CrossWorks Platform Library

Version: 3.7

© 2015 Rowley Associates Limited

CrossWorks Platform Library

CrossWorks Platform Library Contents

Contents
CrossWorks Platform Library 9
User Manual 11
Introduction 11
Blinking one LED 12
Blinking all LEDs 13
API Reference 15
<platform.h> 15
PLATFORM_BUTTON_ATTRIBUTE_t 18
PLATFORM_BUTTON_CONFIGURATION_t 20
PLATFORM_EDGE_t 21
PLATFORM_HOOK _t 22
PLATFORM_LED_ATTRIBUTE_t 23
PLATFORM_LED_CONFIGURATION_t 25
PLATFORM_PIN_CLAIM_t 26
PLATFORM_PIN_CONFIGURATION_t 27
PLATFORM_PIN_CONNECTION_t 28
PLATFORM_PIN_DIRECTION_t 31
PLATFORM_PIN_FEATURE_t 32
PLATFORM_PIN_FUNCTION_t 33
PLATFORM_PIN_MODE_t 35
PLATFORM_RESET_CAUSE_t 36
PLATFORM_UEXT_CONFIGURATION_t 37
platform_button_catalog 39

CrossWorks Platform Library Contents

platform_button_name 40
platform_claim_multi_pin 41
platform_claim_pin 42
platform_claim_pin_configuration 43
platform_configure_i2c_bus 44
platform_configure_i2c_bus_ex 45
platform_configure_spi_bus 46
platform_configure_spi_bus_ex 47
platform_configure_uart 48
platform_cpu_core_frequency 49
platform_cpu_name 50
platform_cpu_tick 51
platform_cpu_tick_frequency 52
platform_digital_pin_direction 53
platform_digital_pin_drive_strength 54
platform_digital_pin_features 55
platform_digital_pin_mode 56
platform_digital_pin_speed 57
platform_hook_background 58
platform_hook_button_press 59
platform_hook_pin_edge 60
platform_hook_timer 61
platform_i2c_bus 62
platform_i2¢c_bus_pins 63
platform_initialize 64
platform_led_catalog 65
platform_led_name 66
platform_lock_pin 67
platform_lock_pin_configuration 68
platform_name 69
platform_pin_catalog 70
platform_pin_catalog_count 71
platform_pin_connection_name 72
platform_pin_function 73
platform_pin_signal_name 74
platform_read_analog_pin 75
platform_read_button 76
platform_read_digital_pin 77
platform_reboot 78
platform_release_pin 79
platform_reset_cause 80

CrossWorks Platform Library Contents

platform_set_digital_pin_direction 81
platform_set_digital_pin_drive_strength 82
platform_set_digital_pin_features 83
platform_set_digital_pin_mode 84
platform_set_digital_pin_speed 85
platform_set_multi_digital_pin_drive_strength 86
platform_set_multi_digital_pin_mode 87
platform_set_multi_digital_pin_speed 88
platform_spi_bus 89
platform_spi_bus_pins 20
platform_spin_delay_cycles 91
platform_spin_delay_ms 92
platform_spin_delay_us 93
platform_uart 94
platform_uext_configuration 95
platform_unhook_background 926
platform_unhook_timer 97
platform_watchdog_enable 98
platform_watchdog_remaining 99
platform_watchdog_service 100
platform_watchdog_set_period 101
platform_write_analog_pin 102
platform_write_digital_pin 103
platform_write_led 104
<platform_graphics.h> 105
platform_configure_builtin_graphics 106
<platform_network.h> 107
platform_configure_network 108
<platform_sensors.h> 109
platform_configure_builtin_accelerometer 110
platform_configure_builtin_gyroscope 111
platform_configure_builtin_humidity_sensor 112
platform_configure_builtin_light_sensor 113
platform_configure_builtin_magnetometer 114
platform_configure_builtin_pressure_sensor 115
platform_configure_builtin_temperature_sensor 116
<platform_heaps.h> 117
platform_network_heap 118
platform_private_init_heaps 119
platform_system_heap 120
Implementation 121

CrossWorks Platform Library Contents

<platform_private.h> 121
PLATFORM_PRIVATE_I2C_CONFIGURATION_t 123
PLATFORM_PRIVATE_I2C_METHODS _t 124
PLATFORM_PRIVATE_SPI_CONFIGURATION_t 125
PLATFORM_PRIVATE_SPI_METHODS_t 126
platform_private_configure_leds 127
platform_private_execute_hooks 128
platform_private_find_pin_connection 129
platform_private_hook_single_timer 130
platform_private_i2c_bus_configuration 131
platform_private_i2c_bus_instance 132
platform_private_i2c_hardware_claim_pins 133
platform_private_idle_task_main 134
platform_private_initialize 135
platform_private_lock_pin 136
platform_private_pin_connection_name 137
platform_private_pin_signal_name 138
platform_private_read_button 139
platform_private_release_pin 140
platform_private_software_i2c_methods 141
platform_private_software_spi_methods 142
platform_private_spi_bus_configuration 143
platform_private_spi_bus_instance 144
platform_private_spi_hardware_claim_pins 145
platform_private_start_single_hook_timer 146
platform_private_start_tasking 147
platform_private_stop_single_hook_timer 148
platform_private_test_pin_claim 149
platform_private_timer_hooks 150
platform_private_unhook_single_timer 151
platform_private_write_led 152

<platform_stm32f1.h> 153
STM32_PAD 154
STM32_PIN 155
STM32_PORT 156
STM32_PORT_BASE 157
STM32_PORT_t 158
stm32_platform_initialize 159
stm32_release_pin 160
stm32_set_multi_pin_alternate_function 161
stm32_set_pin_alternate_function 162

CrossWorks Platform Library Contents

<platform_stm32f4.h> 163
STM32_PAD 154
STM32_PIN 155
STM32_PORT 156
STM32_PORT_BASE 157
STM32_PORT_t 158
stm32_platform_initialize 159
stm32_set_multi_pin_alternate_function 161
stm32_set_pin_alternate_function 162

<platform_lpc1700.h> 164
LPC1700_PAD 165
LPC1700_PCLK_SOURCE_t 166
LPC1700_PIN 167
LPC1700_PORT 168
LPC1700_PORT_t 169
Ipc1700_platform_initialize 170

Platforms 171

SolderCore 171

Cortino3RE 174

FRDM-KL25Z 175

FRDM-KL26Z 176

FRDM-KL46Z 177

MCBSTM32C 178

Nucleo-F103RB 179

Nucleo-F401RE 180

Arch Pro 181

Olimexino-STM32 184

STM32-103STK 185

STM32-405STK 186

STM32-E407 187

STM32-LCD 188

STM32-P107 189

STM32-P405 190

STM32-P407 191

STM3240G-EVAL 192

STM32F429II-EXP 193

STM32F4-DISCOVERY 194

Example READMEs 196

Defender 196

Minimal FTP Server 198

Minimal HTTP Server 199

CrossWorks Platform Library Contents

Weather Station LCD1x9 200
Adafruit TFT Touch Shield 201

CrossWorks Platform Library CrossWorks Platform Library

CrossWorks Platform Library

About the CrossWorks Platform Library

The CrossWorks Platform Library presents a standardized API for delivering high-quality example code for a
wide range of microcontrollers and evaluation boards. Additional components that integrate with the Platform

Library are:

 CrossWorks Tools Library: provides add-ons for CTL such as read-write locks and ring buffers.

 CrossWorks Device Library: provides drivers for common digital sensors, such as accelerometers,
gyroscopes, magnetometers, and so on.

* CrossWorks Graphics Library: is a library of simple graphics functions for readily-available LCD controllers.

» CrossWorks TCP/IP Library: provides TCP/IP networking for integrated and external network controllers on
memory-constrained microcontrollers.

* CrossWorks Mass Storage Library: provides a FAT-based file system for mass storage on SD and MMC cards,
or any device with a block-based interface.

* CrossWorks Shield Library: provides drivers for a range of Arduino-style shields.

* CrossWorks CoreBASIC Library: provides a full-featured, network-enabled BASIC interpreter which

demonstrates the capabilities of these libraries.

Architecture

The CrossWorks Platform Library is one part of the CrossWorks Target Library. Many of the low-level functions
provided by the target library are built using features of the CrossWorks Tasking Library for multi-threaded

operation.

CrossWorks Platform Library CrossWorks Platform Library

Delivery format

The CrossWorks Platform Library is delivered in source form.

Feedback

This facility is a work in progress and may undergo rapid change. If you have comments, observations,
suggestions, or problems, please feel free to air them on the CrossWorks Target and Platform API discussion

forum.

License

The following terms apply to the Rowley Associates Platform Library.

10

https://rowley.zendesk.com/forums/21762187-the-crossworks-target-and-platform-api

CrossWorks Platform Library CrossWorks Platform Library

Introduction

About the CrossWorks Platform Library

The CrossWorks Platform Library is a standard API that runs on a collection of popular microprocessors and
evaluation boards. It is a way for Rowley Associates to deliver examples, from simple to complex, for those
boards.

In particular, the Platform Library requires the CrossWorks Tasking Library for operation. Because the Platform
Library, and facilities built on top of it, use interrupts and background processing, we made the decision to
use the CrossWorks Tasking Library as a foundation stone for the Platform Library. We have not abstracted the

Platform Library to use a generic RTOS as this adds more complexity to the design.

Why use the Platform Library?

Standardizing on the Platform Library provised a certain amount of portability for you applications. Rather than
using vendor-supplied libraries that get you running quickly on their silicon, you can invest some time learning
the Platform Library and use that knowledge across different architectures. You are, however, committing to use
CrossWorks, CTL, and the Platform Library for the long term.

What the Platform Library isn't

The Platform Library it is not a general-purpose APl supporting every feature offered by common devices, nor
does it cater for all devices within a family. The Platform Library is tested on the microprocessors and evaluation
boards that Rowley Associates deliver examples for. Certainly, you can use it with little or no modification on
boards that have other processors in the families we support, but you will need to customize the Platform
Library implementation yourself.

What the Platform Library runs on
The Platform Library runs on the following microprocessor families:

* LPC1700
* LM3S
» KLO5Z
» KL25Z
e STM32F1
* STM32F4

The range of boards and microprocessors that run the Platform Library continues to expand. Please check the

CrossWorks web site for the latest information.

11

CrossWorks Platform Library CrossWorks Platform Library

Blinking one LED

Ignition on!
Diving straight into code, you can blink a LED on your target board with a few lines of code:

/1 Blink the first platform LED.
#include "Iibplatforn platformh"

voi d

mai n(voi d)

{
/] Initialize platform
platforminitialize();

/l Blink first LED forever.

for (;7)
{
platformwite_ | ed(0, 1); /1 LED on
pl at form spi n_del ay_ns(500); // Wit
platformwite |ed(0, 0); /1 LED off
pl atform spin_del ay_ns(500); // Wit
}

Hopefully, this should be self-explanatory, but here are some noteworthy items:

 All Platform Library functions are prefixed with "pl at f or nf'.

e platform.initialize setsup the board and processor for the Platform Library. You need to call this
before using any other Platform Library function. See platform_initialize.

e platformwite_ | ed(x, y) writesxtoLEDy.See platform_write_led.

* platformspin_del ay_mns(x) delays execution for x milliseconds by busy-waiting in a loop. See
platform_spin_delay_ms.

* Which LED blinks on your target board depends upon the target board, obviously—consult the

documentation for the Platform Library on your target board for details of LED numbering.

By the way...

This does the job, but isn't the kindest way to blink a LED. Because this example uses
pl at f orm spi n_del ay_ns to pause between changing the LED state, the processor is active all the time,

burning cycles, waiting for the right moment to continue. There is a better way...

You canusect | _del ay, rather than pl at f or m_spi n_del ay_ns, to delay the user task and let other tasks
run. If you do this, you are being much kinder to the tasking system, and in this case the processor is put to sleep

whilst waiting.

12

CrossWorks Platform Library CrossWorks Platform Library

Blinking all LEDs

More LEDs!
Having mastered a single LED, let's progress to multiple LEDs:

[/ Blink the all platformLEDs in unison.
#include "Iibplatforn platform h"

static void
wite all _leds(int state)

{

i nt index;

/'l lterate over all platform LEDs.
for (index = 0; index < PLATFORM LED COUNT; ++i ndex)
platformwite |l ed(index, state);

}
voi d
mai n(voi d)
{
/1l Initialize platform
platforminitialize();
/1 Blink all LEDs forever.
for ()
{
wite_all _|eds(1); /1 Al LEDs on
pl atform spin_del ay _ns(500); // Wit
wite_all_leds(0); /1 Al LEDs off
pl atform spin_del ay_ns(500); // Wit
}
}
This example is only slightly more complex than before. The functionwri t e_al | _I eds iterates over all LEDs

that the platform provides and sets them all to the same state.

The noteworthy item here is that PLATFORM _LED_COUNT is a count of the number of user-controllable LEDs
that the target platform offers. There may well be more LEDs on the target board, but they usually indicate

healthy power supplies or USB status and so on, and are not programmable.

When you run this, all LEDs on the target board flash in unison.

Note
PLATFORM _LED_CQOUNT expands to a numeric constant that enables static allocation of arrays, for example:

static float |led _duty_cycl e[PLATFORM LED COUNT] ;

Independence for LEDs

Rather than blink all LEDs in unison, it's visually appealing to pulse them, in turn, quickly:

13

CrossWorks Platform Library

/| Chase LEDs around the board.
#include "Iibplatfornplatform h"

int
mai n(voi d)
{

int i;
/1 Initialize platform

platforminitialize();

/1 Al LEDs off.
for (i = 0; i < PLATFORM LED COUNT; ++i)
platformwite_led(i, 0);

// Pulse all LEDs, one at a tine, forever.

for (;7)
{
for (i = 0; i < PLATFORM LED_ COUNT;
{

platformwite_led(i, 1);

pl at f orm spi n_del ay_ns(10);
platformwite |ed(i, 0);

pl at f orm spi n_del ay_ns(200) ;

/1l If we ever get out of here...
return O;

}

++i)

CrossWorks Platform Library

There are other things you can do with multiple LEDs, such as a classic KITT or Cylon animation. These things,

however, are more impressive when you have dedicated LED hardware to control, rather than a limited number

of miniature indicator LEDs on an evaluation board.

14

CrossWorks Platform Library

<platform.h>

Overview

This is the primary header file for the Platform Library.

CrossWorks Platform Library

For information on the use of this API, see CrossWorks Platform Library.

APl Summary

General

platform_cpu_name
platform_initialize
platform_name

Pins

PLATFORM_PIN_CLAIM_t
PLATFORM_PIN_CONFIGURATION_t
PLATFORM_PIN_CONNECTION_t
PLATFORM_PIN_FUNCTION_t
platform_claim_multi_pin
platform_claim_pin
platform_claim_pin_configuration
platform_lock_pin
platform_lock_pin_configuration
platform_pin_catalog
platform_pin_catalog_count
platform_pin_connection_name
platform_pin_function
platform_pin_signal_name
platform_release_pin

1/0

platform_read_analog_pin
platform_read_digital_pin
platform_write_analog_pin
platform_write_digital_pin

Buttons

Platform CPU name
Initialize Platform Library

Platform name

Pin claim requirements

Pin configuration request structure
Pin connection

Pin function requirements

Claim multiple platform pins

Claim platform pin

Claim a configuration of platform pins
Lock pin

Lock a pin configuration

Pin catalog

Number of entries in pin catalog
Get connection name for a pin
Registered platform pin function
Get signal name for a pin

Release pin

Read analog input
Read digital input
Write analog output

Write digital output

15

CrossWorks Platform Library

PLATFORM_BUTTON_ATTRIBUTE_t
PLATFORM_BUTTON_CONFIGURATION_t
platform_button_catalog
platform_button_name
platform_read_button

LEDs

PLATFORM_LED_ATTRIBUTE _t
PLATFORM_LED_CONFIGURATION_t
platform_led_catalog
platform_led_name
platform_write_led

Configuration
PLATFORM_PIN_DIRECTION_t
PLATFORM_PIN_FEATURE _t
PLATFORM_PIN_MODE _t
platform_digital_pin_direction
platform_digital_pin_drive_strength
platform_digital_pin_features
platform_digital_pin_mode
platform_digital_pin_speed
platform_set_digital_pin_direction
platform_set_digital_pin_drive_strength
platform_set_digital_pin_features
platform_set_digital_pin_mode
platform_set_digital_pin_speed
platform_set_multi_digital_pin_drive_strength
platform_set_multi_digital_pin_mode
platform_set_multi_digital_pin_speed
Time

platform_cpu_core_frequency
platform_cpu_tick
platform_cpu_tick_frequency
platform_spin_delay_cycles
platform_spin_delay_ms

platform_spin_delay_us

CrossWorks Platform Library

Button attributes

Button configuration

Get platform button configuration
Get platform button name

Read from button

LED attributes

LED configuration

Get platform LED configuration
Get platform LED name

Write to LED

Pin I/O direction

Pin features

Pin drive mode requirements

Get I/O direction

Read pin drive strength mode

Read digital pin features

Read digital pin mode

Read pin speed

Set direction for a single digital I/O

Set drive strength for a single digital I/0
Write features for a single digital I/O

Set mode for a single digital I/0

Set speed for a single digital /0

Set drive strength for multiple digital I/Os
Set mode for multiple digital 1/0s

Set speed for multiple digital 1/0s

Get CPU core frequency

Get CPU tick

Get CPU tick frequency

Delay a number of CPU cycles
Delay a number of milliseconds

Delay a number of microseconds

16

CrossWorks Platform Library

Hooks

PLATFORM_EDGE _t
PLATFORM_HOOK_t
platform_hook_background
platform_hook_button_press
platform_hook_pin_edge
platform_hook_timer
platform_unhook_background
platform_unhook_timer

12C
platform_configure_i2c_bus
platform_i2c_bus
platform_i2¢c_bus_pins

SPI
platform_configure_i2c_bus_ex
platform_configure_spi_bus
platform_configure_spi_bus_ex
platform_spi_bus
platform_spi_bus_pins

UART

platform_configure_uart
platform_uart

UEXT
PLATFORM_UEXT_CONFIGURATION _t
platform_uext_configuration
Reset
PLATFORM_RESET_CAUSE _t
platform_reboot
platform_reset_cause
Watchdog
platform_watchdog_enable
platform_watchdog_remaining
platform_watchdog_service

platform_watchdog_set_period

CrossWorks Platform Library

Signal edge require to trigger pin hook
Platform hook context

Hook function to background list
Hook a button press

Hook function to a pin edge

Hook function to a repetitive timer
Unhook function from background list

Unhook function from timer

Configure 12C bus
Get 12C bus interface
Get pins for 12C bus

Configure 12C bus (extended)
Configure SPI bus

Configure SPI bus (extended)
Get SPI bus interface

Get pins for SPI bus

Configure UART
Get UART interface

UEXT configuration descriptor

Get UEXT configuration descriptor

Causes of microcontroller reset
Reboot platform

Read microcontroller reset cause

Enable watchdog
Inquire remaining watchdog time
Service watchdog

Set watchdog timeout period

17

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_BUTTON_ATTRIBUTE_t

Synopsis

typedef enum {
PLATFORM _BUTTON_STANDARD,
PLATFORM BUTTON_UP,
PLATFORM _BUTTON_DOWN,
PLATFORM BUTTON_LEFT,
PLATFORM BUTTON_RI GHT,
PLATFORM BUTTON_CENTER,
PLATFORM BUTTON_MASK_MASK,
PLATFORM BUTTON_PGCSI Tl VE_LOA C,
PLATFORM BUTTON_NEGATI VE_LOG C
} PLATFORM BUTTON ATTRI BUTE t ;

Description
PLATFORM_BUTTON_ATTRIBUTE_t describes the attributes of a push button.
The attributes are a combination of button logic and now the button is sensed.

Buttons that are part of a joystick arrangement have PLATFORM BUTTON_JOYSTI CK set along with one of the
up, down, left, right, and center attributes.

