket provided to a network API call is invalid because the socket has been closed (either

by the client or by the network library), or has never been open.

CTL_TCP_TOO MANY_ SOCKETS
Indicates that an API call could not allocate a socket using ctl_tcp_socket. The number of sockets that the
application can open is determined by the number of streams that the CTL library supports—one socket
requires one stream, and other components, such as the mass storage library, will consume shared streams

when you use them.

CTL_TCP_SOCKET_CLOSED
Indicates that the other TCP closed the socket whilst the client was waiting for data from the socket. In
some cases the network library will return CTL_TCP_BAD_SOCKET for the same conditions if, on entry to

the API call, the socket is already closed.

For socket-related errors, see ctl_tcp_get_socket_error.

42

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_NET_IPv4_ADDR_t

Synopsis

typedef unsigned |ong CTL_NET | Pv4_ADDR t;

Description

CTL_NET_IPv4_ADDR_t contains a 4-octet IPv4 address held in in network byte order.

43

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_NET_IPv4_LOCAL_BROADCAST_ADDR

Synopsis

#define CTL_NET_| Pv4_LOCAL_BROADCAST ADDR OxFFFFFFFF

Description

CTL_NET_IPv4_LOCAL_BROADCAST _ADDR is the IP broadcast address 255.255.255.255. It is the broadcast
address of the zero network (0.0.0.0/0), which in IP standards stands for this network, i.e. the local network.
Transmission to this address is limited by definition—it is never forwarded by routers that connect the local

network to the Internet.

44

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_NET_MAC_ADDR_t

Synopsis

typedef struct {
unsi gned char octet[];
} CTL_NET_MAC_ADDR t;

Description

CTL_NET_MAC_ADDR_t points to an object that contains the Ethernet MAC address in network byte order.

45

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_NET_PORT_t

Synopsis

typedef unsi gned short CTL_NET_PORT t;

Description

CTL_NET_PORT_t is a network port.

Note

Ports are always specified in network byte order.

46

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_SOCKET _t

Synopsis

typedef CTL_STREAM t CTL_SOCKET t;

Description

CTL_SOCKET _t is the type for TCP sockets. You can treat the TCP socket as a simple stream of bytes and read

from and write to the socket using standard CTL stream functions.

47

CrossWorks TCP/IP Library

CTL_TCP_ACCEPT_FN_t

Synopsis

typedef unsigned (*CTL_TCP_ACCEPT _FN t) (CTL_SOCKET t);

Description

The Accept callback performs two functions:

CrossWorks TCP/IP Library

» Decide whether or not the network library will accept an incoming connection request.

* Setup the "process socket" callback or CTL task trigger event, i.e. call ctl_tcp_use_callback or

ctl_tcp_use_event.

When a SYN (synchronize, or "connect") packet arrives for a bound port, a check is first made to determine if

there is a free socket and that the number of open sockets for the port is less than the max_connections value

for that port.

If that check is passes, a socket is allocated and the port's accept callback is invoked, to make the final pass/fail

judgment.

For example:

unsi gned t cpAccept Cal | backFn(SOCKET s)

{

Il
I
I
Il

Il
I
Il
Il
/1
Il
i f

e

SOCKET s is not yet readable or witable, but does have
val id endpoint information. You may choose to accept or
rej ect the connection based upon the renbte TCP's |IP
address, for exanple.

I f the connection is accepted, ctl_tcp_use_call back() or
ctl _tcp_use_event () should be called to set up processing
of the TCP dat a.

Now is the tine to adjust per-socket nenory limts using
ctl _tcp_set_socket _options(), before the response is made
to the renpte TCP's synchroization packet.

(we accept connection)
return 1;
se

return O

48

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_TCP_GEN_ISS_FN_t

Synopsis

typedef unsigned long (*CTL_TCP_GEN I SS FN t)(void);

Description

CTL_TCP_GEN_ISS_FN_t describes a callback function to generate TCP initial send segment numbers. The

application must supply an instance of this which must generate unpredictable numbers.

49

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_TCP_GET_SOCKETS_FLAG_t

Synopsis
typedef enum {
CTL_TCP_GET_SOCKETS_CONNECTI NG,
CTL_TCP_GET_SOCKETS_CONNECTED,
CTL_TCP_GET_SOCKETS_READABLE,
CTL_TCP_GET_SOCKETS_TRI GGERED,

CTL_TCP_GET_SOCKETS_CLOSED
} CTL_TCP_GET_SOCKETS_FLAG t :

Description

CTL_TCP_GET_SOCKETS_FLAG_t defines a set of flags for enumerating sockets using ctl_tcp_get_sockets.

CTL_TCP_GET_SOCKETS_CONNECTI NG
Enumerate sockets that have not completed the synchronization handshake.

CTL_TCP_GET_SOCKETS_CONNECTED
Enumerate sockets with an established connection.

CTL_TCP_GET_SOCKETS READABLE
Sockets with an established connection that also have queued bytes available.

CTL_TCP_GET_SOCKETS_TRI GGERED
Sockets with an established connection that have a "push" packet in the receive queue and all sent "push”

packets have been acknowledged by the remote.

CTL_TCP_GET_SOCKETS_CLOSED
Sockets that are to be reclaimed soon, typically within 100 milliseconds.

See Also

ctl_tcp_get_sockets

50

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_TCP_PORT_OPTIONS_t

Synopsis
typedef struct {
unsi gned max_connecti ons;

CTL_TCP_SOCKET _OPTI ONS_t defaults;
} CTL_TCP_PORT_OPTI ONS_t ;

CTL_TCP_PORT_OPTIONS_t contains settings for server sockets, on a port-by-port basis.

max_connecti ons
Maximum number of sockets that can be ‘owned’ by the server.

defaul ts
Default options for a socket created by the server. When a new TCP connect request is received for the
port registered to the server, a socket is created and its options are initialized with these values before the

‘accept’ callback is invoked.

See Also

CTL_TCP_SOCKET_OPTIONS_t, ctl_tcp_get_port_options, ctl_tcp_set_port_options,

ctl_tcp_get_socket_options, ctl_tcp_set_socket_options

51

CrossWorks TCP/IP Library

CTL_TCP_SEND_FLAG_t

Synopsis

typedef enum {
CTL_TCP_SEND_PUSH,
CTL_TCP_SEND_URGENT,
CTL_TCP_SEND_NOCOPY,
CTL_TCP_SEND_FREE

} CTL_TCP_SEND FLAG t;

See ctl_tcp_send for a full description of the flags.

CTL_TCP_SEND PUSH
Push buffered data to network.

CTL_TCP_SEND URGENT

Send out-of-band data. This is not implemented.

CTL_TCP_SEND_NOCOPY
Perform a zero-copy send of static data.

CTL_TCP_SEND_FREE
Perform a zero-copy send of dynamic data.

52

CrossWorks TCP/IP Library

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_TCP_SOCKET_CLOSE_TYPE_t

Synopsis

typedef enum {
CTL_TCP_CLOSE_LI NGER,
CTL_TCP_CLOSE_DONTLI NGER

} CTL_TCP_SOCKET_CLCSE_TYPE_t;

Description

CTL_TCP_SOCKET_CLOSE_TYPE_t indicates how a socket should be closed.

linger timeout Type of close Wait for close?
CTL_TCP_CLOSE_DONTLIN¢Don't care Graceful No
CTL_TCP_CLOSE_LINGER Zero Hard No
CTL_TCP_CLOSE_LINGER Nonzero Graceful Yes
See Also

ctl_tcp_close_socket

53

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_TCP_SOCKET_CONNECTION_STATE_t

Synopsis

typedef enum {
CTL_TCP_SOCKET_STATE_CLOSED,
CTL_TCP_SOCKET_STATE_CONNECTI NG,
CTL_TCP_SOCKET_STATE_CONNECTED,
CTL_TCP_SOCKET_STATE_CLCOSI NG

} CTL_TCP_SOCKET_CONNECTI ON_STATE t ;

Description

CTL_TCP_SOCKET_CONNECTION_STATE_t is a condensed version of the complete set of states defined by
RFC793. Whilst this should be self-explanatory we document the states anyway:

CTL_TCP_SOCKET_STATE_CLOSED
Socket has never been open, is invalid, or has been closed.

CTL_TCP_SOCKET_STATE_CONNECTI NG
Socket is connecting.

CTL_TCP_SOCKET_STATE_CONNECTED
Socket has completed three-way handshake and is ready for business.

CTL_TCP_SOCKET_STATE_CLOSI NG
Socket is closing.

54

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_TCP_SOCKET_OPTIONS_t

Synopsis

typedef struct {
size_t max_recei ve_segnent _si ze;
size_t max_owned_recei ve_byt es;
size_t max_send_segnent _si ze;
size_t max_owned_send_byt es;
unsi gned | ong i dl e_socket _shut down;
char aut oPush;

} CTL_TCP_SOCKET_OPTI ONS_t ;

CTL_TCP_SOCKET_OPTIONS_t contains configuration information for a socket.

In lieu of the classic sockets getsockopt and setsockopt functions, the TCP layer presents and receives its
options in a single structure.

A client socket should set these options before calling ctl_tcp_connect.

A server socket's only chance at legally manipulating this its options would be during the
CTL_TCP_ACCEPT_FN _t callback, but all sockets for a given port are initialized with the
CTL_TCP_SOCKET_OPTI ONS_t contained in the CTL_TCP_PORT_OPTI ONS_t for that port. In general,
callingct| _tcp_set _socket _opti ons foran individual server socket is not required.

The structure has the following members:

max_recei ve_segnent _si ze

Maximum size of a receive segment. This cannot be greater than 1460 for Ethernet transports.

max_owned_r ecei ve_bytes
Used to calculate the receive window and slow down the remote TCP, if required. For maximum efficiency, it
should be a multiple of max_receive_segment_size.

max_send_segnent _si ze
Maximum size of a sense segment. This cannot be greater than 1460 for Ethernet transports. When sending
a segment for this socket, the network library will allocate the minimum of this value and what the remote

advertises during the connect handshake.

max_owned_send_byt es
Used to slow down application code, if required. This value does not include big external buffers that
are passed during blocking ctl_tcp_send. For maximum efficiency, this should be a multiple of the
max_send_segment_size.

i dl e_socket _shut down
In whole seconds. Set this to zero if an idle socket should be kept alive forever. Otherwise, when a socket is
idle for longer than this value, the network library will gracefully close the socket and recover its resources
by initiating a FIN handshake with the remote TCP.

55

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

Note

This structure should be set prior to a connection being established with a remote TCP. For a client socket,
it means that the application layer may only set a socket's options between the calls to ctl_tcp_socket and
ctl_tcp_connect. For a server socket, it means that the only place to modify the socket options is within the
CTL_TCP_ACCEPT_FN _t callback function.

See Also

ctl_tcp_get_socket_options, ctl_tcp_set_socket_options, ctl_tcp_connect

56

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_UDP_CONFIGURATION_t

Synopsis

typedef struct {
CTL_NET_PORT_t m n_epheneral _port;
CTL_NET_PORT_t max_epheneral _port;
i nt max_bound_ports;

} CTL_UDP_CONFI GURATI ON t ;

Description

CTL_UDP_CONFIGURATION_t contains the initialization parameters for the UDP layer. Please refer to

ctl_udp_init for a description of these members.

See Also

ctl_udp_init

57

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_UDP_INFO_t

Synopsis

typedef struct {
CTL_NET_PORT_t this_port;
CTL_NET_PORT_t ot her_port;
CTL_NET_| Pv4_ADDR t ot her_i p_addr;
voi d *net adat a;

} CTL_UDP_I NFO t;

Description

pointer to an instance of CTL_UDP_INFO_t is passed into user code during a UDP receive callback and out of

user code when calling ctl_udp_sendto.
Note the use of ‘this’ and ‘other’ semantics rather than ‘src’ and ‘dst’.

In a UDP server, the same CTL_UDP_INFO_t pointer received in the CTL_UDP_RECV_FN_t may be passed
unmodified to ctl_udp_sendto as in the following example: The simple semantic change of using "this" and

"other" avoids having to do a parameter swap in the callback.

voi d nyUdpRecei veFn(unsi gned | ong *rcvDat a,
unsi gned rcvByt eCount,
const CTL_UDP_I NFO t *i nfo)

{
/'l \en{process the rcvData...}

/1 \en{and then call ctl _udp_sendto}
ctl _udp_sendto(sendData, sendByteCount, info, 0);

}
You can use the metaData member to store endpoint information for any application-specific data set by the
MAC-layer driver.
Note

The metaData member is intended to be used by IEEE 1588 (Precision Time Protocol)-compliant MAC layers
to provide a packet timestamp (or at least a pointer to a packet timestamp), but the field may be used for any
information that needs to be transmitted from the MAC layer to the application layer as part of a UDP datagram.

See Also

CTL_UDP_RECV_FN_t, ctl_udp_sendto

58

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_arp_cache_entry

Synopsis

void ctl_arp_cache_entry(CTL_NET | Pv4_ADDR t i p_addr,
const CTL_NET_MAC ADDR t *mac_addr);

Description

ctl_arp_cache_entry updates the ARP cache to associate the IP address ip_addr with the MAC address

mac_addr. Broadcast MAC addresses are rejected and not entered into the cache.

You would not usually need to call ctl_arp_cache_entry as ARP management is handled transparently by the

network library.

Thread Safety

ctl_arp_cache_entry is thread-safe.

See Also

ctl_arp_clear_entry, ctl_arp_purge_cache

59

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_arp_clear_entry

Synopsis

void ctl_arp _clear_entry(CTL_NET | Pv4_ADDR t i p_addr);

Description

ctl_arp_clear_entry removes the entry for the IP address ip_addr in the ARP cache.

Thread Safety

ctl_arp_clear_entry is thread-safe.

See Also

ctl_arp_purge_cache

60

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_arp_get_entry

Synopsis

unsigned ctl_arp_get_entry(CTL_NET_MAC ADDR t *dst,
CTL_NET_I Pv4_ADDR t i p_addr);

Description
ctl_arp_get_entry queries the ARP cache for the MAC address corresponding to the IP address ip_addr.

If the IP address is found in the ARP cache, the found MAC address is copied into the MAC address pointed to by
mac_addr and a non-zero result is returned.

If the IP address is not found in the ARP cache, the MAC address pointed to by mac_addr is zeroed and
ctl_arp_get_entry returns zero.

mac_addr can be null to query the presence of an IP-to-MAC mapping without returning the MAC address of the
entry.

Note

ctl_arp_get_entry only queries the cache and does not send an ARP request top the network if the IP address is
not found in the cache.

61

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_arp_get_ttl

Synopsis

unsigned long ctl _arp_get _ttl(void);

Description

ctl_arp_get_ttl returns the currently-set time-to-live for entries in the ARP cache. The default time to live is 10

minutes.

Thread Safety

ctl_arp_get_ttlis thread-safe.

See Also

ctl_arp_set_ttl

62

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_arp_print_cache

Synopsis

void ctl_arp_print_cache(CTL_STREAM t s);

Description

ctl_arp_print_cache displays the contents of the ARP cache to the stream s.

