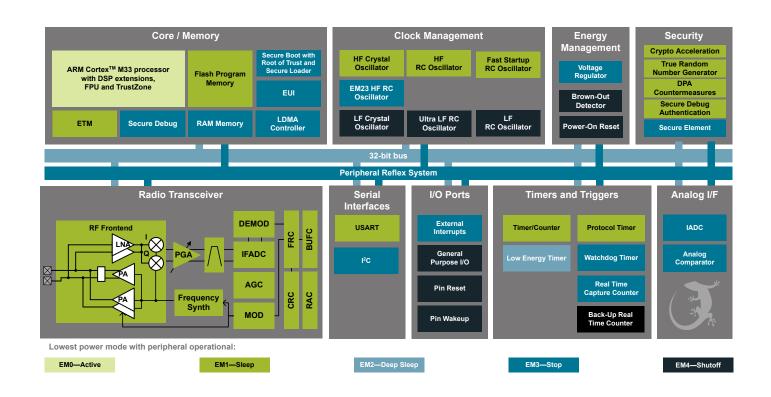


EFR32xG21 Wireless Gecko Reference Manual



The EFR32xG21 Wireless Gecko SoC is the first device in the Series 2 Wireless Gecko Portfolio, and includes the EFR32MG21 Mighty Gecko and EFR32BG21 Blue Gecko. The EFR32xG21 improves processing capability with a Cortex M33 core and has best in class link budget while providing for lower active current for both the MCU and radio. The dedicated security core (Secure Element) provides improved cryptography and hardware security that is isolated from the main application CPU. This high performance and secure multi-protocol device supports Zigbee, Thread, and Bluetooth 5.0.

The single-die solution provides industry-leading energy efficiency, processing capability, and RF performance in a small form factor for IoT connected applications.

KEY FEATURES

- 32-bit ARM® Cortex M33 core with 80 MHz maximum operating frequency
- Scalable Memory and Radio configuration options available in QFN packaging
- Peripheral Reflex System enabling autonomous interaction of MCU peripherals
- Autonomous Hardware Crypto Accelerator and True Random Number Generator
- Multiple Integrated 2.4 GHz PAs with up to 20 dBm transmit power

Table of Contents

1.	About This Document	. 23
	1.1 Introduction	.23
	1.2 Conventions	.24
	1.3 Related Documentation	.25
2.	System Overview	. 26
	2.1 Introduction	.27
	2.2 Block Diagrams	.28
	2.3 MCU Features overview	.29
	2.4 Security Features	
	2.4.1 Secure Boot with Root of Trust and Secure Loader (RTSL)	
	2.4.2 Cryptographic Accelerator	
	2.4.4 Secure Debug with Lock/Unlock.	
	2.4.5 DPA Countermeasures	.31
	2.4.6 Secure Key Management with PUF	
	2.4.7 Anti-Tamper	
	2.5 Oscillators and Clocks	
	2.6 RF Frequency Synthesizer	
	2.7 Modulation Modes	
	2.8 Transmit Mode	
	2.9 Receive Mode	
	2.10 Data Buffering	
	2.11 Unbuffered Data Transfer	
	2.12 Frame Format Support	
	2.13 Hardware CRC Support	.35
	2.14 Convolutional Encoding / Decoding	.35
	2.15 Binary Block Encoding / Decoding	.35
	2.16 Timers	.36
	2.17 RF Test Modes	.36
3.	System Processor	. 37
	3.1 Introduction	.37
	3.2 Features	.38
	3.3 Functional Description	.38
	3.3.1 Interrupt Operation	
	3.3.2 TrustZone	
	3.3.3 Interrupt Request lines (IRQ)	
4	Memory and Bus System	42

	4.1 Introduction												.42
	4.2 Functional Description												.43
	4.2.1 Bus Matrix												.44
	4.2.2 Flash												
	4.2.3 SRAM												.45
	4.2.4 Peripherals												.45
5.	Radio Transceiver												. 51
	5.1 Introduction												
6.	MSC - Memory System Controller								•				. 53
	6.1 Introduction												.53
	6.2 Features												.54
	6.3 Functional Description												
	6.3.1 Ram Configuration												
	6.3.2 Instruction Cache												
	6.3.3 Device Information (DI) Page .												
	6.3.4 User Data (UD) Page Description												
	6.3.5 Bootloader												
	6.3.6 Post-reset Behavior												
	6.3.7 Flash Startup												
	6.3.8 Wait-states												
	6.3.9 Cortex-M33 If-Then Block Folding												
	6.3.10 Line Buffering (Prefetch)												.56
	6.3.11 Erase and Write Operations												
	6.4 DEVINFO - Device Info Page												.58
	6.4.1 Register Map												
	6.4.2 Register Description												
	6.5 ICACHE - Instruction Cache												
	6.5.1 Cache Operation												
	6.5.2 Performance Measurement												
	6.5.3 Register Map												
	6.5.4 Register Description												
	6.6 SYSCFG - System Configuration												
	6.6.1 Ram Retention												
	6.6.2 ECC												
	6.6.3 RAM Wait-states												
	6.6.4 RAM Prefetch												
	6.6.5 RAM Cache												
	6.6.6 Software Interrupts												
	6.6.7 Bus faults												
	6.6.8 Register Map												
	6.6.9 Register Description												
	6.7 Register Map												
	•												
	6.8 Register Description												
	6.8.1 MSC IPVERSION - IP version ID		 	 	 	 	_			 		_	. 115

	6.8.2 MSC_READCTRL - Read Control Register	. 116
	6.8.3 MSC_WRITECTRL - Write Control Register	. 117
	6.8.4 MSC_WRITECMD - Write Command Register	. 118
	6.8.5 MSC_ADDRB - Page Erase/Write Address Buffer	
	6.8.6 MSC_WDATA - Write Data Register	
	6.8.7 MSC_STATUS - Status Register	
	6.8.8 MSC_IF - Interrupt Flag Register	
	6.8.9 MSC_IEN - Interrupt Enable Register	
	6.8.10 MSC_USERDATASIZE - user data regsion size	
	6.8.11 MSC_CMD - Command Register	
	6.8.12 MSC_LOCK - Configuration Lock Register	
	6.8.13 MSC_MISCLOCKWORD - Mass erase lock word	
	6.8.15 MSC PAGELOCK1 - Main space page 0-31 lock word	
	6.8.16 MSC_PAGELOCK2 - Main space page 64-95 lock word	
	6.8.17 MSC_PAGELOCK3 - Main space page 96-127 lock word.	
	6.8.18 MSC_TESTCTRL - Flash test control register.	
7	DBG - Debug Interface	
١.	-	
	7.1 Introduction	
	7.2 Features	
	7.3 Functional Description	
	7.3.1 Debug Pins	
	7.3.2 Embedded Trace Macrocell V3.5 (ETM)	
	7.3.3 Debug and EM2/EM3	
	7.4 DBG Register Map	. 129
	7.5 DBG Register Description	
	7.5.1 DBG_DCIWDATA - Write Data	
	7.5.2 DBG_DCIRDATA - Read Data	
	7.5.3 DBG_DCISTATUS - Status	
	7.5.4 DBG_DCIID - Identification	
	7.5.5 DBG_SYSCOM0 - Communication Status	
	7.5.7 DBG SYSPWR0 - Power Status	
	7.5.8 DBG_SYSCLK0 - Clocking Status	
	7.5.9 DBG SYSID - Identification	
0	CMU - Clock Management Unit	
ο.		
	8.1 Introduction	
	8.2 Features	
	8.3 Functional Description	
	8.3.1 System Clocks	
	8.3.2 Switching Clock Source	
	8.3.3 RC Oscillator Calibration	
	8.3.4 Energy Modes	
	8.3.5 Clock Output on a Pin	
	U.J.U CIUCK INDUL II UIII A FIII	. 1 4 9

	8.3.7 Clock Output on PRS	
	8.3.8 Interrupts	.149
	8.3.9 Protection	.149
	8.4 Register Map	150
	8.5 Register Description	
	8.5.1 CMU_IPVERSION - IP version ID	
	8.5.2 CMU_STATUS - Status Register	
	8.5.3 CMU_LOCK - Configuration Lock Register	
	8.5.4 CMU_WDOGLOCK - WDOG Configuration Lock Register	. 154
	8.5.5 CMU_IF - Interrupt Flag Register	.155
	8.5.6 CMU_IEN - Interrupt Enable Register	. 155
	8.5.7 CMU_CALCMD - Calibration Command Register	. 156
	8.5.8 CMU_CALCTRL - Calibration Control Register	. 157
	8.5.9 CMU_CALCNT - Calibration Result Counter Register	158
	8.5.10 CMU_SYSCLKCTRL - System Clock Control	. 159
	8.5.11 CMU_TRACECLKCTRL - Debug Trace Clock Control	
	8.5.12 CMU_EXPORTCLKCTRL - Export Clock Control	
	8.5.13 CMU_DPLLREFCLKCTRL - Digital PLL Reference Clock Control	
	8.5.14 CMU_EM01GRPACLKCTRL - EM01 Peripheral Group A Clock Control	
	8.5.15 CMU_EM23GRPACLKCTRL - EM23 Peripheral Group A Clock Control	
	8.5.16 CMU_EM4GRPACLKCTRL - EM4 Peripheral Group A Clock Control	
	8.5.17 CMU_IADCCLKCTRL - IADC Clock Control	
	8.5.18 CMU_WDOG0CLKCTRL - Watchdog0 Clock Control	
	8.5.19 CMU_WDOG1CLKCTRL - Watchdog1 Clock Control	
	8.5.20 CMU RTCCCLKCTRL - RTCC Clock Control	
	8.5.21 CMU_RADIOCLKCTRL - Radio Clock Control	
9.	Oscillators	.169
	9.1 Introduction	. 169
	9.2 HFXO - High Frequency Crystal Oscillator	
	9.2.1 Introduction	
	9.2.2 Features	
	9.2.3 Functional Description	
	9.2.4 Register Map	
	9.2.5 Register Description	. 1/4
	9.3 HFRCO - High-Frequency RC Oscillator	.184
	9.3.1 Introduction	.184
	9.3.2 Features	. 184
	9.3.3 Functional Description	. 184
	9.3.4 Register Map	. 187
	9.3.5 Register Description	. 188
	9.4 DPLL - Digital Phased Locked Loop	192
	9.4.1 Introduction	
	9.4.2 Features	
	9.4.3 Functional Description	
	9.4.4 Register Map	
	9.4.5 Register Description	
	3.4.J NEGISIEI DESCHUIUH	. 190

9.5 LFXO - Low-Frequency Crystal Oscillator	200
9.5.1 Introduction	200
9.5.2 Features	200
9.5.3 Functional Description	200
9.5.4 Register Map	
9.5.5 Register Description	
9.6 LFRCO - Low-Frequency RC Oscillator	
9.6.1 Introduction	
9.6.2 Features	
9.6.3 Functional Description	
9.6.4 Register Map	
9.6.5 Register Description	
9.7 FSRCO - Fast Start RCO	
9.7.1 Introduction	
9.7.2 Features	
9.7.3 Functional Description	
9.7.4 Register Map	
9.7.5 Register Description	
9.8 ULFRCO - Ultra Low Frequency RC Oscillator	.217
9.8.1 Introduction	217
9.8.2 Features	217
9.8.3 Functional Description	217
0. SMU - Security Management Unit	218
10.1 Introduction	
10.2 Features	
10.3 Functional Description	
10.3.1 Bus Level Security	
10.3.2 Privileged Access Control	
10.3.3 Secure Access Control	
10.3.4 ARM TrustZone	
10.3.5 Configuring Masters	
10.3.6 Configuring Peripherals	
10.3.7 Configuring Memory	.222
10.3.8 Cortex-M33 Integration	.222
10.3.9 Exception Handling	
10.3.10 SMU Lock	.223
10.4 Register Map	. 224
10.5 Register Description	226
10.5.1 SMU IPVERSION - IP Version	
10.5.2 SMU_STATUS - Status Register	
	227
-	
10.5.3 SMU_LOCK - Lock Register	227
10.5.3 SMU_LOCK - Lock Register	227 228
10.5.3 SMU_LOCK - Lock Register	227 228 229