PLATFORM BUTTON_STANDARD
The button is a standard momentary push button.

PLATFORM BUTTON_UP

The button indicates Up direction.

PLATFORM BUTTON_DOWN
The button indicates Down direction.

PLATFORM BUTTON_LEFT
The button indicates Left direction.

PLATFORM BUTTON_RI GHT
The button indicates Right direction.

PLATFORM BUTTON_CENTER
The button indicates a joystick center-push "select".

PLATFORM BUTTON_ MASK
The mask to isolate the button type above.

PLATFORM BUTTON _POSI TI VE_LCG C
When set indicates that the button uses positive logic: reading a one from the GPIO indicates the button is

pressed, and reading a zero indicates it is released. When clear, indicates the button uses negative logic.

18

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM BUTTON_NEGATI VE_LOG C
A documentation convenience when constructing button attributes. Indicates that the button uses
negative logic: reading a zero from the GPIO indicates the button is pressed, reading a one indicates the

button is released.

19

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_BUTTON_CONFIGURATION_t

Synopsis

typedef struct {
unsi gned char pin;
unsi gned char attributes;
unsi gned char node;
const char *name;
} PLATFORM BUTTON_CONFI GURATI ON t;

Description
PLATFORM_BUTTON_CONFIGURATION t describes the features of a button connected to a GPIO.
pin

The digital pin that senses the button. See PLATFORM_PIN_CONNECTION_t.

attributes
The attributes of the button. See PLATFORM_BUTTON_ATTRIBUTE _t.

node
The mode to set the pin, should it be connected by a GPIO. See PLATFORM_PIN_MODE_t. Some boards
rely on integrated pull-up or pull-down resistors for buttons rather than using an external resistor. You can

specify the pull-ups or pull-downs by setting this member appropriately.

nane
The name of the button. You can set this to the name of the button on the silkscreen or whatever is visible
to the user for identification. If name is zero, the button's name is derived from the GPIO connection name

for pin or the pad name for pin. See platform_button_name.

See Also

platform_button_catalog

20

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_EDGE_t

Synopsis

typedef enum {
PLATFORM EDGE_FALLI NG,
PLATFORM EDGE_RI SI NG,
PLATFORM EDGE_EI THER
} PLATFORM EDCE _t ;

Description

PLATFORM_EDGE_t describes the required edge to trigger a pin hook.

Note

PLATFORM_EDGE_EI THERIs the inclusive-or of PLATFORM _EDGE_RI SI NGand
PLATFORM _EDGE_FALLI NG

See Also

platform_hook_pin_edge

21

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_HOOK _t

Synopsis

typedef struct {
void (*fn)(void *);
voi d *arg;
int __internal;

PLATFORM HOOK s *__next ;
} PLATFORM HOOK t ;

Description

PLATFORM_HOOK _t describes a hook function that is typically executed asynchronously. The Platform Library
provides a number of ways for hooks to be run, using high-frequency and low-frequency timers, and on the

transitions of platform pins.

fn

Method to execute when the hook fires.

arg
Argument to pass to f n when the hook fires.

__internal
Private member for use by the Platform Library.

__next
Private member that points to the next hook function an a hook list. Do not assume anything about the list

that this member points to.

Note

You only need to initialize f n and ar g in the hook structure when passing the hook to a registration routine—
the Platform Library takes care of managing __i nt er nal and __ next.

See Also

platform_hook_pin_edge, platform_hook_background, platform_hook_timer

22

CrossWorks Platform Library

PLATFORM_LED_ATTRIBUTE_t

Synopsis

typedef enum {
PLATFORM _LED_UNKNOVWWN,
PLATFORM LED RED,
PLATFORM LED GREEN,
PLATFORM LED BLUE,
PLATFORM LED_YELLOW
PLATFORM _LED_ORANGE,
PLATFORM LED WHI TE,
PLATFORM LED | R,
PLATFORM LED COLOR_MASK,
PLATFORM LED_TRI COLOR,
PLATFORM _LED POSI TI VE_LOd C,
PLATFORM LED NEGATI VE_LOG C

} PLATFORM LED_ATTRI BUTE_t ;

Description

PLATFORM_LED_ATTRIBUTE_t describes the attributes of a LED.

The attributes are a combination of LED color and how the LED is driven.

CrossWorks Platform Library

LEDs that are part of a tricolor arrangement have PLATFORM LED TRI COLOR set along with one of the red,

green, and blue colors.

PLATFORM LED UNKNOWN
The LED color is unknown or varies between boards.

PLATFORM LED RED
The LED is red.

PLATFORM LED GREEN
The LED is green.

PLATFORM LED BLUE
The LED is blue.

PLATFORM LED YELLOW
The LED is yellow.

PLATFORM_LED_ ORANGE
The LED is orange.

PLATFORM LED WHI TE
The LED is white.

PLATFORM LED | R
The LED emits infrared light.

23

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM LED COLOR_MASK
The mask to isolate the color component of the LED attributes.

PLATFORM LED TRI COLOR

When set indicates that the LED is part of a tricolor arrangement.

PLATFORM LED POSI TI VE_LOG C
When set indicates that the LED is driven using positive logic: writing a one to the GPIO will turn the LED on
and writing a zero will turn it off. When clear, indicates that the LED is driven using negative logic.

PLATFORM_LED NEGATI VE_LOG C
A documentation convenience when constructing LED attributes. Indicates that the LED is driven using
negative logic: writing a one to the GPIO will turn the LED off and writing a zero will turn it on.

24

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_LED_CONFIGURATION_t

Synopsis

typedef struct {
unsi gned char pin;
unsi gned char attributes;
const char *nane;

} PLATFORM LED_CONFI GURATI ON _t ;

Description

PLATFORM_LED_CONFIGURATION _t describes the features of a LED connected to a GPIO.

pin
The digital pin that drives the LED. See PLATFORM_PIN_CONNECTION_t.

attri butes
The attributes of the LED. See PLATFORM_LED ATTRIBUTE t.

nane
The name of the LED. You can set this to the name of the LED on the silkscreen or whatever is visible to the
user for identification. If name is zero, the LED's name is derived from the GPIO connection name for pin or
the pad name for pin. See platform_led_name.

See Also

platform_led_catalog

25

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_PIN_CLAIM_t

Synopsis

typedef enum {
PI N_CLAI M_WEAK,
PI' N_CLAI M_SHARED,
PI N_CLAI M_EXCLUSI VE,
PI N_CLAI M_FI XED,
PI' N_CLAI M_LOCKED
} PLATFORM PI N CLAI M t;

Description

PLATFORM_PIN_CLAIM_t describes the claim that the client wishes to make on a pin when configuring it using

platform_claim_pin or platform_claim_pin_configuration.

PI N _CLAI M VVEAK
The application claims this pin for a function but the pin can be reconfigured for another function without
first releasing it.

PI N_CLAI M_SHARED
The application claims this pin for a function, and claims of the same pin for the same function will be

granted. The pin can be released for reuse by platform_release_pin.

PI N CLAI M EXCLUSI VE
The application claims exclusive use of this pin for a function, and claims of the same pin for the same

function will be denied. The pin can be released for reuse by platform_release_pin.

PI N_CLAI M _FI XED
The application claims exclusive use of this pin for a function, claims of the same pin for the same function
will be denied. Fixed pins cannot be released.

PI N_CLAI M_LOCKED
As Pl N_CLAI M_FI XEDbut used internally by the Platform Library to deny configuration of dedicated
or non-existent pins. Locked pins cannot be released. If the underlying microcontroller implements pin
locks, the Platform Library may take advantage of this and hardware-lock the pin in addition to locking it in

software.

See Also

platform_claim_pin, platform_claim_pin_configuration

26

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_PIN_CONFIGURATION_t

Synopsis

typedef struct {
unsi gned char pin;
unsi gned char functi on;
} PLATFORM PI N_CONFI GURATI ON _t ;

27

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_PIN_CONNECTION_t

Synopsis

typedef enum {
PLATFORM_NO_CONNECTI ON,
PLATFORM END_OF_LI ST

} PLATFORM Pl N_CONNECTI ON t ;

Description

PLATFORM_PIN_CONNECTION_t is an enumeration that describes a pin connection. A pin connection is

platform-specific and encodes a port and a pin within that port using a single integer.
There are two distinguished values that the Platform Library uses when accepting or defining a pin:

* PLATFORM _NO_CONNECTI ONin a pin list indicates that there is no direct connection for this pin. For
instance, a button that is not directly connected to a GPIO will specify this for the pi n member for the
button in the button catalog: the button can still be read using pl at f or m r ead_but t on, but the
implementation of the Platform Library will not read directly from the pin for that button. This is useful,
for instance, when a joystick or buttons are analog-encoded using resistors to change an analog input to

indicate which buttons are pressed.

* PLATFORM END_OF_LI ST indicates the end of a list. Any API call that requires a list must terminate the
list with this value. In addition, any lists returned by an API call (for instance, pl at f or m | ed_cat al og)

will ensure that the list is correctly terminated by the value.

The pins encoded by the Platform Library must lie in the range 0x00 to Ox FO inclusive, to allow for future

expansion of the API. This allows a pin to be encoded in a structure using an unsi gned char.

In many API prototypes, the pin connection type isi nt rather than PLATFORM_PI N_CONNECTI ON t
for brevity: any argument with type i nt and name pi n is understood to mean the argument is of type
PLATFORM_PI N_CONNECTI ON_t .

For various platform footprints, a common set of symbols are defined which map the microprocessor pin to a
platform connector. For instance, As such, on any platform that supports an Arduino footprint, you can use the
symbol ARDUI NO_DO to indicate "the pin connected to Arduino digital header D0".

Arduino

The following constants are supplied by the Platform Library for evaluation boards that support an Arduino

footprint:

ARDUI NO_DO through ARDUI NO_D12
These constants define the pins connected to the Arduino digital headers.

ARDUI NO_AO through ARDUI NO_A5
These constants define the pins connected to the Arduino analog headers.

28

CrossWorks Platform Library CrossWorks Platform Library

In addition, some synonyms are provided by the Platform Library:

ARDUI NO_RXand ARDUI NO_TX
Equivalent to ARDUI NO_DO and ARDUI NO_D1, for UART communication.

ARDUI NO_MOSI , ARDUI NO_M SO and ARDUI NO_SCK
Equivalent to ARDUI NO_D11, ARDUI NO_D12, and ARDUI NO_D13, for SPI communication.

ARDUI NO_SDA and ARDUI NO_SCL
Equivalent to ARDUI NO_A4 and ARDUI NO_A5, for I2C communication.

Some Arduino-style platforms, such as the Freedom boards, may also support the R3 format with:

LEONARDO_SCL and LEONARDO SDA
For boards that route the A4/A5 signals to SDA/SCL on the digital header, LEONARDO_SCL will be set to
ARDUI NO_A4 and LEONARDO_SDA will be set to ARDUI NO_A5. For boards with A4/A5 independent from
SDA/SCL, LEONARDO_SCL and LEONARDO_SDA will be defines as the appropriate pin connection.

mbed
VBED_ P4 through MBED P30
These constants define the pins connected to the dual-in-line header pins of an mbed socket.

LaunchPad

LAUNCHPAD_A2 through LAUNCHPAD A7
These constants define the pins connected to the "A" connector of a LaunchPad socket.

LAUNCHPAD_ B2 through LAUNCHPAD_B7
These constants define the pins connected to the "B" connector of a LaunchPad socket.

In addition, some synonyms are provided by the Platform Library:

LAUNCHPAD_Al N
Equivalent to LAUNCHPAD_ A2, an analog input.

LAUNCHPAD_RXand LAUNCHPAD_TX
Equivalent to LAUNCHPAD_A3 and LAUNCHPAD_A4, for UART communication.

LAUNCHPAD_SDA and LAUNCHPAD _SCL
Equivalent to LAUNCHPAD_B6 and LAUNCHPAD_B?7, for I2C communication.

LAUNCHPAD | NT_0O and LAUNCHPAD | NT_1
Equivalent to LAUNCHPAD_ A5 and LAUNCHPAD B3, pins capable of generating external interrupt
requests.

29

CrossWorks Platform Library CrossWorks Platform Library

LAUNCHPAD SPI _A_SCK, LAUNCHPAD SPI _B_SCK, LAUNCHPAD MOSI , and
LAUNCHPAD M SO

Equivalent to LAUNCHPAD A6, LAUNCHPAD A7, LAUNCHPAD B6, and LAUNCHPAD B7, for SPI
communication.

LAUNCHPAD TMR _QUT
Equivalent to LAUNCHPAD B2, for timer event output.

30

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_PIN_DIRECTION_t

Synopsis

typedef enum {

PI N_DI RECTI ON_QUTPUT,

PI N_DI RECTI ON_| NPUT
} PLATFORM Pl N_DI RECTI ON t;
Description

PLATFORM_PIN_DIRECTION_t describes whether a pin will be configured as a digital input or a digital output
using platform_set_digital_pin_direction.

PI N_DI RECTI ON_QUTPUT
Pin is configured as a digital output.

PI N_DI RECTI ON_I NPUT
Pin is configured as a digital input.

See Also

platform_set_digital_pin_direction

31

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_PIN_FEATURE_t

Synopsis

typedef enum {
PI N_FEATURE_SLOW SLEW RATE,
Pl N_FEATURE_FAST_SLEW RATE,
PI N_FEATURE_DI SABLE_GLI TCH_FI LTER,
PI N_FEATURE_ENABLE_GLI TCH_FI LTER
} PLATFORM PI N_FEATURE t;

Description

PLATFORM_PIN_FEATURE_t describes the features that a pin may support using
platform_set_digital_pin_feature.

Note

Not all features are implemented on all platforms, and not all combinations of features are possible on all
platforms. Individual platforms may well reject a request to configure a pin for a particular feature if the Platform
Library can determine that the request cannot be satisfied.

Pl N_FEATURE_SLOW SLEW RATE

Configure pin for slow slew rate.

Pl N_FEATURE_FAST_SLEW RATE

Configure pin for fast slew rate.

PI N FEATURE DI SABLE G.I TCH FI LTER
Disable glitch filter.

PI N FEATURE _ENABLE G.I TCH FI LTER
Enable glitch filter.

See Also

platform_set_digital_pin_feature

32

CrossWorks Platform Library

PLATFORM_PIN_FUNCTION_t

Synopsis

typedef enum {
Pl N_FUNCTI ON_FLQATI NG,
Pl N_FUNCTI ON_M SO,
PI N_FUNCTI ON_MOSI
PI'N_FUNCTI ON_SCK,
Pl N_FUNCTI ON_SDA,
Pl N_FUNCTI ON_SCL,
PI'N_FUNCTI ON_DI G TAL_I| NPUT,
PI' N_FUNCTI ON_DI G TAL_QUTPUT,
PI' N_FUNCTI ON_ANALOG | NPUT,
Pl N_FUNCTI ON_ANALOG_QUTPUT,
PI'N_FUNCTI ON_TX,
Pl N_FUNCTI ON_RX,
Pl N_FUNCTI ON_STATUS,
Pl N_FUNCTI ON_ETHERNET_| NPUT,
Pl N_FUNCTI ON_ETHERNET_QOUTPUT,
PI' N_FUNCTI ON_SDI O,
Pl N_FUNCTI ON_MEMCORY,
Pl N_FUNCTI ON_LCD
} PLATFORM PI N_FUNCTI ON_t ;

Description

CrossWorks Platform Library

PLATFORM_PIN_FUNCTION_t describes the functions that the client wishes to assign to the pin.

Pl N_FUNCTI ON_FLOATI NG

Unused during configuration. This indicates that the pin is currently unassigned.

PI N_FUNCTI ON_M SO
Configure for SPI MISO.

PI N_FUNCTI ON_MOSI
Configure for SPI MOSI.

Pl N_FUNCTI ON_SCK
Configure for SPI SCK.

PI N_FUNCTI ON_SDA
Configure for 12C SDA.

PI' N_FUNCTI ON_SCL
Configure for [2C SCK.

PI N_FUNCTI ON_DI G TAL_| NPUT
Configure as a digital input.

PI' N_FUNCTI ON_DI G TAL_OUTPUT
Configure as a digital output.

CrossWorks Platform Library CrossWorks Platform Library

Pl N_FUNCTI ON_ANALOG | NPUT
Configure as an analog input. This connects the pin to an ADC.

PI N_FUNCTI ON_ANALOG_QUTPUT
Configure as a digital output. This connects the pin to a DAC function or PWM function, depending upon
pin capability.

PI N_FUNCTI ON_TX
Configure as an RS232 Tx signal.

Pl N_FUNCTI ON_RX
Configure as an RS232 Rx signal.

Pl N_FUNCTI ON_STATUS
Special configuration that is meaningful to the platform.

PI N_FUNCTI ON_ETHERNET _| NPUT, PI N_FUNCTI ON_ETHERNET_OUTPUT
Configure for dedicated Ethernet function.

Pl N_FUNCTI ON_MEMORY
Special configuration that implements an external memory bus.

See Also

platform_claim_pin, platform_claim_pin_configuration

34

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_PIN_MODE_t

Synopsis

typedef enum {
PI N_MODE_STANDARD,
Pl N_MODE_OPEN_DRAI N,
PI N_MODE_PULL_UP,
PI N_MODE_PULL_DOWN
} PLATFORM Pl N_MODE _t ;

Description

PLATFORM_PIN_MODE_t describes the functions that select additional options for an digital pin pin using

platform_set_digital_pin_mode.

Note

Not all modes are implemented on all platforms, and not all combinations of options are possible on all
platforms. Individual platforms may well reject a request to configure a pin in a particular mode if the Platform
Library can determine that the request cannot be satisfied.

Pl N_MODE_STANDARD

Pin is a standard push-pull output or floating input.

Pl N_MODE_OPEN_DRAI N

Pin is configured in open drain mode.

Pl N_MODE_PULL_UP

Integrated pull-up resistors are enabled.

PI N_MODE_PULL_ DOWN

Integrated pull-down resistors are enabled.

See Also

platform_set_digital_pin_mode

35

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_RESET_CAUSE_t

Synopsis

typedef enum {
PLATFORM _RESET_POVER_ON,
PLATFORM RESET_EXTERNAL,
PLATFORM _RESET_SOFTWARE,
PLATFORM _RESET_WATCHDOG,
PLATFORM_RESET_BROWNOUT,
PLATFORM RESET_OSCl LLATOR FAI L

} PLATFORM RESET_CAUSE t ;

Description

PLATFORM_RESET_CAUSE_t enumerates the causes of a microcontroller reset. Note that some platforms may

not be able to support reporting all reset causes.

PLATFORM RESET_POWER_ON

Power-on reset.

PLATFORM RESET _EXTERNAL
External reset using reset pin.

PLATFORM RESET _SOFTWARE
Software reset.

PLATFORM _RESET _WATCHDOG
Reset because watchdog expired.

PLATFORM_RESET _BROWNOUT
Reset after brownout.

PLATFORM RESET_OSCI LLATOR_FAI L
Reset after oscillator fail.