63

CrossWorks TCP/IP Library

ctl_arp_purge_cache

Synopsis

voi d ctl_arp_purge_cache(void);

Description

ctl_arp_purge_cache clears the entire ARP cache.

Thread Safety

ctl_arp_purge_cache is thread-safe.

See Also

ctl_arp_clear_entry

64

CrossWorks TCP/IP Library

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_arp_request_entry

Synopsis

void ctl_arp_request_entry(CTL_NET | Pv4_ADDR t ip_addr);

Description

ctl_arp_request_entry generates an ARP request for the MAC address corresponding to the IP address ip_addr.

65

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_arp_set_cache_size

Synopsis

void ctl_arp_set cache_si ze(unsi gned si ze);

Description

ctl_arp_set_cache_size sets the maximum number of entries held in the ARP cache to size.

ctl_arp_set_cache_size restricts the range of size to be between 4 and 256 entries.

ctl_arp_set_cache_size does not clear the ARP cache when it is resized, but if the cache is contracted, entries in

the cache cache are discarded in reverse age order, from oldest to youngest.

Thread Safety

ctl_arp_set_cache_size is thread-safe.

66

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_arp_set_memory_allocator

Synopsis

void ctl_arp_set _nenory_al |l ocat or (CTL_MEMORY_ALLOCATOR t *al | ocator);

Description

ctl_arp_set_memory_allocator sets ARP memory allocator to allocator. If allocator is zero, the ARP cache uses

the system memory allocator ctl_system_memory_allocator.

Thread Safety

ctl_arp_set_memory_allocator is thread-safe.

67

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_arp_set_ttl

Synopsis

void ctl_arp_set_ttl(unsigned long ttl);

Description

ctl_arp_set_ttl sets the timeout before an entry is deleted from the ARP cache to ttl seconds. The default time to

live is 10 minutes.

Thread Safety

ctl_arp_set_ttl is thread-safe.

See Also

ctl_arp_get_ttl

68

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_dhcp_init

Synopsis

CTL_STATUS t ctl _dhcp_init(void);

Description

bound UDP ports.

See Also

ctl_net_init, ctl_udp_init

69

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_dhcp_lease_expire_time

Synopsis

CTL_TIME t ctl _dhcp_| ease_expire_tinme(void);

Description

ctl_dhcp_lease_expire_time returns the time that the DHCP lease expires.

Note

This is provided as a convenience so the application can print DHCP information; the DHCP client code in the

Network Library manages all aspects of the IP lease.

See Also

ctl_dhcp_lease_renew_time, ctl_dhcp_lease_rebind_time

70

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_dhcp_lease_rebind_time

Synopsis

CTL_TIME t ctl _dhcp_| ease_rebind_tinme(void);

Description

ctl_dhcp_lease_rebind_time returns the time that the DHCP client will attempt a rebind as the lease has not
been renewed by a DHCP server.

Note

This is provided as a convenience so the application can print DHCP information; the DHCP client code in the

Network Library manages all aspects of the IP lease.

See Also

ctl_dhcp_lease_renew_time, ctl_dhcp_lease_expire_time

71

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_dhcp_lease_renew_time

Synopsis

CTL_TIME t ctl _dhcp_l ease_renew time(void);

Description

ctl_dhcp_lease_renew_time returns the time that the DHCP client initiates renewal to extend the lease of the

assigned IP address.

Note

This is provided as a convenience so the application can print DHCP information; the DHCP client code in the

Network Library manages all aspects of the IP lease.

See Also

ctl_dhcp_lease_rebind_time, ctl_dhcp_lease_expire_time

72

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_dns_get_host_by name

Synopsis

CTL_STATUS t ctl _dns_get host by nane(const char *host nane,
CTL_NET_I Pv4_ADDR t *addr,
CTL_TIME_t tinmeout);

Description

ctl_dns_get_host_by_name writes the IP address of the host hostname into the address pointed to by ip_addr.
If ms is zero this is a non-blocking lookup otherwise it is a blocking lookup.

The host name is validated and, if invalid, ctl_dns_get_host_by_name returns CTL_DNS_HOST_NAME_ERROR.
If the network is not yet up (for instance, the network library has not received an IP address from a static
configuration or by DHCP), ctl_dns_get_host_by_name returns CTL_NET_NOT_UP.

If the host address is in the DNS cache maintained by the network library, the address is written to ip_addr
immediately and ctl_dns_get_host_by_name returns CTL_NO_ERROR.

If the host address is not in the DNS cache, the network library queues a DNS lookup. If this is a non-
blocking call (i.e. ms is zero) then ctl_dns_get_host_by_name immediately returns the non-fatal status
CTL_DNS_RESOLVE_IN_PROGRESS.

If this is a blocking call, ctl_dns_get_host_by_name waits for a response. If no response is received from a DNS
server within timeout milliseconds, or all DNS servers are queried and time out, ctl_dns_get_host_by_name
returns CTL_DNS_NAME_UNKNOWN.

Return Value

ctl_dns_get_host_by_name returns a standard status code.

Thread Safety

ctl_dns_get_host_by_name is thread-safe.

73

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_dns_get_server

Synopsis

CTL_NET_| Pv4_ADDR t ctl _dns_get_server (unsigned index);

Description

ctl_dns_get_server returns the IP address of the DNS server with index index. If index is invalid,

ctl_dns_get_server returns an all-zero IP address.

If IP addresses are assigned by DHCP, ctl_dns_get_server returns all-zero IP address whilst IP negotiation is in

progress.

74

CrossWorks TCP/IP Library

ctl_dns_init

Synopsis

CTL_STATUS t ctl _dns_init(void);

Description

bound UDP ports.

75

CrossWorks TCP/IP Library

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_dns_primary_server_addr

Synopsis

CTL_NET | Pv4_ADDR t ctl _dns_primary_server _addr(void);

Description

ctl_dns_primary_server_addr returns the primary DNS server as set in the CTL_IP_CONFIG_t passed to

ctl_net_init or or retrieved from a DHCP server.

If IP addresses are assigned by DHCP, ctl_dns_primary_server_addr will returns an all-zero IP address whilst IP

negotiation is in progress.

See Also

CTL_IP_CONFIG_t, ctl_net_init

76

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_dns_print_cache

Synopsis

void ctl_dns_print_cache(CTL_STREAM t s);

Description

ctl_dns_print_cache prints the contents of the DNS cache to the stream s.

Thread Safety

ctl_dns_print_cache is thread-safe if writing to stream s is thread-safe.

77

CrossWorks TCP/IP Library

ctl_dns_purge_cache

Synopsis

voi d ctl_dns_purge_cache(void);

Description

CrossWorks TCP/IP Library

ctl_dns_purge_cache purges the DNS cache throwing away all cache entries and canceling all outstanding

resolves.

Thread Safety

ctl_dns_purge_cache is thread-safe.

78

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_dns_secondary_server_addr

Synopsis

CTL_NET | Pv4_ADDR t ctl _dns_secondary_server_addr(voi d);

Description

ctl_dns_secondary_server_addr returns the secondary DNS server as set in the CTL_IP_CONFIG_t passed to

ctl_net_init or or retrieved from a DHCP server.

If IP addresses are assigned by DHCP, ctl_dns_secondary_server_addr will returns an all-zero IP address whilst

IP negotiation is in progress.

See Also

CTL_IP_CONFIG_t, ctl_net_init

79

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_ dns_set _max ttl

Synopsis

void ctl_dns_set _max_ttl (unsigned long ttl);

Description

ctl_dns_set_max_ttl sets the maximum timeout before an entry is deleted from the DNS cache to ttl seconds.

The default time to live is 24 hours.

The DNS cache entry for a DNS record is set to the earliest of the time to live set by ctl_dns_set_max_ttl and the

time to live returned by the server.

Thread Safety

ctl_dns_set_max_ttl is thread-safe.

80

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_dns_set_memory_allocator

Synopsis

void ctl_dns_set nenory_al | ocat or (CTL_MEMORY_ALLOCATOR t *al | ocator);

Description

ctl_dns_set_memory_allocator sets DNS memory allocator to allocator. If allocator is zero, the DNS cache uses

the system memory allocator ctl_system_memory_allocator.

Note

Setting the memory allocator automatically clears the DNS cache and cancels any outstanding DNS resolves. We

recommend that you set the DNS allocator before starting the DNS revolver.

Thread Safety

ctl_dns_set_memory_allocator is thread-safe.

81

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_dns_set_primary_server_addr

Synopsis

void ctl_dns_set _prinmary_server_addr (CTL_NET_| Pv4_ADDR t addr);

Description

ctl_dns_set_primary_server_addr sets the primary DNS server IP address to addr.

Note

Other parts of the network library may overwrite the address set by this function, for instance when DHCP

negotiation is complete.

ctl_dns_set_primary_server_addr and ctl_dns_set_secondary_server_addr are decoupled from the rest of the
DNS resolver so that you can use DHCP with assigned DNS server addresses set without automatically pulling in
the resolver code.

82

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_dns_set_secondary_server_addr

Synopsis

void ctl_dns_set_secondary_server _addr (CTL_NET | Pv4_ADDR t addr);

Description

ctl_dns_set_secondary_server_addr sets the secondary DNS server IP address to addr.

Note

Other parts of the network library may overwrite the address set by this function, for instance when DHCP

negotiation is complete.

ctl_dns_set_primary_server_addr and ctl_dns_set_secondary_server_addr are decoupled from the rest of the
DNS resolver so that you can use DHCP with assigned DNS server addresses set without automatically pulling in
the resolver code.

83

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl dns_set _server

Synopsis

void ctl_dns_set _server(int index,
CTL_NET_I| Pv4_ADDR t addr);

Description

ctl_dns_set_server sets index entry index of the DNS server list to addr. Index 0 is the primary DNS server, 1 is

the secondary server, and so on.

84

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_eth_get_mac_addr

Synopsis

CTL_NET_MAC ADDR t *ctl _eth_get nmc_addr (void);

ctl_eth_get_mac_addr returns the MAC address set when registering the MAC driver using
ctl_net_set_mac_driver.

See Also

ctl_net_set_mac_driver

85

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_icmp_init

Synopsis

CTL_STATUS t ctl _icnp_init(void);

Description

network library, all other type codes fail silently.

ctl_icmp_init returns CTL_NO_ERROR on success; i.e. the ICMP subsystem is registered with the IP layer.

86

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_ip_sprint_addr

Synopsis

char *ctl _ip_sprint_addr(char *dst,
CTL_NET_I Pv4_ADDR t addr);

Description

ctl_ip_sprint_addr converts the address addr to dotted decimal notation and writes the result to the object
pointed to by dst. dst must be 16 characters or more for three dotted decimal octets plus a terminating zero.

Return Value

ctl_ip_sprint_addr returns dst.

87

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_mac_addr _is broadcast

Description

ctl_mac_addr_is_broadcast returns true if the address addr is a broadcast address. A MAC address with every
bit set to one is a broadcast address, i.e. address FF:FF:FF:FF:FF:FF.

Thread Safety

ctl_mac_addr_is_broadcast is thread-safe.

88

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_mac_addr_is_null_or_empty

Description

ctl_mac_addr_is_null_or_empty returns true if the address addr is null or the address pointed to is an all-zero
address. A MAC address with every bit set to zero is a null address, i.e. address 00:00:00:00:00:00.

Thread Safety

ctl_mac_addr_is_null_or_empty is thread-safe.

89

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_mac_sprint_addr

Synopsis

char *ctl_nmc_sprint_addr(char *dst,
const CTL_NET _MAC ADDR t *addr,
char sep);

Description

ctl_mac_sprint_addr converts the address addr to hexadecimal notation, using sep to separate each octet, and
writes the result to the object pointed to by dst. dst must be 18 characters or more for six hexadecimal octets,

separators, and a terminating zero.

Return Value

ctl_mac_sprint_addr returns dst.

90

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl net_ domain_name_suffix

Synopsis

char *ctl_net_domai n_nane_suffix(voi d);

Description

ctl_net_domain_name_suffix returns domain name suffix provided by the DHCP server when an IP address
is assigned. If no domain name suffix is set by the DHCP server, or no address has been assigned by the DHCP

server, ctl_net_domain_name_suffix returns zero.

Thread Safety

ctl_net_domain_name_suffix is thread-safe.

91

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_get_gateway_address

Synopsis

CTL_NET | Pv4_ADDR t ctl _net_get_ gat eway_address(void);

Description

ctl_net_get_gateway_address returns returns the gateway (local router's) IP address as set in the
CTL_IP_CONFIG_t configuration passed to ctl_net_init or retrieved from a DHCP server.

If IP addresses are assigned by DHCP, ctl_net_get_gateway_address will returns an all-zero IP address whilst IP

negotiation is in progress.

Thread Safety

ctl_net_get_gateway_address is thread-safe.

92

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_get_host_name

Synopsis

char *ctl_net_get host_nane(void);

Description

ctl_net_get_host_name returns a pointer to a null-terminated read-only string that contains the host name set

by ctl_net_set_host_name. If no host name has been set, the host name is empty.

See Also

ctl_net_get_host_name

93

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_get_ip_address

Synopsis

CTL_NET | Pv4_ADDR t ctl_net_get ip_address(void);

Description

ctl_net_get_ip_address returns the system's IP address as set in the CTL_IP_CONFIG_t configuration passed to

ctl_net_init or retrieved from a DHCP server.

If IP addresses are assigned by DHCP, ctl_net_get_ip_address will return an all-zero IP address whilst IP

negotiation is in progress.

Thread Safety

ctl_net_get_ip_address is thread-safe.

94

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_get_subnet_mask

Synopsis

CTL_NET | Pv4_ADDR t ctl_net_get subnet mask(void);

Description

ctl_net_get_subnet_mask returns the system's subnet mask as set in the CTL_IP_CONFIG_t configuration

passed to ctl_net_init or retrieved from a DHCP server.

If IP addresses are assigned by DHCP, ctl_net_get_subnet_mask will returns an all-zero IP address whilst IP

negotiation is in progress.

Thread Safety

ctl_net_get_subnet_mask is thread-safe.

95

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_init

Synopsis

CTL_STATUS t ctl _net _init(unsigned taskPriority,
const CTL_IP_CONFIGt *iplnit);

created using a task priority priority. The initial IP configuration is pointed to by and this may be null if DHCP is
used to configure the host settings.

See Also

CTL_IP_CONFIG_t

96

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_interface

Synopsis

CTL_NET_| NTERFACE t *ctl _net _interface;

Description

ctl_net_interface holds a pointer to the network interface initialized by ctl_mac_init. If ctl_net_interface is zero,
the MAC has not been initialized.

The TCP/IP library supports a single MAC at this time.

See Also

ctl_mac_init.

97

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_is_autoip_address

Synopsis

unsigned ctl_net _is_autoi p_address(CTL_NET | Pv4_ADDR t addr);

Description

ctl_net_is_autoip_address determines whether addr is a IPv4 link-local Auto-IP address on the local subnet.

ctl_net_is_autoip_address returns non-zero if addr is an Auto-IP address on the local subnet and zero if not.