10.5.8 SMU_PPUPATD1 - Privileged Access	.233
10.5.9 SMU_PPUSATD0 - Secure Access	. 235
10.5.10 SMU_PPUSATD1 - Secure Access	237
10.5.11 SMU_PPUFS - Fault Status	.238
10.5.12 SMU_BMPUPATD0 - Privileged Attribute	239
10.5.13 SMU_BMPUSATD0 - Secure Attribute	240
10.5.14 SMU_BMPUFS - Fault Status	241
10.5.15 SMU_BMPUFSADDR - Fault Status Address	241
10.5.16 SMU_ESAURTYPES0 - Region Types 0	242
10.5.17 SMU_ESAURTYPES1 - Region Types 1	242
10.5.18 SMU_ESAUMRB01 - Movable Region Boundary	. 243
10.5.19 SMU_ESAUMRB12 - Movable Region Boundary	. 243
10.5.20 SMU_ESAUMRB45 - Movable Region Boundary	. 244
10.5.21 SMU_ESAUMRB56 - Movable Region Boundary	. 244
11. SE - Secure Element Subsystem	245
11.1 Introduction	245
11.2 Security Features	245
11.2.1 Security Features Overview	
11.2.2 Secure Boot with Root of Trust and Secure Loader (RTSL)	
11.2.3 Secure Debug	
11.2.4 Cryptographic Accelerator	
11.2.5 True Random Number Generation	
11.2.6 Secure Key Management with PUF	
11.2.7 Anti-Tamper	248
11.2.8 Secure Attestation	248
11.3 SE Mailbox	248
11.3.1 Sending Commands	
11.3.2 Receiving Responses	
11.3.3 Register Map	
11.3.4 Register Description	
12. EMU - Energy Management Unit	
12.1 Introduction	
12.2 Features	
12.3 Functional Description	
12.3.1 Energy Modes	
12.3.2 Entering Low Energy Modes	
12.3.3 Exiting a Low Energy Mode	
12.3.4 Power Domains	
12.3.5 Brown Out Detector (BOD)	
12.3.6 Reset Management Unit	
12.3.7 Temperature Sensor	
12.3.8 Register Resets	
12.3.9 Register Locks	. 268
12.4 Register Map	269
12.5 Register Description	271

12.5.1 EMU_DECBOD - DECOUPLE LVBOD Control register	271
12.5.2 EMU_BOD3SENSE - BOD3SENSE Control register	
12.5.3 EMU_LOCK - EMU Configuration lock register	272
12.5.4 EMU_IF - Interrupt Flags	273
12.5.5 EMU_IEN - Interrupt Enables	.274
12.5.6 EMU_EM4CTRL - EM4 Control	
12.5.7 EMU_CMD - EMU Command register	
12.5.8 EMU_CTRL - EMU Control register	
12.5.9 EMU_TEMPLIMITS - EMU Temperature thresholds	278
12.5.10 EMU_STATUS - EMU Status register	
12.5.11 EMU_TEMP - Temperature	
12.5.12 EMU_RSTCTRL - Reset Management Control register	
12.5.13 EMU_RSTCAUSE - Reset cause	
12.5.14 EMU_DGIF - Interrupt Flags Debug	284
12.5.15 EMU_DGIEN - Interrupt Enables Debug	
12.5.16 EMU_SEIF - Interrupt Flags Secure Element	
12.5.17 EMU_SEIEN - Interrupt Enables Secure Elements	
13. PRS - Peripheral Reflex System	287
13.1 Introduction	287
13.2 Features	287
13.3 Functional Description	. 288
13.3.1 Asynchronous Channel Functions.	
13.3.2 Configurable Logic	
13.3.3 Producers	
13.3.4 Consumers	
13.4 Register Map	
13.5 Register Description	
13.5.1 PRS_IPVERSION - IP version ID	
13.5.2 PRS_ASYNC_SWPULSE - Software Pulse Register	
13.5.3 PRS_ASYNC_SWLEVEL - Software Level Register	
13.5.4 PRS_ASYNC_PEEK - Async Channel Values	
13.5.5 PRS_SYNC_PEEK - Sync Channel Values	
13.5.6 PRS_ASYNC_CHx_CTRL - Async Channel Control Register	
13.5.7 PRS_SYNC_CHx_CTRL - Sync Channel Control Register	
13.5.8 PRS_CONSUMER_CMU_CALDN - CMU CALDN Consumer Selection	
13.5.9 PRS_CONSUMER_CMU_CALUP - CMU CALUP Consumer Selection	
13.5.10 PRS_CONSUMER_IADC0_SCANTRIGGER - IADC0 SCANTRIGGER Consumer Selection	317
13.5.11 PRS_CONSUMER_IADC0_SINGLETRIGGER - IADC0 SINGLETRIGGER Consumer	
Selection	
13.5.12 PRS_CONSUMER_LDMAXBAR_DMAREQ0 - DMAREQ0 Consumer Selection	
13.5.13 PRS_CONSUMER_LDMAXBAR_DMAREQ1 - DMAREQ1 Consumer Selection	
13.5.14 PRS_CONSUMER_LETIMER0_CLEAR - LETIMER CLEAR Consumer Selection	319
13.5.15 PRS_CONSUMER_LETIMER0_START - LETIMER START Consumer Selection	
13.5.16 PRS_CONSUMER_LETIMER0_STOP - LETIMER STOP Consumer Selection	320
13.5.17 PRS_CONSUMER_MODEM_DIN - MODEM DIN Consumer Selection	
13.5.18 PRS_CONSUMER_RAC_CLR - RAC CLR Consumer Selection	321

13.5.19	PRS_CONSUMER_RAC_FORCETX - RAC FORCETX Consumer Selection	. 321
13.5.20	PRS_CONSUMER_RAC_RXDIS - RAC RXDIS Consumer Selection	.322
13.5.21	PRS_CONSUMER_RAC_RXEN - RAC RXEN Consumer Selection	. 322
	PRS_CONSUMER_RAC_SEQ - RAC SEQ Consumer Selection	
	PRS_CONSUMER_RAC_TXEN - RAC TXEN Consumer Selection	. 323
	PRS_CONSUMER_RTCC_CC0 - RTCC CC0 Consumer Selection	
	PRS_CONSUMER_RTCC_CC1 - RTCC CC1 Consumer Selection	
	PRS_CONSUMER_RTCC_CC2 - RTCC CC2 Consumer Selection	
		. 325
	PRS CONSUMER SE TAMPERSRC1 - SE TAMPERSRC1 Consumer Selection	. 326
		. 326
	PRS_CONSUMER_SE_TAMPERSRC3 - SE TAMPERSRC3 Consumer Selection	. 327
		. 327
	PRS_CONSUMER_SE_TAMPERSRC5 - SE TAMPERSRC5 Consumer Selection .	. 328
	PRS_CONSUMER_SE_TAMPERSRC6 - SE TAMPERSRC6 Consumer Selection .	. 328
	PRS_CONSUMER_SE_TAMPERSRC7 - SE TAMPERSRC7 Consumer Selection .	. 329
		. 329
	-	. 330
	PRS_CONSUMER_CORE_CTIIN2 - CTI2 Consumer Selection	. 330
		. 331
	PRS_CONSUMER_CORE_M33RXEV - M33 Consumer Selection	. 331
	PRS_CONSUMER_TIMER0_CC0 - TIMER0 CC0 Consumer Selection	
13.5.41	PRS_CONSUMER_TIMER0_CC1 - TIMER0 CC1 Consumer Selection	. 332
13.5.42	PRS_CONSUMER_TIMER0_CC2 - TIMER0 CC2 Consumer Selection	. 333
13.5.43	PRS_CONSUMER_TIMER0_DTI - TIMER0 DTI Consumer Selection	. 333
13.5.44	PRS_CONSUMER_TIMER0_DTIFS1 - TIMER0 DTIFS1 Consumer Selection	.334
13.5.45	PRS_CONSUMER_TIMER0_DTIFS2 - TIMER0 DTIFS2 Consumer Selection	.334
13.5.46	PRS_CONSUMER_TIMER1_CC0 - TIMER1 CC0 Consumer Selection	. 335
13.5.47	PRS_CONSUMER_TIMER1_CC1 - TIMER1 CC1 Consumer Selection	. 335
13.5.48	PRS_CONSUMER_TIMER1_CC2 - TIMER1 CC2 Consumer Selection	. 336
13.5.49	PRS_CONSUMER_TIMER1_DTI - TIMER1 DTI Consumer Selection	. 336
13.5.50	PRS_CONSUMER_TIMER1_DTIFS1 - TIMER1 DTIFS1 Consumer Selection	.337
13.5.51	PRS_CONSUMER_TIMER1_DTIFS2 - TIMER1 DTIFS2 Consumer Selection	.337
13.5.52	PRS_CONSUMER_TIMER2_CC0 - TIMER2 CC0 Consumer Selection	. 338
13.5.53	PRS_CONSUMER_TIMER2_CC1 - TIMER2 CC1 Consumer Selection	. 338
13.5.54	PRS_CONSUMER_TIMER2_CC2 - TIMER2 CC2 Consumer Selection	. 339
	PRS_CONSUMER_TIMER2_DTI - TIMER2 DTI Consumer Selection	
	PRS CONSUMER TIMER2 DTIFS1 - TIMER2 DTIFS1 Consumer Selection	.340
	PRS CONSUMER TIMER2 DTIFS2 - TIMER2 DTIFS2 Consumer Selection	.340
	PRS_CONSUMER_TIMER3_CC0 - TIMER3 CC0 Consumer Selection	
	PRS_CONSUMER_TIMER3_CC1 - TIMER3 CC1 Consumer Selection	
	PRS CONSUMER TIMER3 CC2 - TIMER3 CC2 Consumer Selection	
	PRS CONSUMER TIMER3 DTI - TIMER3 DTI Consumer Selection	
	PRS CONSUMER TIMER3 DTIFS1 - TIMER3 DTIFS1 Consumer Selection	
	PRS_CONSUMER_TIMER3_DTIFS2 - TIMER3 DTIFS2 Consumer Selection	
	PRS CONSUMER USARTO CLK - USARTO CLK Consumer Selection	
	PRS CONSUMER USARTO IR - USARTO IR Consumer Selection	
	PRS_CONSUMER_USARTO_IR - USARTO IR Consumer Selection	. 344 345
1.3 (3 (2)	EING GAMGUNIER UGARTU RA - UGARTU RA GUISUITEL BELECTIOU	.04:0