See Also

platform_reset_cause

36

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_UEXT_CONFIGURATION_t

Synopsis

typedef struct {
signed char i2c_bus_i ndex;
si gned char spi _bus_i ndex;
si gned char uart _i ndex;
unsi gned char pin3_txd;
unsi gned char pin4_rxd;
unsi gned char pin5_scl;
unsi gned char pin6_sda;
unsi gned char pin7_m so;
unsi gned char pi n8_nosi ;
unsi gned char pin9_sck;
unsi gned char pinl0_ssel;

} PLATFORM UEXT_CONFI GURATI ON _t ;

Description

PLATFORM_UEXT_CONFIGURATION_t describes the connection topology and bus connection for an Olimex
UEXT socket.

i 2c_bus_i ndex
The index of the platform 12C bus that is routed to the SDA and SCL pins on the UEXT socket. If this is
negative, the UEXT socket does not support 12C communication.

spi _bus_i ndex
The index of the platform SPI bus that is routed to the MOSI , M SO and SCK pins on the UEXT socket. If this
is negative, the UEXT socket does not support SPI communication.

uart _i ndex
The index of the platform UART that is routed to the TXDand RXD pins on the UEXT socket. If this is
negative, the UEXT socket does not support UART communication.

pi n3_t xd
The platform pin connected to TXD (pin 3) on the UEXT socket. If this is PLATFORM Pl N_CONNECTI ON,
the UEXT pin is unconnected.

pi nd_rxd
The platform pin connected to RXD (pin 4) on the UEXT socket. If this is PLATFORM Pl N_CONNECTI ON,
the UEXT pin is unconnected.

pi n5_scl
The platform pin connected to SCL (pin 5) on the UEXT socket. If this is PLATFORM Pl N_CONNECTI ON,
the UEXT pin is unconnected.

pi n6_sda
The platform pin connected to SDA (pin 6) on the UEXT socket. If this is PLATFORM Pl N_CONNECTI ON,
the UEXT pin is unconnected.

37

CrossWorks Platform Library CrossWorks Platform Library

pi n7_m so
The platform pin connected to M SO(pin 7) on the UEXT socket. If this is PLATFORM_PI N_CONNECTI ON,
the UEXT pin is unconnected.

pi Nn8_nosi
The platform pin connected to MOSI (pin 8) on the UEXT socket. If this is PLATFORM_PI N_CONNECTI ON,
the UEXT pin is unconnected.

pi n9_sck
The platform pin connected to SCK (pin 9) on the UEXT socket. If this is PLATFORM Pl N_CONNECTI ON,
the UEXT pin is unconnected.

pi n10_ssel
The platform pin connected to SSEL (pin 10) on the UEXT socket. If this is PLATFORM _PI N_CONNECTI ON,
the UEXT pin is unconnected.

See Also

platform_uext_configuration

38

CrossWorks Platform Library CrossWorks Platform Library

platform_button_catalog

Synopsis

PLATFORM BUTTON_CONFI GURATI ON_t *pl atform button_cat al og(voi d);

Description

platform_button_catalog returns an array of buttons available on the platform. The end of the array is indicated
by the pi n member set to PLATFORM _END_OF LI ST.

See Also

PLATFORM_BUTTON_CONFIGURATION_t

39

CrossWorks Platform Library CrossWorks Platform Library

platform_button_name

Synopsis

char *pl atform button_nane(int index);

Description

platform_button_name returns the preferred name for the button with index index. The returned pointer is

guaranteed non-zero. The button name is derived as follows:

» |Ifindex is not a valid button index, the button name is | NVALI D.

* [f the button name is non-zero in the button catalog, the button name is the cataloged name.

* If the cataloged signal name for the button's pin is nonzero, the button name is that signal name.

* If the cataloged connection name for the button's pin is nonzero, the button name is that connection
name.

* Otherwise the button name is ANON.

See Also

PLATFORM_BUTTON_CONFIGURATION_t

40

CrossWorks Platform Library CrossWorks Platform Library

platform_claim_multi_pin

Synopsis

CTL_STATUS t platformclai mnulti_pin(const unsigned char *pins,
int function);

Description

platform_claim_multi_pin iterates over the list of pins pins and attempts to claim each for f unct i on using
platform_claim_pin.

The pin list pins must be terminated by PLATFORM _END_OF LI ST. If any pin cannot be claimed,

platform_claim_multi_pin immediately returns the status.

Return Value

platform_claim_multi_pin returns a standard status code.

See Also

platform_claim_pin_configuration, platform_release_pin

141

CrossWorks Platform Library CrossWorks Platform Library

platform_claim_pin

Synopsis

CTL_STATUS t platformclai mpin(int pin,
int function);

Description

platform_claim_pin attempts to claim the pin pin for function function. The function parameter is the
inclusive-or of a PLATFORM PI N_CLAI M t constantand a PLATFORM Pl N_FUNCTI ON_t constant.

Return Value

platform_claim_pin returns a standard status code.

See Also

platform_claim_pin_configuration, platform_release_pin

42

CrossWorks Platform Library CrossWorks Platform Library

platform_claim_pin_configuration

Synopsis

CTL_STATUS t platformclai mpin_configuration(const PLATFORM Pl N_CONFI GURATI ON_t *pi ns);

Description

platform_claim_pin_configuration iterates over the list of pins pins and attempts to claim each entry's pi n

using its corresponding node using platform_claim_pin.

The pin list pins must be terminated by PLATFORM _END_COF LI ST in the pi h member of the final
PLATFORM_PIN_CONFIGURATION_t. If a pin cannot be configured, platform_claim_pin_configuration
immediately returns the status.

Return Value

platform_claim_pin_configuration returns a standard status code.

See Also

platform_claim_pin, platform_release_pin

43

CrossWorks Platform Library CrossWorks Platform Library

platform_configure_i2c_bus

Synopsis

CTL_STATUS t platformconfigure_i2c_bus(int index);

Description

platform_configure_i2c_bus powers-up and initializes the 12C peripheral and configures the appropriate pins
for 12C configuration on 12C bus index. The SCL and SDA pins are configured using Pl N_CLAI M_SHARED.

Return Value

platform_configure_i2c_bus returns a standard status code.

See Also

platform_configure_i2c_bus_ex

44

CrossWorks Platform Library CrossWorks Platform Library

platform_configure_i2c_bus_ex

Synopsis

CTL_STATUS t platformconfigure_i2c_bus_ex(int i ndex,
PLATFORM PIN_CLAIMt claim;

Description

platform_configure_i2c_bus_ex processes the parameter index as pl at f or m_confi gure_i 2c_bus but
configures the 12C bus pins using the claim mode claim.

You can use this to claim the pins of an 12C bus and lock them such that they cannot be reconfigured.

See Also

platform_configure_i2c_bus

45

CrossWorks Platform Library CrossWorks Platform Library

platform_configure_spi_bus

Synopsis

CTL_STATUS t platform configure_spi_bus(int index,
int extended_franes);

Description

platform_configure_spi_bus powers-up and initializes the SPI peripheral and configures the appropriate pins
for SPI configuration on SPI bus index. The MISO, MOSI, and SCK pins are configured for shared use of those

functions as returned by plaform_spi_bus_pins.

platform_configure_spi_bus guarantees to successfully configure devices for 8-bit frame sizes, or multiples
thereof. If you know that all devices connected to an SPI bus require frames that are multiples of a byte, you can
use platform_configure_spi_bus to configure the bus. In this case, it's likely that the Platform Library will use a

hardware SPI controller to drive the bus.

If some device on the bus requires non-byte-multiple frames (for example, some SPI LCDs require 9-bit frames),
then platform_configure_spi_bus will not, in general, guarantee to support those devices. If you require non-

byte-multiple frame sizes, set ext ended_f r anes to a non-zero value and this will force use of a software SPI
controller when the hardware controller only supports 8-bit frame sizes.

Platform notes

KLO5Z, KL25Z, STM32F1, and STM32F4 SPI controllers support only 8-bit frames in hardware.

For the Arduino Uno, or compatibles using the ATmega328P such as the Arduino Pro and the Olimexino-328, the
SS pin is automatically configured for shared digital output along with the hardware functions for MISO, MOSI,
and SCK.

The ATmega328P will switch to SPI slave mode if SS is driven low with SS configured as an input, so the Platform

Library silently configures SS as a shared output to avoid inadvertently switching to SPI slave mode.

Return Value

platform_configure_spi_bus returns a standard status code.

See Also

platform_configure_spi_bus_ex

46

CrossWorks Platform Library CrossWorks Platform Library

platform_configure_spi_bus_ex

Synopsis

CTL_STATUS t platform configure_spi _bus_ex(int index,
int extended_franes,
PLATFORM PIN_CLAIM t claim;

Description

platform_configure_spi_bus_ex processes the parameters index and extended_frames as
pl at f orm confi gur e_spi _bus but configures the SPI bus pins using the claim mode claim.

You can use this to claim the pins of an SPI bus and lock them such that they cannot be reconfigured.

Return Value

platform_configure_spi_bus_ex returns a standard status code.

See Also

platform_configure_spi_bus

47

CrossWorks Platform Library CrossWorks Platform Library

platform_configure_uart

Synopsis

CTL_STATUS t platformconfigure uart(int index);

Description

platform_configure_uart powers-up and initializes the platform UART with index index and configures the
appropriate pins for UART communication. The UART pins are configured using Pl N_CLAI M_SHARED.

Return Value

platform_configure_uart returns a standard status code.

48

CrossWorks Platform Library CrossWorks Platform Library

platform_cpu_core_frequency

Synopsis

unsi gned | ong platformcpu_core_frequency(void);

Description

platform_cpu_core_frequency returns the CPU core frequency, in Hertz.

49

CrossWorks Platform Library CrossWorks Platform Library

platform_cpu_name

Synopsis

char *pl atform cpu_nane(void);

Description

platform_cpu_name returns the presentation (human-readable) name of the microprocessor that the platform
runs on.

50

CrossWorks Platform Library CrossWorks Platform Library

platform_cpu_tick

Synopsis

unsi gned | ong platformcpu_tick(void);

Description

platform_cpu_tick returns the current free-running CPU tick. The CPU tick increments at a rate of

platform_cpu_tick_frequency ticks per second and wraps around from 232_1 to zero.

See Also

platform_cpu_tick_frequency

51

CrossWorks Platform Library CrossWorks Platform Library

platform_cpu_tick_frequency

Synopsis

unsi gned | ong platformcpu_tick frequency(void);

Description

platform_cpu_tick_frequency returns the frequency at which the CPU tick increments, in Hertz.

See Also

platform_cpu_tick

52

CrossWorks Platform Library CrossWorks Platform Library

platform_digital_pin_direction

Synopsis

CTL_STATUS t platformdigital _pin_direction(int pin);

Description
platform_digital_pin_direction returns the digital I/O pin direction for pin pin configured as a digital I/0.

This function is fast and does no error checking whatsoever: it is the client's responsibility to use this function
correctly.

See Also

PLATFORM_PIN_DIRECTION_t, platform_set_digital_pin_direction

53

CrossWorks Platform Library CrossWorks Platform Library

platform_digital_pin_drive_strength

Synopsis

CTL_STATUS t platformdigital pin_drive_strength(int pin);

Description

platform_digital_pin_drive_strength returns the configured drive strength, in milliamps, for the pin pin.

Return Value

platform_digital_pin_drive_strength returns an extended status code. If the status indicates an error, pin does

not drive strength configuration.

Platform notes

Not all platform provide programmable drive strength. See platform_set_digital_pin_drive_strength for

additional platform information.

See Also

platform_set_digital_pin_drive_strength

54

CrossWorks Platform Library

platform_digital_pin_features

Synopsis

CTL_STATUS t platformdigital _pin_features(int pin);

Description

platform_digital_pin_features returns the features for the pin pin.

See Also

platform_set_digital_pin_features

55

CrossWorks Platform Library

CrossWorks Platform Library CrossWorks Platform Library

platform_digital_pin_mode

Synopsis

CTL_STATUS t platformdigital pin_node(int pin);

Description

platform_digital_pin_mode returns the configured pin mode for the pin pin.

See Also

platform_set_digital_pin_mode

56

CrossWorks Platform Library CrossWorks Platform Library

platform_digital_pin_speed

Synopsis

CTL_STATUS t platformdigital pin_speed(int pin);

Description

platform_digital_pin_speed returns the configured pin speed, in kHz, for the pin pin.

Return Value

platform_digital_pin_speed returns an extended status code. If the status indicates an error, pin does not
support speed configuration.

Platform notes

Not all platform provide programmable pin speed. See platform_set_digital_pin_speed for additional platform
information.

See Also

platform_set_digital_pin_speed

57

CrossWorks Platform Library CrossWorks Platform Library

platform_hook_background

Synopsis

voi d pl at f orm hook_backgr ound(PLATFORM HOOK t *hook) ;

Description

platform_hook_background hooks hook to the list of hooks that run in the background, approximately ten

times per second. The platform executes the hook in a task context, not an interrupt context.

Hooking onto the background list is a good way to periodically update environmental sensor readings, flush
shadowed LCD contents, and anything else that is not time critical.

Thread Safety

platform_hook_background is thread-safe.

See Also

PLATFORM_HOOK_t, platform_unhook_background

58

CrossWorks Platform Library CrossWorks Platform Library

platform_hook_button_press

Synopsis

CTL_STATUS t pl atform hook_button_press(int index,
PLATFORM HOOK_t *hook) ;

Description

platform_hook_button_press hooks a press on the button with index index using hook.
platform_hook_button_press will hook the correct edge to detect a button press according to the
configuration for button index.

Return Value

platform_hook_button_press returns a standard status code.

See Also

PLATFORM_BUTTON_CONFIGURATION_t

59

CrossWorks Platform Library CrossWorks Platform Library

platform_hook_pin_edge

Synopsis

CTL_STATUS t pl at f or m hook_pi n_edge(i nt pin,
PLATFORM EDGE_t edge,
PLATFORM HOOK t *hook) ;

Description

platform_hook_pin_edge hooks the function hook so that it is activated by an edge on pin pin. The edge
parameter requests that the hook be triggered on a rising edge, a falling edge, or either edge.

The activated hook is executed in an interrupt context, not a task context, and without any surrounding calls to
ctl_enter_isr and ctl_exit_isr. If your hook requires CTL facilities, you must ensure that you call ctl_enter_isr and

ctl_exit_isr as you would in a standard CTL interrupt handler.

Return Value

platform_hook_pin_edge returns a standard status code. Hooking an interrupt is inherently platform-
dependent and may fail for any of the following reasons:

» A hook is already established for the pin. Some platforms may support more than one hook per pin and
chain them, whereas others may support exactly one hook per pin. It is typically not possible to establish
distinct hooks for rising and falling edges of a pin, but the platform supports a single hook for both edges.

* The platform is out of resources when associating interrupts with pins. For instance, STM32 devices can
hook an interrupt to bits 0 through 31 of any port, but cannot simultaneously establish hooks for the
same bit on different ports, i.e. you cannot establish hooks for interrupts on both PORTA[4] and PORTC[4]
as they share the same internal resource, but you can establish hooks for PORTA[4] and PORTCI[5] as they
use different pins.

* The port pin cannot generate interrupts.

* The port pin does not support the requested edge trigger.

See Also

PLATFORM_HOOK_t, PLATFORM_EDGE _t

60

CrossWorks Platform Library CrossWorks Platform Library

platform_hook_timer

Synopsis

CTL_STATUS t pl atform hook_ti ner (PLATFORM HOOK t *p,
unsi gned frequency);

Description

platform_hook_timer hooks hook so that it is activated repetitively frequency times per second. The platform
executes the hook in an interrupt context, not a task context.

Hooking onto a timer is a good way to execute code at a reliable fixed frequency to scan LED matrices or
switches, for instance.
Return Value

platform_hook_timer returns a standard status code. Hooking a timer is inherently platform-dependent and

may fail for any of the following reasons:

» The desired execution frequency cannot be achieved.

 All timer hooks are already established. The platform APl guarantees at least one active timer hook.

Thread Safety

platform_hook_timer is thread-safe.

See Also

PLATFORM_HOOK_t, platform_unhook_timer

61

CrossWorks Platform Library CrossWorks Platform Library

platform_i2c_bus

Synopsis

CTL_I2C BUS t *platform.i 2c_bus(int index);

Description

platform_i2c_bus returns the driver for the I12C bus index. If index does not correspond to a logical platform
bus, platform_i2¢c_bus returns zero.

62

CrossWorks Platform Library CrossWorks Platform Library

platform_i2c_bus_pins

Synopsis

PLATFORM Pl N_CONFI GURATI ON_t *pl atform_ i 2c_bus_pi ns(int index);

Description

platform_i2c_bus_pins returns the pin list required for [2C communication on 12C bus index. If index does
not correspond to a logical platform bus, platform_i2c_bus_pins returns zero. The list of pins is terminated by
PLATFORM END _OF LI ST in the pi n member.

See Also

PLATFORM_PIN_CONFIGURATION_t

63

CrossWorks Platform Library CrossWorks Platform Library

platform_initialize

Synopsis

void platforminitialize(void);

Description

platform_initialize initializes the microprocessor and any hardware on the board for use with Platform Library
functions.

Behind the scenes, platform_initialize starts up the CrossWorks Tasking Library and creates a two-task system
with a user task and an idle task. The user task is the thread of execution that continues after platform_initialize
returns, and the idle task runs when there is nothing else to do, and typically puts the processor to sleep so that

it doesn't continue to consume energy.

64

CrossWorks Platform Library CrossWorks Platform Library

platform_led_catalog

Synopsis

PLATFORM LED CONFI GURATI ON_t *pl atform | ed_cat al og(voi d);

Description

platform_led_catalog returns an array of LEDs available on the platform. The end of the array is indicated with
the pi n member set to PLATFORM END_OF LI ST.

See Also

PLATFORM_LED_CONFIGURATION_t

65

CrossWorks Platform Library CrossWorks Platform Library

platform_led_name

Synopsis

char *platform|ed_name(int index);

Description

platform_led_name returns the preferred name for the LED with index index. The returned pointer is

guaranteed non-zero. The LED name is derived as follows:

* |Ifindex is not a valid LED index, the LED name is | NVALI D.

If the LED name is non-zero in the LED catalog, the LED name is the cataloged name.

If the cataloged signal name for the LED's pin is nonzero, the LED name is that signal name.

If the cataloged connection name for the LED's pin is nonzero, the LED name is that connection name.
Otherwise the LED name is ANON.

See Also

PLATFORM_BUTTON_CONFIGURATION_t

66

CrossWorks Platform Library CrossWorks Platform Library

platform_lock_pin

Synopsis

CTL_STATUS t platforml ock _pin(int pin);

Description

platform_lock_pin attempts to raise the claim on pin pin to Pl N_CLAI M_LOCKED If the underlying
microcontroller implements pin locks, the Platform Library may take advantage of this and hardware-lock the
pin in addition to locking it in software.

Return Value

platform_lock_pin returns a standard status code.

See Also

platform_lock_pin

67

CrossWorks Platform Library CrossWorks Platform Library

platform_lock_pin_configuration

Synopsis

CTL_STATUS t platform|ock pin_configuration(const PLATFORM PI N CONFI GURATI ON_t *confi g);

Description

platform_lock_pin_configuration iterates over the list of pins pins and attempts to raise the claim on each
entry's pi nto Pl N_CLAI M_LOCKED If the underlying microcontroller implements pin locks, the Platform

Library may take advantage of this and hardware-lock the pin in addition to locking it in software.

The pin list pins must be terminated by PLATFORM_END_OF_LI ST in the pi n member of the final
PLATFORM_PIN_CONFIGURATION_t. If a pin cannot be locked, platform_lock_pin_configuration immediately
returns the status.

Return Value

platform_lock_pin_configuration returns a standard status code.

See Also

platform_lock_pin

68

CrossWorks Platform Library

platform_name

Synopsis

char *pl atform nanme(voi d);

Description

platform_name returns the presentation (human-readable) name of the platform.

69

CrossWorks Platform Library

CrossWorks Platform Library CrossWorks Platform Library

platform_pin_catalog

Synopsis

unsi gned char *pl atform pin_catal og(void);

Description

platform_pin_catalog returns an array of pins that the Platform Library exposes to the client. The end of the
array is indicated by and entry of PLATFORM END_OF_LI ST.

This may well not be the entire range of pins supported by the microprocessor, and is typically only populated

with pins that should be modified by a client.

See Also

platform_pin_catalog_count

70

CrossWorks Platform Library CrossWorks Platform Library

platform_pin_catalog_count

Synopsis

unsi gned pl atform pi n_cat al og_count (voi d);

Description

platform_pin_catalog_count returns the number of pins the in pin catalog delivered by
pl at f or m pi n_cat al og, excluding the terminating PLATFORM END_OF LI ST.