Auto-IP addresses are defined by RFC 3927 to be the range 169.254.0.0—169.254.255.255 (169.254/16 prefix)
with subnet mask 255.255.0.0.

Thread Safety

ctl_net_is_autoip_address is thread-safe.

98

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl net is local broadcast address

Synopsis

unsigned ctl_net _is_|ocal broadcast address(CTL_NET_| Pv4_ADDR t addr);

Description

ctl_net_is_local_broadcast_address determines whether addr is an local subnet broadcast address, that is the
address addr is either the limited subnet broadcast address 255.255.255.255 or the subnet broadcast address.

Thread Safety

ctl_net_is_local_broadcast_address is thread-safe.

See Also

ctl_net_is_subnet_broadcast_address

99

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_is_local_ip_address

Synopsis

unsigned ctl _net _is_l|local _ip_address(CTL_NET_ | Pv4_ADDR t addr);

Description

ctl_net_is_local_ip_address determines whether addr is an IP address on the local subnet.

ctl_net_is_local_ip_address returns non-zero if addr is known to be on the local subnet and zero if not.

Thread Safety

ctl_net_is_local_ip_address is thread-safe.

100

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_is_multicast_ip_address

Synopsis

unsigned ctl_net _is_nulticast_ip_address(CTL_NET_ | Pv4_ADDR t addr);

Description

ctl_net_is_multicast_ip_address determines whether addr is an IP multicast address.

ctl_net_is_multicast_ip_address returns non-zero if addr is known to be a multicast address zero if not.

Thread Safety

ctl_net_is_multicast_ip_address is thread-safe.

101

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_is_private_ip_address

Synopsis

unsigned ctl _net _is_private_ ip_address(CTL_NET | Pv4_ADDR t addr);

Description

ctl_net_is_private_ip_address determines whether addr is a private IPv4 address on the local subnet.

ctl_net_is_private_ip_address returns non-zero if addr is a private address zero if not.

The private address ranges are 10.0.0.0—10.255.255.255 (10/8 prefix), 172.16.0.0—172.31.255.255 (172.16/12
prefix), and 192.168.0.0—192.168.255.255 (192.168/16 prefix).

Thread Safety

ctl_net_is_private_ip_address is thread-safe.

102

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl net_is subnet broadcast address

Synopsis

unsi gned ctl _net _is_subnet _broadcast address(CTL_NET | Pv4_ADDR t addr);

Description

ctl_net_is_subnet_broadcast_address determines whether addr is an IP subnet broadcast address;
the limited broadcast address 255.255.255.255 is not considered a subnet broadcast address by
ctl_net_is_subnet_broadcast_address; if you need to know whether an IP address is a local subnet broadcast

address or a limited broadcast address, use ctl_net_is_local_broadcast_address.

Thread Safety

ctl_net_is_subnet_broadcast_address is thread-safe.

See Also

ctl_net_is_local_broadcast_address

103

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl net_ mem_alloc_data

Synopsis

void *ctl _net_nem all oc_data(size_ t byteSize,
CTL_TIME_t toTicks);

Description

ctl_net_mem_alloc_data is a wrapper around the alloc_data member of the of the network memory manager
(see CTL_NET_MEM_DRIVER_t and ctl_net_mem_alloc_fn_t).

The network memory manager will not use its entire heap for this request. Instead, a kilobyte or so is held in
reserve for future ctl_net_mem_alloc_xmit requests and this routine will fail before dipping into that reserve.

Buffers allocated with this routine should be freed using ctl_net_mem_free.

The network memory manager driver will return a word-aligned buffer of at least byteSize bytes if successful,
null for fail. If toTicks is non-zero and the allocation initially fails, the routine will block in the hope that another
task or ISR will call ctl_net_mem_free in the interim, giving the network memory manager adequate resources
to perform the allocation.

Thread Safety

Even with toTicks set to zero, ctl_net_mem_alloc_data routine is not safe to call from an ISR or a zero-priority
main CTL task.

See Also

CTL_NET_MEM_DRIVER_t, ctl_net_mem_alloc_xmit, ctl_net_mem_free

104

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl net_ mem_alloc_xmit

Synopsis

void *ctl _net_nemalloc_xmt(size t byteSize,
CTL_TIME_t toTicks);

Description

ctl_net_mem_alloc_xmit is a wrapper around the alloc_xmit member of the singleton instance of the network

memory manager (see CTL_NET_MEM_DRIVER_t and ctl_net_mem_alloc_fn_t).

The network library memory manager attempts to use its entire heap to satisfy this request. Buffers allocated

with this routine should be freed using ctl_net_mem_free.

The network memory manager driver returns a word-aligned buffer of at least byteSize bytes when successful,
null for fail. If toTicks is non-zero and the allocation initially fails, ctl_net_mem_alloc_xmit blocks in the hope
that another task or ISR will call ctl_net_mem_free in the interim, giving the network memory manager

adequate resources to perform the allocation.

Thread Safety

Even with toTicks set to zero, ctl_net_mem_alloc_xmit is not safe to call from an interrupt service routine.

See Also

ctl_net_mem_alloc_data, ctl_net_mem_free, CTL_NET_MEM_DRIVER _t

105

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl net_mem_free

Synopsis

void ctl_net_nemfree(void *p);

Description
ctl_net_mem_free frees the object pointed to by p; if p is a null pointer, ctl_net_mem_free does nothing.

ctl_net_mem_free is a wrapper around the free_fn member of the singleton instance of the network memory
manager (see CTL_NET_MEM_DRIVER _t).

ctl_net_mem_free should only be used on buffers allocated with ctl_net_mem_alloc_xmit or
ctl_net_mem_alloc_data. ctl_net_mem_free is safe to call from an interrupt service routine or the zero-priority

main task.

See Also

CTL_NET_MEM_FREE_FN_t, CTL_NET_MEM_DRIVER_t, ctl_net_mem_alloc_xmit, ctl_net_mem_alloc_data

106

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_ net_ mem_trim

Synopsis

void ctl_net_nmemtrinmvoid *p,
size_t byteSi ze);

Description

ctl_net_mem_trim is a wrapper around the trim member of the of the network memory manager (see
CTL_NET_MEM_DRIVER_t and ctl_net_mem_alloc_fn_t).

This is a request to reduce the memory allocated and pointed to by p to byteSize bytes. It is guaranteed that
byteSize is less than the currently allocated size for p. The network memory allocator is not required to trim its
memory allocation, this call is an indication to the memory allocator that the extra memory will not be used by
the network library and the allocator can recover it. It is acceptable for the implementation of the underlying

trim function to do nothing.

107

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_register_error_decoder

Synopsis

void ctl_net_register_error_decoder(void);

Description

ctl_net_register_error_decoder registers an error decoder with the CrossWorks runtime to decode errors
generated by the TCP/IP Library.

108

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_scan_dot_decimal_ip_addr

Synopsis

CTL_NET | Pv4_ADDR t ctl _net_scan_dot _deci nal _i p_addr (const char *str);

Description

ctl_net_scan_dot_decimal_ip_addr parses the string pointed to by str as a a dotted-decimal IPv4 address and
returns that address. If the string does not contain a valid IPv4 address, ctl_net_scan_dot_decimal_ip_addr
returns an all-zero IP address.

See Also

ctl_ip_sprint_addr.

109

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl net scan_mac_addr

Synopsis

CTL_STATUS t ctl _net_scan_mac_addr (CTL_NET_MAC ADDR t *dst,
const char *text);

Description

ctl_net_scan_mac_addr converts the zero-terminated string text into a MAC address in dst. The textual string is
in the form "0A 1B 2C 4D F7 78"; the spaces between the octets can be any character, allowing use of both "' and

'-' as separators.

Return Value

ctl_net_scan_mac_addr returns a standard status code.

See Also

ctl_mac_sprint_addr.

110

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl net_set host name

Synopsis

void ctl_net_set host_nanme(const char *nane);

Description

ctl_net_set_host_name sets the host name to the null-terminated string pointed to by name.

ctl_net_set_host_name makes a local copy of the host name which is truncated to 15 characters.

See Also

ctl_net_get_host_name

111

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_ntp_init

Synopsis

CTL_STATUS t ctl _ntp_init(void);

Description

ctl_ntp_init returns CTL_NO_ERROR if the call was successful; i.e. the NTP callbacks were successfully registered
with the UDP layer.

Note

You must call call this after initializing the UDP subsystem with ctl_udp_init. NTP counts as one of your bound
UDP ports.

See Also

ctl_udp_init

112

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_ntp_server_addr

Synopsis

CTL_NET | Pv4_ADDR t ctl _ntp_server_addr(void);

Description

ctl_ntp_server_addr returns the IPv4 address of the NTP server. If no NTP server is has been configured using

ctl_ntp_init, ctl_ntp_server_addr returns an all-zero IP address.

113

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_ntp_set_time_server

Synopsis

CTL_STATUS t ctl _ntp_set _tinme_server(CTL_NET | Pv4_ADDR t addr);

Description

ctl_ntp_set_time_server sets the address to use for the NTP time server to addr.

Return Value

ctl_ntp_set_time_server returns a standard status code.

114

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_soc_use callback

Synopsis

CTL_STATUS t ctl _soc_use_cal | back(CTL_SOCKET t s,
CTL_TCP_SERVER FN_ t serverFn);

Description

ctl_soc_use_callback assign the server callback function serverFn to the socket s. This function should only be
called in the accept callback (see CTL_TCP_ACCEPT_FN_t).

‘Callback’ and ‘Event’ TCP server models are mutually exclusive—invoking this function will nullify the behavior

set in a previous call to ctl_soc_use_event, ctl_tcp_use_callback, ctl_tcp_use_event.

See Also

ctl_tcp_accept, ctl_tcp_bind, ctl_tcp_use_callback, ctl_soc_use_event, ctl_tcp_use_event

115

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl soc_use event

Synopsis

CTL_STATUS t ctl _soc_use_event (CTL_SOCKET t s,
CTL_EVENT_SET_t *wakeEvent,
CTL_EVENT_SET t wakeVal ue);

Description

ctl_soc_use_event is a TCP server function to assign the wake event pointer and wake event value used for
thread synchronization on a per-socket basis. ctl_soc_use_event This function should be called from the accept
callback function (see CTL_TCP_ACCEPT_FN _t).

‘Callback’ and ‘Event’ TCP server models are mutually exclusive—invoking ctl_soc_use_event will nullify the

behavior set in a previous call to ctl_soc_use_callback, ctl_tcp_use_callback, or ctl_tcp_use_event.

See Also

ctl_soc_use_callback, ctl_tcp_use_event, ctl_tcp_accept, ctl_tcp_bind, ctl_tcp_use_callback

116

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_accept

Synopsis

CTL_STATUS t ctl _tcp_accept (CTL_NET _PORT_t port,
CTL_TCP_ACCEPT_FN_t acceptFn);

Description

ctl_tcp_accept registers the function acceptFn as the accept callback for port port. port is specified in network
byte order.

acceptFn may be null, in which case all incoming connection requests are accepted provided that the number of

open sockets is less than the allowed limit.

See Also

CTL_TCP_ACCEPT_FN_t, ctl_tcp_bind

117

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_bind

Synopsis

CTL_STATUS t ct!| tcp_bind(CTL_NET_PORT t port);

Description
ctl_tcp_bind reserves a listener for the TCP port port. port is specified in network byte order.

In the case of this library, "Bind" means "set aside one of the allocated server port slots for this port". "Unbind"

means to free up the resource.

See Also

ctl_tcp_unbind, ctl_tcp_accept, ctl_tcp_init

118

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_close_socket

Synopsis

void ctl_tcp_close_socket (CTL_SOCKET t soc,
CTL_TCP_SOCKET_CLCSE_TYPE_t i nger,
CTL_TIME_t tinmeout);

Description

ctl_tcp_close_socket closes the socket soc. Closing can be either graceful or hard. A graceful shutdown involves
invoking the three-way FIN handshake with the remote TCP after all outgoing data has been sent. A hard

shutdown merely closes socket soc at the local end—any further packets from the socket's remote partner are
NAKed with a reset response.

linger timeout Type of close Wait for close?
CTL_TCP_CLOSE_DONTLIN¢ Don't care Graceful No
CTL_TCP_CLOSE_LINGER Zero Hard No
CTL_TCP_CLOSE_LINGER Nonzero Graceful Yes

ctl_tcp_close_socket should not be invoked from the network task with CTL_TCP_CLOSE_LINGER and a non-
zero timeout value. In other words, do not use the blocking version of this function in a UDP or TCP callback.

See Also

ctl_tcp_shutdown

119

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_connect

Synopsis

CTL_STATUS t ctl _tcp_connect (CTL_SOCKET t s,
CTL_NET_I Pv4_ADDR t renotel pAddr,
CTL_NET_PORT_t renotePort,
CTL_TIME_t timeout);

Description

ctl_tcp_connect connects socket s to port remotePort of remote host remotelpAddr. The socket should have

been previously allocated with ctl_tcp_socket.
Returns CTL_NO_ERROR if successful or an error code for fail (i.e. no sockets were available).

There is no non-blocking version of this function. If timeout is non-zero ctl_tcp_connect will block until the
connection is made or it times out. If timeout is zero, ctl_tcp_connect will block for a few microseconds until the

network task signals that it has started the connect process.

If you call ctl_tcp_connect with timeout set to zero, you can poll the connection state using

ctl_tcp_get_socket_state to determine when the connect (or fail timeout) occurs.

Note

ctl_tcp_connect must not be called in the zero-priority main task nor should it be called from the network task
(in a UDP or TCP receive callback).

See Also

ctl_tcp_socket, ctl_tcp_get_socket_state

120

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_get_local_ip_addr

Synopsis

CTL_NET | Pv4_ADDR t ctl _tcp_get |l ocal ip_addr(CTL_SOCKET t s);

Description

ctl_tcp_get_local_ip_addr returns the IP address of the TCP partner of socket soc or zero if there is an error. The
local IPv4 address is returned in network byte order.

121

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_get_local_port

Synopsis

CTL_NET _PORT_t ctl_tcp_get | ocal port(CTL_SOCKET t soc);

Description

ctl_tcp_get_local_port returns the local port number for socket soc or zero if there is an error. The local remote

port is returned in network byte order.

See Also

ctl_tcp_get_remote_port, ctl_tcp_get_remote_ip_addr

122

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_get_port_options

Synopsis

CTL_STATUS t ctl _tcp_get _port_options(CTL_NET PORT_t port,
CTL_TCP_PORT_OPTI ONS_t *options);

Description

ctl_tcp_get_port_options copies the port options used by a server on TCP port port to the buffer pointed to by
options. port is specified in network byte order.