13.5.67 PRS_CONSUMER_USART0_TRIGGER - USART0 TRIGGER Consumer Selection	345
13.5.68 PRS_CONSUMER_USART1_CLK - USART1 CLK Consumer Selection	346
13.5.69 PRS_CONSUMER_USART1_IR - USART1 IR Consumer Selection	346
13.5.70 PRS_CONSUMER_USART1_RX - USART1 RX Consumer Selection	347
13.5.71 PRS_CONSUMER_USART1_TRIGGER - USART1 TRIGGER Consumer Selection	347
13.5.72 PRS_CONSUMER_USART2_CLK - USART2 CLK Consumer Selection	348
13.5.73 PRS_CONSUMER_USART2_IR - USART2 IR Consumer Selection	348
13.5.74 PRS_CONSUMER_USART2_RX - USART2 RX Consumer Selection	349
13.5.75 PRS_CONSUMER_USART2_TRIGGER - USART2 TRIGGER Consumer Selection	349
13.5.76 PRS_CONSUMER_WDOG0_SRC0 - WDOG0 SRC0 Consumer Selection	350
	350
	351
13.5.79 PRS_CONSUMER_WDOG1_SRC1 - WDOG1 SRC1 Consumer Selection	351
14. GPCRC - General Purpose Cyclic Redundancy Check	352
14.1 Introduction	352
14.2 Features	352
14.3 Functional Description	353
14.3.1 Polynomial Specification	354
14.3.2 Input and Output Specification	354
14.3.3 Initialization	354
14.3.4 DMA Usage	354
14.3.5 Byte-Level Bit Reversal and Byte Reordering	355
14.4 Register Map	358
14.5 Register Description	359
14.5.1 GPCRC_IPVERSION - IP Version ID	359
14.5.2 GPCRC_EN - CRC Enable	360
14.5.3 GPCRC_CTRL - Control Register	361
14.5.4 GPCRC_CMD - Command Register	362
14.5.5 GPCRC_INIT - CRC Init Value	362
14.5.6 GPCRC_POLY - CRC Polynomial Value	363
14.5.7 GPCRC_INPUTDATA - Input 32-bit Data Register	363
14.5.8 GPCRC_INPUTDATAHWORD - Input 16-bit Data Register	364
14.5.9 GPCRC_INPUTDATABYTE - Input 8-bit Data Register	364
14.5.10 GPCRC_DATA - CRC Data Register	365
14.5.11 GPCRC_DATAREV - CRC Data Reverse Register	365
14.5.12 GPCRC_DATABYTEREV - CRC Data Byte Reverse Register	366
15. RTCC - Real Time Clock with Capture	367
15.1 Introduction	367
15.2 Features	367
15.3 Functional Description	368
15.3.1 RTCC Counter	369
15.3.2 Capture/Compare Channels	371
15.3.3 Interrupts and PRS Output	
15.3.4 Register Lock	373
15.3.5 Programmer's Model	373

15.3.6 E	Debug Features and Description	 . 373
15.4 Regis	ister Map	 . 374
15.5.1 F 15.5.2 F 15.5.3 F 15.5.4 F 15.5.6 F 15.5.7 F 15.5.8 F 15.5.9 F 15.5.10 15.5.11 15.5.12 15.5.13	Ister Description . RTCC_IPVERSION - IP VERSION RTCC_EN - Module Enable Register RTCC_CFG - Configuration Register RTCC_CMD - Command Register RTCC_STATUS - Status register RTCC_IF - RTCC Interrupt Flags RTCC_IEN - Interrupt Enable Register RTCC_PRECNT - Pre-Counter Value Register RTCC_CNT - Counter Value Register RTCC_COMBCNT - Combined Pre-Counter and Counter Valu RTCC_SYNCBUSY - Synchronization Busy Register RTCC_LOCK - Configuration Lock Register RTCC_CCx_CTRL - CC Channel Control Register RTCC_CCx_OCVALUE - Output Compare Value Register RTCC_CCX_ICVALUE - Input Capture Value Register	.376 .377 .378 .379 .380 .381 .381 .382 .383 .383 .383
	- Back-Up Real Time Counter	
	duction.	
	ures	
	ctional Description	
16.3.1 C 16.3.2 C 16.3.3 E 16.3.4 C 16.3.5 C 16.3.6 H	Clock Selection Configuration Debug Features and Description Counter Compare Channel Interrupts Register Lock	 . 387 . 387 . 387 . 388 . 388 . 389
16.4 Regis	ister Map	 . 390
16.5.1 E 16.5.2 E 16.5.3 E 16.5.4 E 16.5.6 E 16.5.7 E 16.5.8 E 16.5.9 E 16.5.10 16.5.11	Ster Description . BURTC_IPVERSION - IP version ID . BURTC_EN - Module Enable Register . BURTC_CFG - Configuration Register . BURTC_CMD - Command Register . BURTC_STATUS - Status Register . BURTC_IF - Interrupt Flag Register . BURTC_IEN - Interrupt Enable Register . BURTC_PRECNT - Pre-Counter Value Register . BURTC_CNT - Counter Value Register . BURTC_CNT - Counter Value Register . BURTC_SYNCBUSY - Synchronization Busy Register . BURTC_LOCK - Configuration Lock Register .	. 391 . 392 . 393 . 394 . 395 . 395 . 396 . 397 . 397 . 398 . 399
	BURTC_COMP - Compare Value Register	 . 399 400
T/. BUKAM	L-BACKUD KAM	 400

	17.1 Introduction	400
	17.2 Functional Description	. 400
	17.3 Register Map	. 400
	17.4 Register Description	401
	17.4.1 BURAM_RETx_REG - Retention Register	401
18.	.LETIMER - Low Energy Timer....................................	402
	18.1 Introduction	402
	18.2 Features	402
	18.3 Functional Description	. 403
	18.3.1 Internal Overview	
	18.3.2 Free Running Mode	
	18.3.3 One-shot Mode	
	18.3.5 Double Mode	
	18.4 Clock Frequency	
	18.5 PRS Input Triggers	
	18.6 Debug	410
	18.7 Output Action	. 411
	18.8 PRS Output	411
	18.9 Interrupts	411
	18.10 Using the LETIMER in EM3....................................	411
	18.11 Register access	411
	18.12 Programmer's Model	. 412
	18.12.1 FREE Running Mode	
	18.12.2 One Shot Mode	
	18.12.3 DOUBLE Mode	414
	18.12.4 BUFFERED Mode	
	18.12.6 PWM Output	
	18.13 Register Map	
	18.14 Register Description	
	18.14.1 LETIMER_IPVERSION - IP version	
	18.14.2 LETIMER_EN - module en	420
	18.14.3 LETIMER_CTRL - Control Register	421
	18.14.4 LETIMER_CMD - Command Register	. 423
	18.14.5 LETIMER_STATUS - Status Register	. 424
	18.14.6 LETIMER_CNT - Counter Value Register	
	18.14.7 LETIMER_COMP0 - Compare Value Register 0	
	18.14.8 LETIMER_COMP1 - Compare Value Register 1	
	18.14.9 LETIMER_TOP - Counter TOP Value Register	
	18.14.10 LETIMER_TOPBUFF - Buffered Counter TOP Value	
	18.14.11 LETIMER_REP0 - Repeat Counter Register 0	427 427
	IO 14 IZ LE UNIEK KERT - KROPALLOUNIPEKRONSIRET	4//

18.14.13 LETIMER_IF - Interrupt Flag Register	. 428
18.14.14 LETIMER_IEN - Interrupt Enable Register	. 429
18.14.15 LETIMER_SYNCBUSY - Synchronization Busy Register	
18.14.16 LETIMER_PRSMODE - PRS Input mode select Register	. 431
19. TIMER - Timer/Counter	<i>A</i> 33
19.1 Introduction	. 433
19.2 Features	. 434
19.3 Functional Description	
19.3.1 Register Access	
19.3.2 Counter Modes	
19.3.3 Compare/Capture Channels	
19.3.4 Dead-Time Insertion Unit	
19.3.5 Debug Mode	
19.3.6 Interrupts, DMA and PRS Output	
19.3.7 GPIO Input/Output	
19.4 Register Map	
19.5 Register Description	
19.5.1 TIMER_IFVERSION - IP VEISION ID	
19.5.3 TIMER CTRL - Control Register	
19.5.4 TIMER_CMD - Command Register	
19.5.5 TIMER_STATUS - Status Register	
19.5.6 TIMER IF - Interrupt Flag Register	
19.5.7 TIMER_IEN - Interrupt Enable Register	
19.5.8 TIMER_TOP - Counter Top Value Register	
19.5.9 TIMER_TOPB - Counter Top Value Buffer Register.	
19.5.10 TIMER CNT - Counter Value Register	
19.5.11 TIMER_LOCK - TIMER Configuration Lock Register	. 474
19.5.12 TIMER_EN - module en	
19.5.13 TIMER_CCx_CFG - CC Channel Configuration Register	. 476
19.5.14 TIMER_CCx_CTRL - CC Channel Control Register	.478
19.5.15 TIMER_CCx_OC - OC Channel Value Register	. 479
19.5.16 TIMER_CCx_OCB - OC Channel Value Buffer Register	
19.5.17 TIMER_CCx_ICF - IC Channel Value Register	. 480
19.5.18 TIMER_CCx_ICOF - IC Channel Value Overflow Register	
19.5.19 TIMER_DTCFG - DTI Configuration Register	
19.5.20 TIMER_DTTIMECFG - DTI Time Configuration Register	
19.5.21 TIMER_DTFCFG - DTI Fault Configuration Register	
19.5.22 TIMER_DTCTRL - DTI Control Register	
19.5.23 TIMER_DTOGEN - DTI Output Generation Enable Register	
19.5.24 TIMER_DTFAULT - DTI Fault Register	
19.5.25 TIMER_DTFAULTC - DTI Fault Clear Register	
19.5.26 TIMER_DTLOCK - DTI Configuration Lock Register	. 488
20. USART - Universal Synchronous Asynchronous Receiver/Transmitter	<i>4</i> 89
20.1 Introduction	180

20.2 Features	. 490
20.3 Functional Description	. 491
20.3.1 Modes of Operation	. 492
20.3.2 Asynchronous Operation	. 492
20.3.3 Synchronous Operation	. 508
20.3.4 Hardware Flow Control	
20.3.5 Debug Halt	
20.3.6 PRS-triggered Transmissions	
20.3.7 PRS RX Input	
20.3.8 PRS CLK Input	
20.3.9 DMA Support	
20.3.10 Timer	
20.3.11 Interrupts	
20.3.12 IrDA Modulator/ Demodulator	
20.4 Register Map	
20.5 Register Description	. 526
20.5.1 USART_IPVERSION - IPVERSION	526
20.5.2 USART_EN - USART Enable	526
20.5.3 USART_CTRL - Control Register	
20.5.4 USART_FRAME - USART Frame Format Register	. 532
20.5.5 USART_TRIGCTRL - USART Trigger Control register	
20.5.6 USART_CMD - Command Register	535
20.5.7 USART_STATUS - USART Status Register	
20.5.8 USART CLKDIV - Clock Control Register	
20.5.9 USART_RXDATAX - RX Buffer Data Extended Register	
20.5.10 USART_RXDATA - RX Buffer Data Register	
20.5.11 USART RXDOUBLEX - RX Buffer Double Data Extended Register	
20.5.12 USART RXDOUBLE - RX FIFO Double Data Register	
20.5.13 USART_RXDATAXP - RX Buffer Data Extended Peek Register	
20.5.14 USART_RXDOUBLEXP - RX Buffer Double Data Extended Peek R	
20.5.15 USART_TXDATAX - TX Buffer Data Extended Register	
20.5.16 USART_TXDATA - TX Buffer Data Register	
20.5.17 USART_TXDOUBLEX - TX Buffer Double Data Extended Register	
20.5.18 USART_TXDOUBLE - TX Buffer Double Data Register	
20.5.19 USART_IF - Interrupt Flag Register.	
20.5.20 USART_IEN - Interrupt Enable Register	
20.5.21 USART_IRCTRL - IrDA Control Register	
20.5.22 USART I2SCTRL - I/DA Control Register	
_	
20.5.23 USART_TIMING - Timing Register	
20.5.24 USART_CTRLX - Control Register Extended	
20.5.25 USART_TIMECMP0 - Used to generate interrupts and vario	
20.5.26 USART_TIMECMP1 - Used to generate interrupts and vario	
20.5.27 USART_TIMECMP2 - Used to generate interrupts and vario	. 561
21. I2C - Inter-Integrated Circuit Interface	. 563
21.1 Introduction	. 563
21.2 Features	563