See Also

platform_pin_catalog

71

CrossWorks Platform Library CrossWorks Platform Library

platform_pin_connection_name

Synopsis

char *pl atform pi n_connecti on_nane(int pin);

Description

platform_pin_connection_name returns the connection name for pin pin. The connection name returned is
generally the name of the port and associated pin from the microprocessor's user manual. For instance, it could
be P1[14] or PB5.

Note

The string may be overwritten by a subsequent call to platform_pin_connection_name.

Implementation

Special connection names, such as PLATFORM_NO_CONNECTI ON, are handled by
platform_pin_connection_name and any platform-specific connections are passed to

platform_private_pin_connection_name to handle.

See Also

PLATFORM_PIN_CONNECTION_t, platform_pin_signal_name

72

CrossWorks Platform Library CrossWorks Platform Library

platform_pin_function

Synopsis

unsi gned char platformpin_function[];

Description

platform_pin_function is an array, indexed by platform pin, contains the claim and function for the pin as set by

platform_claim_pin or platform_claim_pin_configuration.

Note

Clients must not write to this array directly: it is managed by the Platform Library to ensure proper operation.

73

CrossWorks Platform Library CrossWorks Platform Library

platform_pin_signal_name

Synopsis

char *pl atform pin_signal _nane(int pin);

Description

platform_pin_signal_name returns the signal name for pin pin. The signal name returned is generally the name

from the schematic or, in the case of buttons and LEDs, the name of the button or LED on the silkscreen.

Note

The string may be overwritten by a subsequent call to platform_pin_signal_name.

Implementation

Special signal names, such as PLATFORM _NO_CONNECTI ON, are handled by platform_pin_signal_name and
any platform-specific pins are passed to platform_private_pin_signal_name to handle.

See Also

PLATFORM_PIN_CONNECTION_t, platform_pin_connection_name

74

CrossWorks Platform Library CrossWorks Platform Library

platform_read_analog_pin

Synopsis

float platformread_anal og_pin(int pin);

Description

platform_read_analog_pin reads the state of a pin that's configured to be an analog input. The value returned

is between 0 and 1 for single-ended analog inputs and -1 and +1 for differential inputs.

This function is fast and does no error checking whatsoever: it is the client's responsibility to use this function
correctly.

See Also

platform_write_analog_pin

75

CrossWorks Platform Library CrossWorks Platform Library

platform_read_button

Synopsis

int platformread button(int index);

Description

platform_read_button reads the platform button with index index, returning 1 when the button is pressed and
0 when released.

platform_read_button takes care of initializing the GPIO pin and handing buttons connected with both positive

and negative logic. If the button's GPIO cannot be claimed, the button is not and 0

Return Value

platform_read_button returns 1 when the button is pressed and 0 when the button is released.

Note

A button doesn't need to be directly attached to a GPIO, but this is the typical configuration.

See Also

platform_hook_button_press

76

CrossWorks Platform Library CrossWorks Platform Library

platform_read_digital_pin

Synopsis

int platformread digital _pin(int pin);

Description

platform_read_digital_pin reads the state of a pin that's configured to be a digital input. This function is fast
and does no error checking whatsoever: it is the client's responsibility to use this function correctly.

Note

On some platforms, it may be possible to read the state of a pin configured as an output, and doing so may
deliver the state of the pad or the last-written digital output state. Such functionality is not guaranteed or
standardized by this API, and none of the examples written by Rowley Associates make use of this. Some
processors, for instance, will correctly read the state of the pad for outputs configured as push-pull, but will not
do so for outputs configured as open drain.

See Also

platform_write_digital_pin

77

CrossWorks Platform Library CrossWorks Platform Library

platform_reboot

Synopsis

voi d pl atformreboot (void);

Description

platform_reboot resets the microcontroller and starts a cold boot. Note that a reset using platform_reboot may

be detectable as a software reset using platform_reset_cause after the microcontroller resets.

See Also

platform_reset_cause

78

CrossWorks Platform Library CrossWorks Platform Library

platform_release_pin

Synopsis

voi d platformrel ease_pin(int pin);

Description

platform_release_pin releases a pin for reuse and reconfiguration. Pins that are successfully claimed with
PI N_CLAI M _FI XEDor PI N_CLAI M_FI XEDare never released.

This function is be useful when a pin needs to be reconfigured on the fly. For instance, some resistive panels read
a touch position on one axis using analog input and require a potential difference applied on the perpendicular
axis using digital outputs. When reading the touch position on the perpendicular axis, the roles of digital output
and analog inputs are switched, requiring a reconfiguration of each of the pins from analog to digital and vice

versa.

See Also

platform_claim_pin, platform_claim_pin_configuration

79

CrossWorks Platform Library CrossWorks Platform Library

platform_reset_cause

Synopsis

unsi gned pl atformreset cause(void);

Description

platform_reset_cause reads the reason for a microcontroller reset and clears the reset cause flags. The value
returned is the inclusive-or of the individual causes in PLATFORM_RESET CAUSE _t.

See Also

PLATFORM_RESET_CAUSE_t

80

CrossWorks Platform Library CrossWorks Platform Library

platform_set_digital_pin_direction

Synopsis

voi d platformset_digital _pin_direction(int pin,
int direction);

Description

platform_set_digital_pin_direction sets the pin direction for pin pin to direction for a pin configured as a
digital I/0.

This function is fast and does no error checking whatsoever: it is the client's responsibility to use this function

correctly.

Platform notes

Changing pin direction may well change the drive strength, pin speed, and pull-up configuration of the pin to
the defaults for that pin.

See Also

PLATFORM_PIN_DIRECTION_t, platform_digital_pin_direction

81

CrossWorks Platform Library CrossWorks Platform Library

platform_set_digital_pin_drive_strength

Synopsis

CTL_STATUS t platformset _digital _pin_drive strength(int pin,
int strength);

Description
platform_set_digital_pin_drive_strength sets the pin drive strength for digital I/0 pin to strength milliamps.

If a device cannot support the pin drive strength, platform_set_digital_pin_drive_strength returns a
configuration error.

The pin drive strength supported by various platforms are:

Processor Drive Strengths (mA)
STM32L1 Not configurable

STM32F1 Not configurable

STM32F4 Not configurable

LM3S 2,4,8

LPC1700 Not configurable

KLO5Z Not configurable

KL25Z 5,18 (assumes Vdd >= 2.7 V)
See Also

platform_set_multi_digital_pin_drive_strength, platform_digital_pin_drive_strength

82

CrossWorks Platform Library CrossWorks Platform Library

platform_set_digital_pin_features

Synopsis

CTL_STATUS t platformset _digital _pin_features(int pin,
int features);

Description
platform_set_digital_pin_features sets the pin features for digital I/0.

If a device cannot support the pin features features, platform_set_digital_pin_features returns a configuration
error.

See Also

platform_digital_pin_features

83

CrossWorks Platform Library CrossWorks Platform Library

platform_set_digital_pin_mode

Synopsis

CTL_STATUS t platformset _digital _pin_node(int pin,
int node);

Description

platform_set_digital_pin_mode sets the pin mode for digital I/0. A digital output is configured in push-pull
mode, but can optionally be turned into an open drain output. A digital input is configured without any pull ups,

but pull-ups or pull-downs can be requested.

If a device cannot support pin mode mode, platform_set_digital_pin_mode returns a configuration error.

See Also

platform_set_multi_digital_pin_mode, platform_digital_pin_mode

84

CrossWorks Platform Library CrossWorks Platform Library

platform_set_digital_pin_speed

Synopsis

CTL_STATUS t platformset _digital pin_speed(int pin,
int kHz);

Description
platform_set_digital_pin_speed sets the pin speed for digital 1/0.
If a device cannot support the pin speed, platform_set_digital_pin_speed returns a configuration error.

The pin speeds supported by various platforms are:

Processor Speeds (MHz)
STM32L1 04,2,10,40
STM32F1 2,25,50
STM32F4 2,25,50,100
LM3S Not configurable
LPC1700 Not configurable
KLO5Z Not configurable
KL25Z Not configurable
See Also

platform_set_multi_digital_pin_speed, platform_digital_pin_speed

85

CrossWorks Platform Library CrossWorks Platform Library

platform_set_multi_digital_pin_drive_strength

Synopsis

CTL_STATUS t platformset _multi_digital _pin_drive_strength(const unsigned char *pins,
int strength);

Description

platform_set_multi_digital_pin_drive_strength iterates over the list of pins pins and sets each
listed pin's drive strength to strength milliamps using platform_set_digital_pin_drive_strength. The
pin list pins must be terminated by PLATFORM _END_OF_LI ST. If any pin cannot be configured,

platform_set_multi_digital_pin_drive_strength immediately returns the status.

See Also

platform_set_digital_pin_drive_strength, platform_set_multi_digital_pin_drive_strength

86

CrossWorks Platform Library CrossWorks Platform Library

platform_set_multi_digital_pin_mode

Synopsis

CTL_STATUS t platformset _multi_digital _pin_npode(const unsigned char *pins,
i nt node);

Description

platform_set_multi_digital_pin_mode iterates over the list of pins pins and sets each listed pin's
mode to mode using platform_set_digital_pin_mode. The pin list pins must be terminated by
PLATFORM END_OF_LI ST. If any pin cannot be configured, platform_set_multi_digital_pin_mode
immediately returns the status.

See Also

platform_set_digital_pin_mode, platform_digital_pin_mode

87

CrossWorks Platform Library CrossWorks Platform Library

platform_set_multi_digital_pin_speed

Synopsis

CTL_STATUS t platformset _multi_digital pin_speed(const unsigned char *pins,
int node);

Description

platform_set_multi_digital_pin_speed iterates over the list of pins pins and sets each listed pin's
speed to speed using platform_set_digital_pin_speed. The pin list pins must be terminated by
PLATFORM END_OF_LI ST. If any pin cannot be configured, platform_set_multi_digital_pin_speed
immediately returns the status.

See Also

platform_set_digital_pin_speed, platform_digital_pin_speed

88

CrossWorks Platform Library CrossWorks Platform Library

platform_spi_bus

Synopsis

CTL_SPI _BUS t *platform spi_bus(int index);

Description

platform_spi_bus returns the driver for the SPI bus index. If index does not correspond to a logical platform
bus, platform_spi_bus returns zero.

89

CrossWorks Platform Library CrossWorks Platform Library

platform_spi_bus_pins

Synopsis

PLATFORM Pl N_CONFI GURATI ON_t *pl at f orm spi _bus_pi ns(int index);

Description

platform_spi_bus_pins returns the pin list required for SPl communication on SPI bus index. If index does
not correspond to a logical platform bus, platform_spi_bus_pins returns zero. The list of pins is terminated by
PLATFORM END _OF LI ST in the pi n member.

See Also

PLATFORM_PIN_CONFIGURATION_t

90

CrossWorks Platform Library CrossWorks Platform Library

platform_spin_delay_cycles

Synopsis

voi d pl atform spin_del ay_cycl es(unsi gned | ong cycl es);

Description

platform_spin_delay_cycles delays execution by busy-waiting on the CPU timer for cycles ticks.

See Also

platform_spin_delay_us, platform_spin_delay_ms

91

CrossWorks Platform Library CrossWorks Platform Library

platform_spin_delay_ms

Synopsis

voi d pl atform spin_del ay_ns(unsi gned peri od);

Description

platform_spin_delay_ms delays execution by busy-waiting for at least period milliseconds.

See Also

platform_spin_delay_cycles, platform_spin_delay_us

92

CrossWorks Platform Library CrossWorks Platform Library

platform_spin_delay_us

Synopsis

voi d pl atform spin_del ay_us(unsi gned peri od);

Description

platform_spin_delay_us delays execution by busy-waiting for at least period microseconds.

See Also

platform_spin_delay_cycles, platform_spin_delay_ms

93

CrossWorks Platform Library CrossWorks Platform Library

platform_uart

Synopsis

CTL_UART t *platformuart (int index);

Description

platform_uart returns the UART driver for the UART index. If index does not correspond to a logical platform
UART, platform_uart returns zero.

94

CrossWorks Platform Library CrossWorks Platform Library

platform_uext_configuration

Synopsis

PLATFORM _UEXT _CONFI GURATI ON_t *pl at form uext _configuration(int index);

Description

platform_uext_configuration returns a configuration descriptor for UEXT socket index. This function will return
a non-zero result for indexes in the range 0 through PLATFORM_UEXT_COUNT- 1 and a zero results for indexes
outside this range.

If the platform does not provide a UEXT socket, PLATFORM_UEXT_COUNT is set to zero and

platform_uext_configuration always returns zero.

See Also

PLATFORM_UEXT_CONFIGURATION_t

95

CrossWorks Platform Library CrossWorks Platform Library

platform_unhook_background

Synopsis

voi d pl at f orm unhook_backgr ound(PLATFORM HOOK t *hook) ;

Description

platform_unhook_background unhooks hook from the background hook list such that it no longer runs.

Thread Safety

platform_unhook_background is thread-safe.

See Also

platform_hook_background

96

CrossWorks Platform Library CrossWorks Platform Library

platform_unhook_timer

Synopsis

voi d pl at f orm unhook_ti ner (PLATFORM HOOK t *p);

Description

platform_unhook_timer unhooks hook from the timer list such that it no longer runs.

Thread Safety

platform_unhook_timer is thread-safe.

See Also

platform_hook_timer

97

CrossWorks Platform Library CrossWorks Platform Library

platform_watchdog_enable

Synopsis

voi d pl at f orm wat chdog_enabl e(voi d) ;

Description

platform_watchdog_enable enables the watchdog using the timeout period set by
platform_watchdog_set_period. The watchdog must be serviced by calling platform_watchdog_service

within the timeout period to prevent the microcontroller from being reset.

You can detect a reset caused by a watchdog timeout by calling platform_reset_cause.

See Also

platform_watchdog_set_period, platform_watchdog_service, platform_reset_cause

98

CrossWorks Platform Library CrossWorks Platform Library

platform_watchdog_remaining

Synopsis

fl oat platformwatchdog renaini ng(void);

Description

platform_watchdog_remaining returns the time remaining, in seconds, before the watchdog times out.

99

CrossWorks Platform Library CrossWorks Platform Library

platform_watchdog_service

Synopsis

voi d pl at f orm wat chdog_servi ce(voi d);

Description

platform_watchdog_service resets the watchdog timeout. The watchdog timeout is reset to the period set by
platform_watchdog_set_period.

100

CrossWorks Platform Library CrossWorks Platform Library

platform_watchdog_set_period

Synopsis

CTL_STATUS t pl atf orm wat chdog_set peri od(fl oat period);

Description

platform_watchdog_set_period sets the timeout period to period seconds. If the period is too long for the

platform to support, platform_watchdog_set_period returns an error status.

Return Value

platform_watchdog_set_period returns a standard status code.

101

CrossWorks Platform Library CrossWorks Platform Library

platform_write_analog_pin

Synopsis

void platformwite_anal og_pin(int pin,
fl oat val ue);

Description

platform_write_analog_pin writes the state of a pin that's configured to be an analog output. An analog output
can be realized either by a digital-to-analog converter (DAC) or by pulse-width modulation (PWM).

The parameter value indicates the desired output level, 0 through 1.

This function is fast and does no error checking whatsoever: it is the client's responsibility to use this function
correctly.

See Also

platform_read_analog_pin

102

CrossWorks Platform Library CrossWorks Platform Library

platform_write_digital_pin

Synopsis

void platformwite digital _pin(int pin,
int val ue);

Description

platform_write_digital_pin writes the state of a pin that's configured to be a digital output. This function is fast

and does no error checking whatsoever: it is the client's responsibility to use this function correctly.

Note

On some platforms, writing to a pin configured as a digital input may have undesirable effects, such as turning
pull-ups on or off. None of the examples written by Rowley Associates will write to a digital output pin in

anything other than digital output mode.

See Also

platform_read_digital_pin

103

CrossWorks Platform Library CrossWorks Platform Library

platform_write_led

Synopsis

void platformwite_|ed(int index,
int state);

Description

platform_write_led sets the platform LED with index index on or off according to state. If state is zero, the LED
is turned off and if state is non-zero, it is turned on.

platform_write_led takes care of initializing the GPIO pin and handing LEDs connected with both positive and
negative logic. If the LED's GPIO cannot be claimed, the LED is not driven—this allows shared use where a LED is
connected to a GPIO as an indicator. For instance, the BugBlat Cortino has two LEDs, connected to A4/SDA and
A5/SCL so, for instance, a client can request an 12C bus on those two pins and attempting to write to the LEDs
using platform_write_led will be a no-operation as SCL and SDA are claimed for I2C. If, however, the LEDs are
written using platform_write_led, the pins are claimed as general purpose outputs and trying to establish an
12C bus on them will fail.

Note

A LED doesn't need to be directly attached to a GPIO, but this is the typical configuration.

104

CrossWorks Platform Library CrossWorks Platform Library

<platform_graphics.h>

Overview
This is the primary header file for configuring SD/microSD on a platform.

For information on the use of this API, see CrossWorks Platform Library.

APl Summary

Graphics

platform_configure_builtin_graphics Configure built-in graphics display

105

CrossWorks Platform Library CrossWorks Platform Library

platform_configure_builtin_graphics

Synopsis

CTL_STATUS t platform configure_builtin_graphics(void);

Description

platform_configure_builtin_graphics configures the platform's built-in graphics display, if there is one.
If there is no built-in display available on the platform, platform_configure_builtin_graphics returns
CTL_UNSUPPORTED_OPERATI ON

Return Value

platform_configure_builtin_graphics returns a standard status code.

106

CrossWorks Platform Library

<platform_network.h>

APl Summary

Network

platform_configure_network

CrossWorks Platform Library

Configure the network interface controller

107

CrossWorks Platform Library CrossWorks Platform Library

platform_configure_network

Synopsis

CTL_STATUS t platform configure _networ k(CTL_NET | NTERFACE t *sel f);

Description

platform_configure_network configures the platform's primary network interface controller on the interface

self. The intention of this is for the network controller to be initialized, ready to run the examples.

Return Value

platform_configure_network returns a standard status code.

108

CrossWorks Platform Library CrossWorks Platform Library

<platform_sensors.h>

Overview
This is the primary header file for sensors on a platform.
For information on the use of this API, see CrossWorks Platform Library.

The design of this APl separates out all sensors into classes and each class of sensor has an individual API

entry point. We do this, rather than having a general enumeration function, to conserve code and data space

in linked applications. If there is a single APl entry point to enumerate all sensors, for example, then the API
implementation would need to link in drivers for each sensor offered by the platform irrespective of whether the

client requires it or not.

APl Summary

Motion

platform_configure_builtin_accelerometer Configure built-in accelerometer
platform_configure_builtin_gyroscope Configure built-in gyroscope
Magnetics

platform_configure_builtin_magnetometer Configure built-in magnetometer

Environmental

platform_configure_builtin_humidity_sensor Configure built-in humidity sensor
platform_configure_builtin_light_sensor Configure built-in light sensor
platform_configure_builtin_pressure_sensor Configure built-in pressure sensor
platform_configure_builtin_temperature_sensor Configure built-in temperature sensor

109

CrossWorks Platform Library CrossWorks Platform Library

platform_configure_builtin_accelerometer

Synopsis

CTL_ACCELEROVETER t *pl atform configure_builtin_accel eroneter(void);

Description

platform_configure_builtin_accelerometer configures the platform's built-in accelerometer, if there is one. If
there is no built-in accelerometer available, or the resources (SPI bus, 12C bus etc.) are not available to support

the accelerometer, platform_configure_builtin_accelerometer returns zero.

110

CrossWorks Platform Library CrossWorks Platform Library

platform_configure_builtin_gyroscope

Synopsis

CTL_GYROSCOPE_ t *pl atform configure_builtin_gyroscope(void);

Description

platform_configure_builtin_gyroscope configures the platform's built-in gyroscope, if there is one. If there
is no built-in gyroscope available, or the resources (SPI bus, 12C bus etc.) are not available to support the

gyroscope, platform_configure_builtin_gyroscope returns zero.