See Also

CTL_TCP_PORT_OPTIONS_t, ctl_tcp_set_port_options, CTL_TCP_SOCKET_OPTIONS_t,

ctl_tcp_get_socket_options, ctl_tcp_set_socket_options

123

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_get_remote_ip_addr

Synopsis

CTL_NET | Pv4_ADDR t ctl _tcp_get remote_ i p_addr(CTL_SOCKET t soc);

Description

ctl_tcp_get_remote_ip_addr returns the IP address for socket soc or zero if there is an error. The IP address is

returned in network byte order.

See Also

ctl_tcp_get_local_port

124

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_get_remote_port

Synopsis

CTL_NET _PORT t ctl_tcp_get renote_port (CTL_SOCKET t soc);

Description

ctl_tcp_get_remote_port returns the port number for the TCP partner of socket soc or zero if there is an error.

The remote port is returned in network byte order.

See Also

ctl_tcp_get_local_port, ctl_tcp_get_remote_ip_addr

125

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_get_socket_connection_state

Synopsis

CTL_TCP_SOCKET_CONNECTI ON_STATE t ctl tcp_get socket connection_state(CTL_SOCKET t soc);

Description

ctl_tcp_get_socket_connection_state returns the connection state of socket soc. If soc does not identify a
socket, ctl_tcp_get_socket_connection_state returns CTL_TCP_SOCKET_STATE_CLOSED.

See Also

CTL_TCP_SOCKET_CONNECTION_STATE_t

126

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_get_socket_error

Synopsis

CTL_STATUS t ctl _tcp_get _socket _error(CTL_SOCKET t soc);

Description

ctl_tcp_get_socket_error returns the error state of the socket soc. If there is no error on the socket,
ctl_tcp_get_socket_error returns CTL_NO_ERROR, otherwise one of the following error codes:

CTL_NET_ERR_WOULDBLOCK
The operation cannot be completed without blocking and the application-layer software requested non-

blocking operation.

CTL_NET_ERR ALREADY
The requested operation has already been performed.

CTL_NET_ERR_NOTSOCK
Invalid socket descriptor.

CTL_NET_ERR_OPNOTSUPP
Option not supported.

CTL_NET_ERR NETDOMWN
Network interface is not configured or has a problem at the MAC level.

CTL_NET_ERR NETUNREACH
Network interface is not connected.

CTL_NET_ERR CONNABORTED
TCP connection aborted.

CTL_NET_ERR CONNRESET
TCP connection reset.

CTL_NET_ERR NOTCONN
Not connected.

CTL_NET_ERR_TI MEDOUT
Timed out.

CTL_NET_ERR_CONNREFUSED
The remote TCP refused our connection attempt.

CTL_NET_ERR HOSTUNREACH
The remote host does not respond.

127

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_NET_ERR_NOTEMPTY
A TCP connect call was made on a socket is already connected.

CTL_NET_ERR_DI SCON
The socket was disconnected: no further communication is possible.

128

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_get_socket_options

Synopsis

CTL_STATUS t ctl _tcp_get _socket options(CTL_SOCKET t s,
CTL_TCP_SOCKET_OPTI ONS_t *opti ons);

Description

ctl_tcp_get_socket_options copies the socket options used by socket soc into the buffer pointed to by options.

See Also

CTL_TCP_SOCKET_OPTIONS_t, ctl_tcp_set_socket_options

129

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_get_sockets

Synopsis

unsigned ctl _tcp_get_sockets(CTL_NET _PORT_ t port,
unsi gned fl ags,
CTL_SOCKET t *sockets,
unsi gned max_socket _count);

Description

ctl_tcp_get_sockets enumerates the sockets for the port port that match the conditions specified in flags. port
is specified in network byte order. When a TCP server thread is woken up, before it can do anything useful it
must first fetch a list of active sockets (on a per-port basis) using ctl_tcp_get_sockets.

flags is the bitwise-or of one or more of the flags in CTL_TCP_GET_SOCKETS_FLAG_t.

The sockets matching the combination of flags are written into the array pointed to by sockets which must have

at least max_socket_count elements.

Description

ctl_tcp_get_sockets returns the number of sockets that matched and were written into the sockets array.

See Also

CTL_TCP_GET_SOCKETS_FLAG_t

130

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_init

Synopsis

CTL_STATUS t ctl _tcp_init(unsigned socket_count,
unsi gned | i stener_count,
CTL_TCP_GEN_ISS FN t issGenCal | back);

Description

ctl_tcp_init will attempt to allocate a buffer for its state data from the general heap and then register itself with
the IP layer. The buffer allocation will be approximately:

(160 bytes * socket_count) + (48 bytes * listener_count)

Registration with the IP layer requires a small allocation as well. ctl_tcp_init must be invoked during

initialization, prior to calling any other function in the TCP group.

A pseudo-random number generating routine, issGenCallback, must be provided to make 'initial send
segments', CTL_TCP_GEN_ISS_FN_t.

In general, the free-running accumulator from the hardware timer that drives ctl_get_current_time is used for

this purpose so the network library can provide a one-size-fits-all solution.

See Also

CTL_TCP_GEN_ISS_FN_t

131

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_look_ahead

Synopsis

size t ctl_tcp_l ook_ahead(CTL_SOCKET t soc,
char ch);

Description

ctl_tcp_look_ahead looks ahead to find the character ch in the received (but as yet unread) data for the socket
soc.

ctl_tcp_look_ahead returns the number of characters that can be read from the socket such that the data on the

socket is exhausted or the character ch is the terminating character read.

You can use ctl_tcp_look_ahead, for instance, to search for specific characters in the stream.

See Also

ctl_tcp_read_line

132

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_push

Synopsis

CTL_STATUS t ctl _tcp_push(CTL_SOCKET t s);

Description

ctl_tcp_push sends any data queued on socket s to the network layer for transmission. Socket s must first be in
the connected state, CTL_TCP_SOCKET_STATE_CONNECTED, or ctl_tcp_push fails.

ctl_tcp_push is equivalent to calling ctl_tcp_send with no data and the push flag set.

133

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_read_line

Synopsis

CTL_STATUS t ctl _tcp_read_ |ine(CTL_SOCKET t s,
char *str,
size t size,
CTL_TI MEQUT_t type,
CTL_TIME_t tineout);

Description

ctl_tcp_read_line reads a whole line up to and including the CR and optional LF from the socket s. size is the

size of the string that the line is returned in.

If the whole string cannot be placed into str, characters beyond the end of the string, up to the end of the line,

are discarded.

ctl_tcp_read_line returns the number of characters that have been consumed from the socket s which may be

greater than the length of the returned string or size.

See Also

ctl_tcp_look_ahead

134

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_recv

Synopsis

CTL_STATUS t ctl _tcp_recv(CTL_SOCKET t s,
voi d *buf,
size t bufLen,
CTL_TI MEQUT_t type,
CTL_TIME_t timeout);

Description

ctl_tcp_recv receives up to bufLen bytes into buf from socket soc.

Socket soc must first be in the connected state, CTL_TCP_SOCKET_STATE_CONNECTED, or ctl_tcp_recv will fail.
buf may be null, in which case up to bufLen bytes are discarded from the input stream.

The timeout value timeout can be zero to indicate a non-blocking call. If that is the case, this routine will retrieve
as much data as it can (up to bufLen) from the socket and immediately return. In a blocking call, multiple passes
across the task synchronization between the network task and the calling task may be required before the entire
bufLen is received.

ctl_tcp_recv returns the count actually received for success or a standard CTL error code if the socket failed. A

non-blocking call that received at least one byte but fewer than bufLen bytes is considered 'successful'.

Note

ctl_tcp_recv must not be called from the network task with a non-zero timeout. In other words, do not use the

blocking version of this function in a TCP server callback.

135

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_send

Synopsis

CTL_STATUS t ctl _tcp_send(CTL_SOCKET t s,
const void *buf,
size t len,

CTL_TI MEQUT_t type,
CTL_TIME_t timeout,
unsi gned fl ags);

Description

ctl_tcp_send sends len bytes from buf to socket s. Socket s must first be in the connected state,
CTL_TCP_SOCKET_STATE_CONNECTED, or ctl_tcp_send fails.

Setting the timeout value ms to zero indicates a non-blocking call. In this case, as much data as possible will be
passed to the MAC before returning. In a blocking call, multiple passes across the task synchronization between
the network task and the calling task may be required before the entire len is sent.

Parameter flags may be zero or a bitwise combination of the following:

CTL_TCP_SEND_PUSH
Indicates the end of the current query or response to the remote TCP. In other words, this is the final call to
ctl_tcp_send in a message.

CTL_TCP_SEND URGENT
Send out-of-band data.

CTL_TCP_SEND_NOCOPY
Perform a zero-copy send of static data. This flag indicates that buf meets the target CPU's requirement
for network DMA memory (if any) and that buf will remain in scope indefinitely. Buffer pointer buf will be

passed through the stack directly to the MAC layer instead of copying its data to network memory first.

CTL_TCP_SEND FREE
Perform a zero-copy send of dynamic data. This flag indicates that buf has been allocated by application
code using ctl_net_mem_alloc_data and that the network library is to use ctl_net_mem_free to free it

after the remote TCP acknowledges receipt.

Notes

Using the network library, the application layer has complete control over packet send coalescing. If the
CTL_TCP_SEND_PUSH flag is not set, then an outgoing packet is only sent when a complete TCP segment has
been built up. The CTL_TCP_SEND_PUSH flag will cause the buf and any previous queued send data to be sent
to the remote TCP.

If flags is CTL_TCP_SEND_PUSH, buf may be null or len may be zero; in that case all previous queued data is

sent on its way to the remote TCP.

136

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

Return Value

ctl_tcp_send returns the count of bytes actually sent for success or a negative value for fail. A non-blocking call

(timeout is zero) that sent at least one byte but less than len bytes is considered successful.

ctl_tcp_send should not be invoked from the network task with a non-zero timeout value. In other words, do

not use the blocking version of this function in a TCP server callback.

See Also

ctl_net_mem_alloc_data, ctl_net_mem_free, ctl_tcp_get_socket_state, ctl_tcp_get_socket_error

137

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_set_port_options

Synopsis

CTL_STATUS t ctl _tcp_set _port_options(CTL_NET PORT_t port,
const CTL_TCP_PORT_OPTIONS_t *options);

Description

ctl_tcp_set_port_options sets the server options for ‘bound’ TCP port port. The socDefault member of the port

options only will be applied for newly-created sockets.

ctl_tcp_set_port_options returns CTL_NO_ERROR if the call was successful otherwise an error code if port is

not a bound port.

See Also

CTL_TCP_PORT_OPTIONS_t, ctl_tcp_get_port_options

138

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_set_socket_options

Synopsis

CTL_STATUS t ctl _tcp_set_socket options(CTL_SOCKET t s,
const CTL_TCP_SOCKET_OPTIONS t *options);

Description

ctl_tcp_set_socket_options copy the data pointed to by options to the set of values used by socketsoc. This call
should be made prior to a connection being established with a remote TCP. For a client socket, it means that the
application layer should only use this function between the calls to ctl_tcp_socket and ctl_tcp_connect. For a
server socket, it means that the appropriate place to call ctl_tcp_set_socket_options is in the ‘accept’ callback

function.

See Also

CTL_TCP_SOCKET_OPTIONS_t, ctl_tcp_get_socket_options

139

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_shutdown

Synopsis

voi d ctl_tcp_shutdown(CTL_SOCKET t s);

Description

ctl_tcp_shutdown begins the three-way shutdown handshake on socket soc after all outgoing data has been
sent. Socket soc's remote TCP partner is sent a FIN packet, indicating end-of-stream. Half-open connections are

not supported—the classic socket's ‘how’ parameter is always SD_BOTH.

See Also

ctl_tcp_socket, ctl_tcp_connect, ctl_tcp_send, ctl_tcp_recy, ctl_tcp_close_socket

140

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_socket

Synopsis

CTL_SOCKET t ctl _tcp_socket(void);

Description

ctl_tcp_socket fetches a TCP socket from the pool of unused sockets. ctl_tcp_socket returns a socket index if

successful or zero for fail (i.e. no sockets were available for use).

Once a socket is allocated, application code must make a call to ctl_tcp_connect within 100 CTL_TIME_t units or

the socket will be reclaimed by the network library.

See Also

CTL_SOCKET_t, ctl_tcp_connect, ctl_tcp_send, ctl_tcp_recv, ctl_tcp_shutdown, ctl_tcp_close_socket

141

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_unbind

Synopsis

CTL_STATUS t ctl _tcp_unbind(CTL_NET _PORT t port);

Description

ctl_tcp_unbind tells the TCP layer to stop accepting connections on TCP port port. port is specified in network

byte order.

To resume accepting connections, call ctl_tcp_bind followed by ctl_tcp_accept.

See Also

ctl_tcp_unbind, ctl_tcp_accept, CTL_NET_PORT_t, ctl_tcp_init

142

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_use_callback

Synopsis

CTL_STATUS t ctl _tcp_use_cal | back(CTL_NET_PORT_t port,
CTL_TCP_SERVER FN_ t serverFn);

Description

ctl_tcp_use_callback sets serverFn to be the callback function for the the bound TCP port port. You should call

ctl_tcp_use_callback after ctl_tcp_bind but before ctl_tcp_accept. port is specified in network byte order.

‘Callback’ and ‘Event’ TCP server models are mutually exclusive—invoking this function will nullify the behavior

set in a previous call to ctl_tcp_use_event.

See Also

ctl_tcp_use_event, ctl_tcp_use_callback, ctl_soc_use_event, ctl_tcp_accept, ctl_tcp_bind

143

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_use_event

Synopsis

CTL_STATUS t ctl _tcp_use_event (CTL_NET_PORT_t port,
CTL_EVENT_SET t *wake_event,
CTL_EVENT_SET_t wake_val ue);

ctl_tcp_use_event assigns the wake event pointer and value used for sockets used by a TCP server on port port.
‘Callback’ and ‘event’ TCP server models are mutually exclusive—invoking this function will nullify the behavior
set in a previous call to ctl_tcp_use_callback.

See Also

ctl_tcp_use_callback, ctl_soc_use_callback, ctl_soc_use_event

144

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_udp_bind

Synopsis

CTL_STATUS t ct| _udp_bi nd(CTL_NET_PORT t port,
CTL_UDP_RECV_FN_ t call back);

Description

ctl_udp_bind registers the callback function callback for received datagrams on UDP port port. To unbind a

port to enable reuse of the port's resources, use ctl_udp_unbind.

ctl_udp_bind returns CTL_NO_ERROR if the call was successful; i.e. the number of bound ports was less than the

value passed to ctl_udp_init.

See Also

CTL_UDP_RECV_FN_t, ctl_udp_unbind

145

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_udp_init

Synopsis

CTL_STATUS t ctl _udp_init(const CTL_UDP_CONFI GURATION t *init_data);

Description

The configuration parameter max_bound_ports sets the maximum number of bound UDP ports. The UDP layer
will attempt to allocate a buffer for its state data, of approximately eight bytes times max_bound_ports, and

then register the UDP layer with the IP layer.

The configuration parameters min_ephemeral_port and max_ephemeral_port define the UDP ephemeral port

range.