21.3 Functional Description	. 564
21.3.1 I2C-Bus Overview	. 565
21.3.2 Enable and Reset	. 569
21.3.3 Pin Configuration	.569
21.3.4 Safely Disabling and Changing Slave Configuration	. 569
21.3.5 Clock Generation	.570
21.3.6 Arbitration	
21.3.7 Buffers	
21.3.8 Master Operation	.573
21.3.9 Bus States	
21.3.10 Slave Operation	. 581
21.3.11 Transfer Automation	. 585
21.3.12 Using 10-bit Addresses	
21.3.13 Error Handling	
21.3.14 DMA Support	
21.3.15 Interrupts	
21.3.16 Wake-up	. 588
21.4 Register Map	. 589
21.5 Register Description	. 591
21.5.1 I2C_IPVERSION - IP VERSION Register	
21.5.2 I2C_EN - Enable Register	.591
21.5.3 I2C_CTRL - Control Register	
21.5.4 I2C_CMD - Command Register	596
21.5.5 I2C_STATE - State Register	597
21.5.6 I2C_STATUS - Status Register	598
21.5.7 I2C_CLKDIV - Clock Division Register	. 599
21.5.8 I2C_SADDR - Slave Address Register	. 599
21.5.9 I2C_SADDRMASK - Slave Address Mask Register	. 600
21.5.10 I2C_RXDATA - Receive Buffer Data Register	.600
21.5.11 I2C_RXDOUBLE - Receive Buffer Double Data Register	601
21.5.12 I2C_RXDATAP - Receive Buffer Data Peek Register	. 601
21.5.13 I2C_RXDOUBLEP - Receive Buffer Double Data Peek Register	. 602
21.5.14 I2C_TXDATA - Transmit Buffer Data Register	.602
21.5.15 I2C_TXDOUBLE - Transmit Buffer Double Data Register	.603
21.5.16 I2C_IF - Interrupt Flag Register	. 604
21.5.17 I2C_IEN - Interrupt Enable Register	606
22. ACMP - Analog Comparator	608
22.1 Introduction	608
22.2 Features	. 608
22.3 Functional Description	. 609
22.3.1 Configuration and Control	609
22.3.2 Warmup Time	
22.3.3 Response Time	
22.3.4 Hysteresis	. 610
22.3.5 VREFDIV Sources	. 611
22.3.6 Supply Voltage Monitoring (VSENSE)	.611

22.3.7 Input Range and Accuracy Settings	. 611
22.3.8 Capacitive Sense Mode	. 612
22.3.9 Interrupts and PRS Output	. 613
22.3.10 Output to GPIO	. 613
22.4 Register Map	. 614
22.5 Register Description	. 615
22.5.1 ACMP IPVERSION - IP version ID	
22.5.2 ACMP EN - ACMP enable	
22.5.3 ACMP_CFG - Configuration register	
22.5.4 ACMP CTRL - Control Register	
22.5.5 ACMP_INPUTCTRL - Input Control Register	
22.5.6 ACMP_STATUS - Status Register	
22.5.7 ACMP_IF - Interrupt Flag Register	
22.5.8 ACMP_IEN - Interrupt Enable Register	. 625
22.5.9 ACMP_SYNCBUSY - Syncbusy	625
23. IADC - Incremental Analog to Digital Converter	626
23.1 Introduction	
23.2 Features	
23.3 Functional Description	
23.3.1 Register Access	
23.3.2 Clocking	
23.3.3 Conversion Timing	
23.3.4 Reference Selection and Analog Gain	
23.3.5 Input and Configuration Selection	
23.3.7 Output Data FIFOs	
23.3.8 Window Compare	
23.3.9 Interrupts	
23.4 Register Map	
23.5 Register Description	
23.5.1 IADC_IPVERSION - IPVERSION	
23.5.2 IADC_EN - Enable	
23.5.3 IADC_CTRL - Control	
23.5.4 IADC_CMD - Command	
23.5.5 IADC_TIMER - Timer	
23.5.6 IADC_STATUS - Status	
23.5.7 IADC_MASKREQ - Mask Request	
23.5.8 IADC_STMASK - Scan Table Mask	
23.5.9 IADC_CMPTHR - Digital Window Comparator Threshold	
23.5.10 IADC_IF - Interrupt Flags	
23.5.11 IADC_IEN - Interrupt Enable	
23.5.12 IADC_TRIGGER - Trigger	
23.5.13 IADC CFGx - Configuration	
23.5.14 IADC_SCALEx - Scaling	
23.5.15 IADC SCHEDx - Scheduling	
23.5.16 IADC SINGLEFIFOCFG - Single FIFO Configuration	

23.5.17 IADC_SINGLEFIFODATA - Single FIFO Read Data	. 674
23.5.18 IADC_SINGLEFIFOSTAT - Single FIFO Status	674
23.5.19 IADC_SINGLEDATA - Single Data	675
23.5.20 IADC_SCANFIFOCFG - Scan FIFO Configuration	
23.5.21 IADC_SCANFIFODATA - Scan FIFO Read Data	.677
23.5.22 IADC_SCANFIFOSTAT - Scan FIFO Status	677
23.5.23 IADC_SCANDATA - Scan Data	678
23.5.24 IADC_SINGLE - Single Queue Port Selection	679
23.5.25 IADC_SCANx - SCAN Entry	. 681
24. GPIO - General Purpose Input/Output	683
24.1 Introduction	
24.2 Features	
24.3 Functional Description	685
24.3.1 Pin Configuration	.686
24.3.2 Alternate Port Control	
24.3.3 Slew Rate	
24.3.4 Input Disable	688
24.3.5 Configuration Lock	688
24.3.6 EM2 Functionality	
24.3.7 EM4 Functionality	. 688
24.3.8 EM4 Wakeup	
24.3.9 Debug Connections	689
24.3.10 Interrupt Generation	
24.3.11 Output to PRS	691
24.3.12 Peripheral Resource Routing	691
24.4 Synchronization	.696
24.5 Register Map	. 697
24.6 Register Description	
24.6.1 GPIO_PORTA_CTRL - Port control	
24.6.2 GPIO PORTA MODEL - mode low	
24.6.3 GPIO_PORTA_DOUT - data out	
24.6.4 GPIO_PORTA_DIN - data in	
24.6.5 GPIO PORTB CTRL - Port control	
24.6.6 GPIO_PORTB_MODEL - mode low	
24.6.7 GPIO PORTB DOUT - data out	
24.6.8 GPIO_PORTB_DIN - data in	
24.6.9 GPIO_PORTC_CTRL - Port control	
24.6.10 GPIO PORTC MODEL - mode low	
24.6.11 GPIO_PORTC_DOUT - data out	
24.6.12 GPIO PORTC DIN - data in	
24.6.13 GPIO_PORTD_CTRL - Port control	
24.6.14 GPIO PORTD MODEL - mode low	
24.6.15 GPIO_PORTD_DOUT - data out	
24.6.16 GPIO PORTD DIN - data in	
24.6.17 GPIO LOCK - main	
=	735

24.6.19	GPIO_ABUSALLOC - A Bus allocation	736
24.6.20	GPIO_BBUSALLOC - B Bus allocation	738
24.6.21	GPIO_CDBUSALLOC - CD Bus allocation	.740
24.6.22	GPIO_EXTIPSELL - External Interrupt Port Select Low	742
	GPIO_EXTIPINSELL - External Interrupt Pin Select Low	745
	-	.747
		748
	-	748
		749
		. 749
	_	750
	-	.751
	_	752
	GPIO ACMP0 ROUTEEN - ACMP0 pin enable	752
	·	.753
	GPIO ACMP1 ROUTEEN - ACMP1 pin enable	.753
	<u> </u>	.754
		.754
	GPIO CMU CLKIN0ROUTE - CLKIN0 port/pin select	.755
	GPIO_CMU_CLKOUT0ROUTE - CLKOUT0 port/pin select	7.55
	GPIO CMU CLKOUT1ROUTE - CLKOUT1 port/pin select	7.56
	GPIO_CMU_CLKOUT2ROUTE - CLKOUT2 port/pin select	7.56
	GPIO_FRC_ROUTEEN - FRC pin enable	757
	GPIO_FRC_DCLKROUTE - DCLK port/pin select	757
	GPIO_FRC_DFRAMEROUTE - DFRAME port/pin select	758
	GPIO_FRC_DOUTROUTE - DOUT port/pin select	758
	GPIO I2C0 ROUTEEN - I2C0 pin enable	759
	= = ·	759
		760
	GPIO_I2C1_ROUTEEN - I2C1 pin enable	760
	;	761
	GPIO_I2C1_SDAROUTE - SDA port/pin select	
	GPIO_LETIMERO_OUTOROUTE - OUT0 port/pin select	
	GPIO LETIMERO OUT1ROUTE - OUT1 port/pin select	
	<u> </u>	
	— — — · · ·	
	GPIO_MODEM_DCLKROUTE - DCLK port/pin select	
	GPIO_MODEM_DINROUTE - DIN port/pin select	
	GPIO_MODEM_DOUTROUTE - DOUT port/pin select	
	GPIO_PRS0_ROUTEEN - PRS0 pin enable	
		.768
		.769
	GPIO_PRS0_ASYNCH2ROUTE - ASYNCH2 port/pin select	
		.770
		.770
74 h hh	GPIO_PRS0_ASYNCH5ROUTE - ASYNCH5 port/pin select	771

24.6.67	GPIO_PRS0_ASYNCH6ROUTE - ASYNCH6 port/pin select	.771
24.6.68	GPIO_PRS0_ASYNCH7ROUTE - ASYNCH7 port/pin select	.772
24.6.69	GPIO_PRS0_ASYNCH8ROUTE - ASYNCH8 port/pin select	.772
24.6.70	GPIO_PRS0_ASYNCH9ROUTE - ASYNCH9 port/pin select	.773
24.6.71	GPIO_PRS0_ASYNCH10ROUTE - ASYNCH10 port/pin select	.773
	GPIO_PRS0_ASYNCH11ROUTE - ASYNCH11 port/pin select	.774
		.774
		.775
	GPIO_PRS0_SYNCH2ROUTE - SYNCH2 port/pin select	.775
		.776
		777
	GPIO_TIMER0_CC0ROUTE - CC0 port/pin select	7.78
	GPIO_TIMER0_CC1ROUTE - CC1 port/pin select	7.78
	GPIO_TIMER0_CC2ROUTE - CC2 port/pin select	7.79
	GPIO_TIMER0_CDTI0ROUTE - CDTI0 port/pin select	.779
	<u> </u>	.780
		.780
	' '	781
	GPIO_TIMER1_CC0ROUTE - CC0 port/pin select	7.82
	GPIO TIMER1 CC1ROUTE - CC1 port/pin select	7.82
	GPIO_TIMER1_CC2ROUTE - CC2 port/pin select	7.83
	GPIO_TIMER1_CDTI0ROUTE - CDTI0 port/pin select	.783
	GPIO_TIMER1_CDTI1ROUTE - CDTI1 port/pin select	.784
	<u> </u>	.784
		785
	GPIO_TIMER2_CC0ROUTE - CC0 port/pin select	786
	GPIO_TIMER2_CC1ROUTE - CC1 port/pin select	7.86
	GPIO_TIMER2_CC2ROUTE - CC2 port/pin select	7.87
	GPIO_TIMER2_CDTI0ROUTE - CDTI0 port/pin select	.787
	GPIO_TIMER2_CDTI1ROUTE - CDTI1 port/pin select	.788
		.788
	GPIO_TIMER3_ROUTEEN - TIMER3 pin enable	
	GPIO_TIMER3_CC0ROUTE - CC0 port/pin select	
	O GPIO_TIMER3_CC1ROUTE - CC1 port/pin select	
	1 GPIO_TIMER3_CC2ROUTE - CC2 port/pin select	
	2 GPIO_TIMER3_CDTI0ROUTE - CDTI0 port/pin select	
	3 GPIO_TIMER3_CDTI1ROUTE - CDTI1 port/pin select	
	4 GPIO TIMER3 CDTI2ROUTE - CDTI2 port/pin select	
	5 GPIO_USART0_ROUTEEN - USART0 pin enable	
	6 GPIO_USART0_CSROUTE - CS port/pin select	
	7 GPIO_USART0_C3ROUTE - CTS port/pin select	
	B GPIO_USART0_CTSROUTE - CTS port/pin select	
	9 GPIO_USART0_RXROUTE - RX port/pin select	
	O GPIO_USARTO_CLKROUTE - CLK port/pin select	
	1 GPIO_USART0_CLRROUTE - CLR port/pin select	
	2 GPIO_USARTU_TAROUTE - TA pot/piit select	
	3 GPIO_USART1_ROUTEEN - USARTT pin enable	
	3 GPIO_USARTI_C5ROUTE - C5 port/pin select	797