111

CrossWorks Platform Library CrossWorks Platform Library

platform_configure_builtin_humidity_sensor

Synopsis

CTL_HUM DI TY_SENSOR_ t *platform configure_builtin_hum dity_sensor(void);

Description

platform_configure_builtin_humidity_sensor configures the platform's built-in humidity sensor, if there is
one. If there is no built-in humidity sensor available, or the resources (SPI bus, I12C bus etc.) are not available to

support the humidity sensor, platform_configure_builtin_humidity_sensor returns zero.

112

CrossWorks Platform Library CrossWorks Platform Library

platform_configure_builtin_light_sensor

Synopsis

CTL_LI GHT_SENSOR t *pl atform configure_ builtin_|light _sensor(void);

Description

platform_configure_builtin_light_sensor configures the platform's built-in light sensor, if there is one. If there
is no built-in light sensor available, or the resources (SPI bus, 12C bus etc.) are not available to support the light

sensor, platform_configure_builtin_light_sensor returns zero.

113

CrossWorks Platform Library CrossWorks Platform Library

platform_configure_builtin_magnetometer

Synopsis

CTL_MAGNETOMVETER t *pl at f orm configure_builtin_magnet oneter(void);

Description

platform_configure_builtin_magnetometer configures the platform’s built-in magnetometer, if there is one. If
there is no built-in magnetometer available, or the resources (SPI bus, 12C bus etc.) are not available to support

the magnetometer, platform_configure_builtin_magnetometer returns zero.

114

CrossWorks Platform Library CrossWorks Platform Library

platform_configure_builtin_pressure_sensor

Synopsis

CTL_PRESSURE_SENSOR_ t *pl atform configure_builtin_pressure_sensor(void);

Description

platform_configure_builtin_pressure_sensor configures the platform's built-in pressure sensor, if there is one.
If there is no built-in pressure sensor available, or the resources (SPI bus, I12C bus etc.) are not available to support

the pressure sensor, platform_configure_builtin_pressure_sensor returns zero.

115

CrossWorks Platform Library CrossWorks Platform Library

platform_configure_builtin_temperature_sensor

Synopsis

CTL_TEMPERATURE_SENSOR t *pl atform configure_builtin_tenperature_sensor(void);

Description

platform_configure_builtin_temperature_sensor configures the platform's built-in temperature sensor, if there
is one. If there is no built-in temperature sensor available, or the resources (SPI bus, 12C bus etc.) are not available

to support the temperature sensor, platform_configure_builtin_temperature_sensor returns zero.

116

CrossWorks Platform Library CrossWorks Platform Library

<platform_heaps.h>

Overview
This is the primary header file for platform heaps.

For information on the use of this API, see CrossWorks Platform Library.

APl Summary

Memory

platform_network_heap Network heap
platform_system_heap System heap

Private

platform_private_init_heaps Initialize network and system heaps

117

CrossWorks Platform Library CrossWorks Platform Library

platform_network_heap

Synopsis

CTL_HEAP_t pl atfor m net wor k_heap;

Description

platform_network_heap is a heap that is primarily used by the network library to hold TCP segments for
transmission by the MAC. If you need to allocate small control structures, you should use the system heap,
platform_system_heap. TCP segments in the network heap are fleeting, being created, handed to the MAC
for transmission, and freed. With a quiescent network, the network heap will most likely be entirely empty and,
therefore, not fragmented.

platform_network_heap is initialized by platform_configure_nic.

See Also

platform_configure_nic, platform_system_heap

118

CrossWorks Platform Library CrossWorks Platform Library

platform_private_init_heaps

Synopsis

void platformprivate init_heaps(CTL_NET_MEM DRI VER t *sel f,
voi d *buf,
size_t byte_count);

Description

platform_private_init_heaps initializes the system heap and the network heap using the memory pointed to by
buf of byte_count bytes. The example implementation partitions the memory by allocating 3/4 to the network
heap and 1/4 for the system heap.

Once partitioned, the network driver self is initialized with methods and data to allocate memory from the
network heap.

119

CrossWorks Platform Library CrossWorks Platform Library

platform_system_heap

Synopsis

CTL_HEAP_t pl atform system heap;

Description

platform_system_heap is a general system heap that is primarily used by the network library for maintaining
non-data control structures for DNS, ARP, and so on. It is separate from the network heap that is used to hold

TCP segments for transmission by the MAC.

platform_system_heap is initialized by platform_configure_nic.

See Also

platform_configure_nic, platform_network_heap

120

CrossWorks Platform Library

<platform_private.h>

Overview

CrossWorks Platform Library

Private part of the Platform Library for platform implementation.

These functions are not intended for Platform Library API clients to call directly. These functions are intended

to be a framework that simplifies implementing the Platform Library for a new target processor or evaluation

board.

APl Summary

Platform

platform_private_idle_task_main
platform_private_initialize
platform_private_start_tasking

Pins
platform_private_find_pin_connection
platform_private_lock_pin
platform_private_pin_connection_name
platform_private_pin_signal_name
platform_private_release_pin
platform_private_test_pin_claim

LEDs

platform_private_configure_leds
platform_private_write_led

Buttons

platform_private_read_button

Hooks

platform_private_execute_hooks
platform_private_hook_single_timer
platform_private_start_single_hook_timer
platform_private_stop_single_hook_timer
platform_private_timer_hooks
platform_private_unhook_single_timer
12C
PLATFORM_PRIVATE_I2C_CONFIGURATION_t

Platform idle task body
Initialize private platform

Start CTL and platform tasks

Find pin connection by function
Lock pin in hardware

Get connection name for a pin
Get signal name for a pin
Release pin

Test pin lock

Configure advertised GPIO-connected LEDs
Write to GPIO-connected LED

Read GPIO-connected button

Execute functions on a hook list
Hook a single timer

Start a single hook timer

Stop the single hook timer
Singleton timer hook

Unhook a single timer

12C bus configuration

121

CrossWorks Platform Library

PLATFORM_PRIVATE_I2C_METHODS_t
platform_private_i2c_bus_configuration
platform_private_i2c_bus_instance
platform_private_software_i2c_methods
platform_private_spi_hardware_claim_pins
SPI
PLATFORM_PRIVATE_SPI_CONFIGURATION_t
PLATFORM_PRIVATE_SPI_METHODS_t
platform_private_i2c_hardware_claim_pins
platform_private_software_spi_methods
platform_private_spi_bus_configuration

platform_private_spi_bus_instance

CrossWorks Platform Library

12C bus methods

12C bus array

Platform 12C bus instances
Software 12C methods
Utility methods

SPI bus configuration
SPI bus methods
Utility methods
Software SPI methods
SPI bus array

Platform SPI bus instances

122

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_PRIVATE_I12C_CONFIGURATION_t

Synopsis

typedef struct {
i nt bus_i ndex;
const PLATFORM PI N_CONFI GURATI ON_t *pi ns;
const PLATFORM PRI VATE | 2C METHODS t *net hods;
} PLATFORM PRI VATE_| 2C_CONFI GURATI ON t ;

Description
PLATFORM_PRIVATE_I2C_CONFIGURATION_t describes the configuration of a Platform 12C bus.

bus_i ndex
The device 12C bus index to use for the 12C controller. For instance, platform 12C bus with index 0 may well

be implemented using the device 12C bus 12C2, in which case bus_i ndex will be 2.

pi ns

The pin connections required by the 12C bus.

nmet hods
The methods required to implement the 12C bus. For 12C controllers implemented in software, met hods
should be settopl at f orm pri vate_software_i 2c_net hods.

See Also

platform_private_i2c_bus_configuration, platform_private_software_i2c_methods

123

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_PRIVATE_I12C_METHODS_t

Synopsis

typedef struct {
CTL_STATUS t (*configure_controller)(int);
CTL_STATUS t (*cl ai m_pi ns)

(int , const PLATFORM PI N_CONFI GURATION t *, PLATFORM PI N CLAIMt);
CTL_I2C BUS t *(*controller)(int);

} PLATFORM PRI VATE_| 2C_METHODS _t ;

Description

PLATFORM_PRIVATE_I2C_METHODS_t contains the methods required to configure an 12C bus. The first
parameter of each method is the index of the device 12C bus to configure rather than the index of the Platform
12C bus. For instance, platform 12C bus with index 0 may well be implemented using the device 12C bus 12C2, in

which case the index will be 2.

configure_controll er
Method to configure the controller for the 12C bus.

cl ai m pi ns
Method to claim the pins that the 12C controller will use. For software 12C controllers, the pins are

configured for digital I/0.

control |l er
Method to return the 12C bus controller.

124

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_PRIVATE_SPI_CONFIGURATION_t

Synopsis

typedef struct {

i nt bus_i ndex;

const PLATFORM PI N_CONFI GURATI ON_t *pi ns;

const PLATFORM PRI VATE_SPI _METHODS t *net hods[];
} PLATFORM PRI VATE_SPI _CONFI GURATI ON t ;

Description
PLATFORM_PRIVATE_SPI_CONFIGURATION_t describes the configuration of a Platform SPI bus.

bus_i ndex
The device SPI bus index to use for the SPI controller. For instance, platform SPI bus with index 0 may well be

implemented using the device SPI bus SPI2, in which case bus_i ndex will be 2.

pi ns

The pin connections required by the SPI bus.

nmet hods
The methods required to implement the SPI bus for byte frames (index 0) and extended frames
(index 1). For SPI buses implemented entirely in software, both entries in net hods should be set to
pl atform private_software_spi _met hods.For SPl buses that are implemented entirely in
hardware with the capability of extended frames, both entries should be set to the device-specific methods
for that controller. For SPI buses that are can implement byte frame in hardware but require extended
frames in software, index 0 should be set to the device-specific methods for that controller, and index 1
should be setto pl at f orm pri vat e_sof t ware_spi _net hods.

See Also

platform_private_spi_bus_configuration, platform_private_software_spi_methods

125

CrossWorks Platform Library CrossWorks Platform Library

PLATFORM_PRIVATE_SPI_METHODS_t

Synopsis

typedef struct {
CTL_STATUS t (*configure_controller)(int);
CTL_STATUS t (*cl ai m_pi ns)

(int , const PLATFORM PI N_CONFI GURATION t *, PLATFORM PI N CLAIMt);
CTL_SPI _BUS t *(*controller)(int);

} PLATFORM PRI VATE_SPI _METHODS t ;

Description

PLATFORM_PRIVATE_SPI_METHODS_t contains the methods required to configure an SPI bus. The first
parameter of each method is the index of the device SPI bus to configure rather than the index of the Platform
SPI bus. For instance, platform SPI bus with index 0 may well be implemented using the device SPI bus SPI2, in

which case the index will be 2.

configure_controll er
Method to configure the controller for the SPI bus.

cl ai m pi ns
Method to claim the pins that the SPI controller will use. For software SPI controllers, the pins are

configured for digital I/0.

control |l er
Method to return the SPI bus controller.

126

CrossWorks Platform Library CrossWorks Platform Library

platform_private_configure_leds

Synopsis

CTL_STATUS t platformprivate_configure_|l eds(void);

Description

platform_private_configure_leds iterates over all LEDs returned by platform_led_pins and configures any
GPIO-connected LEDs for use.

Return Value

platform_private_configure_leds returns a standard status code.

127

CrossWorks Platform Library CrossWorks Platform Library

platform_private_execute_hooks

Synopsis

voi d platform private_execute_hooks(PLATFORM HOOK t *hook) ;

Description

platform_private_execute_hooks executes all functions on the hook list hook. Each function is called and
passed the ar g member of its hook context.

128

CrossWorks Platform Library CrossWorks Platform Library

platform_private_find_pin_connection

Synopsis

CTL_STATUS t platformprivate find pin_connection(const PLATFORM Pl N CONFI GURATI ON t *Ii st,
int function);

Description

platform_private_find_pin_connection searches the list of pins in list for a match on the function function.

Return Value

If a pin with matching function is found in the list, platform_private_find_pin_connection returns
the pi n member of the pin configuration structure. If the pin is not found or the list is empty,
platform_private_find_pin_connection returns CTL_UNSUPPORTED OPERATI ON.

129

CrossWorks Platform Library CrossWorks Platform Library

platform_private_hook_single_timer

Synopsis

CTL_STATUS t platform private_hook_single_tinmer(PLATFORM HOOK t *p,
unsi gned frequency);

Description

platform_private_hook_single_timer is a utility function when implementing pl at f or m_hook_ti ner
on platforms that offer only one timer. platform_private_hook_single_timer calls
platform_private_start_single_hook_timer passing in frequency if this is a valid hook request.

Implementation

For platforms that provide a single timer took, platform_hook_timer should

call platform_private_hook_single_timer and provide implementations of
platform_private_start_single_hook_timer and platform_private_stop_single_hook_timer to control the
timer interrupt.

See Also

platform_private_unhook_single_timer

130

CrossWorks Platform Library CrossWorks Platform Library

platform_private_i2c_bus_configuration

Synopsis

PLATFORM PRI VATE_ | 2C_CONFI GURATI ON_t platform private_i 2c_bus_configuration[];

Description

platform_private_i2c_bus_configuration array defines the 12C bus configuration when using the Platform 12C
framework.

See Also

PLATFORM_PRIVATE_I2C_CONFIGURATION_t, PLATFORM_PRIVATE_I2C_METHODS_t

131

CrossWorks Platform Library CrossWorks Platform Library

platform_private_i2c_bus_instance

Synopsis

CTL_I2C BUS t *platformprivate_ i 2c_bus_instance[];

Description

platform_private_i2c_bus_instance contains the recoded instances of platform I12C buses, indexed using the
platform 12C bus index. When an 12C bus is correctly configured by platform_configure_i2c_bus, the 12C bus
instance is written to platform_private_i2c_bus_instance so that platform_i2c_bus can access and return an
appropriate 12C bus.

See Also

platform_i2¢c_bus, platform_configure_i2c_bus

132

CrossWorks Platform Library CrossWorks Platform Library

platform_private_i2c_hardware_claim_pins

Synopsis
CTL_STATUS t platformprivate_ i 2c_hardware_cl ai m pi ns(i nt index,

const PLATFORM PI N_CONFI GURATI ON_t *pi ns,
PLATFORM PIN_CLAIM t claim;

Description

platform_private_i2c_hardware_claim_pins is a utility method that returns the result of passing pins
to platform_claim_pin_configuration. You can use platform_private_i2c_hardware_claim_pins as the
pi n_cl ai mmethod for an SPI bus using a hardware SPI controller.

See Also

PLATFORM_PRIVATE_SPI_METHODS _t

133

CrossWorks Platform Library CrossWorks Platform Library

platform_private_idle_task_main

Synopsis

void platformprivate_ idle_task _nmain(void *param;

Description

platform_private_idle_task_main is the prototype for the microcontroller Platform Library to implement.
Typically, the main function will be an infinite loop that puts the processor into low-power mode waiting for
an interrupt. However, you can customize this, for instance, to illuminate an LED to show when the processor is

active.

The standard implementation of this for the platforms that we distribute is to place the processor into low-

power mode awaiting and interrupt.

134

CrossWorks Platform Library CrossWorks Platform Library

platform_private_initialize

Synopsis

void platformprivate_ initialize(void);

Description

platform_private_initialize initializes the private part of the Platform Library. In particular, for release builds is
has a 250 ms delay to allow for power supply stabilization and for external devices to become ready—most LCD

controllers require a short delay after reset before responding to commands, for instance.

You can customize this delay for your own applications. If your board doesn't start cleanly after reset but does
when debugging with CrossWorks, it's likely that you'll need to adjust the 250 ms delay to suit your hardware.

135

CrossWorks Platform Library CrossWorks Platform Library

platform_private_lock_pin

Synopsis

voi d platformprivate_ | ock_pin(int pin);

Description

platform_private_lock_pin can hardware-lock the pin connection pin if the underlying microcontroller
implements pin locks.

See Also

platform_lock_pin

136

CrossWorks Platform Library CrossWorks Platform Library

platform_private_pin_connection_name

Synopsis

char *platformprivate_pin_connection_nane(int pin);

Description

platform_private_pin_connection_name returns the connection name for pin pin. The platform-independent

code guarantees to call platform_private_pin_connection_name with a correct pin parameter.

The connection name returned is generally the name from the schematic or, in the case of buttons and LEDs, the
name of the button or LED on the silkscreen.

See Also

PLATFORM_PIN_CONNECTION_t, platform_pin_connection_name

137

CrossWorks Platform Library CrossWorks Platform Library

platform_private_pin_signal_name

Synopsis

char *platform private_pin_signal _nanme(int pin);

Description

platform_private_pin_signal_name returns the signal name for pin pin. The platform-independent code

guarantees to call platform_private_pin_signal_name with a correct pin parameter.

The signal name returned is generally the name from the schematic or, in the case of buttons and LEDs, the
name of the button or LED on the silkscreen.

See Also

PLATFORM_PIN_CONNECTION_t, platform_pin_connection_name

138

CrossWorks Platform Library CrossWorks Platform Library

platform_private_read_button

Synopsis

int platformprivate read_button(int index);

Description
platform_private_read_button writes state directly to the GPIO-controlled LED index.

If all platform LEDs are controlled using GPIOs that are accessible using platform_write_digital_pin, a platform

implementation of platform_write_led can call platform_private_write_led directly.

139

CrossWorks Platform Library CrossWorks Platform Library

platform_private_release_pin

Synopsis

voi d platformprivate_ rel ease_pin(int pin);

Description

platform_private_release_pin releases the pin pin by changing it back to its reset state, typically a digital input.

The platform-independent code guarantees to call platform_private_release_pin with a correct pin parameter.

140

CrossWorks Platform Library CrossWorks Platform Library

platform_private_software_i2c_methods

Synopsis

PLATFORM PRI VATE | 2C_ METHODS t pl atform private_software_i 2c_net hods;

Description

platform_private_software_i2c_methods is a set of methods to drive an 12C bus using software.

If you use the Platform 12C framework, you can set the met hods member of an 12C bus in the
PLATFORM PRI VATE | 2C_CONFI GURATI ON_t to platform_private_software_i2c_methods and the
Platform 12C framework will supervise the software 12C bus.

Return Value

platform_private_software_i2c_methods returns a standard status code.

141

CrossWorks Platform Library CrossWorks Platform Library

platform_private_software_spi_methods

Synopsis

PLATFORM PRI VATE_SPI _METHODS t pl atform private_software_spi _net hods;

Description

platform_private_software_spi_methods is a set of methods to drive an SPI bus using software.

If you use the Platform SPI framework, you can set the met hods member of an SPI bus in the
PLATFORM PRI VATE_SPI _ CONFI GURATI ON _t to platform_private_software_spi_methods and the
Platform SPI framework will supervise the software SPI bus.

Return Value

platform_private_software_spi_methods returns a standard status code.

142

CrossWorks Platform Library CrossWorks Platform Library

platform_private_spi_bus_configuration

Synopsis

PLATFORM PRI VATE_SPI _CONFI GURATI ON_t pl atform private_spi _bus_configuration[];

Description

platform_private_spi_bus_configuration array defines the SPI bus configuration when using the Platform SPI
framework.

See Also

PLATFORM_PRIVATE_SPI_CONFIGURATION_t, PLATFORM_PRIVATE_SPI_METHODS_t

143

CrossWorks Platform Library CrossWorks Platform Library

platform_private_spi_bus_instance

Synopsis

CTL_SPI _BUS t *platformprivate_spi_bus_instance[];

Description

platform_private_spi_bus_instance contains the recoded instances of platform SPI buses, indexed using the
platform SPI bus index. When an SPI bus is correctly configured by platform_configure_spi_bus, the SPI bus
instance is written to platform_private_spi_bus_instance so that platform_spi_bus can access and return an
appropriate SPI bus.