You can elect to use a default configuration by passing a null pointer for init_data. In this case, the UDP layer is
initialized with a maximum of 20 bound UDP ports with the ephemeral UDP port range being between 1024 and
65535.

Note

ctl_udp_init must be called prior to calling ctl_udp_bind.

See Also

CTL_UDP_RECV_FN_t, ctl_udp_bind

146

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_udp_sendto

Synopsis
voi d ctl_udp_sendto(void *data,
size_t byte_count,

const CTL_UDP_INFO t *info,
unsi gned fl ags);

Description

ctl_udp_sendto sends a UDP datagram to a remote host. The member other_port of info is the remote port and

the member otherlpAddr of info is the remote IP address.

ctl_udp_sendto will return almost immediately, after the outgoing datagram has been queued for transmission
by the MAC layer or queued for ARP hold at the IP layer.

The UDP datagram will be dropped by the network library if:

* The destination IP address is not on the local subnet (as returned by ctl_net_is_local_ip_address) and no
gateway is configured, or

* The network library cannot allocate an Ethernet transmission frame for the datagram, or

* The network library cannot allocate network memory for the datagram payload.

flags may be zero or one of the following:

CTL_UDP_SENDTO_NOCOPY
Perform a zero-copy send of static data. This flag indicates that data meets the target CPU's requirement
for network DMA memory (if any) and that data will remain in scope indefinitely. Buffer pointer data will be
passed through the stack directly to the MAC layer instead of copying its data to network memory first.

CTL_UDP_SENDTO_FREE
Perform a zero-copy send of dynamic data. This flag indicates that data was allocated by application code

using ctl_net_mem_alloc_data and that the library is to use ctl_net_mem_free to free it after it is sent.

See Also

CTL_UDP_INFO_t, ctl_udp_init, ctl_udp_bind, ctl_net_mem_alloc_data, ctl_net_mem_free

147

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_udp_unbind

Synopsis

CTL_STATUS t ctl _udp_unbi nd(CTL_NET_PORT_t port);

Description

ctl_udp_unbind unregisters any associated callback function associated with UDP port port.
ctl_udp_unbind returns CTL_NO_ERROR if the call was successful; i.e. the port is current bound, otherwise an
error code.

See Also

CTL_UDP_RECV_FN_t, ctl_udp_init

148

CrossWorks TCP/IP Library

<ctl net hw.h>

Overview

CrossWorks TCP/IP Library

This is the private set of functions and types that are required to implement a MAC or PHY driver when porting

the Network Library to a new device.

APl Summary

Constants

CTL_NET_ETHERNET_HEADER_SIZE
CTL_NET_ETHERNET_PDU_SIZE

Types
CTL_ETH_RX_FRAME_t
CTL_ETH_TX_FRAME_t
CTL_NET_INTERFACE_t
MAC
CTL_MAC_STATE_t
CTL_NET_MAC_DRIVER _t
ctl_mac_get_state
ctl_mac_init
ctl_mac_send
ctl_mac_update

ctl_mac_wake_net_task

ctl_net_process_received_frame

PHY
CTL_NET_PHY_DRIVER _t
CTL_PHY_ERROR _t
CTL_PHY_STATE_t

ctl_net_get_phy_name

ctl_net_read_phy_operating_mode

ctl_net_read_phy_register

ctl_net_read_phy_state

ctl_net_search_for_first_phy

ctl_net_update_phy
ctl_phy_read_id

The number of bytes in an Ethernet header

The size of the PDU of a Ethernet Il frame

Receive frame buffer descriptor
Transmit frame descriptor

A network interface

MAC states

MAC driver

Return MAC state

MAC-layer driver initialization function
Send Ethernet frame to MAC

Wapper for MAC update

Wake network task for MAC event

Process received frame

PHY driver

RMII, MII, and PHY layer errors
PHY state

Get PHY name

Returns PHY operating mode
Read a PHY register

Read state of the PHY driver
Search for attached PHY
PHY-layer update function
Read the PHY ID

149

CrossWorks TCP/IP Library

ctl_phy_reset
Mil
CTL_NET_MAC_MII_DEFERRED READ_FN t

ctl_mac_mii_deferred_read

ctl_mac_mii_deferred_read_result
ctl_mac_mii_read

Memory management
CTL_NET_MEM_DRIVER_t
ctl_net_set_mem_driver

Utility
ctl_net_do_mac_dis_connect
Stock PHY drivers
ctl_phy_Im3s_init_driver

Frames

CTL_ETH_HEADER _t

CrossWorks TCP/IP Library

Reset the PHY

Initiates a read of the MIl management interface

Initiate an asynchronous read of the MIl management
interface

Get result of last asynchronous Ml read

Read the MIl management interface

Network stack memory manager

Set the network memory allocator

Signal change of media connection state

Luminary Stellaris integrated PHY driver setup

802.3 Ethernet Header

150

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_ETH_HEADER_t

Synopsis

typedef struct {
unsi gned short _ required_align;
unsi gned char et hDst Mac[];
unsi gned char ethSrcMac[];
unsi gned short et hType;
} CTL_ETH HEADER t;

Description

The Ethernet header is 14 bytes long. In order to make the subsequent IP and TCP/UDP headers align on a 32-bit
word, an extra short is added to the start of the structure. The 1536 byte frame buffer passed back and forth with
the hardware actually begins at ðDstMac[O0].

Some MAC layers have a short word length field preceding the Ethernet header when the data is sent/received
to the hardware. The __r equi r ed_al i gn short mentioned in the preceding paragraph is used for that
purpose. An example of this is the Ethernet FIFO on the Tl LM3S Stellaris devices.

151

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_ETH_RX_FRAME_t

Synopsis

typedef struct {
CTL_ETH HEADER t *dat a;
unsi gned byt eCount ;
unsi gned et hAndl pByt eCount ;
} CTL_ETH RX_FRAME t;

Description

For frame-based MACs (LPC2xxx, STR91x, SAM7X), there is a rotating ring of receive frame buffers that are passed

to the network task during processing of received frames.

For FIFO-based MACs (Stellaris, ENC28J60), there is a single static receive frame buffer that is filled and then

passed to the network task as frames arrive.

In either case, the stack or application code must not hold on to any data in the received frame outside the
context of ctl_net_process_received_frame, nor should it block in ctl_net_process_received_frame (which
includes any UDP callback handler).

The members are:

dat a
Pointer to the complete Ethernet receive frame; the Ethernet header and payload data are held in a single

chunk, unlike transmission frames which separate header and payload.

byt eCount
The total count of bytes in the received Ethernet frame, which excludes the __r equi r ed_al i gn member

in the Ethernet header, and excludes the FCS appended by the transmitting MAC.

et hAndl pByt eCount
Set in the IP layer. The offset of the start of the TCP, UDP, or ICMP header after IP options have been parsed,
relative to the start of the Ethernet frame, excluding the alignment short.

152

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_ETH_TX_FRAME_t

Synopsis

typedef struct {
CTL_ETH HEADER t *header;
unsi gned short header_byte_count;
unsi gned short payl oad_byte_count;
voi d *payl oad;
voi d *payl oad_free;

} CTL_ETH TX FRAME t;

Description

Transmit frames are allocated from the network stack's private heap by the highest-level stack code (TCP or UDP
or ICMP) and then passed down the stack to the MAC layer, which ctl_net_mem_free()s the memory allocated to
the frame and its header data.

A separate pointer, payload_free, is provided for the MAC layer to free payload data. This is decoupled from the
actual 'payload' pointer for a number of reasons:

* TCP payload data is not freed from the MAC layer; a null pointer does double duty as a 'do not free' flag.
* It can be desirable for the "payload" data to be a subset of a larger block of memory which should all be
freed on transmit completion.

» With fragmented IP packets, the entire buffer is freed after the final fragment is transmitted.
The members are:

header
A pointer to the header data to transmit, guaranteed to be correctly aligned for the MAC. Data transmission
starts with header - >et hDst Mac.

header byte count
The number of header bytes to transmit. This byte count always excludes the __requi red_al i gn
member from the count. Frames presented to the MAC driver for transmission are guaranteed that
header _byt e_count +2 is divisible by four.

payl oad
A pointer to the payload data, if any, and guaranteed to be correctly aligned for the MAC. If there is no
payload, this member must be set to zero.

payl oad_byt e_count
The number of bytes in the payload. If there is no payload, this member must be set to zero.

payl oad_free
The data to free once the frame is sent. If there is nothing to free, this member must be zero.

153

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_MAC_STATE_t

Synopsis

typedef enum {
CTL_MAC_STATE_FATAL_ERROR
CTL_MAC_STATE_NO_LI NK,
CTL_MAC_STATE_NEEDS_REI NI T,
CTL_MAC_STATE_CONNECTED

} CTL_MAC STATE t;

Description

CTL_MAC_STATE_t defines the internal states that the MAC state machine may go though. A MAC driver can

use this to maintain its internal state.

154

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_NET_ETHERNET_HEADER_SIZE

Synopsis

#define CTL_NET_ETHERNET HEADER S| ZE (6+6+2)

Description

CTL_NET_ETHERNET_HEADER_SIZE defines the number of bytes in an Ethernet Il header. The Ethernet
header comprises six bytes of source MAC address, six bytes of destination MAC address, and two bytes for the
EtherType field.

Note that we do not support 802.1Q VLAN tagging nor do we support non-Ethernet LAN protocols that rely on
IEEE 802.2 LLC encapsulation at present.

155

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_NET_ETHERNET_PDU_SIZE

Synopsis

#define CTL_NET_ETHERNET PDU_SI ZE 1500

Description

CTL_NET_ETHERNET_PDU_SIZE defines the number of bytes of payload data (the network PDU) in an Ethernet
Il frame.

In general, when dealing with Ethernet MAC drivers, we have:

A 16-bit padding shor t , 2 bytes. (Required to align TCP headers)
Destination MAC, 6 bytes.

Source MAC, 6 bytes.

Ethernet Type/Frame Size, 2 bytes. (16 bits, including padding)
Payload of 1,500 bytes.

FCS, 4 bytes.

AN L o e

Excluding the padding, 1518 bytes. Including the padding, 1520 bytes, which is divisible by four.

156

CrossWorks TCP/IP Library

CTL_NET_INTERFACE_t

Synopsis

typedef struct {
CTL_NET_MAC DRI VER t nmc;
CTL_NET_PHY_DRI VER t phy;
} CTL_NET_| NTERFACE t;

Description

CTL_NET_INTERFACE_t describes a single network interface.

Structure

mac

The MAC driver that the network interface uses.

phy
The PHY driver associated with the MAC interface.

157

CrossWorks TCP/IP Library

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_NET_MAC_DRIVER_t

Synopsis
typedef struct {
CTL_NET_MAC ADDR t nmc_addr;
CTL_NET_MAC INIT_FN_ t init_fn;
CTL_NET_MAC_UPDATE_FN_t update_fn;
CTL_NET_MAC GET_STATE FN t get _state_ fn;
CTL_NET_MAC SEND FN t send_fn;
CTL_NET_MAC_MULTI CAST_ACCEPT_FN t nul ticast_accept _fn;
CTL_NET_MAC_MULTI CAST_QUERY_FN t mul ti cast_query_fn;
CTL_NET_MAC M| _WRITE FNt nii_wite_fn;
CTL_NET_MAC M| _READ FN t mii_read_fn;
CTL_NET_MAC M| _DEFERRED READ FN t nii_deferred read fn;
CTL_NET_MAC M | _DEFERRED READ RESULT FN t mi_deferred read result _fn;
CTL_NET_MAC_SELECT_PHY_FN_t sel ect _phy_fn;
CTL_NET_MAC PRI VATE s *devi ce;
} CTL_NET_MAC DRI VER t;
Associated types
typedef CTL_STATUS t (*CTL_NET_MAC I NI T_FN t)(CTL_NET_ I NTERFACE t *);
typedef void (*CTL_NET_MAC UPDATE_FN t) (CTL_NET | NTERFACE t *, unsigned);
typedef CTL_MAC STATE t (*CTL_NET_MAC GET STATE FN t) (CTL_NET | NTERFACE t *);
typedef void (*CTL_NET_MAC SEND FN t) (CTL_NET I NTERFACE t *, CTL_ETH TX FRAME t *);

typedef unsigned (*CTL_NET_MAC MULTI CAST ACCEPT FN t)(CTL_NET_I NTERFACE_t *, const
CTL_NET_MAC ADDR t *, unsigned);

typedef unsigned (*CTL_NET_MAC MJLTI CAST_QUERY_FN t) (CTL_NET_I NTERFACE_t *, const
CTL_NET_MAC ADDR t *);

typedef CTL_STATUS t (*CTL_NET_MAC M| _WRI TE FN t)(CTL_NET INTERFACE t *, int , int);
typedef CTL_STATUS t (*CTL_NET_MAC M| _READ FN t)(CTL_NET | NTERFACE t *, int);

typedef CTL_STATUS t (*CTL_NET_MAC M | _DEFERRED READ FN t)(CTL_NET | NTERFACE t *, int);
typedef CTL_STATUS t (*CTL_NET_MAC M | _DEFERRED READ RESULT FN t)(CTL_NET | NTERFACE t *);

typedef CTL_STATUS t (*CTL_NET_MAC_SELECT_PHY_FN_t) (CTL_NET_| NTERFACE t *);

Description
CTL_NET_MAC_DRIVER_t holds the data and functions that handle the MAC layer.

mac_addr
The Ethernet MAC address that the network interface uses. You must set this before calling init_fn.

158

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

init_fn
This should return non-zero if MAC hardware initialization was successful.

update_fn
The network stack will call update_fn called periodically (with a non-zero isHousekeeping) or when the

network task is activated by ctl_mac_wake_net_task.

get_state_fn
The network stack will will call get_state_fn to query the state of the MAC in various layers.

send_fn
The IP layer will call send_fn to send a frame to the MAC for transmission. send_fn must be thread-safe.

multicast_accept_fn
Enable or disable accepting packets given the layer 2 destination address. Returns non-zero if successful.

multicast_query_fn
Returns non-zero if the MAC layer is currently accepting mulitcast packets with the given MAC address.

mii_write_fn
Writes to a PHY register. This doesn't need to be thread-safe as it is only called from the network task.

mii_read_fn
Reads a PHY register. This doesn't need to be thread-safe as it is only called from the network task.

mii_deferred_read_fn
Start a deferred read of an Mll register. The result will be read by calling mii_deferred_read_result_fn.

mii_deferred_read_result_fn
Return the PHY register requested by mii_deferred_read_fn. If the result is not ready, return

CTL_PHY_AGAIN, or an error code if there is an error, else the register contents.

select_phy_fn
Select the appropriate PHY attached to the MAC.

device
Additional MAC data, if any.

159

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_NET_MAC_MII_DEFERRED_READ_FN_t

Synopsis

typedef CTL STATUS t (*CTL_NET_MAC M | _DEFERRED READ FN t)(CTL_NET | NTERFACE t *, int);

Description

CTL_NET_MAC_MII_DEFERRED_READ_FN_t is the MAC-layer MIl management interface deferred read function
signature. This function in the network interface initializes a read of the MIl/RMIl management interface and

immediately returns.