24.6.115 GPIO_USART1_RTSROUTE - RTS port/pin select	. 798
24.6.116 GPIO_USART1_RXROUTE - RX port/pin select	. 798
24.6.117 GPIO_USART1_CLKROUTE - CLK port/pin select	. 799
24.6.118 GPIO_USART1_TXROUTE - TX port/pin select	. 799
24.6.119 GPIO_USART2_ROUTEEN - USART2 pin enable	.800
24.6.120 GPIO USART2 CSROUTE - CS port/pin select	. 800
24.6.121 GPIO USART2 CTSROUTE - CTS port/pin select	. 801
24.6.122 GPIO USART2 RTSROUTE - RTS port/pin select	. 801
24.6.123 GPIO USART2 RXROUTE - RX port/pin select	. 802
24.6.124 GPIO USART2 CLKROUTE - CLK port/pin select	
24.6.125 GPIO_USART2_TXROUTE - TX port/pin select	
25. LDMA - Linked DMA	. 804
25.1 Introduction	. 804
25.1.1 Features	.805
25.2 Block Diagram	. 806
25.3 Functional Description	
25.3.1 Channel Descriptor	
25.3.1 Channel Configuration	
25.3.3 Channel Select Configuration	
· · · · · · · · · · · · · · · · · · ·	
25.3.4 Starting a transfer	
25.3.5 Managing Transfer Errors	
25.3.6 Arbitration	
25.3.7 Channel descriptor data structure	
25.3.8 Interaction with the EMU	
25.3.9 Interrupts	
25.3.10 Debugging	
25.4 Examples	
25.4.1 Single Direct Register DMA Transfer	. 819
25.4.2 Descriptor Linked List	. 820
25.4.3 Single Descriptor Looped Transfer	. 822
25.4.4 Descriptor List with Looping	. 823
25.4.5 Simple Inter-Channel Synchronization	824
25.4.6 2D Copy	826
25.4.7 Ping-Pong	. 828
25.4.8 Scatter-Gather	.829
25.5 LDMA Source Selection Details	. 829
25.5.1 LDMA Source Selection Details	
25.6 Register Map	
25.7 Register Description	
25.7.1 LDMA_IPVERSION - DMA Channel Request Clear Register	
25.7.2 LDMA_EN - DMA module enable disable Register	
25.7.3 LDMA_CTRL - DMA Control Register	
25.7.4 LDMA_STATUS - DMA Status Register	
25.7.5 LDMA_SYNCSWSET - DMA Sync Trig Sw Set Register	
25.7.6 LDMA_SYNCSWCLR - DMA Sync Trig Sw Clear register	
25.7.7 LDMA_SYNCHWEN - DMA Sync HW trigger enable register	. 839

25.7.8 LDMA_SYNCHWSEL - DMA Sync HW trigger selection register	840
25.7.9 LDMA_SYNCSTATUS - DMA Sync Trigger Status Register	841
25.7.10 LDMA_CHEN - DMA Channel Enable Register	
25.7.11 LDMA_CHDIS - DMA Channel Disable Register	
25.7.12 LDMA_CHSTATUS - DMA Channel Status Register	
25.7.13 LDMA_CHBUSY - DMA Channel Busy Register	
25.7.14 LDMA_CHDONE - DMA Channel Linking Done Register (Si	
25.7.15 LDMA_DBGHALT - DMA Channel Debug Halt Register	
25.7.16 LDMA_SWREQ - DMA Channel Software Transfer Request	
25.7.17 LDMA_REQDIS - DMA Channel Request Disable Register	
25.7.18 LDMA_REQPEND - DMA Channel Requests Pending Register	
25.7.19 LDMA_LINKLOAD - DMA Channel Link Load Register	
25.7.20 LDMA_REQCLEAR - DMA Channel Request Clear Register	
25.7.21 LDMA_IF - Interrupt Flag Register	
25.7.22 LDMA_IEN - Interrupt Enable Register	
25.7.23 LDMA_CHx_CFG - Channel Configuration Register	
25.7.24 LDMA_CHx_LOOP - Channel Loop Counter Register	
25.7.25 LDMA_CHx_CTRL - Channel Descriptor Control Word Register	
25.7.26 LDMA_CHx_SRC - Channel Descriptor Source Data Addres	
25.7.27 LDMA_CHx_DST - Channel Descriptor Destination Data A	
25.7.28 LDMA_CHx_LINK - Channel Descriptor Link Structure Add	856
25.8 Register Map	856
25.9 Register Description	857
25.9.1 LDMAXBAR_CHx_REQSEL - Channel Peripheral Request Select Reg	
DE WIDOG Watch Dog Timor	050
-	
26. WDOG - Watch Dog Timer	
-	858
26.1 Introduction	858 858
26.1 Introduction	858 858 858
26.1 Introduction	858 858 858 859
26.1 Introduction	858 858 858 859
26.1 Introduction 26.2 Features 26.3 Functional Description	858 858 858 859 859
26.1 Introduction	858 858 859 859 859 859
26.1 Introduction 26.2 Features 26.3 Functional Description 26.3.1 Clock Source 26.3.2 Debug Functionality 26.3.3 Energy Mode Handling 26.3.4 Warning Interrupt	858 858 859 859 859 859 860
26.1 Introduction 26.2 Features 26.3 Functional Description 26.3.1 Clock Source 26.3.2 Debug Functionality 26.3.3 Energy Mode Handling 26.3.4 Warning Interrupt 26.3.5 Window Interrupt	858 858 859 859 859 860 861
26.1 Introduction 26.2 Features 26.3 Functional Description 26.3.1 Clock Source 26.3.2 Debug Functionality 26.3.3 Energy Mode Handling 26.3.4 Warning Interrupt 26.3.5 Window Interrupt 26.3.6 PRS as Watchdog Clear 26.3.7 PRS Rising Edge Monitoring	858 858 859 859 859 860 861
26.1 Introduction 26.2 Features 26.3 Functional Description 26.3.1 Clock Source 26.3.2 Debug Functionality 26.3.3 Energy Mode Handling 26.3.4 Warning Interrupt 26.3.5 Window Interrupt 26.3.6 PRS as Watchdog Clear 26.3.7 PRS Rising Edge Monitoring 26.4 Register Map	858 858 859 859 859 860 861 862
26.1 Introduction 26.2 Features 26.3 Functional Description 26.3.1 Clock Source 26.3.2 Debug Functionality 26.3.3 Energy Mode Handling 26.3.4 Warning Interrupt 26.3.5 Window Interrupt 26.3.6 PRS as Watchdog Clear 26.3.7 PRS Rising Edge Monitoring 26.4 Register Map 26.5 Register Description	858 858 859 859 859 861 861 862
26.1 Introduction 26.2 Features 26.3 Functional Description 26.3.1 Clock Source 26.3.2 Debug Functionality 26.3.3 Energy Mode Handling 26.3.4 Warning Interrupt 26.3.5 Window Interrupt 26.3.6 PRS as Watchdog Clear 26.3.7 PRS Rising Edge Monitoring 26.4 Register Map 26.5 Register Description 26.5.1 WDOG_IPVERSION - IP Version Register	
26.1 Introduction 26.2 Features 26.3 Functional Description 26.3.1 Clock Source 26.3.2 Debug Functionality 26.3.3 Energy Mode Handling 26.3.4 Warning Interrupt 26.3.5 Window Interrupt 26.3.6 PRS as Watchdog Clear 26.3.7 PRS Rising Edge Monitoring 26.4 Register Map 26.5 Register Description 26.5.1 WDOG_IPVERSION - IP Version Register 26.5.2 WDOG_EN - Enable Register	858 858 859 859 869 861 861 862 863 863
26.1 Introduction 26.2 Features 26.3 Functional Description 26.3.1 Clock Source 26.3.2 Debug Functionality 26.3.3 Energy Mode Handling 26.3.4 Warning Interrupt 26.3.5 Window Interrupt 26.3.6 PRS as Watchdog Clear 26.3.7 PRS Rising Edge Monitoring 26.4 Register Map 26.5 Register Description 26.5.1 WDOG_IPVERSION - IP Version Register 26.5.2 WDOG_EN - Enable Register 26.5.3 WDOG_CFG - Configuration Register	
26.1 Introduction 26.2 Features 26.3 Functional Description 26.3.1 Clock Source 26.3.2 Debug Functionality 26.3.3 Energy Mode Handling 26.3.4 Warning Interrupt 26.3.5 Window Interrupt 26.3.6 PRS as Watchdog Clear 26.3.7 PRS Rising Edge Monitoring 26.4 Register Map 26.5 Register Description 26.5.1 WDOG_IPVERSION - IP Version Register 26.5.2 WDOG_EN - Enable Register 26.5.3 WDOG_CFG - Configuration Register 26.5.4 WDOG_CMD - Command Register	
26.1 Introduction 26.2 Features 26.3 Functional Description 26.3.1 Clock Source 26.3.2 Debug Functionality 26.3.3 Energy Mode Handling 26.3.4 Warning Interrupt 26.3.5 Window Interrupt 26.3.6 PRS as Watchdog Clear 26.3.7 PRS Rising Edge Monitoring 26.4 Register Map 26.5 Register Description 26.5.1 WDOG_IPVERSION - IP Version Register 26.5.2 WDOG_EN - Enable Register 26.5.3 WDOG_CFG - Configuration Register 26.5.4 WDOG_CMD - Command Register 26.5.5 WDOG_STATUS - Status Register	
26.1 Introduction 26.2 Features 26.3 Functional Description 26.3.1 Clock Source 26.3.2 Debug Functionality 26.3.3 Energy Mode Handling 26.3.4 Warning Interrupt 26.3.5 Window Interrupt 26.3.6 PRS as Watchdog Clear 26.3.7 PRS Rising Edge Monitoring 26.4 Register Map 26.5 Register Description 26.5.1 WDOG_IPVERSION - IP Version Register 26.5.2 WDOG_EN - Enable Register 26.5.3 WDOG_CFG - Configuration Register 26.5.4 WDOG_CMD - Command Register 26.5.5 WDOG_STATUS - Status Register 26.5.6 WDOG_IF - Interrupt Flag Register	
26.1 Introduction 26.2 Features 26.3 Functional Description 26.3.1 Clock Source 26.3.2 Debug Functionality 26.3.3 Energy Mode Handling 26.3.4 Warning Interrupt 26.3.5 Window Interrupt 26.3.6 PRS as Watchdog Clear 26.3.7 PRS Rising Edge Monitoring 26.4 Register Map 26.5 Register Description 26.5.1 WDOG_IPVERSION - IP Version Register 26.5.2 WDOG_EN - Enable Register 26.5.3 WDOG_CFG - Configuration Register 26.5.4 WDOG_CMD - Command Register 26.5.5 WDOG_STATUS - Status Register 26.5.6 WDOG_IF - Interrupt Flag Register 26.5.7 WDOG_IEN - Interrupt Enable Register	
26.1 Introduction 26.2 Features 26.3 Functional Description 26.3.1 Clock Source 26.3.2 Debug Functionality 26.3.3 Energy Mode Handling 26.3.4 Warning Interrupt 26.3.5 Window Interrupt 26.3.6 PRS as Watchdog Clear 26.3.7 PRS Rising Edge Monitoring 26.4 Register Map 26.5 Register Description 26.5.1 WDOG_IPVERSION - IP Version Register 26.5.2 WDOG_EN - Enable Register 26.5.3 WDOG_CFG - Configuration Register 26.5.4 WDOG_CMD - Command Register 26.5.5 WDOG_STATUS - Status Register 26.5.6 WDOG_IF - Interrupt Flag Register	

27. Revision History		•		•			•	•		•			•	•	•	87′
Annendix 1 Abbreviations																873

1. About This Document

1.1 Introduction

This document contains reference material for the EFR32xG21 devices. All modules and peripherals in the EFR32xG21 devices are described in general terms. Not all modules are present in all devices and the feature set for each device might vary. Such differences, including pinout, are covered in the device data sheets.