See Also

platform_spi_bus, platform_configure_spi_bus

144

CrossWorks Platform Library CrossWorks Platform Library

platform_private_spi_hardware_claim_pins

Synopsis
CTL_STATUS t platformprivate_spi _hardware_cl ai m pins(int index,

const PLATFORM PI N_CONFI GURATI ON_t *pi ns,
PLATFORM PIN_CLAIM t claim;

Description

platform_private_spi_hardware_claim_pins is a utility method that returns the result of passing pins
to platform_claim_pin_configuration. You can use platform_private_spi_hardware_claim_pins as the
pi n_cl ai mmethod for an 12C bus using a hardware 12C controller.

See Also

PLATFORM_PRIVATE_I2C_METHODS_t

145

CrossWorks Platform Library CrossWorks Platform Library

platform_private_start_single_hook_timer

Synopsis

void platformprivate_start_singl e _hook_ timer(unsigned frequency);

Description

platform_private_start_single_hook_timer is a utility function when implementing

pl at f or m_hook_si ngl e_t i ner on platforms that offer only one timer.
platform_private_start_single_hook_timer starts the single instance of a hook timer which fires frequency
times per second.

Implementation

The hook timer, once active, should call platform_private_execute_hooks passing in

pl at form private_tiner_hooks.

See Also

platform_private_hook_single_timer

146

CrossWorks Platform Library CrossWorks Platform Library

platform_private_start_tasking

Synopsis

voi d platformprivate start_tasking(void);

Description

platform_private_start_tasking starts the CTL timer to provide CTL time and services, and starts the idle task

which has the body function platform_private_idle_task_main.

147

CrossWorks Platform Library CrossWorks Platform Library

platform_private_stop_single_hook_timer

Synopsis

voi d platformprivate_stop_single_hook tiner(void);

Description

platform_private_stop_single_hook_timer is a utility function when implementing
pl at f or m_unhook_si ngl e_t i mer on platforms that offer only one timer.

platform_private_stop_single_hook_timer stops a the previously-started single instance of a hook timer.

See Also

platform_private_unhook_single_timer

148

CrossWorks Platform Library CrossWorks Platform Library

platform_private_test_pin_claim

Synopsis

CTL_STATUS t platformprivate test pin_clain(int pin,
int function);

Description

platform_private_test_pin_claim tests whether pin pin can be claimed for function function. The function
parameter is the inclusive-or of a PLATFORM PI N_CLAI M t constant and a PLATFORM Pl N_FUNCTI ON t
constant.

Return Value

platform_private_test_pin_claim returns a standard status code.

See Also

platform_claim_pin

149

CrossWorks Platform Library CrossWorks Platform Library

platform_private_timer_hooks

Synopsis

PLATFORM HOOK t *pl atform private_timer_hooks;

Description

platform_private_timer_hooks is the list of timer hooks set up by platform_private_hook_single_timer. If no
hook has been set, platform_private_timer_hooks is null.

See Also

platform_private_hook_single_timer

150

CrossWorks Platform Library CrossWorks Platform Library

platform_private_unhook_single_timer

Synopsis

voi d pl atform private_unhook_single_tinmer(PLATFORM HOOK t *p);

Description

platform_private_unhook_single_timer is a utility function when implementing pl at f or m_unhook_t i ner
on platforms that offer only one timer.

Implementation

For platforms that provide a single timer took, platform_unhook_timer should

call platform_private_unhook_single_timer and provide implementations of
platform_private_start_single_hook_timer and platform_private_stop_single_hook_timer to control the
timer interrupt.

See Also

platform_private_unhook_single_timer

151

CrossWorks Platform Library CrossWorks Platform Library

platform_private_write_led

Synopsis

void platformprivate wite_|led(int index,
int state);

Description

platform_private_write_led writes state to the GPIO-controlled LED with index index.
platform_private_write_led takes care of inverting state for negative-logic LEDs.

If all platform LEDs are controlled using GPIOs that are accessible using platform_write_digital_pin, a platform
implementation of platform_write_led can call platform_private_write_led directly.

152

CrossWorks Platform Library

<platform_stm32f1.h>

Overview

The STM32F1 platform implements the Platform Library private API for a subset of STM32F1 processors. The

CrossWorks Platform Library

STM32F1 platform implementation uses the following resources:

» Timer 2, to provide the CPU tick as part of platform_cpu_tick.

* Port interrupt handlers for each port, to enable hooks on pins with platform_hook_pin_edge.

SPI communication is DMA-driven.

APl Summary

Platform
stm32_platform_initialize
Pins

STM32_PAD

STM32_PIN

STM32_PORT
STM32_PORT_BASE
STM32_PORT_t

stm32_release_pin

Initialize STM32 platform

Construct a pin connection

Extract pin within port from pin connection
Extract port from pin connection

Get CMSIS GPIO structure

STM32 ports

Release configured pin connection

stm32_set_multi_pin_alternate_function Configure pin connection list for alternate function

stm32_set_pin_alternate_function Configure pin connection for alternate function

153

CrossWorks Platform Library CrossWorks Platform Library

STM32_PAD

Synopsis

#define STM32_PAD(PORT, PIN) (((PORT)<<4) | (PIN))

Description

STM32_PAD creates a PLATFORM Pl N_CONNECTI ON_t by combining STM32 port, PORT, and a pin within
that port, PIN.

The port and pin are extracted from the connection by STM32_PORT and STM32_PIN:
o STMB2_PORT(STM32_PAD(X, y)) ==
e STM32_PIN(STMB2_PAD(Xx, y)) == y.

See Also

STM32_PORT, STM32_PIN

154

CrossWorks Platform Library CrossWorks Platform Library

STM32_PIN

Synopsis

#define STMB2_ PIN(PIN) ((PIN) & 15)

Description
STM32_PIN extracts the STM32 pin within a port from an encoded PLATFORM _PI N_CONNECTI ON t value.

In other words, STMB2_PI N(STM32_PAD(x, y)) ==

See Also

STM32_PAD, STM32_PORT

155

CrossWorks Platform Library CrossWorks Platform Library

STM32_PORT

Synopsis

#define STMB2_PORT(PIN) ((PIN >> 4)

Description

STM32_PORT extracts the STM32 port (see STM32_PORT _t) from an encoded
PLATFORM Pl N_CONNECTI ON _t value.

In other words, STMB2_PORT(STMB2_PAD(X, y)) == X.

See Also

STM32_PAD, STM32_PIN

156

CrossWorks Platform Library CrossWorks Platform Library

STM32_PORT_BASE

Synopsis

#define STMB2_PORT_BASE(X) ((GPI O TypeDef *) (GPl QA BASE + 0x400 * (X)))

Description

STM32_PORT_BASE returns a pointer to the STM32 CMSIS GPIO type for the port X.

157

CrossWorks Platform Library CrossWorks Platform Library

STM32_PORT_t

Synopsis

typedef enum {
STM32_PORT_A,
STMB2_PORT_B,
STMB2_PORT_C,
STMB2_PORT_D,
STM32_PORT_E,
STM32_PORT_F,
STMB2_PORT_G,
STMB2_PORT_H,
STM32_PORT_|

} STMB2_PORT_t;

Description

STM32_PORT_t enumerates the STM32 ports for the STM32F1 implementation, by name.

158

CrossWorks Platform Library CrossWorks Platform Library

stm32_platform_initialize

Synopsis

void stnB2 platforminitialize(void);

Description

stm32_platform_initialize initializes the base STM32 platform by powering-up GPIO ports A through | and
configuring timer 2 to provide a CPU tick counter.

159

CrossWorks Platform Library CrossWorks Platform Library

stm32_release_pin

Synopsis

voi d stnB2_rel ease_pi n(unsi gned pin);

Description

stm32_release_pin releases the pin connection pin. If the pin is configured for PWM output, the PWM channel is
freed for reuse.

160

CrossWorks Platform Library CrossWorks Platform Library

stm32_set_multi_pin_alternate_function

Synopsis

void stnB2_set _multi_pin_alternate_function(const unsigned char *pins,
unsi gned function);

Description

stm32_set_multi_pin_alternate_function configures the list of pin connections pins to use the alternative
function function. The list must be terminated by PLATFORM END_OF LI ST.

161

CrossWorks Platform Library CrossWorks Platform Library

stm32_set_pin_alternate_function

Synopsis

voi d stnB2_set _pin_alternate_function(unsigned pin,
unsi gned function);

Description

stm32_set_pin_alternate_function configures the platform connection pin to use alternative function
function.

162

CrossWorks Platform Library

<platform_stm32f4.h>

Overview

The STM32F4 platform implements the Platform Library private API for a subset of STM32F4 processors. The

CrossWorks Platform Library

STM32F4 platform implementation uses the following resources:

» Timer 2, to provide the CPU tick as part of platform_cpu_tick.

* Port interrupt handlers for each port, to enable hooks on pins with platform_hook_pin_edge.

SPI communication is DMA-driven.

APl Summary

Platform
stm32_platform_initialize
Pins

STM32_PAD

STM32_PIN

STM32_PORT
STM32_PORT_BASE
STM32_PORT_t

Initialize STM32 platform

Construct a pin connection

Extract pin within port from pin connection
Extract port from pin connection

Get CMSIS GPIO structure

STM32 ports

stm32_set_multi_pin_alternate_function Configure pin connection list for alternate function

stm32_set_pin_alternate_function Configure pin connection for alternate function

163

CrossWorks Platform Library CrossWorks Platform Library

<platform_lpc1700.h>

Overview

The LPC1700 platform implements the Platform Library private API for a subset of LPC1700 processors. The
LPC1700 platform implementation uses the following resources:

» Timer O, to provide the CPU tick as part of platform_cpu_tick.

APl Summary

Platform

Ipc1700_platform_initialize Initialize LPC1700 platform

Pins

LPC1700_PAD Construct a pin connection

LPC1700_PIN Extract pin within port from pin connection
LPC1700_PORT Extract port from pin connection
LPC1700_PORT _t LPC1700 ports

Clocking

LPC1700_PCLK_SOURCE_t Peripheral clock selection (LPC1700)

164

CrossWorks Platform Library CrossWorks Platform Library

LPC1700_PAD

Synopsis

#define LPCL700_PAD(PORT, PIN) (((PORT)<<5) | (PIN))

Description

LPC1700_PAD creates a PLATFORM Pl N_CONNECTI ON_t by combining LPC1700 port, PORT, and a pin
within that port, PIN.

The port and pin are extracted from the connection by LPC1700_PORT and LPC1700_PIN:
e LPC1700_PORT(LPC1700_PAD(Xx, y)) ==
e LPC1700_PI N(LPC1700_PAD(x, y)) ==y.

See Also

LPC1700_PORT, LPC1700_PIN

165

CrossWorks Platform Library

LPC1700_PCLK_SOURCE_t

Synopsis

typedef enum {
LPC1700_PCLK_\\DT,
LPC1700_PCLK_TI MERO,
LPC1700_PCLK_TI MER1,
LPC1700_PCLK_UARTO,
LPC1700_PCLK_UART1,
LPC1700 PCLK_RESERVED 0,
LPC1700_PCLK_PWML,
LPC1700_PCLK_| 2C0,
LPC1700_PCLK_SPI ,
LPC1700_PCLK_RESERVED 1,
LPC1700_PCLK_SSP1,
LPC1700_PCLK_DAC,
LPC1700_PCLK_ADC,
LPC1700_PCLK_CAN1,
LPC1700_PCLK_CAN2,
LPC1700_PCLK_ACF,
LPC1700_PCLK_CEI ,
LPC1700_PCLK_GPI O NT,
LPC1700_PCLK_PCB,
LPC1700_PCLK | 2C1,
LPC1700_PCLK_RESERVED 2,
LPC1700_PCLK_SSPO,
LPC1700_PCLK_TI MER2,
LPC1700_PCLK_TI MER3,
LPC1700_PCLK_UART2,
LPC1700_PCLK_UART3,
LPC1700_PCLK_| 2C2,
LPC1700_PCLK | 2S,
LPC1700_PCLK_RESERVED 3,
LPC1700_PCLK_RI T,
LPC1700_PCLK_SYSCON,
LPC1700_PCLK_MC

} LPC1700_PCLK_SOURCE t;

166

CrossWorks Platform Library

CrossWorks Platform Library CrossWorks Platform Library

LPC1700_PIN

Synopsis

#define LPCL700_PIN(X) ((X) & 31)

Description

LPC1700_PIN extracts the LPC1700 pin within a port from an encoded PLATFORM _PI N_CONNECTI ON t

value.

In other words, LPC1700_PI N(LPC1700_PAD(x, Yy)) ==

See Also

LPC1700_PAD, LPC1700_PORT

167

CrossWorks Platform Library CrossWorks Platform Library

LPC1700_PORT

Synopsis

#define LPCL700_PORT(X) ((X) >> 5)

Description

LPC1700_PORT extracts the LPC1700 port (see LPC1700_PORT_t) from an encoded
PLATFORM Pl N_CONNECTI ON _t value.

In other words, LPC1700_PORT(LPC1700_PAD(x, y)) == X.

See Also

LPC1700_PAD, LPC1700_PIN

168

CrossWorks Platform Library CrossWorks Platform Library

LPC1700_PORT_t

Synopsis

typedef enum {
LPC1700_PORT_O,
LPC1700_PORT_1,
LPC1700_PORT_2,
LPC1700_PORT_3,
LPC1700_PORT_4

} LPC1700_PORT t;

Description

LPC1700_PORT_t enumerates the LPC1700 ports for the platform implementation, by name.

169

CrossWorks Platform Library CrossWorks Platform Library

Ipc1700_platform_initialize

Synopsis

voi d | pcl700 platforminitialize(void);

Description

Ipc1700_platform_initialize initializes the base LPC1700 platform and configures timer 0 to provide a CPU tick
counter.

170

CrossWorks Platform Library CrossWorks Platform Library

SolderCore

SolderCore Platform
This is the Platform Library implementation for the SolderCore.

http://www.soldercore.com/

Mass Storage

Examples use the built-in microSD socket.

Networking

Examples use the built-in Ethernet port.

Graphics

There are no built-in graphics. You can enable graphics by editing exanpl e_pl ugi n_gr aphi cs. c and
selecting an appropriate graphics adapter.

12C
The platform 12C bus routing is:
* bus #0: Arduino header.
* bus #1. Secondary 12C connector.
SPI
The platform SPI bus routing is:
* bus #0: Arduino header.
» bus #1: Internal bus to the microSD socket and the two SPI memory sites on the underside of the PCB.
API

/* Copyright (c) 2004-2013 Row ey Associates Limted.
*/

#i fndef __ SOLDERCORE_PLATFORM H
#define __ SOLDERCORE_PLATFORM H

#i nclude "Iibpl atforn platform h"
#include "libplatforn platform.l|nBs_gpio.h"

I
/1 Arduino footprint to port pin mapping
Il

#define ARDU NO DO LMBS _PORT_PIN(LMBS_PORT_D, 0) // can be PWWD
ULRX Anal og. 15

171

http://www.soldercore.com/

CrossWorks Platform Library CrossWorks Platform Library

#define ARDUINO DI LMBS PORT PIN(LMBS PORT E, 4) //

Anal og. 3

#define ARDU NO D2 LMS_PORT_PI N(LMBS_PORT_E, 5) //
Anal og. 2

#define ARDU NO D3 LM3S PORT_PIN(LMBS PORT_E, 6) // can be PWH Ardui no PWM
Anal og. 1

#defi ne ARDUINO D4 LMBS PORT PIN(LMBS PORT G 1) // can be PWG* or PWI

#define ARDU NO D5 LMS PORT_PIN(LMBS PORT_G 0) // can be PWWD* or PWH4 Ardui no PW/

#define ARDU NO D6 LMBS PORT_PIN(LMBS PORT_D, 1) // can be PWL Ar dui no PWM
ULTX Anal og. 14

#define ARDUINO D7 LM3S PORT PIN(LMBS PORT F, 1) // can be PWWL

#define ARDUINO D8 LMBS PORT PIN(LMBS PORT C, 7) //

ULTX
#define ARDU NO D9 LMS_PORT_PIN(LMBS_PORT_C, 4) // can be PWb
#def i ne ARDUI NO D10 LMBS PORT_PI N(LMBS PORT_D, 2) // can be PWR Ar dui no PWM
ULRX Anal og. 13
#define ARDU NO D11 LM3S PORT_PI N(LMBS PORT_A, 5) // can be PWW Ardui no PWM
MOSI
#define ARDUI NO D12 LMBS PORT_PI N(LMBS PORT_A, 4) // can be PW5G
M SO
#def i ne ARDUI NO_D13 LMBS_PORT_PI N(LMBS_PORT_A, 2) // can be PWH
SCK

#define ARDUI NO A0 LMBS_PORT_PIN(LMBS_PORT_D, 7) //
Anal og. 4

#defi ne ARDU NO_Al LMBS PORT_PI N(LMBS PORT_D, 6) //
Anal og. 5

#define ARDUI NO A2 LMBS_PORT_PI N(LMBS_PORT_D, 5) //
Anal og. 6

#defi ne ARDU NO_A3 LM3S PORT_PIN(LMBS PORT_D, 4) [/
Anal og. 7

/1 Mapping of A4 and A5 as digital, typically |I2C
#defi ne ARDU NO A4 LM3S PORT_PI N(LMBS _PORT_B, 3) /] Configured by sol der junper PB3
#defi ne ARDU NO_A5 LM3S PORT_PI N(LMBS PORT_B, 2) /1 Configured by sol der junper PB2

/'l Mappi ng of A4 and A5 as anal og

#def i ne ARDUI NO_A4_ANALOG LM3S_PORT_PI N(LMBS_PORT_E, 3)
/1 Configured by sol der junper PB3
#def i ne ARDUI NO_A5_ANALOG LM3S_PORT_PI N(LMBS_PORT_E, 2)

/1 Configured by sol der junper PB2

/1 SD connecti ons

#def i ne SOLDERCORE_SD_SCK LMBS_PORT_PI N(LMBS_PORT_H, 4)
#def i ne SOLDERCORE_SD M SO LMBS_PORT_PI N(LMBS_PORT_F, 4)
#def i ne SOLDERCORE_SD_MOSI LM3S_PORT_PI N(LMBS_PORT_F, 5)
/1 12C header

#def i ne SOLDERCORE_| 2C1_SCL LMBS_PORT_PI N(LMBS_PORT_J, 0)
#def i ne SOLDERCORE_| 2C1_SDA LMBS_PORT_PI N(LMBS_PORT_J, 1)
/1

/1 Internal device to port pin nmapping

/1

/| LEDs.

#def i ne SOLDERCORE_USER_LED LMBS_PORT_PI N(LMBS_PORT_C, 5)
#def i ne SOLDERCORE_M CROSD_LED LMBS _PORT_PI N(LMBS_PORT_J, 4)
#def i ne SOLDERCORE_RUN_LED LM3S_PORT_PI N(LMBS_PORT_E, 7)

172

CrossWorks Platform Library

/1 LEDs controlled by the PHY.
#def i ne SOLDERCORE_ETH_LEDO
#def i ne SOLDERCORE_ETH LED1

/1 SPI menory site selects.
#def i ne SOLDERCORE_MEML_SELECT
#def i ne SOLDERCORE_MEM2_SELECT

/1l mcroSD socket sel ect.

#defi ne SOLDERCORE_M CROSD_SELECT LMBS PORT Pl N(LMBS_PORT G,

/] Platform APl LED indexes in LED cat al og

LMBS_PORT_PI N(LM3S_PORT _F,
LMBS_PORT_PI N(LMBS_PORT F,

LMBS_PORT_PI N(LMBS_PORT _J,
LMBS_PORT_PI N(LMBS_PORT _J,

#defi ne SOLDERCORE_USER LED_| NDEX
#defi ne SOLDERCORE_RUN_LED | NDEX

#def i ne SOLDERCORE_M CROSD_LED_I NDEX 2

/1

/[l Platformlimts

/1

#define PLATFORM Pl N_COUNT
#defi ne PLATFORM LED_COUNT
#define PLATFORM BUTTON COUNT
#define PLATFORM UART COUNT
#define PLATFORM SPl _BUS_COUNT
#define PLATFORM | 2C_BUS_COUNT
#define PLATFORM UEXT_COUNT

#endi f

(9*8)

ONDNNOW

/1l 9 ports,

173

3)
2)

3)
5)

7)

8 bits/port.