160

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_NET_MEM_DRIVER_t

Synopsis

typedef struct {
CTL_NET_MEM FREE_FN_ t free_fn;
CTL_NET_MEM ALLOC FN_ t alloc_xmt_fn;
CTL_NET_MEM ALLOC FN_ t alloc_data_fn;
CTL_NET_MEM TRIM FN_t trimfn;

} CTL_NET_MEM DRI VER t;

Description

In order to get the most flexibility out of a limited resource, the network library dynamically allocates RAM where
and when it needs it. Systems that have dedicated Ethernet memory may use the network stack's built-in ‘net
memory manager’ to manage the pool of Ethernet memory that is used for outgoing frames and TCP and UDP
buffers.

Targets that don't have dedicated Ethernet memory may still benefit from using the net memory manager.
Because the stack memory allocations are extremely transitory, more often than not there is no net memory
allocated and the net memory heap is thus not fragmented. Using a private sub-heap is much more efficient

than using the general heap in this particular case.

If you must squeeze every last bit of flexibility from dynamic RAM, then there is a stack version of the net
memory manager that uses the general heap. You gain access to "all" of the heap, but you will be sharing it with

the rest of the application and you will take a performance hit because of fragmentation issues.

The MAC layer is responsible for freeing net memory. After transmit, it should call ctl_net_mem_free

on transmit frames (and their data) that it gets from the higher stack layers. The hdrData pointer of the
CTL_ETH_TX_FRAME_t should always be ctl_net_mem_free'd, as well as the payload_free pointer (if it is non-
null) and the CTL_ETH_TX_FRAME_t itself.

ctl_net_mem_alloc_xmit and ctl_net_mem_alloc_data both allocate memory for the network stack. The
difference is that ctl_net_mem_alloc_xmit will attempt to take every last byte in the heap if that is what is

required, while ctl_net_mem_alloc_data will attempt to leave a few bytes for future transmit allocations.

The reason for this duality is to prevent a potential fatal embrace whereby there is data available to be sent, but
a transmit frame cannot be allocated to send it. Application code should always use ctl_net_mem_alloc_data

when allocating memory from the network heap.

free_fn
Method to free previously-allocated memory.

alloc_xmt_fn
Method to allocate data for a transmit frame.

all oc_data fn
Method to allocate data for payload.

161

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

See Also

CTL_NET_MEM_FREE_FN_t, CTL_NET_MEM_ALLOC_FN_t

162

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_NET_PHY_DRIVER __t

Synopsis

typedef struct {
int addr;
unsi gned short operating_node;
unsi gned short configuration_flags;
unsi gned short mii_node;
unsi gned short auto_negoti ati on;
CTL_NET_PHY_INIT_FN_t init_fn;
CTL_NET_PHY_UPDATE_FN_t update_fn;
CTL_PHY_STATE t state;
CTL_MJTEX_t nut ex;
const char *namne;

} CTL_NET_PHY_DRI VER t;

Description

CTL_NET_PHY_DRIVER_t contains data and hardware-specific function overloads for the PHY layer. The
CTL_NET_PHY_DRIVER_t structure has the following members:

addr
The address of the PHY in use, 0 through 31. The network stack sets this member before initializing the PHY

using init_fn.

flags
The PHY-layer flags including link capability and operating mode.

state
The logical state of the PHY. This member must only be written by the update_fn method, to reflect the
current link state.

init fn
The MAC layer should call the wrapper version of this function, ctl_phy_init, during hardware initialization,
after the Mll is initialized.

update_fn
The network task will periodically call the wrapper version of this function, ctl_net_update_phy, to update
the PHY state.

mut ex
When user-level code wants access to PHY registers, this holds off the periodic functions so we can
access the PHY ourselves. There is no need for direct access to this mutex as the wrapper functions
ctl_net_read_phy_register and ctl_net_get_phy_state lock the mutex to prevent simultaneous access by

the network task.

nane
The device name of the PHY.

163

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

See Also

ctl_net_update_phy, ctl_net_get_phy_state, ctl_net_read_phy_operating_mode,
ctl_net_read_phy_register.

164

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_PHY_ERROR_t

Synopsis

typedef enum {
CTL_PHY_M | _READ FAI LURE,
CTL_PHY_M | _VRI TE_FAI LURE,
CTL_PHY_RESET_FAI LURE,
CTL_PHY_NGOT_FOUND,
CTL_PHY_I NCORRECT_I D,
CTL_PHY_UNSUPPORTED | D,
CTL_PHY_AGAI N

} CTL_PHY_ERROR t;

Description

CTL_PHY_ERROR _t defines the potential errors from the Mil, RMII, and PHY.

165

CrossWorks TCP/IP Library

CTL_PHY_STATE_t

Synopsis

typedef enum {
CTL_PHY_STATE_ERROR,
CTL_PHY_STATE_NO_LI NK,
CTL_PHY_STATE_NEGOTI ATI NG,
CTL_PHY_STATE_LI NKED,
CTL_PHY_STATE_| NI TI ALI ZE
} CTL_PHY_STATE t;

Description

CrossWorks TCP/IP Library

CTL_PHY_STATE_t is the set of values that a PHY driver should report as its ‘state’ to the outside world, even if its

actual state machine is more complicated than that represented here.

CTL_PHY_STATE_I NI TI ALI ZE
Indicates that the PHY requires initializing.

CTL_PHY_ STATE ERROR
An error prevents the PHY from operating.

CTL_PHY_STATE_NO_LI NK
The Ethernet cable or other media is unplugged.

CTL_PHY_STATE_NEGOTI ATI NG
The PHY is negotiating duplex and transmission rate with its partner.

CTL_PHY_STATE_LI NKED

The PHY and its partner have completed negotiating, the link is active.

See Also

ctl_net_get_phy_state

166

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_mac_get_state

Synopsis

CTL_MAC STATE t ctl _nmac_get state(CTL_NET_I NTERFACE t *sel f);

Description

ctl_mac_get_state returns the MAC state for the network interface self.

167

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_mac_init

Synopsis

CTL_STATUS t ct| mac_init(CTL_NET | NTERFACE t *self);

Description

init_fn member of the the CTL_NET_MAC_DRIVER_t driver. You need to call ctl_mac_init from your application

code. ctl_mac_init returns a MAC-layer or PHY-layer error status.

See Also

CTL_NET_MAC_DRIVER _t, ctl_phy_init

168

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_ mac_mii_deferred_read

Synopsis

CTL_STATUS t ctl _mac_m i _deferred_read(CTL_NET_| NTERFACE t *net,
int reg);

Description

ctl_mac_mii_deferred_read is a wrapper around the mii_deferred_read_fn member of the network MAC

driver.

The valid range for devAddr is 0 through 31 and needs to match the PHY chip's physical address, which is
typically set on the PHY hardware using strapping pins. See your PHY chip's datasheet for valid values of reg.

You can retrieve the result of the deferred read using ctl_mac_mii_deferred_read_result.

See Also

ctl_mac_mii_deferred_read fn_t, CTL_NET_MAC_DRIVER_t, ctl_mac_mii_deferred_read_result

169

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_ mac_mii_deferred _read result

Synopsis

CTL_STATUS t ctl _mac_m i _deferred_read result(CTL_NET | NTERFACE t *net);

Description

ctl_mac_mii_deferred_read_result returns the result of the last read of the MIl management interface without

blocking or busy-wait. This is a wrapper around the mii_deferred_read_result_fn member of the network driver.

Return values are the same as ctl_mac_mii_read: negactive for failure, a number between 0 and OxFFFF

(inclusive) for success.

See Also

ctl_mac_mii_deferred_read_fn_t, CTL_NET_MAC_DRIVER_t

170

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_mac_mii_read

Synopsis

CTL_STATUS t ctl _mac_mii _read(CTL_NET_| NTERFACE t *net,
int reg);

Description

ctl_mac_mii_read busy-waits until the result is available. This is a wrapper around the mii_read_fn member of
the network MAC driver.

The valid range for devAddr is 0 through 31 and needs to match the PHY chip's physical address, which is
typically set on the PHY hardware using strapping pins. See your PHY chip's datasheet for valid values of reg.

Return values are negative for failure, a number between 0 and OxFFFF (inclusive) for success.

See Also

ctl_mac_mii_read_fn_t, CTL_NET_MAC_DRIVER t, ctl_mac_mii_deferred_read

171

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_mac_send

Synopsis

void ctl_nac_send(CTL_ETH TX FRAME t *frane);

Description

ctl_mac_send sends the Ethernet frame frame to the MAC for transmission. Note that this can be called from
any thread, not just the network thread dealing with TCP segments. For instance, UDP frames are sent in the

context of the sending thread.

172

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_mac_update

Synopsis

voi d ctl_nac_updat e(unsi gned i sHousekeepi ng) ;

Description

ctl_mac_update is a wrapper for the updat e method of the network interface.

173

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_mac_wake net task

Synopsis

voi d ctl_nac_wake_net task(void);

Description

ctl_mac_wake_net_task must be called by the MAC-layer driver's interrupt service routine when there is action
to be taken in the network stack task. ctl_mac_wake_net_task will wake the network task, which will call

ctl_mac_update in due course.

See Also

ctl_mac_update, ctl_net_process_received_frame

174

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl net do mac_dis connect

Synopsis

void ctl_net_do_nac_di s_connect (voi d);

Description

ctl_net_do_mac_dis_connect signals to the network stack that the media connected to an network interface
has changed state, such as unplugging or plugging the Ethernet cable.

It is intended that MAC-layer or PHY-layer drivers call ctl_net_do_mac_dis_connect when they detect that
the media has changed as the PHY will renegotiate its operating parameters and the MAC may well need to
be reconfigured for inter-packet gaps and so on. In addition, the network stack must renegotiate its DHCP

parameters.

175

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_get_phy_name

Synopsis

char *ctl_net_get phy nane(CTL_NET | NTERFACE t *sel f);

Description

ctl_net_get_phy_name returns the name of the PHY driver attached to the network interface self.

176

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_process_received_frame

Synopsis

void ctl_net_process_received frame(CTL_ETH RX FRAME t *frame);

Description

ctl_net_process_received_frame should be called by the network interface's MAC update function for each

Ethernet frame the interface receives.

177

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_read_phy_operating_mode

Synopsis

int ctl_net_read_phy operating_nmode(CTL_NET_| NTERFACE t *sel f);

Description

ctl_net_read_phy_operating_mode returns the PHY flags for the network interface net.

See Also

CTL_NET_PHY_DRIVER_t

178

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_read_phy_register

Synopsis

CTL_STATUS t ctl _net _read_phy_register(CTL_NET_| NTERFACE t *sel f,
int reg);

Description
ctl_net_read_phy_register reads PHY register reg from the PHY associated with the network interface self.

You can call this from any task to read the PHY register as access to the MAC and PHY is protected by a mutex.

Return Value

ctl_net_read_phy_register returns a standard status code.

179

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_read_phy_state

Synopsis

CTL_PHY _STATE t ctl _net_read_phy state(CTL_NET_| NTERFACE t *sel f);

Description

ctl_net_read_phy_state is a wrapper for the get_state_fn member of the PHY-layer driver.

See Also

CTL_NET_PHY_DRIVER_t, CTL_PHY_STATE _t

180

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_search_for_first_phy

Synopsis

CTL_STATUS t ctl _net _search_for_first_phy(CTL_NET | NTERFACE t *net);

Description

ctl_net_search_for_first_phy tries to read the PHY identification registers from each PHY on the

MAC interface net, starting at address zero and progressing through address 31. If a PHY is found,
ctl_net_search_for_first_phy returns the address corresponding to that PHY and the PHY address is set in the
network interface's PHY driver. If no PHY is found, ctl_net_search_for_first_phy returns CTL_PHY_NOT_FOUND.

Return Value

ctl_net_search_for_first_phy returns a standard status code.

181

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl net set mem_driver

Synopsis

void ctl_net_set _nmemdriver(const CTL_NET _MEM DRI VER t *nem;

Description

ctl_net_set_mem_driver sets the memory driver to mem.

182

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_update_phy

Synopsis

voi d ctl_net update phy(CTL_NET_I NTERFACE t *sel f);

Description

ctl_net_update_phy is a wrapper around the update_fn of the PHY layer driver. It is called periodically by the
CTL stack task when nothing else is happening.

183

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_phy_Im3s_init_driver

Synopsis

void ctl_phy InBs_init_driver(CTL_NET_PHY DRI VER t *self);

Description

ctl_phy_Im3s_init_driver initializes driver with functions that implement the PHY state machine for the
Luminary Stellaris integrated PHY.

184

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_phy_read_id

Synopsis

CTL_STATUS_t ctl _phy_read_i d(CTL_NET_I NTERFACE_t *sel f,
unsi gned | ong *id);

Description

ctl_phy_read_id reads the PHY device identification register. The ID is returned with the least significant four
bits, which indicates the PHY revision, set to zero.

Return Value

ctl_phy_read_id returns a standard status code.

185

CrossWorks TCP/IP Library

ctl_phy_reset

Synopsis

CTL_STATUS t ctl _phy reset (CTL_NET | NTERFACE t *sel f);

Description

ctl_phy_reset resets the PHY using the standard BMCR register.

Return Value

ctl_phy_reset returns a standard status code.

186

CrossWorks TCP/IP Library

CrossWorks TCP/IP Library

<ctl_net_private.h>

APl Summary

IP

CTL_IPV4_HEADER_t
CTL_IP_STATS_t

Utility
ctl_eth_tx_frame_total_count
ctl_ipv4_rx_payload_start
Transmission Frames
ctl_eth_alloc_tx_frame
ctl_eth_free_tx_frame

ARP

ctl_arp_init

IP Function
ctl_ipv4_rx_payload_byte_count
Utility functions
ctl_ipv4_make_multicast_mac_addr
TCP

ctl_net_calc_cksum

ctl_net_normalize_cksum_and_comp

ctl_net_sum_bytes
ctl_tcp_register_stats
*** UNASSIGNED GROUP ***

ctl_dns_register_stats

CrossWorks TCP/IP Library

IPv4 header

IP statistics

Compute total Ethernet frame size

Get a pointer to receive frame's payload

Allocate a transmission frame

Free a transmission frame

Initialize ARP

Calculate IPv4 payload length

Create a multicast MAC address

Calculates the TCP checksum over 16-bit data

Normalize and complement a calculated TCP
checksum

Calculates the TCP checksum over 16-bit data

Register TCP statistics

Register statistics for the DNS module

187

CrossWorks TCP/IP Library

CTL_IPV4_HEADER_t

Synopsis

typedef struct {
unsi gned short _ required_align;
unsi gned char et hDst Mac[];
unsi gned char ethSrcMac[];
unsi gned short et hType;
unsi gned char ipVerH ;
unsi gned char i pDif ServEcn;
unsi gned short ipTotal Len;
unsi gned short ipldent;
unsi gned short i pFl agsFragdfst;
unsi gned char ipTtl;
unsi gned char i pProtocol ;
unsi gned short i pHdr Checksum
unsi gned | ong i pSrcAddr;
unsi gned | ong i pDst Addr ;
unsi gned short ipOptions[];
} CTL_| PVA_HEADER t;

Description

CrossWorks TCP/IP Library

CTL_IPV4_HEADER _t describes the layout of the IPv4 header. We include the Ethernet header because they are
always adjacent. But this is the last layer we can do this with. Because of the variable-length ipOptions field, we

can't fix where the start of the transport (or user datagram) layer is after the IP layer.