1.2 Conventions

Register Names

Register names are given with a module name prefix followed by the short register name:

TIMERn_CTRL - Control Register

The "n" denotes the module number for modules which can exist in more than one instance.

Some registers are grouped which leads to a group name following the module prefix:

GPIO_Px_DOUT - Port Data Out Register

The "x" denotes the different ports.

Bit Fields

Registers contain one or more bit fields which can be 1 to 32 bits wide. Bit fields wider than 1 bit are given with start (x) and stop (y) bit [y:x].

Bit fields containing more than one bit are unsigned integers unless otherwise is specified.

Unspecified bit field settings must not be used, as this may lead to unpredictable behaviour.

Address

The address for each register can be found by adding the base address of the module found in the Memory Map (see Figure 4.1 System Address Space with Core and Code Space Listing on page 43), and the offset address for the register (found in module Register Map).

Access Type

The register access types used in the register descriptions are explained in Table 1.1 Register Access Types on page 24.

Table 1.1. Register Access Types

Access Type	Description
R	Read only. Writes are ignored
RW	Readable and writable
RW1	Readable and writable. Only writes to 1 have effect
(R)W1	Sometimes readable. Only writes to 1 have effect. Currently only used for IF_CLEAR registers (see 3.3.1 Interrupt Operation)
W1	Read value undefined. Only writes to 1 have effect
W	Write only. Read value undefined.
RWH	Readable, writable, and updated by hardware
RW(nB), RWH(nB), etc.	"(nB)" suffix indicates that register explicitly does not support peripheral bit set or clear (see 4. Memory and Bus System)
RW(a), R(a), etc.	"(a)" suffix indicates that reading the register cause an action and ay alter the register value.

Number format

0x prefix is used for hexadecimal numbers

0b prefix is used for binary numbers

Numbers without prefix are in decimal representation.

Reserved

Registers and bit fields marked with **reserved** are reserved for future use. These should be written to 0 unless otherwise stated in the Register Description. Reserved bits might be read as 1 in future devices.

Reset Value

The reset value denotes the value after reset.

Registers denoted with X have unknown value out of reset and need to be initialized before use. Note that read-modify-write operations on these registers before they are initialized results in undefined register values.

Pin Connections

Pin connections are given with a module prefix followed by a short pin name:

CMU_CLKOUT1 (Clock management unit, clock output pin number 1)

The location for the pin names given in the module documentation can be found in the device-specific datasheet.

1.3 Related Documentation

Further documentation on the EFR32xG21 devices and the ARM Cortex-M33 can be found at the Silicon Labs and ARM web pages:

www.silabs.com

www.arm.com

2. System Overview

Quick Facts

What?

The EFR32 Wireless Gecko is a highly integrated, configurable and low power wireless System-on-Chip (SoC) with a robust set of MCU and radio peripherals.

Why?

The Radio enables support for Bluetooth Smart (BLE), ZigBee, Thread and Proprietary Protocols in 2.4 GHz frequency bands while the MCU system allows customized protocols and applications to run efficiently.

How?

Dynamic or fixed packet lengths, optional address recognition, and flexible CRC and security schemes makes the EFR32xG21 ideal for many wireless IoT applications. High performance analog and digital peripherals allows complete applications to run on the EFR32xG21 SoC.

2.1 Introduction

The high level features of EFR32xG21 include:

- · High performance radio transceiver
 - · Low power consumption in transmit, receive, and standby modes
 - · Excellent receiver performance, including sensitivity, selectivity, and blocking
 - Excellent transmitter performance, including programmable output power, low phase noise, and power-amplifier (PA) ramping
- · Configurable protocol support, including standards and customer developed protocols
 - · Preamble and frame synchronization insertion in transmit, and recovery in receive
 - Flexible CRC support, including configurable polynomial and multiple CRCs for single data frames
 - · Basic address filtering performed in hardware
- · High performance, low power MCU system
 - · High Performance 32-bit ARM Cortex-M33 CPU
 - · Flexible and efficient energy management
 - · Complete set of digital peripherals
 - Peripheral Reflex System (PRS)
 - · Precision analog interfaces
- · Low external component count
 - · Fully integrated 2.4 GHz BALUN
 - · Integrated tunable crystal loading capacitors
- Security
 - · Secure Boot with Root of Trust and Secure Loader (RTSL)
 - Hardware Cryptographic Acceleration with DPA countermeasures for AES128/256, SHA-1, SHA-2 (up to 256-bit), ECD (up to 256-bit), ECDSA, ECDH and J-Pake
 - True Random Number Generator (TRNG) compliant with NIST SP800-90 and AIS-31
 - ARM® TrustZone®
 - · Secure Debug with lock/unlock

A further introduction to the MCU and radio system is included in the following sections.

Note: Detailed performance numbers, current consumption, pinout etc. is available in the device datasheet.

2.2 Block Diagrams

The block diagram for the EFR32xG21 System-On-Chip series is shown in (Figure 2.1 EFR32xG21 System-On-Chip Block Diagram on page 28).

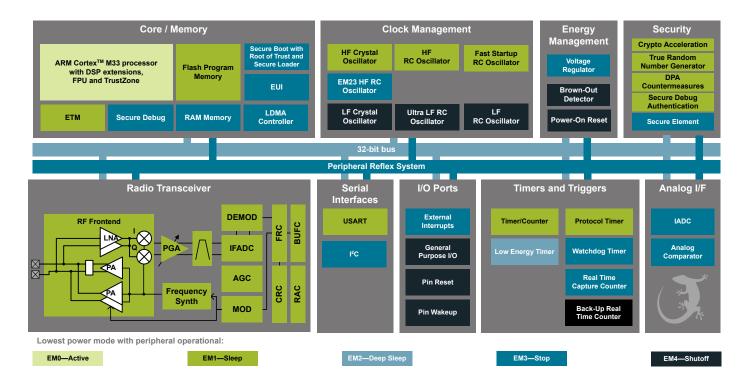


Figure 2.1. EFR32xG21 System-On-Chip Block Diagram

2.3 MCU Features overview

ARM Cortex-M33 CPU platform

- · High Performance 32-bit processor @ up to 80 MHz
- · DSP instruction support and floating-point unit
- · Memory Protection Unit
- · Wake-up Interrupt Controller

· Flexible Energy Management System

- · 5 Energy Modes from EM0 to EM4 provide flexibility between higher performance and low power
- · Power routing configurations including DCDC control
- · Voltage Monitoring and Brown Out Detection
- · State Retention

· Up to 1024 kB Flash

· Read-while-write support

Up to 96 kB RAM

· Up to 20 General Purpose I/O pins

- · Configurable push-pull, open-drain, pull-up/down, input filter, slew rate
- · Configurable peripheral I/O locations
- · 16 asynchronous external interrupts
- · Output state retention and wake-up from Shutoff Mode

8 Channel DMA Controller

Alternate/primary descriptors with scatter-gather/ping-pong operation

16 Channel Peripheral Reflex System (PRS)

- · Autonomous inter-peripheral signaling enables smart operation in low energy modes
- · 12 asynchronous channels with configurable logic functionality
- · 4 synchronous channels for high-speed signalling between TIMER and IADC

General Purpose Cyclic Redundancy Check (GPCRC)

- · Programmable 16-bit polynomial, fixed 32-bit polynomial
- · The GPCRC module is in addition to the radio CRC

· Communication interfaces

- 3 × Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
 - UART/SPI/SmartCard (ISO 7816)/IrDA/I2S
 - · Triple buffered full/half-duplex operation
 - · Hardware flow control
 - 4-16 data bits
- 2 × I²C Interface (I2C) with SMBus support
 - · Address recognition in EM3 Stop Mode

Timers/Counters

- 3 × 16-bit Timer/Counter (TIMER)
 - Up to 3 Compare/Capture/PWM channels
 - · Dead-Time Insertion
- · 32-bit Timer/Counter (TIMER)
 - Up to 3 Compare/Capture/PWM channels
- 24-bit Low Energy Timer (LETIMER)
- · 32-bit Ultra Low Energy Backup Real Time Counter (BURTC) for periodic wake-up from any Energy Mode
- 32-bit Real-Time Capture Counter (RTCC)
- 2 × Watchdog Timers (WDOG)

· Ultra low power precision analog peripherals

- · 12-bit 1 Msps Incremental Analog to Digital Converter (IADC)
 - Single ended or differential operation
 - · Conversion tailgating for predictable latency
- 2 × Analog Comparator (ACMP)
 - · Programmable speed/current
 - · Capacitive sensing
- Analog Bus (ABUS)
- Ultra efficient Power-on Reset (POR) and Brown-Out Detector (BOD)

Debug Interface

- · 4-pin Joint Test Action Group (JTAG) interface
- · 2-pin serial-wire debug (SWD) interface

Security

- Secure Boot with Root of Trust and Secure Loader (RTSL)
 - · Prevents malware injection and rollback
 - Ensures authentic firmware execution and OTA updates
- · Dedicated Secure Core
 - Delivers faster, more energy efficient hardware crypto with Differential Power Analysis (DPA) countermeasures for AES128/256, SHA-1, SHA-2 (up to 256-bit), ECC (up to 256-bit), ECDSA, ECDH and J-Pake
 - · Provides isolation with the application core
 - · Provides hardware cryptographic acceleration
 - True Random Number Generator (TRNG) compliant with NIST SP800-90 and AIS-31
- ARM® TrustZone®
- · Secure Debug with lock/unlock
 - · Allows authenticated access for enhanced Failure Analysis (FA)

2.4 Security Features

A dedicated security CPU enables the Secure Element function. It isolates cryptographic functions and data from the host Cortex-M33 core and provides the following security features:

- Secure Boot with Root of Trust and Secure Loader (RTSL)
- · Cryptographic Accelerator
- · True Random Number Generator (TRNG)
- · Secure Debug with Lock/Unlock

2.4.1 Secure Boot with Root of Trust and Secure Loader (RTSL)

The Secure Boot with RTSL authenticates a chain of trusted firmware that begins from an immutable memory (ROM).

It prevents malware injection, prevents rollback, ensures that only authentic firmware is executed and protects Over The Air updates.

More information on this feature can be found in the Application Note AN1218: Series 2 Secure Boot with RTSL.

2.4.2 Cryptographic Accelerator

The Cryptographic Accelerator in Secure Element is an autonomous hardware accelerator with Differential Power Analysis (DPA) countermeasures to protect keys.

It supports AES encryption and decryption with 128/192/256-bit keys, ChaCha20 encryption (Secure Vault only), and Elliptic Curve Cryptography (ECC) to support public key operations and hashes.