CrossWorks Platform Library

CrossWorks Platform Library CrossWorks Platform Library

Cortino3RE

Cortino3RE Platform
This is the Platform Library implementation for the BugBlat Cortino3RE.

http://www.bugblat.com/products/cor.html

Power

We have found that debugging is unreliable when powering the Cortino3RE from the barrel connector. Always

power the board from the USB connector.

Mass Storage

Examples require a SparkFun microSD shield.

Networking

Examples require a NuElectronics ENC28J60 shield.

Graphics

There are no built-in graphics. You can enable graphics by editing exanpl e_pl ugi n_gr aphi cs. ¢ and

selecting an appropriate graphics adapter.

12C
The platform 12C bus routing is:

* bus #0: Arduino headers.

SPI
The platform SPI bus routing is:

e bus #0: Arduino headers.

API

*** [../sanpl es/BugBl at _Corti no3RE/ pl atform config. h not found ***

174

http://www.bugblat.com/products/cor.html

CrossWorks Platform Library CrossWorks Platform Library

FRDM-KL25Z

FRDM-KL25Z Platform
This is the Platform Library implementation for the Freescale FRDM-KL25Z.

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-KL25Z

Sensors

The FRDM-KL25Z has a built-in MMA8541Q accelerometer.

Mass Storage

This platform does not have enough RAM to support mass storage.

Networking

This platform does not have enough RAM to support networking.

Graphics

There are no built-in graphics. You can enable graphics by editing exanpl e_pl ugi n_gr aphi cs. ¢ and
selecting an appropriate graphics adapter.

12C
The platform 12C bus routing is:

e bus #0: Arduino headers.
* bus #1: Internal bus to the built-in MMA8451Q accelerometer on the PCB.

SPI
The platform SPI bus routing is:

e bus #0: Arduino headers.

API

x [../sanpl es/Kinetis/FRDM KL25Z/ pl atform config. h not found *

175

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-KL25Z

CrossWorks Platform Library CrossWorks Platform Library

FRDM-KL26Z

FRDM-KL26Z Platform
This is the Platform Library implementation for the Freescale FRDM-KL26Z.

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-KL26Z

Sensors

The FRDM-KL26Z has a built-in FXOS8700CQ accelerometer and magnetometer.

Mass Storage

This platform does not have enough RAM to support mass storage.

Networking

This platform does not have enough RAM to support networking.

Graphics

There are no built-in graphics. You can enable graphics by editing exanpl e_pl ugi n_gr aphi cs. ¢ and
selecting an appropriate graphics adapter.

12C
The platform 12C bus routing is:

e bus #0: Arduino headers.
» bus #1: Internal bus to the built-in FXOS8700CQ accelerometer on the PCB.

SPI
The platform SPI bus routing is:

e bus #0: Arduino headers.

API

x [../sanpl es/Kinetis/FRDM KL26Z/ pl atform config. h not found *

176

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-KL26Z

CrossWorks Platform Library CrossWorks Platform Library

FRDM-KL46Z

FRDM-KL46Z Platform
This is the Platform Library implementation for the Freescale FRDM-KL46Z.

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-KL46Z

Sensors

The FRDM-KL46Z has a built-in MMA8541Q accelerometer and MAG3110 magnetometer.

Mass Storage

Examples require a SparkFun microSD shield.

Networking

Examples require a NuElectronics ENC28J60 shield.

Graphics

There are no built-in graphics. You can enable graphics by editing exanpl e_pl ugi n_gr aphi cs. ¢ and
selecting an appropriate graphics adapter.

12C
The platform 12C bus routing is:

e bus #0: Arduino headers.
* bus #1: Internal bus to the built-in MMA8451Q accelerometer on the PCB.

SPI
The platform SPI bus routing is:

e bus #0: Arduino headers.

API

x [../sanpl es/Kinetis/FRDM KL46Z/ pl atform config. h not found *

177

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-KL46Z

CrossWorks Platform Library CrossWorks Platform Library

MCBSTM32C

MCBSTM32C Platform
This is the Platform Library implementation for the Keil MCBSTM32C.

http://www.keil.com/mcbstm32c/

Mass Storage

Examples use the built-in microSD socket.

Networking

Examples use the built-in Ethernet port.

Graphics

Examples use the built-in QVGA display. The display uses an Ampire AM320240LDTNQW module and ORISE
SPFD5408B LCD driver.

12C

The platform 12C bus routing is:

* bus #0: Internal to accelerometer, touch screen controller, codec, and EEPROM. (Codec and EEPROM are
not supported by any high-level platform code).

SPI
The platform SPI bus routing is:

e bus #0: microSD socket.

API

*** . /../sanpl es/ Kei |l _MCBSTMB2C/ pl at f orm config. h not found ***

178

http://www.keil.com/mcbstm32c/

CrossWorks Platform Library CrossWorks Platform Library

Nucleo-F103RB

Nucleo-F103RB Platform
This is the Platform Library implementation for the STMicroelectronics Nucleo-F103RB.

www.st.com/nucleoF103RB-pr

Mass Storage

Examples require a SparkFun microSD shield.

Networking

Examples require a NuElectronics ENC28J60 shield.

Graphics

There are no built-in graphics. You can enable graphics by editing exanpl e_pl ugi n_gr aphi cs. ¢ and
selecting an appropriate graphics adapter.

API

x* |../sanpl es/ ST_Nucl eo_F103RB/ pl atform config. h not found *

179

CrossWorks Platform Library CrossWorks Platform Library

Nucleo-F401RE

Nucleo-F401RE Platform
This is the Platform Library implementation for the STMicroelectronics Nucleo-F401RE.

www.st.com/nucleoF401RE-pr

Mass Storage

Examples require a SparkFun microSD shield.

Networking

Examples require a NuElectronics ENC28J60 shield.

Graphics

There are no built-in graphics. You can enable graphics by editing exanpl e_pl ugi n_gr aphi cs. ¢ and
selecting an appropriate graphics adapter.

API

x* |../sanpl es/ ST_Nucl eo_F401RE/ pl atform config. h not found *

180

CrossWorks Platform Library CrossWorks Platform Library

Arch Pro

Arch Pro Platform
This is the Platform Library implementation for the Seeed Studio Arch Pro.

http://www.seeedstudio.com/depot/Arch-Pro-p-1677.html

Mass Storage

Examples require a SparkFun microSD shield.

Networking

Examples use the built-in Ethernet port.

Graphics

There are no built-in graphics. You can enable graphics by editing exanpl e_pl ugi n_gr aphi cs. c to select

an appropriate graphics adapter.

12C

The platform 12C bus routing is:

e bus #0: Arduino headers on A4/A5.
e bus #1: Arduino R3 headers on SCL/SDA.
e bus #2: Grove I12C socket.

SPI
The platform SPI bus routing is:

* bus #0: Arduino headers.
* bus #1: 6-pin SPI programming header.

API

/* Copyright (c) 2004-2013 Row ey Associ ates Limted.
*/

#i fndef __ SEEED STUDI O ARCH_PRO_PLATFORM H
#define _ SEEED STUDI O ARCH PRO PLATFORM H

#include "libplatform platformlpcl700.h"

I
/1 Arduino footprint pin mapping
Il

/1 Digital headers

#define ARDUI NO_DO LPC1700_PAD(LPC1700_PORT_4, 29)
#define ARDUI NO D1 LPC1700_PAD(LPC1700_PORT 4, 28)
#define ARDUI NO_D2 LPC1700_PAD(LPC1700_PORT_0, 4)

181

http://www.seeedstudio.com/depot/Arch-Pro-p-1677.html

CrossWorks Platform Library

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ARDUI NO_D3
ARDUI NO_D4
ARDUI NO_D5
ARDUI NO_D6
ARDUI NO_D7
ARDUI NO_D8
ARDUI NO_D9
ARDUI NO_D10
ARDUI NO_D11
ARDUI NO_D12
ARDUI NO_D13

/1 Anal og header

#def i
#def i
#def i
#def i
#def i
#def i

/1 On digital
#def i ne ARDUI NO_AREF

/1 Additional

ne
ne
ne
ne
ne
ne

ARDUI NO_AO
ARDUI NO_Al
ARDUI NO_A2
ARDUI NO_A3
ARDUI NO_A4
ARDUI NO_A5

#def i ne UNO_SCL
#def i ne UNO_SDA
#defi ne UNO_NC

/'l on power

/1 Ardui no SPI
#defi ne ARDUI NO_SPI _MOSI
#defi ne ARDUI NO_SPI _M SO
#defi ne ARDUI NO_SPI _SCK
#def i ne ARDUI NO_SPI _SSEL

/'l Grove |2C socket

#defi ne GROVE_| 2C_SDA
#defi ne GROVE_| 2C_SCL

/'l Grove UART socket
#def i ne GROVE_UART_TX
#defi ne GROVE_UART_RX

/1 LEDs

#def i
#def i
#def i
#def i

ne
ne
ne
ne

/1 LAN

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ARCH_PRO_LED1
ARCH_PRO_LED2
ARCH_PRO_LED3
ARCH_PRO_LED4

ARCH_PRO_LAN_RST
ARCH_PRO_LAN_OSC_EN
ARCH_PRO_LAN_LED SPEED
ARCH_PRO_LAN_LED LI NK
ARCH_PRO_LAN 50 Mz
ARCH_PRO_LAN_TXDO
ARCH_PRO_LAN_TXD1
ARCH_PRO_LAN_TXEN
ARCH_PRO_LAN_CRS
ARCH_PRO_LAN_RXDO
ARCH_PRO_LAN_RXD1
ARCH_PRO_LAN_RXER

header

Uno pi ns

header ;

LPC1700_PAD(LPC1700_PORT_0,
LPC1700_PAD(LPC1700_PORT_2,
LPC1700_PAD(LPC1700_PORT_2,
LPC1700_PAD(LPC1700_PORT_2,
LPC1700_PAD(LPC1700_PORT_2,
LPC1700_PAD(LPC1700_PORT 0,
LPC1700_PAD(LPC1700_PORT 0,
LPC1700_PAD(LPC1700_PORT_O,
LPC1700_PAD(LPC1700_PORT_0,
LPC1700_PAD(LPC1700_PORT_0,
LPC1700_PAD(LPC1700_PORT_O,

LPC1700_PAD(LPC1700_PORT_0,
LPC1700_PAD(LPC1700_PORT_0,
LPC1700_PAD(LPC1700_PORT 0,
LPC1700_PAD(LPC1700_PORT_0,
LPC1700_PAD(LPC1700_PORT 1,
LPC1700_PAD(LPC1700_PORT 1,

LPC1700_PAD(LPC1700_PORT_2,

LPC1700_PAD(LPC1700_PORT_0,
LPC1700_PAD(LPC1700_PORT_O,
LPC1700_PAD(LPC1700_PORT_2,

Uno has N C. ..

programm ng header

LPC1700_PAD(LPC1700_PORT_0,
LPC1700_PAD(LPC1700_PORT_0,
LPC1700_PAD(LPC1700_PORT_0,
LPC1700_PAD(LPC1700_PORT_O,

LPC1700_PAD(LPC1700_PORT_0,
LPC1700_PAD(LPC1700_PORT_0,

LPC1700_PAD(LPC1700_PORT_2,
LPC1700_PAD(LPC1700_PORT 2,

LPC1700_PAD(LPC1700_PORT 1,
LPC1700_PAD(LPC1700_PORT 1,
LPC1700_PAD(LPC1700_PORT 1,
LPC1700_PAD(LPC1700_PORT 1,

5)
2)
3)
4)
5)
0)
1)
6)
9)
8)
7)

23)
24)
25)
26)
30)
31)

13)

28)
27)
12)

18)
17)
15)
16)

10)
11)

0)
1)

18)
20)
21)
23)

LPC1700_PAD(LPC1700_PORT_1, 28)
LPC1700_PAD(LPC1700_PORT_1, 27)
LPC1700_PAD(LPC1700_PORT_1, 26)
LPC1700_PAD(LPC1700_PORT 1, 25)
LPC1700_PAD(LPC1700_PORT 1, 15)
LPC1700_PAD(LPC1700_PORT_1, 0)
LPC1700_PAD(LPC1700_PORT 1, 1)
LPC1700_PAD(LPC1700_PORT 1, 4)
LPC1700_PAD(LPC1700_PORT 1, 8)
LPC1700_PAD(LPC1700_PORT 1, 9)
LPC1700_PAD(LPC1700_PORT_1, 10)
LPC1700_PAD(LPC1700_PORT_1, 14)

182

Il
Il
/1
I

CrossWorks Platform Library

green
red

bl ue
yel | ow

CrossWorks Platform Library CrossWorks Platform Library

#define ARCH PRO LAN REFCLK LPC1700_PAD(LPC1700_PORT 1, 15)
#define ARCH_PRO_LAN_MDC LPC1700_PAD(LPC1700_PORT 1, 16)
#define ARCH_PRO_LAN MDI O LPC1700_PAD(LPC1700_PORT 1, 17)

/1
/[l Platformlimts
/1

#define PLATFORM Pl N_COUNT (5*32)
#define PLATFORM SPI _BUS_COUNT
#define PLATFORM | 2C_BUS_COUNT
#defi ne PLATFORM UART COUNT
#define PLATFORM LED_COUNT
#define PLATFORM BUTTON_COUNT
#define PLATFORM_UEXT_COUNT

oo bhOoWwWN

#endi f

183

CrossWorks Platform Library CrossWorks Platform Library

Olimexino-STM32

Olimexino-STM32 Platform
This is the Platform Library implementation for the Olimex Olimexino-STM32.

http://www.olimex.com/Products/Duino/STM32/OLIMEXINO-STM32/

Mass Storage
Examples require an Olimex MOD-SDMMC attached to the UEXT socket.

Note that there is not enough RAM available, as delivered, to run the generic Card Benchmark example.

Networking

Examples require an Olimex MOD-ENC28J60 attached to the UEXT socket.

Note that there is not enough RAM available, as delivered, to run the generic FTP Server and HTTP Server
examples.

Graphics

There are no built-in graphics. You can enable graphics by editing exanpl e_pl ugi n_gr aphi cs. ¢ and
selecting an appropriate graphics adapter.

12C
The platform 12C bus routing is:

e bus #0: Arduino header.
e bus #1: UEXT header.

SPI

The platform SPI bus routing is:

e bus #0: Arduino headers and UEXT socket.

e bus #1: microSD socket on the main PCB.

API

***% . /../sanmples/Ainmex_QAinexi no_STM32/ pl atform config. h not found ***

184

http://www.olimex.com/Products/Duino/STM32/OLIMEXINO-STM32/

CrossWorks Platform Library CrossWorks Platform Library

STM32-103STK

STM32-103STK Platform
This is the Platform Library implementation for the Olimex STM32-103STK.

http://www.olimex.com/Products/ARM/ST/STM32-103STK/

Noteworthy

The Crazyflie Remote example uses the built-in 3310 LCD and the nRF24L01, together with a Nintendo classic
controller and MOD-WII plugged into the UEXT socket, to control a Bitcraze Crazyflie.

Mass Storage
Examples use the built-in SD/MMC socket.

Note that there is not enough RAM available, as delivered, to run the generic Card Benchmark example.

Networking
Examples require an Olimex MOD-ENC28J60 attached to the UEXT socket.

Note that there is not enough RAM available, as delivered, to run the generic FTP Server and HTTP Server

examples.

Graphics

Examples use the built-in Nokia 3310 LCD display.

12C

The platform 12C bus routing is:

e bus #0: UEXT socket.
e bus#1: LIS3LV02DL on the main PCB.

SPI
The platform SPI bus routing is:

e bus #0: UEXT socket.
e bus#1: nRF24L01 and 3310 LCD on the main PCB.

API

***% . /../sanmples/Ainmex_STM32_103STK/ pl at form config. h not found ***

185

http://www.olimex.com/Products/ARM/ST/STM32-103STK/

CrossWorks Platform Library CrossWorks Platform Library

STM32-405STK

STM32-405STK Platform
This is the Platform Library implementation for the Olimex STM32-405STK.

http://www.olimex.com/Products/ARM/ST/STM32-405STK/

Noteworthy

The Crazyflie Remote example uses the built-in 3310 LCD and the nRF24L01, together with a Nintendo classic
controller and MOD-WII plugged into the UEXT socket, to control a Bitcraze Crazyflie.

Mass Storage

Examples use the built-in SD/MMC socket.

Networking

Examples require an Olimex MOD-ENC28J60 attached to the UEXT socket.

Graphics

Examples use the built-in Nokia 3310 LCD display.

12C

The platform 12C bus routing is:

e bus #0: UEXT socket.
e bus#1: BMA250 on the main PCB.

SPI

The platform SPI bus routing is:

e bus #0: UEXT socket.
e bus#1: nRF24L01 and 3310 LCD on the main PCB.

API

***% . /../sanples/Ainmex_STM32_P405/ pl atform config. h not found ***

186

http://www.olimex.com/Products/ARM/ST/STM32-405STK/

CrossWorks Platform Library CrossWorks Platform Library

STM32-E407

STM32-E407 Platform
This is the Platform Library implementation for the Olimex STM32-E407.

http://www.olimex.com/Products/ARM/ST/STM32-E407/

Mass Storage

Examples use the built-in SD/MMC socket.

Networking

Examples use the built-in Ethernet port.

Graphics

There are no built-in graphics. You can enable graphics by editing exanpl e_pl ugi n_gr aphi cs. ¢ and

selecting an appropriate graphics adapter.

12C
The platform 12C bus routing is:

* bus #0: Arduino headers.
e bus #1: UEXT socket.

SPI
The platform SPI bus routing is:

e bus #0: Arduino headers.
» bus #1: UEXT socket.

API

***% . /../sanmples/Ainmex_STM32_EA407/pl atform config.h not found ***

187

http://www.olimex.com/Products/ARM/ST/STM32-E407/

CrossWorks Platform Library

STM32-LCD

STM32-LCD Platform
This is the Platform Library implementation for the Olimex STM32-LCD.

http://www.olimex.com/Products/ARM/ST/STM32-LCD/

Mass Storage

Examples require an Olimex MOD-SDMMC attached to the UEXT#1 socket.

Networking

Examples require an Olimex MOD-ENC28J60 attached to the UEXT#2 socket.

Graphics

Examples use the built-in QVGA display.

12C

The platform 12C bus routing is:

e bus #0: UEXT#1 socket.
* bus #1: UEXT#2 socket.
e bus #2: LIS3LV02DL on the main PCB.

SPI

The platform SPI bus routing is:

e bus #0: UEXT#1 socket.
* bus #1: UEXT#2 socket.

API

***% . /../sanmples/Ainmex_STM32_LCD/ pl atformconfig.h not found ***

188

CrossWorks Platform Library

http://www.olimex.com/Products/ARM/ST/STM32-LCD/

CrossWorks Platform Library CrossWorks Platform Library

STM32-P107

STM32-P107 Platform
This is the Platform Library implementation for the Olimex STM32-P107.

https://www.olimex.com/Products/ARM/ST/STM32-P107/

Mass Storage

Examples use the built-in microSD socket.

Networking

Examples use the built-in Ethernet port.

Graphics

There are no built-in graphics. You can enable graphics by editing exanpl e_pl ugi n_gr aphi cs. ¢ and
selecting an appropriate graphics adapter (for instance, a MOD-LCD3310 or a MOD-LCD6610 attached to a UEXT
socket).

12C

The platform 12C bus routing is:

* bus #0: UEXT header.

SPI

The platform SPI bus routing is:

e bus #0: UEXT header and microSD socket.