188

CrossWorks TCP/IP Library

CTL_IP_STATS_t

Synopsis

typedef struct {

| ong rxPackets;

| ong badRxHdr Si ze;

| ong checksuntail ;

| ong badRxSi ze;

| ong prom scousPacket ;

| ong rxBroadcast Packet ;

| ong badRxProt ;

| ong sendFragMal | ocFail ;

| ong unsupport edProt ocol ;

| ong t xFranmesDropped;

| ong txFranmesHel dFor ARP;

| ong txFramesDi rect TOMAC,
} CTL_I P_STATS t;

Description
CTL_IP_STATS_t holds the statistics related to IP.

t xFr anesHel dFor ARP

CrossWorks TCP/IP Library

The number of frames that required ARP lookup before being passed to the MAC driver.

t xFranesDi r ect ToMAC

The number of frames passed directly to the MAC driver as the Ethernet address of the frame is known

without broadcasting an ARP request for it.

189

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_arp_init

Synopsis

CTL_STATUS t ctl _arp_init(void);

Description

ctl_arp_init before initializing other protocols.

By default the ARP cache will use the system memory allocator ctl_system_memory_allocator to allocate its
cache. If you want to use a different memory allocator, for instance to dedicate a fixed memory size to the ARP

cache, you can replace the default allocator using ctl_arp_set_memory_allocator.

Thread Safety

ctl_arp_init is thread-safe.

See Also

ctl_arp_set_cache_size

190

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_dns_register_stats

Synopsis

void ctl_dns_register_stats(void);

191

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_eth alloc_tx frame

Synopsis

CTL_ETH TX FRAME t *ctl _eth_alloc_tx franme(size t header_byte count,
CTL_TIME_t tineout);

Description

ctl_eth_alloc_tx_frame allocate a new transmission frame from network memory and initializes fields within the
frame. A header is allocated and assigned to the header member of the allocated frame. header_byte_count is
the number of byes to allocate for the header, must be a multiple of four, and must include the alignment short.

If the header size is not a multiple of four, the frame isn't allocated.

Once allocated, the header_byte_count of the frame is initialized to the header_byte_count parameter

adjusted to remove the alignment short size.

Return Value

ctl_eth_alloc_tx_frame returns a pointer to the allocated frame or zero if the frame cannot be allocated.

192

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl eth free tx frame

Synopsis

void ctl_eth free tx frame(CTL_ETH TX FRAME t *frame);

Description

ctl_eth_free_tx_frame frees the transmission frame frame along with any memory that needs to be freed from

the frame's header and payload.

193

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_eth tx frame total count

Synopsis

unsigned long ctl _eth_tx frame_total count(const CTL_ETH TX FRAME t *frane);

Description

ctl_eth_tx_frame_total_count computes the total number of bytes in the Ethernet frame frame which is the

sum of the header size and payload size. The header size includes the 12 bytes of Ethernet header.

194

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_ipv4_make_multicast_mac_addr

Synopsis
void ctl _ipv4d _nmake_nul ticast_mac_addr (unsigned char *dst,

CTL_NET_I Pv4_ADDR t i p_addr);
Description

ctl_ipv4_make_multicast_mac_addr creates a multicast Ethernet MAC address in dst for the IPv4 address
ip_addr.

195

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_ipv4_rx_payload_byte_count

Synopsis

unsi gned ctl _i pv4_rx_payl oad_byte count (CTL_ETH RX FRAME t *frane);

196

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_ipv4_rx_payload_start

Synopsis

voi d *ctl i pv4_rx_payl oad_start(CTL_ETH RX FRAME t *rxFrane);

197

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl net _calc_cksum

Synopsis

unsi gned short ctl_net_cal c_cksun(unsi gned | ong seed,
const unsigned short *data,
size_t byte_count);

Description

ctl_net_calc_cksum calculates the checksum over an array of shorts. See RFC 1071. The returned value is 0

through 65535 with all end-around carries accounted for.

Note

Data in and out of checksum functions are in network byte order. Actually, it doesn't matter which byte order is
used as long as the answer is the same byte order.

seed contains the value calculated from the TCP or UDP pseudo-header.

198

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_normalize_cksum_and_comp

Synopsis

unsi gned short ctl_net_normalize_cksum and_conp(unsi gned | ong sum;

Description

ctl_net_normalize_cksum_and_comp normalizes the checksum sum and complements it such that the output
is a correct 16-bit TCP checksum in network byte order. See RFC 1071.

199

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_net_sum_bytes

Synopsis

unsi gned | ong ctl _net_sum bytes(unsigned | ong sum
const unsi gned char *dat a,
size_t byte_count);

Description

ctl_net_sum_bytes calculates the checksum over an array of shorts. See RFC 1071. The returned value is 0
through 65535 with all end-around carries accounted for.

Note

Data in and out of checksum functions are in network byte order. Actually, it doesn't matter which byte order is
used as long as the answer is the same byte order.

200

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ctl_tcp_register_stats

Synopsis

void ctl_tcp_register_stats(void);

Description

ctl_tcp_register_stats registers the statistics associated with TCP. Note that statistics regarding TCP are always

collected but they are exposed to the user only by registering with the statistics manager.
The statistics are:

fail ed _checksum
The number of TCP segments received with a failed checksum.

bad_| ength
The number of TCP segments received which had a bad length.

tx_mal | oc_f ai
When a TCP segment is ready for transmission, the network stack attempts to allocate a transmission frame.
If the stack fails allocate a transmission frame because there is insufficient memory, it is recorded in this
statistic.

state_error
This records the number of times that the TCP state machine is detected to be in error. This can happen

when packets arrive that do not conform to the TCP state machine.

bad nss
The number of socket connections attempted with an invalid MSS.

cnx_refused_unsupported
The TCP connection request was refused because there are no listeners registered for the port.

cnx_refused _ports
The TCP connection request was refused because the maximum number of connections are already open
for the port.

cnx_refused_sockets
The TCP connection request was refused because there are insufficient sockets in the socket pool to
establish a connection.

tx _total _retrans
The total number of retransmission requests because an ACK from the other TCP was lost.

tx_1 retrans
A count of the number of segments that required a single retransmission as an ACK form the other TCP was
lost.

201

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

tx_2 retrans
A count of the number of segments that required two retransmission as an ACK form the other TCP was lost.

t Xx_unreach
A count of the number of segments that exceeded two retransmissions and considered the other TCP
unreachable.

rx fast retrans
A count of the number of received segments that are lost and the network stack re-requested using the fast

restransmission algorithm.

202

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

<ctl_net_tcp_private.h>

APl Summary

Segments

CTL_TCP_SEGMENT _t A TCP segment

Types

CTL_TCP_APP_LAYER_CMD _t Application-layer command
CTL_TCP_SOCKET_STATE_t TCP socket states

203

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_TCP_APP_LAYER_CMD _t

Synopsis

typedef enum {
al cNone,
al cBl ockedOnWi t e,
al cBl ockedOnRead,
al cConnect ,
al cConnect AndBl ock,
al cShut down,
al cd oseHard,
al cC oseGraceful ,
al cLi ngeri ngd ose,
al cRecycl e

} CTL_TCP_APP_LAYER CMD t;

204

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_TCP_SEGMENT_t

Synopsis

typedef struct {
CTL_TCP_SEGMVENT_s *next;
size_t allocatedByteSize;
size_t byteCount;
unsi gned | ong segStart;
CTL_TIME_t timeStanp;
unsi gned | ong *freeExt ernal Buf;
unsi gned short sent Count;
unsi gned char fl ags;
unsi gned | ong data[];

} CTL_TCP_SEGMENT_t ;

Description

CTL_TCP_SEGMENT _t describes a single TCP segment in a transmit or receive queue.

next
The next segment in the list; null indicates no further segments.

al | ocat edByt eSi ze
The number of bytes allocated to segment payload data (in the dat a member).

byt eCount
The number of valid payload bytes in the payload data. This will be less than or equal to
al | ocat edByt eSi ze.

segStart
The segment start sequence number.

ti meStanp
The last ‘sent’ time for a transmit segment or ‘received’ time for a receive segment.

f r eeExt er nal Buf
Additional memory to free when the segment is itself freed. Only transmit frames set this to a non-null

value.

sent Count
A count of the number of times this frame has been sent; this is only manipulated for segments in the send

queue.

205

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_TCP_SOCKET_STATE_t

Synopsis

typedef enum {
CTL_NCP_SOCKET_STATE_UNALL OCATED,
CTL_NCP_SOCKET_STATE_CLOSED,
CTL_NCP_SOCKET_STATE_LI STEN,
CTL_NCP_SOCKET_SYN_SENT,
CTL_NCP_SOCKET_SYN_RECEI VED,
CTL_NCP_SOCKET_ESTABLI| SHED,
CTL_NCP_SOCKET FI N WAI T1,
CTL_NCP_SOCKET_FI N_WAI T2,
CTL_NCP_SOCKET_CLOSE_WAI T,
CTL_NCP_SOCKET_CLOSI NG
CTL_NCP_SOCKET_LAST_ACK,
CTL_NCP_SOCKET_TI ME_WAI T

} CTL_TCP_SOCKET_STATE t;

Description
CTL_TCP_SOCKET_STATE_t describes the state of the socket along the lines of RFC 793.

CTL_NCP_SOCKET_STATE_UNALLOCATED
NOT RFC 793...kind of like "Super Duper Closed". The RFC assumes that the system has dynamic socket

allocation; we don't.

CTL_NCP_SQOCKET_STATE_CLOSED
No connection state at all.

CTL_NCP_SOCKET_STATE_LI STEN
Waiting for a connection request from any remote TCP and port.

CTL_NCP_SOCKET_SYN_SENT
Waiting for a matching connection request after having sent a connection request.

CTL_NCP_SOCKET_SYN_RECEI VED
Waiting for a confirming connection request acknowledgment after having both received and sent a

connection request.

CTL_NCP_SOCKET_ESTABLI SHED
An open connection, data received can be delivered to the user. The normal state for the data transfer

phase of the connection.

CTL_NCP_SOCKET_FI'N WAI T1
Waiting for a connection termination request from the remote TCP, or an acknowledgment of the

connection termination request previously sent.

CTL_NCP_SOCKET_FI N_WAI T2
Waiting for a connection termination request from the remote TCP.

206

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

CTL_NCP_SOCKET_CLCSE_ WAI T
Waiting for a connection termination request from the local user.

CTL_NCP_SOCKET_CLOSI NG

Waiting for a connection termination request acknowledgment from the remote TCP.

CTL_NCP_SOCKET_LAST_ACK
Waiting for an acknowledgment of the connection termination request previously sent to the remote TCP

(which includes an acknowledgment of its connection termination request).

CTL_NCP_SOCKET_TIME_WAI T
Waiting for enough time to pass to be sure the remote TCP received the acknowledgment of its connection
termination request.

207

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

<designware_emac_v2.h>

Overview
Synopsis DesignWare 10/100 Ethernet MAC driver.
This is implemented in the following device families:

* LPC1700
» LPC2300, LPC2400
» LPC3000, LPC3100, LPC3200

APl Summary

Setup

designware_emac_v2_init_mac_driver Initialize the network interface
Control

designware_emac_v2_isr Handle network interrupt
designware_emac_v2_start Start the network interface

Status

designware_emac_v2_first_free Return extent of memory consumed

208

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

designware_emac_v2_first_free

Synopsis

voi d *designware_enmac_v2 first free(CTL_NET | NTERFACE t *sel f);

Description

designware_emac_v2_first_free returns a pointer to the first byte free for use by the application after the
allocation of transmit and receive descriptors. The client can use this to add all remaining memory to the

network heap, for example.

You can call this after initializing the network interface using designware_emac_v2_init.

See Also

designware_emac_v2_init.

209

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

designware_emac_v2_init_mac_driver

Synopsis

voi d designware_enmac_v2 init_mac_driver (CTL_NET | NTERFACE t *sel f,
void *emac,
void *mem
int tx_descriptor_count,
int rx_descriptor_count,
unsi gned cl ock,
int interruptSource);

Description

designware_emac_v2_init_mac_driver initializes the network interface self but does not start it. The
DesignWare 10/100 EMAC register interface is specified in emac and the memory required to hold the transmit

and receive descriptors is specified in mem.

The number of transmit and receive descriptors are passed in tx_descriptor_count and rx_descriptor_count.
At least two transmit descriptors are required, and transmit performance of the TCP/IP library will scale with the
number of descriptors allocated. At least one receive descriptor is required, and receive performance of the TCP/

IP library will scale with the number of descriptors allocated.

The clock provided to the module is passed in clock, in Hertz. The driver automatically configures the MAC to

divide the module clock in order to clock the management interface at a maximum of 2.5 MHz.

The interrupt source associated with the MAC is passed in interruptSource.

Note

mem must be accessible by the DMA engine of the Ethernet MAC. Please ensure that you pass an appropriate

address for the descriptors by consulting the user manual of your device.

210

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

designware_emac_v2_isr

Synopsis

voi d designware_enmac_v2 isr(CTL_NET_I NTERFACE t *sel f);

Description

designware_emac_v2_isr must be called to handle the interrupt generated by the network interface self.
designware_emac_v2_isr will iterate the transmit descriptors preparing for transmission and wake the network

task to process received packets.

211

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

designware_emac_v2_start

Synopsis

CTL_STATUS t designware_enmac_v2_start (CTL_NET_|I NTERFACE t *self);

Description

designware_emac_v2_start starts the network interface self. The start sequence calls the method to select and

initialize the PHY, initialize the receive and transmit descriptors, and enable interrupts.

Return Value

designware_emac_v2_start returns a standard status code.

212

CrossWorks TCP/IP Library

<designware_emac_v3.h>

Overview
Synopsis DesignWare 10/100 Ethernet MAC driver.
This is implemented in the following device families:

* STM32F1, STM32F2, STM32F4
» LPC1800, LPC4000, LPC4300
* XMC4500

* TMC4129x

CrossWorks TCP/IP Library

The following MAC versions are currently known and some of the marketing material from the various devices

transcribed:

Version 3.4

» |EEE 802.3-2002 standard for Ethernet MAC

* |IEEE 1588-2002 standard for precision networked clock synchronization

Present on STM32F1.

Version 3.5

» |EEE 802.3-2002 standard for Ethernet MAC

* |EEE 1588-2002 standard for precision networked clock synchronization

Present on STM32F4.