Supported block cipher modes of operation for AES include:

- ECB (Electronic Code Book)
- CTR (Counter Mode)
- CBC (Cipher Block Chaining)
- · CFB (Cipher Feedback)
- · GCM (Galois Counter Mode)
- CCM (Counter with CBC-MAC)
- CBC-MAC (Cipher Block Chaining Message Authentication Code)
- GMAC (Galois Message Authentication Code)

The Cryptographic Accelerator accelerates Elliptical Curve Cryptography and supports the NIST (National Institute of Standards and Technology) recommended curves including P-192 and P-256 for ECDH (Elliptic Curve Diffie-Hellman) key derivation and ECDSA (Elliptic Curve Digital Signature Algorithm) sign and verify operations. Secure Vault also supports NIST recommended curves P-384 and P521, as well as the non-NIST Curve25519 for ECDH and Ed25519 for EdDSA (Edwards-curve Digital Signature Algorithm)

Secure Element also supports ECJ-PAKE (Elliptic Curve variant of Password Authenticated Key Exchange by Juggling). Secure Vault additionally supports PBKDF2 (Password-Based Key Derivation Function 2).

Supported hashes include SHA-1, SHA2/224, and SHA-2/256. Secure Vault also supports SHA-2/384, SHA-2/512, and Poly1305.

This implementation provides a fast and energy efficient solution to state of the art cryptographic needs.

Note: AES_ECB, AES_CBC, AES_CBCMAC, and SHA-1 are provided for legacy compatibility and are not recommended for cryptographic purposes without thoroughly understanding their potential security weaknesses.

2.4.3 True Random Number Generator

The True Random Number Generator module is a non-deterministic random number generator that harvests entropy from a thermal energy source. It includes start-up health tests for the entropy source as required by NIST SP800-90B and AIS-31 as well as online health tests required for NIST SP800-90C.

The TRNG is suitable for periodically generating entropy to seed an approved pseudo random number generator.

2.4.4 Secure Debug with Lock/Unlock

For obvious security reasons, it is critical for a product to have its debug interface locked before being released in the field.

In addition, the also provides a secure debug unlock function that allows authenticated access based on public key cryptography. This functionality is particularly useful for supporting failure analysis while maintaining confidentiality of IP and sensitive end-user data.

More information on this feature can be found in the Application Note AN1190: Series 2 Secure Debug.

2.4.5 DPA Countermeasures

The AES and ECC accelerators have Differential Power Analysis (DPA) countermeasures support. This makes it very expensive from a time and effort standpoint to use DPA to recover secret keys.

2.4.6 Secure Key Management with PUF

Key material in Secure Vault is protected by what is called "key wrapping" with a standardized symmetric encryption mechanism. This method has the advantage of being able to protect a virtually unlimited number of keys, limited only by the storage that is accessible by the M33 (which includes off-chip storage as well). The symmetric key used for this wrapping and unwrapping must be highly secure as it can expose all other key material in the system. The Secure Vault Key Management system uses a Physically Unclonable Function (PUF) to generate a persistent device-unique seed key on power up to dynamically generate this critical wrapping/unwrapping key which is only visible by the AES encryption engine and is not retained when the device loses power.

2.4.7 Anti-Tamper

Secure Vault provides internal tampers monitoring the system such as voltage, temperature, and electro-mechanical pulses as well as detecting tamper of the security sub-system itself. There are also 8 external configurable tamper pins for supporting external tamper sources like case tamper switches.

For each tamper event, the user is able to select the severity of the tamper response ranging from an interrupt, to a reset, to destroying the PUF reconstruction data which will make all the protected key material un-recoverable and effectively render the device inoperable. The tamper system also has an internal resettable event counter with programmable trigger threshold and refresh periods to mitigate false positive tamper events.

More information on this feature can be found in the Application Note AN1247: Anti-Tamper Protection Configuration and Use.

2.4.8 Secure Attestation

Secure Vault supports Secure Attestation, which begins with a secure identity that is created during the Silicon Labs manufacturing process. During device production, each device generates its own public/private keypair and securely stores the wrapped private key into immutable OTP memory, and this key never leaves the device. The corresponding public key is extracted from the device and inserted into a binary DER-encoded X.509 device certificate which is signed into a Silicon Labs CA chain and then programmed back into the chip into an immutable OTP memory.

This secure identity can be used to authenticate the chip at any time in the life of the product. The production certification chain can be requested remotely from the product. This certification chain can be used to verify that the device was authentically produced by Silicon Labs. The device unique public key is also bound to the device certificate in the certification chain. A challenge can be sent to the chip at any point in time to be signed by the device private key. The public key in the device certificate can then be used to verify the challenge response, proving that the device has access to the securely-stored private key, which prevents counterfeit products or impersonation attacks.

More information on this feature can be found in the Application Note AN1268: Authenticating Silicon Labs Devices Using Device Certificates.

2.5 Oscillators and Clocks

EFR32xG21 has seven different oscillators integrated, as shown in Table 2.1 EFR32xG21 Oscillators on page 33.

Table 2.1. EFR32xG21 Oscillators

Oscillator	Frequency	Optional?	External components	Description
HFXO	38 MHz - 40 MHz	No	Crystal	High accuracy, low jitter high frequency crystal oscillator. Tunable crystal loading capacitors are fully integrated. The HFXO is required for all types of RF communication to be active.
HFRCO	1 MHz - 80 MHz	Yes	-	Medium accuracy RC oscillator, typically used for timing during startup of the HFXO and as a clock source as long as no RF communication is active. In EM0/1 energy modes, the HFRCO can be used in conjunction with the DPLL.
FSRCO	20 MHz	No	-	Fast startup RC oscillator.
HFRCOEM23	1 MHz - 40 MHz	Yes	-	Medium accuracy RC oscillator available in EM2 and EM3, typically used as a clock source for the Analog to Digital Converter or Debug Trace.
LFRCO	32.768 kHz	Yes	-	Medium accuracy frequency reference typically used for medium accuracy RTCC timing.
LFXO	32.768 kHz	Yes	Crystal	High accuracy frequency reference typically used for high accuracy RTCC timing. Tunable crystal loading capacitors are fully integrated.
ULFRCO	1000 Hz	No	-	Ultra low frequency oscillator typically used for the watchdog timer.

The RC oscillators can be calibrated against either of the crystal oscillators in order to compensate for temperature and voltage supply variations. Hardware support is included to measure the frequency of various oscillators against each other.

Oscillator and clock management is available through the Clock Management Unit (CMU), see section 8. CMU - Clock Management Unit for details.

2.6 RF Frequency Synthesizer

The Fractional-N RF Frequency Synthesizer (SYNTH) provides a low phase noise LO signal to be used in both receive and transmit modes.

The capabilities of the SYNTH include:

- · High performance, low phase noise
- Fast frequency settling
- · Fast and fully automated calibration
- Sub 100 Hz frequency resolution across the supported frequency bands

2.7 Modulation Modes

EFR32xG21 supports a wide range of modulation modes in transmit and receive:

- 2-FSK, 2-GFSK, 4-FSK, 4-GFSK, MSK, GMSK, O-QPSK with half-sine shaping, ASK / OOK, DBPSK TX
- · NRZ or Manchester support
- UART mode over air for legacy protocols
- · Baudrates ranging from below 100 Baud/s to 2 MBaud/s, allowing data rates up to 4 MBit/s
- · Configurable frequency deviation
- Configurable Direct Sequence Spread Spectrum (DSSS), with spread sequences up to 32 chips encoding up to 4 information bits
- · Configurable 4-FSK symbol encoding

2.8 Transmit Mode

In transmit mode EFR32xG21 performs the following functionality:

- · Automatic PA power ramping during the start and end of a frame transmit
- · Programmable output power
- · Optional preamble and synchronization word insertion
- Accurate transmit frame timing to support time synchronized radio protocols
- Optional Carrier Sense Multiple Access Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) hardware support
- Integrated transmit test modes, as described in 2.17 RF Test Modes

2.9 Receive Mode

In receive mode EFR32xG21 performs the following functionality:

- A single-ended (2.4 GHz) LNA amplifies the input RF signal. The amplified signal is then mixed to a low-IF signal through the quadrature down-coversion mixer. Further signal filtering is performed before conversion to a digital signal through the I/Q ADC.
- Digitally configurable receiver bandwidth from 100 Hz to 2.5 MHz
- Timing recovery on received data, including simultaneous support for two different frame synchronization words
- · Automatic frequency offset compensation, to compensate for carrier frequency offset between the transmitter and receiver
- Support for a wide range of modulation formats as described in section 2.7 Modulation Modes

2.10 Data Buffering

EFR32xG21 supports buffered transmit and receive modes through its buffer controller (BUFC), with four individually configurable buffers. The BUFC uses the system RAM as storage, and each buffer can be individually configured with parameters such as:

- · Buffer size
- Buffer interrupt thresholds
- · Buffer RAM location
- · Overflow and underflow detection

In receive mode, data following frame synchronization is moved directly from the demodulator to the buffer storage.

In transmit mode, data following the inserted preamble and synchronization word is moved directly from the buffer storage to the modulator.

2.11 Unbuffered Data Transfer

For most system designs it is recommended to use the data buffering within EFR32xG21 to provide a convenient user interface.

In cases where data buffering within EFR32xG21 is not desired, it is possible to set up direct unbuffered data transfers using a single-pin or two-pin interface on EFR32xG21. A bit clock output is provided on the Serial Clock (SC) output pin, and a serial bitstream is provided to EFR32xG21 in a transmit mode and from EFR32xG21 in a receive mode.

In unbuffered data transfer modes the hardware support provided by EFR32xG21 to perform preamble and frame synchronization insertion in transmit mode and detection in receive mode can still optionally be used.

2.12 Frame Format Support

EFR32xG21 has an extensive support for frame handling in transmit and receive modes, which allows effective handling of even advanced protocols. The frame format support is controlled by the Frame Controller (FRC). The support includes:

- · Preamble and frame synchronization inserted into transmitted frames
- · Full frame synchronization of received frames
- Simple address matching of received frames in hardware, further configurable address and frame filtering supported through sequencer
- · Support for variable length frames
- · Automated CRC calculation and verification
- · Configurable bit ordering, with the most or least significant bit transmitted and received first

2.13 Hardware CRC Support

EFR32xG21 supports a configurable CRC generation in transmit and verification in receive mode:

- 8, 16, 24 or 32 bit CRC value
- · Configurable polynomial and initialization value
- · Optional inversion of CRC value over air
- Configurable CRC byte ordering
- · Support for multiple CRC values calculated and verified per transmitted or received frame
- The CRC module is typically controlled by the Frame Controller (FRC) for in-line operations in transmit and receive modes. Alternatively, the CRC module may be accessed directly from software to calculate and verify CRC data.

2.14 Convolutional Encoding / Decoding

EFR32xG21 includes hardware support for convolutional encoding and decoding, for forward error correction (FEC). This feature is performed by the Frame Controller (FRC) module:

- · Constraint length configurable up to 7, for the highest robustness
- · Configurable puncturing, to achieve rates between 1/2 rate and full rate
- · Configurable soft decision or hard decision decoding
- · Convolutional coding may be used together with the symbol interleaver to improve robustness against burst errors

2.15 Binary Block Encoding / Decoding

EFR32xG21 includes hardware support for binary block encoding and decoding, both performed real-time in the transmit and receive path. This is performed in the Frame Controller (FRC) module:

The block coding works on blocks of up to 16 bits of data and adds parity bits to be capable of single or multiple bit corrections by the receiver.

- · One or more parity bits can be added and verified
- · Bit error correction
- · Lookup-codes can be used to implement virtually any block coding scheme

2.16 Timers

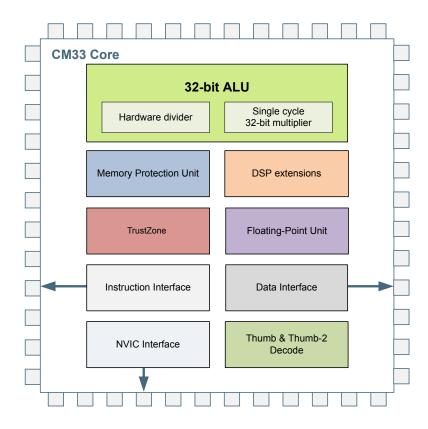
EFR32xG21 includes multiple timers, as can be seen from Table 2.2 EFR32xG21 Timers Overview on page 36.