API

*** . /../sanples/Ainmex_STM32_P107/pl atform config. h not found ***

189

https://www.olimex.com/Products/ARM/ST/STM32-P107/

CrossWorks Platform Library CrossWorks Platform Library

STM32-P405

STM32-P405 Platform
This is the Platform Library implementation for the Olimex STM32-P405.

http://www.olimex.com/Products/ARM/ST/STM32-P405/

Mass Storage

Examples use the built-in microSD socket.

Networking

Examples require an Olimex MOD-ENC28J60 attached to the UEXT socket.

Graphics

There are no built-in graphics. You can enable graphics by editing exanpl e_pl ugi n_gr aphi cs. ¢ and

selecting an appropriate graphics adapter.

12C
The platform 12C bus routing is:

* bus #0: UEXT header.
e bus #1: microSD socket.

SPI

The platform SPI bus routing is:

e bus #0: UEXT header.
* bus #1: microSD socket on the main PCB.

API

***% . /../sanples/Ainmex_STM32_P405/ pl atform config. h not found ***

190

http://www.olimex.com/Products/ARM/ST/STM32-P405/

CrossWorks Platform Library CrossWorks Platform Library

STM32-P407

STM32-P407 Platform
This is the Platform Library implementation for the Olimex STM32-P407.

http://www.olimex.com/Products/ARM/ST/STM32-P407/

Notes

The LCD uses the TRST signal, so to debug and program applications that use the LCD, please ensure that you
use SWD mode rather than JTAG mode.

Mass Storage

Examples use the built-in SD/MMC socket.

Networking

Examples use the built-in Ethernet port.

Graphics
Examples use the built-in color LCD. Please see notes above.

The LCD requires a 9-bit SPI protocol that the STM32F4 does not provide in hardware. Therefore, SPI is emulated
in software using the methods in <sof t war e_spi . h> as part of the CrossWorks Platform API.

12C

The platform 12C bus routing is:

e bus #0: UEXT socket.

SPI

The platform SPI bus routing is:

e bus #0: UEXT and microSD sockets.
e bus#1: LCD.

API

*xx [../sanples/dimex_STM32_P407/pl atformconfig. h not found ***

191

http://www.olimex.com/Products/ARM/ST/STM32-P407/

CrossWorks Platform Library CrossWorks Platform Library

STM3240G-EVAL

STM3240G-EVAL Platform
This is the Platform Library implementation for the STMicroelectronics STM3240G-EVAL.

http://www.st.com/stm3240g-eval

Sensors

The platform provides a built-in LIS302DL accelerometer.

Mass Storage

Examples use the built-in SD/MMC socket.

Networking

Examples use the built-in Ethernet port.

Graphics

Examples use the built-in color LCD.

12C
The platform 12C bus routing is:

e bus #0: is routed to on-board 12C devices.

SPI

* bus #0: is routed MISO/PA6, MOSI/PB5, SCK/PAS.

API

*xx [../sanpl es/ STMB2/ ST_STM3240G_EVAL/ pl at form confi g. h not found ***

192

http://www.st.com/stm3240g-eval

CrossWorks Platform Library CrossWorks Platform Library

STM32F429I1-EXP

STM32F429II-EXP Platform

This is the Platform Library implementation for the IAR STM32F429II-EXP board which comes with the Game
Controller Kit:

http://old.iar.com/website1/1.0.1.0/3084/1/?item=prod_prod-s1%2F622
or the Magnetometer Kit:

http://old.iar.com/website1/1.0.1.0/3084/1/?item=prod_prod-s1%2F625

Mass Storage

Examples require an Olimex MOD-SDMMC attached to the UXT#1 socket.

Networking

Examples require an Olimex MOD-ENC28J60 attached to the UXT#2 socket.

Graphics

There are no built-in graphics. You can enable graphics by editing exanpl e_pl ugi n_gr aphi cs. ¢ and
selecting an appropriate graphics adapter.

12C
The platform 12C bus routing is:

e bus #0: UXT#1 socket.
e bus#1. UXT#2 socket.
* bus #3: UXT#3 socket.

SPI

The platform SPI bus routing is:

e bus #0: UXT#1 socket.
e bus#1. UXT#2 socket.
e bus #3: UXT#3 socket.

API

x*% . [../sanpl es/| AR_STMB2F4291 | _EXP/ pl at form config. h not found *

193

http://old.iar.com/website1/1.0.1.0/3084/1/?item=prod_prod-s1%2F622
http://old.iar.com/website1/1.0.1.0/3084/1/?item=prod_prod-s1%2F625

CrossWorks Platform Library CrossWorks Platform Library

STM32F4-DISCOVERY

STM32F4-DISCOVERY Platform

This is the Platform Library implementation for the STMicroelectronics STM32F4-DISCOVERY.
http://www.st.com/internet/evalboard/product/252419.jsp

This platform provides both mass storage and Ethernet support using the Farnell STM32F4DIS-BB base board:

http://www.element14.com/community/docs/DOC-51084

Mass Storage

Examples use the SD/MMC socket of the STM32F4DIS-BB.

Networking

Examples use the Ethernet port of the STM32F4DIS-BB.

Graphics

Examples use an STM32F4DIS-LCD attached to an STM32F4DIS-BB. Note that the signals PD13, PD14, and PD15
have shared functions: they are routed to the Orange, Red, and Blue LEDS as well as being used as the LCD
backlight and data bus. The Green LED is independent of the LCD. Therefore, if you intend to use graphics, make
sure you initialize the built-in graphics first, which allocates those signals for the LCD and prevents them from

being used for LEDs.

Accelerometer

The STM32F4DISCOVERY is fitted with either an LIS302DL or LIS3DSH accelerometer, depending upon the
revision of board you have. Revision A and B boards have the LIS302DL accelerometer and Revision C board
have the LIS3DSH accelerometer. The Platform API will sense the type of accelerometer fitted to the board and

initialize the correct driver for it.

Note that the accelerometer 12C/SPl interface is selected by PE3 which conflicts with the LCD where PE3 is
mapped to the D/C signal. As such, it is impossible to use the accelerometer and the LCD in FSMC mode at the
same time.

You can use the accelerometer and LCD sequentially, with restrictions, by configuring the LCD in GPIO mode
rather than FSMC mode. In GPIO mode, PE3 can be multiplexed between LCD and accelerometer as long as both
are not used from different CTL tasks. This mode also requires that the accelerometer is the only device on the SPI
bus as it is selected onto the SPI bus when a command is issued to the LCD with D/C=0.

See the function pl at f orm confi gure_buil ti n_graphi csinst n82f 4di scover. c toselect

between fast FSMC LCD mode without accelerometer and GPIO mode with accelerometer.

194

http://www.st.com/internet/evalboard/product/252419.jsp
http://www.element14.com/community/docs/DOC-51084

CrossWorks Platform Library CrossWorks Platform Library

API

*** . [../sanpl es/ STMB2/ ST_STM32F4DlI SCOVERY/ pl atf orm confi g. h not found ***

195

CrossWorks Platform Library CrossWorks Platform Library

Defender

About Defender

For execution on a SolderCore and a SolderCore Arcade Shield or SolderCore LCD Shield. I've even run this code
on a Windows PC using Qt to do GUI heavy lifting.

Background

This code replicates, as accurately as | can make it, a Williams Defender unit. Defender was one of those games
that was pretty awesome for its time.

Please don't complain about the coding style, don't ask how it works, just do not bother me. | send this code out
into the world to fend for itself and for you to unravel any puzzles you find. You have a SolderCore, you have an
Arcade Shield, you have CrossWorks, you have a debugger, so all is not lost.

Core hardware

This code is primarily intended to run on a SolderCore and a SolderCore Arcade Shield or a SolderCore LCD
Shield. Best gameplay comes from using the Arcade Shield because the display is bigger and it is considerably
faster.

You can also run this code, using a SolderCore Arcade Shield or SolderCore LCD Shield, on:

* an Olimex STM32-E407.

* an Olimex STM32-H407.

* aBugsBlat Cortino.

* aNetduino Plus 2.

* an mbed-LPC1768 with an ELMICRO TestBed. (This platform is a bit of a challenge as the LPC1768 RAM is
split into several regions, none big enough accommodate a complete frame buffer.)

And you can run this code using the integrated LCD of:
* an Olimex STM32-LCD.

...and perhaps this code is included in CrossStudio as an Easter Egg? :-)

Human interface

The code can either use a Defender Playboard with a standard joystick and arcade buttons or a Nintendo Wii
Classic Controller.

You can attach a Classic Controller using a SolderCore SenseCore and WiiChuk adapter. | happen to lay

everything out using a 2x2 "flat four" base.

I've also coded up an interface using the Nintendo Wii Nunchuk Controller for the STM32-LCD in case you
purchased one of those from Olimex. In this case, use the analog joystick for ship control and C to let off a smart
bomb and Z to fire.

196

CrossWorks Platform Library CrossWorks Platform Library

| laser-cut my Defender Playboard from 5mm acrylic and fitted some proper arcade buttons and a nice joystick. A
good place to purchase these in the UK is Gremlin Solutions. You will find that 3mm acrylic is a better fit for the
arcade buttons from Gremlin because they have a spring-latch underneath that will not lock on 5mm acrylic—I

rebated the cuts for the buttons so mine would.

A warning: | purchased some arcade buttons from SparkFun but these are very deep and have a seriously naff

feel. Don't use these arcade buttons, they are truly awful.

What's different
| took a little artistic license with the gameplay:

* The two-player game pits you against an Al-controlled Defender that is on screen, and playing, when
you play. Neither Defender can collide with the other Defender, and neither Defender can shoot down or
smart bomb the other Defender.

* The game doesn't stop and restart the wave when you die. This is a consequence of two-player mode.

Although it would be possible to restart, | quite like it this way.

What's not implemented

Some things have not been implemented yet, and | may well get round to implementing them when | feel the

need. Things left out for the moment are:

» Sound effects. | started putting in the hooks for sound effects, but | am no sound designer and haven't
found a satisfactory way to get sound effects integrated into a SolderCore setup. Ideas run along the lines
of the GinSing, the Fluxamasynth (MIDI), or custom V51053 firmware (don't want to do this...), and then
dry up.

* Baiter hurry-ups.

* Exploding landscape and hyperspace on loss of last human.

» Warping when pressing the hyperspace button.

* High scores. Who needs 'em? :-)

* The Al could be much better. Have a go!

197

http://www.gremlinsolutions.co.uk

CrossWorks Platform Library CrossWorks Platform Library

Minimal FTP Server

Minimal FTP Server README

This note is a description of the FTP server example.

Overview

The FTP server example is a minimal implementation of an FTP server. It will serve simultaneous client
connections to the server if you configure MAXI MUM FTP_CLI ENTSinexanpl e _ftp_server. c.
Limitations

The server is minimal and therefore has certain limitations. If all you wish to do is store and retrieve files from an
SD card managed by the Mass Storage Library, this will do that for you. It will not, however, rename files or act as
a full FTP server: that is not its purpose.

This server has no compile-time configuration options. If you wish to remove PUT or GET capability, do this by
editing the code. You can extend the capabilities of the server, and customize it for your needs, as it is delivered
in source form.

198

CrossWorks Platform Library CrossWorks Platform Library

Minimal HTTP Server

Minimal HTTP Server README

This note is a description of the HTTP server example.

Overview

The HTTP server example is a minimal implementation of an HTTP server that serves pages from a mounted
disk. It will serve simultaneous client connections to the server if you configure MAXI MUM_HTTP_CLI ENTSin
ctl _http_server.c.

Limitations

The server is minimal and therefore has certain limitations. If all you wish to do is serve files from an SD card
managed by the Mass Storage Library, this will do that for you. It will not, however, provide capabilities such as
POST, CGl, and so on.

This server has no compile-time configuration options. If you wish to remove capabilities, do this by editing the
code. You can extend the capabilities of the server, and customize it for your needs, as it is delivered in source
form.

199

CrossWorks Platform Library CrossWorks Platform Library

Weather Station LCD1x9

About the example

The application searches an 12C bus to find a light sensor, a pressure sensor, a humidity sensor, and a
temperature sensor. After enumerating the available sensors, it will show a carousel of measurements on the
LCD.

MOD-LCD1x9 Setup
For boards with a UEXT socket:

* Plug a MOD-LCD1x9 into the first UEXT socket.
On everything else:

* Wire the MOD-LCD1x9 SDA/SCL signals to the primary platform 12C bus.

Arduino-format setup

You can use a SenseCore with a CorePressure module and CoreLight module, for instance. Or you can use a Jee

Labs plug shield with some sensors that they offer. Or you can plug both of them in at once, if you really want to.

200

CrossWorks Platform Library CrossWorks Platform Library

Adafruit TFT Touch Shield

Adafruit TFT Touch Shield README

This note covers use of the Adafruit TFT Touch Shield on platforms that prove problematic.

Using the Touch Shield on an Arduino (or compatible) and Olimexino-5510

The Adafruit TFT Touch Shield routes the system reset signal from the Arduino header direct to the LCD

reset input. This is a serious problem if you intend to debug using an Arduino Uno, Olimexino-328P or
Olimexino-5510 because the debugger communicates using the RESET signal: on the AVR, it's used for
debugWIRE, and on the MSP430 it's used for Spy-Bi-Wire. So, you're out of luck debugging the LCD because it
is continually reset when you single step! What you can do is build and program your target board, then simply

reset it with the debug cable unplugged.

Using the Touch Shield on the SolderCore or Freedom Board

There are no issues using the shield with a SolderCore or Freedom Board because the debug connection does

not use the reset signal.

Alternative products

The ITead Studio ITDB02 range of LCDs has LCD reset mapped to a general purpose I/O pin rather than directly

to system reset, so debugging using and Arduino or Olimexino-5510 is possible.

Alternatively, consider a less pin-hungry shield, such as the SolderCore LCD Shield which runs using SPI at up to
40 MHz.

201

	Contents
	CrossWorks Platform Library
	User Manual
	Introduction
	Blinking one LED
	Blinking all LEDs

	API Reference
	<platform.h>
	PLATFORM_BUTTON_ATTRIBUTE_t
	PLATFORM_BUTTON_CONFIGURATION_t
	PLATFORM_EDGE_t
	PLATFORM_HOOK_t
	PLATFORM_LED_ATTRIBUTE_t
	PLATFORM_LED_CONFIGURATION_t
	PLATFORM_PIN_CLAIM_t
	PLATFORM_PIN_CONFIGURATION_t
	PLATFORM_PIN_CONNECTION_t
	PLATFORM_PIN_DIRECTION_t
	PLATFORM_PIN_FEATURE_t
	PLATFORM_PIN_FUNCTION_t
	PLATFORM_PIN_MODE_t
	PLATFORM_RESET_CAUSE_t
	PLATFORM_UEXT_CONFIGURATION_t
	platform_button_catalog
	platform_button_name
	platform_claim_multi_pin
	platform_claim_pin
	platform_claim_pin_configuration
	platform_configure_i2c_bus
	platform_configure_i2c_bus_ex
	platform_configure_spi_bus
	platform_configure_spi_bus_ex
	platform_configure_uart
	platform_cpu_core_frequency
	platform_cpu_name
	platform_cpu_tick
	platform_cpu_tick_frequency
	platform_digital_pin_direction
	platform_digital_pin_drive_strength
	platform_digital_pin_features
	platform_digital_pin_mode
	platform_digital_pin_speed
	platform_hook_background
	platform_hook_button_press
	platform_hook_pin_edge
	platform_hook_timer
	platform_i2c_bus
	platform_i2c_bus_pins
	platform_initialize
	platform_led_catalog
	platform_led_name
	platform_lock_pin
	platform_lock_pin_configuration
	platform_name
	platform_pin_catalog
	platform_pin_catalog_count
	platform_pin_connection_name
	platform_pin_function
	platform_pin_signal_name
	platform_read_analog_pin
	platform_read_button
	platform_read_digital_pin
	platform_reboot
	platform_release_pin
	platform_reset_cause
	platform_set_digital_pin_direction
	platform_set_digital_pin_drive_strength
	platform_set_digital_pin_features
	platform_set_digital_pin_mode
	platform_set_digital_pin_speed
	platform_set_multi_digital_pin_drive_strength
	platform_set_multi_digital_pin_mode
	platform_set_multi_digital_pin_speed
	platform_spi_bus
	platform_spi_bus_pins
	platform_spin_delay_cycles
	platform_spin_delay_ms
	platform_spin_delay_us
	platform_uart
	platform_uext_configuration
	platform_unhook_background
	platform_unhook_timer
	platform_watchdog_enable
	platform_watchdog_remaining
	platform_watchdog_service
	platform_watchdog_set_period
	platform_write_analog_pin
	platform_write_digital_pin
	platform_write_led

	<platform_graphics.h>
	platform_configure_builtin_graphics

	<platform_network.h>
	platform_configure_network

	<platform_sensors.h>
	platform_configure_builtin_accelerometer
	platform_configure_builtin_gyroscope
	platform_configure_builtin_humidity_sensor
	platform_configure_builtin_light_sensor
	platform_configure_builtin_magnetometer
	platform_configure_builtin_pressure_sensor
	platform_configure_builtin_temperature_sensor

	<platform_heaps.h>
	platform_network_heap
	platform_private_init_heaps
	platform_system_heap

	Implementation
	<platform_private.h>
	PLATFORM_PRIVATE_I2C_CONFIGURATION_t
	PLATFORM_PRIVATE_I2C_METHODS_t
	PLATFORM_PRIVATE_SPI_CONFIGURATION_t
	PLATFORM_PRIVATE_SPI_METHODS_t
	platform_private_configure_leds
	platform_private_execute_hooks
	platform_private_find_pin_connection
	platform_private_hook_single_timer
	platform_private_i2c_bus_configuration
	platform_private_i2c_bus_instance
	platform_private_i2c_hardware_claim_pins
	platform_private_idle_task_main
	platform_private_initialize
	platform_private_lock_pin
	platform_private_pin_connection_name
	platform_private_pin_signal_name
	platform_private_read_button
	platform_private_release_pin
	platform_private_software_i2c_methods
	platform_private_software_spi_methods
	platform_private_spi_bus_configuration
	platform_private_spi_bus_instance
	platform_private_spi_hardware_claim_pins
	platform_private_start_single_hook_timer
	platform_private_start_tasking
	platform_private_stop_single_hook_timer
	platform_private_test_pin_claim
	platform_private_timer_hooks
	platform_private_unhook_single_timer
	platform_private_write_led

	<platform_stm32f1.h>
	STM32_PAD
	STM32_PIN
	STM32_PORT
	STM32_PORT_BASE
	STM32_PORT_t
	stm32_platform_initialize
	stm32_release_pin
	stm32_set_multi_pin_alternate_function
	stm32_set_pin_alternate_function

	<platform_stm32f4.h>
	STM32_PAD
	STM32_PIN
	STM32_PORT
	STM32_PORT_BASE
	STM32_PORT_t
	stm32_platform_initialize
	stm32_set_multi_pin_alternate_function
	stm32_set_pin_alternate_function

	<platform_lpc1700.h>
	LPC1700_PAD
	LPC1700_PCLK_SOURCE_t
	LPC1700_PIN
	LPC1700_PORT
	LPC1700_PORT_t
	lpc1700_platform_initialize

	Platforms
	SolderCore
	Cortino3RE
	FRDM-KL25Z
	FRDM-KL26Z
	FRDM-KL46Z
	MCBSTM32C
	Nucleo-F103RB
	Nucleo-F401RE
	Arch Pro
	Olimexino-STM32
	STM32-103STK
	STM32-405STK
	STM32-E407
	STM32-LCD
	STM32-P107
	STM32-P405
	STM32-P407
	STM3240G-EVAL
	STM32F429II-EXP
	STM32F4-DISCOVERY

	Example READMEs
	Defender
	Minimal FTP Server
	Minimal HTTP Server
	Weather Station LCD1x9
	Adafruit TFT Touch Shield