Version 3.6

Present on LPC4300.

Version 3.7

» |EEE 802.3-2008 standard for Ethernet MAC

* IEEE 1588-2008 standard for precision networked clock synchronization

Present on XMC4500 and TMC4129X.

APl Summary

Setup

designware_emac_v3_init Initialize the network interface
Control

designware_emac_v3_isr Handle network interrupt

213

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

designware_emac_v3_start Start the network interface

Status

designware_emac_v3_first_free Return extent of memory consumed
designware_emac_v3_version Return the Synopsis version of the EMAC

214

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

designware_emac_v3_first_free

Synopsis

voi d *desi gnware_enmac_v3 first free(CTL_NET | NTERFACE t *sel f);

Description

designware_emac_v3_first_free returns a pointer to the first byte free for use by the application after the
allocation of transmit and receive descriptors. The client can use this to add all remaining memory to the

network heap, for example.

You can call this after initializing the network interface using designware_emac_v3_init.

See Also

designware_emac_v3_init.

215

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

designware_emac_v3_init

Synopsis

voi d designware_enmac_v3 init(CTL_NET_| NTERFACE t *sel f,
voi d *emac,
voi d *mem
int tx_descriptor_count,
int rx_descriptor_count,
int clock);

Description

designware_emac_v3_init initializes the network interface self but does not start it. The DesignWare 10/100
EMAC register interface is specified in emac and the memory required to hold the transmit and receive

descriptors is specified in mem.

The number of transmit and receive descriptors are passed in tx_descriptor_count and rx_descriptor_count.
At least two transmit descriptors are required, and transmit performance of the TCP/IP library will scale with the
number of descriptors allocated. At least one receive descriptor is required, and receive performance of the TCP/

IP library will scale with the number of descriptors allocated.

The clock provided to the module is passed in clock, in Hertz. The driver automatically configures the MAC to

divide the module clock in order to clock the management interface at a maximum of 2.5 MHz.

Note

mem must be accessible by the DMA engine of the Ethernet MAC. Please ensure that you pass an appropriate

address for the descriptors by consulting the user manual of your device.

216

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

designware_emac_v3_isr

Synopsis

voi d designware_enmac_v3 isr(CTL_NET_I NTERFACE t *sel f);

Description

designware_emac_v3_isr must be called to handle the interrupt generated by the network interface self.
designware_emac_v3_isr will iterate the transmit descriptors preparing for transmission and wake the network

task to process received packets.

217

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

designware_emac_v3_start

Synopsis

CTL_STATUS t designware_enmac_v3_start (CTL_NET_|I NTERFACE t *sel f);

Description

designware_emac_v3_start starts the network interface self. The start sequence calls the method to select and

initialize the PHY, initialize the receive and transmit descriptors, and enable interrupts.

Return Value

designware_emac_v3_start returns a standard status code.

218

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

designware_emac_v3_version

Synopsis

CTL_STATUS t desi gnware_enmac_v3_versi on(CTL_NET_| NTERFACE t *sel f,
char *version);

Description

designware_emac_v3_version returns the Synopsis version number of the DesignWare 10/100 EMAC self.

If version is non-zero, it must point to an array of at least six characters where the decoded version number is
written as a null-terminated string.

Return Value

The version number as an 8-bit value where the most significant four bits define the major version number and

the least significant four bits define the minor version number.

219

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

<enc28j60.h>

Overview

Driver for a Microchip ENC28J60 MAC and integrated PHY.

APl Summary

MAC

enc28j60_mac_setup Configure ENC28J60 MAC

PHY

ENC28J60_PHY_ID PHY ID

enc28j60_phy_init_driver Initialize ENC28J60 integrated PHY driver

220

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ENC28J60_PHY_ID

Synopsis

#def i ne ENC28J60_PHY_| D 0x00831400

Description

ENC28J60_PHY_ID is the ID returned by the ENC28J60 PHY.

221

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

enc28j60_mac_setup

Synopsis

CTL_STATUS t enc28j 60_rmac_set up(CTL_NET_| NTERFACE t *sel f,
CTL_SPI_DEVICE_t *dev);

Description

enc28j60_mac_setup initializes self with functions that implement the MAC interface for the ENC28J60. The
ENC28J60 is addressed using the SPI device dev.

Return Value

enc28j60_mac_setup returns a standard status code.

222

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

enc28j60_phy_init_driver

Synopsis

voi d enc28j 60_phy_init_driver(CTL_NET_PHY DRI VER t *sel f);

Description

enc28j60_phy_init_driver initializes self with functions that implement the PHY state machine for the Microchip
ENC28J60 integrated PHY.

223

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

<dp83848.h>

Overview

PHY driver for a Texas Instruments DP83848.

APl Summary

PHY

DP83848_PHY_ID PHY ID
dp83848_phy_init_driver PHY driver setup

224

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

DP83848_PHY_ID

Synopsis

#def i ne DP83848_PHY_| D 0x20005C90

Description

DP83848_PHY_ID is the ID returned by the DP83848 PHY.

225

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

dp83848_phy _init_driver

Synopsis

voi d dp83848 phy init_driver(CITL_NET_PHY DRI VER t *self);

Description

dp83848_phy _init_driver initializes self with functions that implement the PHY state machine for the Texas
Instruments DP83848.

226

CrossWorks TCP/IP Library

<ksz8721bl.h>

Overview

PHY driver for a Micrel KSZ8721BL.

APl Summary

PHY
KSZ8721BL_PHY_ID
ksz8721bl_phy_init_driver

PHY ID
PHY driver setup

227

CrossWorks TCP/IP Library

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

KSZ8721BL_PHY_ID

Synopsis

#def i ne KSzZ8721BL_PHY_|I D 0x00221610

Description

KSZ8721BL_PHY_ID is the ID returned by the KSZ8721BL PHY.

228

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

ksz8721bl_phy_init_driver

Synopsis

voi d ksz8721bl _phy init_driver(CTL_NET_PHY DRI VER t *self);

Description

ksz8721bl_phy_init_driver initializes self with functions that implement the PHY state machine for the Micrel
KSZ8721BL.

229

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

<lan8720a.h>

Overview

PHY driver for a SMSC LAN8720A.

APl Summary

PHY

LAN8720A_PHY_ID PHY ID
lan8720a_phy_init_driver PHY driver setup

230

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

LAN8720A_PHY_ID

Synopsis

#def i ne LAN8720A_PHY_|I D 0x0007COFO

Description

LAN8720A_PHY_ID is the ID returned by the LAN8720A PHY.

231

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

lan8720a_phy_init_driver

Synopsis

voi d | an8720a_phy_init_driver(CTL_NET_PHY DRI VER t *sel f);

Description

lan8720a_phy_init_driver initializes self with functions that implement the PHY state machine for the SMSC
LAN8720A.

232

CrossWorks TCP/IP Library

<Im3s_phy.h>

Overview

PHY driver for the integrated LM3S Stellaris PHY.

APl Summary

PHY
LM3S_PHY_ID
Im3s_phy_init_driver

PHY ID
PHY driver setup

233

CrossWorks TCP/IP Library

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

LM3S_PHY_ID

Synopsis

#define LMBS_PHY_|ID 0x0161B410

Description

LM3S_PHY_ID is the ID returned by the LM3S Stellaris PHY.

234

CrossWorks TCP/IP Library CrossWorks TCP/IP Library

Im3s_phy_init_driver

Synopsis

void I mBs_phy _init_driver(CTL_NET_PHY DRI VER t *self);

Description

Im3s_phy_init_driver initializes self with functions that implement the PHY state machine for the LM3S
integrated PHY.

235

	Contents
	CrossWorks TCP/IP Library
	Preamble
	Object Code Evaluation License
	Object Code Commercial License
	Prerequisites

	User Manual
	Before you begin
	Get on the network
	Don't break it...
	Ping by name
	Resolving host names
	Retrieving a web page
	Sending e-mail

	API reference
	<ctl_net_api.h>
	CTL_IP_CONFIG_t
	CTL_NET_ERROR_t
	CTL_NET_IPv4_ADDR_t
	CTL_NET_IPv4_LOCAL_BROADCAST_ADDR
	CTL_NET_MAC_ADDR_t
	CTL_NET_PORT_t
	CTL_SOCKET_t
	CTL_TCP_ACCEPT_FN_t
	CTL_TCP_GEN_ISS_FN_t
	CTL_TCP_GET_SOCKETS_FLAG_t
	CTL_TCP_PORT_OPTIONS_t
	CTL_TCP_SEND_FLAG_t
	CTL_TCP_SOCKET_CLOSE_TYPE_t
	CTL_TCP_SOCKET_CONNECTION_STATE_t
	CTL_TCP_SOCKET_OPTIONS_t
	CTL_UDP_CONFIGURATION_t
	CTL_UDP_INFO_t
	ctl_arp_cache_entry
	ctl_arp_clear_entry
	ctl_arp_get_entry
	ctl_arp_get_ttl
	ctl_arp_print_cache
	ctl_arp_purge_cache
	ctl_arp_request_entry
	ctl_arp_set_cache_size
	ctl_arp_set_memory_allocator
	ctl_arp_set_ttl
	ctl_dhcp_init
	ctl_dhcp_lease_expire_time
	ctl_dhcp_lease_rebind_time
	ctl_dhcp_lease_renew_time
	ctl_dns_get_host_by_name
	ctl_dns_get_server
	ctl_dns_init
	ctl_dns_primary_server_addr
	ctl_dns_print_cache
	ctl_dns_purge_cache
	ctl_dns_secondary_server_addr
	ctl_dns_set_max_ttl
	ctl_dns_set_memory_allocator
	ctl_dns_set_primary_server_addr
	ctl_dns_set_secondary_server_addr
	ctl_dns_set_server
	ctl_eth_get_mac_addr
	ctl_icmp_init
	ctl_ip_sprint_addr
	ctl_mac_addr_is_broadcast
	ctl_mac_addr_is_null_or_empty
	ctl_mac_sprint_addr
	ctl_net_domain_name_suffix
	ctl_net_get_gateway_address
	ctl_net_get_host_name
	ctl_net_get_ip_address
	ctl_net_get_subnet_mask
	ctl_net_init
	ctl_net_interface
	ctl_net_is_autoip_address
	ctl_net_is_local_broadcast_address
	ctl_net_is_local_ip_address
	ctl_net_is_multicast_ip_address
	ctl_net_is_private_ip_address
	ctl_net_is_subnet_broadcast_address
	ctl_net_mem_alloc_data
	ctl_net_mem_alloc_xmit
	ctl_net_mem_free
	ctl_net_mem_trim
	ctl_net_register_error_decoder
	ctl_net_scan_dot_decimal_ip_addr
	ctl_net_scan_mac_addr
	ctl_net_set_host_name
	ctl_ntp_init
	ctl_ntp_server_addr
	ctl_ntp_set_time_server
	ctl_soc_use_callback
	ctl_soc_use_event
	ctl_tcp_accept
	ctl_tcp_bind
	ctl_tcp_close_socket
	ctl_tcp_connect
	ctl_tcp_get_local_ip_addr
	ctl_tcp_get_local_port
	ctl_tcp_get_port_options
	ctl_tcp_get_remote_ip_addr
	ctl_tcp_get_remote_port
	ctl_tcp_get_socket_connection_state
	ctl_tcp_get_socket_error
	ctl_tcp_get_socket_options
	ctl_tcp_get_sockets
	ctl_tcp_init
	ctl_tcp_look_ahead
	ctl_tcp_push
	ctl_tcp_read_line
	ctl_tcp_recv
	ctl_tcp_send
	ctl_tcp_set_port_options
	ctl_tcp_set_socket_options
	ctl_tcp_shutdown
	ctl_tcp_socket
	ctl_tcp_unbind
	ctl_tcp_use_callback
	ctl_tcp_use_event
	ctl_udp_bind
	ctl_udp_init
	ctl_udp_sendto
	ctl_udp_unbind

	Implementation
	<ctl_net_hw.h>
	CTL_ETH_HEADER_t
	CTL_ETH_RX_FRAME_t
	CTL_ETH_TX_FRAME_t
	CTL_MAC_STATE_t
	CTL_NET_ETHERNET_HEADER_SIZE
	CTL_NET_ETHERNET_PDU_SIZE
	CTL_NET_INTERFACE_t
	CTL_NET_MAC_DRIVER_t
	CTL_NET_MAC_MII_DEFERRED_READ_FN_t
	CTL_NET_MEM_DRIVER_t
	CTL_NET_PHY_DRIVER_t
	CTL_PHY_ERROR_t
	CTL_PHY_STATE_t
	ctl_mac_get_state
	ctl_mac_init
	ctl_mac_mii_deferred_read
	ctl_mac_mii_deferred_read_result
	ctl_mac_mii_read
	ctl_mac_send
	ctl_mac_update
	ctl_mac_wake_net_task
	ctl_net_do_mac_dis_connect
	ctl_net_get_phy_name
	ctl_net_process_received_frame
	ctl_net_read_phy_operating_mode
	ctl_net_read_phy_register
	ctl_net_read_phy_state
	ctl_net_search_for_first_phy
	ctl_net_set_mem_driver
	ctl_net_update_phy
	ctl_phy_lm3s_init_driver
	ctl_phy_read_id
	ctl_phy_reset

	<ctl_net_private.h>
	CTL_IPV4_HEADER_t
	CTL_IP_STATS_t
	ctl_arp_init
	ctl_dns_register_stats
	ctl_eth_alloc_tx_frame
	ctl_eth_free_tx_frame
	ctl_eth_tx_frame_total_count
	ctl_ipv4_make_multicast_mac_addr
	ctl_ipv4_rx_payload_byte_count
	ctl_ipv4_rx_payload_start
	ctl_net_calc_cksum
	ctl_net_normalize_cksum_and_comp
	ctl_net_sum_bytes
	ctl_tcp_register_stats

	<ctl_net_tcp_private.h>
	CTL_TCP_APP_LAYER_CMD_t
	CTL_TCP_SEGMENT_t
	CTL_TCP_SOCKET_STATE_t

	Devices
	<designware_emac_v2.h>
	designware_emac_v2_first_free
	designware_emac_v2_init_mac_driver
	designware_emac_v2_isr
	designware_emac_v2_start

	<designware_emac_v3.h>
	designware_emac_v3_first_free
	designware_emac_v3_init
	designware_emac_v3_isr
	designware_emac_v3_start
	designware_emac_v3_version

	<enc28j60.h>
	ENC28J60_PHY_ID
	enc28j60_mac_setup
	enc28j60_phy_init_driver

	<dp83848.h>
	DP83848_PHY_ID
	dp83848_phy_init_driver

	<ksz8721bl.h>
	KSZ8721BL_PHY_ID
	ksz8721bl_phy_init_driver

	<lan8720a.h>
	LAN8720A_PHY_ID
	lan8720a_phy_init_driver

	<lm3s_phy.h>
	LM3S_PHY_ID
	lm3s_phy_init_driver