Table 2.2. EFR32xG21 Timers Overview

Timer	Number of instances	Typical clock source	Overview
RTCC	1	Low frequency (LFXO or LFRCO)	32 bit Real Time Counter and Compare, typically used to accurately time inactive periods in the radio communication protocol and enable wakeup on compare match.
BURTC	1	Low frequency (LFXO or LFRCO)	32 bit Backup Real Time Counter that operates down to EM4.
TIMER	4	High frequency (HFXO or HFRCO)	16 or 32 bit general purpose timer. (See configuration summary in datasheet for timer configration details.
Systick timer	1	High frequency (HFXO or HFRCO)	24 bit systick timer integrated in the Cortex-M33. Typically used as an Operating System timer.
WDOG	1	Low frequency (HCLK/1024, LFXO, LFRCO or ULFRCO)	Watch dog timer. Once enabled, this module must be periodically accessed. If not, this is considered an error and the EFR32xG21 is reset in order to recover the system.
LETIMER	1	Low frequency (LFXO, LFRCO or ULFRCO)	Low energy general purpose timer.
PROTIMER	1	High frequency (HFXO or HFRCO)	Protocol Timer, typically used by the RF protocol Stack.

Advanced interconnect features allows synchronization between timers. This includes:

- · Start / stop any high frequency timer synchronized with the RTCC
- Trigger RSM state transitions based on compare timer compare match, for instance to provide clock cycle accuracy on frame transmit timing


2.17 RF Test Modes

EFR32xG21 supports a wide range of RF test modes typically used for characterization and regulation compliance testing, including:

- · Unmodulated carrier transmit
- · Modulated carrier transmit, with internal configurable pseudo random data generator
- · Continuous data reception for Bit Error Rate (BER) measurements
- Storing of raw receiver data to RAM
- · Transmit of raw frequency data from RAM

3. System Processor

Quick Facts

What?

The EFR32xG21 features the industry leading Cortex-M33 CPU from ARM.

Why?

The ARM Cortex-M33 is designed for exceptionally short response time, high code density, and high 32-bit throughput while maintaining a strict cost and power consumption budget.

How?

Combined with the ultra low energy peripherals available in EFR32xG21 devices, the Cortex-M33 processor's Harvard architecture, 3 stage pipeline, single cycle instructions, Thumb-2 instruction set support, and fast interrupt handling make it perfect for 8-bit, 16-bit, and 32-bit applications.

3.1 Introduction

The ARM Cortex-M33 32-bit RISC processor provides outstanding computational performance and exceptional system response to interrupts while meeting low cost requirements and low power consumption.

The ARM Cortex-M33 implemented is revision r0p3.

3.2 Features

- · Harvard architecture
 - · Separate data and program memory buses (No memory bottleneck as in a single bus system)
- · 3-stage pipeline
- · Thumb-2 instruction set
 - · Enhanced levels of performance, energy efficiency, and code density
- · Single cycle multiply and hardware divide instructions
 - · 32-bit multiplication in a single cycle
 - Signed and unsigned divide operations between 2 and 11 cycles
- 1.5 DMIPS/MHz
- TrustZone
 - · Independent Secure and Privileged states
 - · Accelerated context switching
- · 16 Region MPU
- · 24-bit System Tick Timer for Real Time OS
- · Excellent 32-bit migration choice for 8/16 bit architecture based designs
 - Simplified stack-based programmer's model is compatible with traditional ARM architecture and retains the programming simplicity of legacy 8-bit and 16-bit architectures
- · Aligned or unaligned data storage and access
 - · Contiguous storage of data requiring different byte lengths
 - · Data access in a single core access cycle
- · Integrated power modes
 - · Sleep Now mode for immediate transfer to low power state
 - · Sleep on Exit mode for entry into low power state after the servicing of an interrupt
 - · Ability to extend power savings to other system components
- · Optimized for low latency, nested interrupts

3.3 Functional Description

For a full functional description of the ARM Cortex-M33 implementation in the EFR32xG21 family, the reader is referred to the ARM Cortex-M33 documentation.

3.3.1 Interrupt Operation

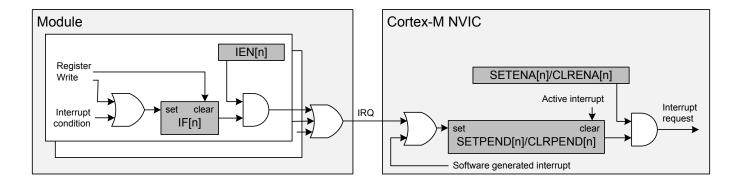


Figure 3.1. Interrupt Operation

The interrupt request (IRQ) lines are connected to the Cortex-M33. Each of these lines (shown in 3.3.3 Interrupt Request lines (IRQ)) is connected to one or more interrupt flags in one or more modules. The interrupt flags are set by hardware on an interrupt condition. It is also possible to set/clear the interrupt flags through the IF registers. When setting or clearing and interrupt through the IF register use of the IF_SET or IF_CLEAR bit operation registers is recommended.

Each interrupt flag is then qualified with its own interrupt enable bit (IEN register), before being OR'ed with the other interrupt flags to generate the IRQ. A high IRQ line will set the corresponding pending bit (can also be set/cleared with the SETPEND/CLRPEND bits in ISPRn/ICPRn) in the Cortex-M33 NVIC. The pending bit is then qualified with an enable bit (set/cleared with SETENA/CLRENA bits in ISERn/ICERn) before generating an interrupt request to the core. Figure 3.1 Interrupt Operation on page 39 illustrates the interrupt system. For more information on how the interrupts are handled inside the Cortex-M33, the reader is referred to the ARM Cortex-M33 Processor Technical Reference Manual.

3.3.1.1 Avoiding Extraneous Interrupts

There can be latencies in the system such that clearing an interrupt flag could take longer than leaving an Interrupt Service Routine (ISR). This can lead to the ISR being re-entered as the interrupt flag has yet to clear immediately after leaving the ISR. To avoid this, when clearing an interrupt flag at the end of an ISR, the user should execute ARM's Data Synchronization Barrier (DSB) instruction. Another approach is to clear the interrupt flag immediately after identifying the interrupt source and then service the interrupt as shown in the pseudo-code below. The ISR typically is sufficiently long to more than cover the few cycles it may take to clear the interrupt status, and also allows the status to be checked for further interrupts before exiting the ISR.

```
irqXServiceRoutine() {
   do {
     clearIrqXStatus();
     serviceIrqX();
   } while(irqXStatusIsActive());
}
```

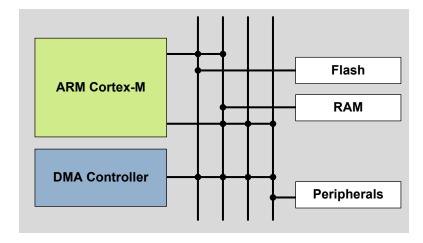
3.3.2 TrustZone

The Cortex-M33 implements ARM TrustZone which provides the ability to restrict access to peripherals and memory regions based on the CPU security attribute. TrustZone works in combination which the MPU which controls privileged/unprivileged execution of code to provide a full security solution. The Security Management Unit (SMU) is used to configure access restrictions in the various modes. Refer to 10. SMU - Security Management Unit for more information.

For information about TrustZone features in the core or information on TrustZone specific instructions please see the ARM Cortex-M33 Processor Technical Reference Manual provided by ARM

3.3.3 Interrupt Request lines (IRQ)

This table shows all IRQ's for the system processor. M33 High Speed interrupts are indicated by an '*'.


See the individual peripheral chapters for more information on interrupt function.

IRQ#	Name	Source(s)						
0*	SETAMPERHOST	SE.tamper_hostirq						
1*	SEMBRX	SE.mb_rxint						
2*	SEMBTX	SE.mb_txint						
3*	SMU_SECURE	SMU.SECURE						
4*	SMU_PRIVILEGED	SMU.PRIVILEGED						
5*	EMU	EMU.MAIN						
6*	TIMER0	TIMER0.MAIN						
7*	TIMER1	TIMER1.MAIN						
8*	TIMER2	TIMER2.MAIN						
9*	TIMER3	TIMER3.MAIN						
10*	RTCC	RTCC.MAIN						
11*	USART0_RX	USART0.RX						
12*	USART0_TX	USART0.TX						
13*	USART1_RX	USART1.RX						
14*	USART1_TX	USART1.TX						
15*	USART2_RX	USART2.RX						
16*	USART2_TX	USART2.TX						
17*	ICACHE0	ICACHE0.MAIN						
18*	BURTC	BURTC.MAIN						
19*	LETIMER0	LETIMERO.MAIN						
20*	SYSCFG	SYSCFG.MAIN						
21*	LDMA	LDMA.MAIN						
22*	LFXO	LFXO.MAIN						
23*	LFRCO	LFRCO.MAIN						
24*	ULFRCO	ULFRCO.MAIN						
25*	GPIO_ODD	GPIO.ODD						
26*	GPIO_EVEN	GPIO.EVEN						
27*	I2C0	I2C0.irq						
28*	I2C1	I2C1.irq						
29*	EMUDG	EMU.DG						
30*	EMUSE	EMU.SE						
31*	AGC	AGC.MAIN						
32*	BUFC	BUFC.MAIN						
33*	FRC_PRI	FRC.PRI						

IRQ#	Name	Source(s)
34*	FRC	FRC.MAIN
35*	MODEM	MODEM.MAIN
36*	PROTIMER	PROTIMER.MAIN
37*	RAC_RSM	RAC.RSM
38*	RAC_SEQ	RAC.SEQ
39*	PRORTC	PRORTC.MAIN
40*	SYNTH	SYNTH.MAIN
41*	ACMP0	ACMP0.MAIN
42*	ACMP1	ACMP1.MAIN
43*	WDOG0	WDOG0.MAIN
44*	WDOG1	WDOG1.MAIN
45*	HFXO00	HFXO0.MAIN
46*	HFRCO0	HFRCO0.MAIN
47*	HFRCOEM23	HFRCOEM23.MAIN
48*	СМИ	CMU.MAIN
49*	AES	RADIOAES.MAIN
50*	IADC	IADC0.MAIN
51*	MSC	MSC.irq_imem
52*	DPLL0	DPLL0.MAIN
53*	SW0	SYSCFG.SW0
54*	SW1	SYSCFG.SW1
55*	SW2	SYSCFG.SW2
56*	SW3	SYSCFG.SW3
57*	KERNEL0	
58*	KERNEL1	
59*	M33CTI0	CORE.CTI0
60*	M33CTI1	CORE.CTI1

4. Memory and Bus System

Quick Facts

What?

A low latency memory system including low energy Flash and RAM with data retention which makes the low energy modes attractive.

Why?

RAM retention reduces the need for storing data in Flash and enables frequent use of the ultra low energy modes EM2 and EM3.

How?

Low energy and non-volatile Flash memory stores program and application data in all energy modes and can easily be reprogrammed in system. Low leakage RAM with data retention in EM0 to EM3 removes the data restore time penalty, and the DMA ensures fast autonomous transfers with predictable response time.

4.1 Introduction

The EFR32xG21 contains a set of AMBA buses which move data between peripherals, memory, and the CPU. All memories and register interfaces are memory mapped into a unified address space.

4.2 Functional Description

The internal memory segments of the Cortex-M33 are mapped into the system memory map as shown by Figure 4.1 System Address Space with Core and Code Space Listing on page 43.

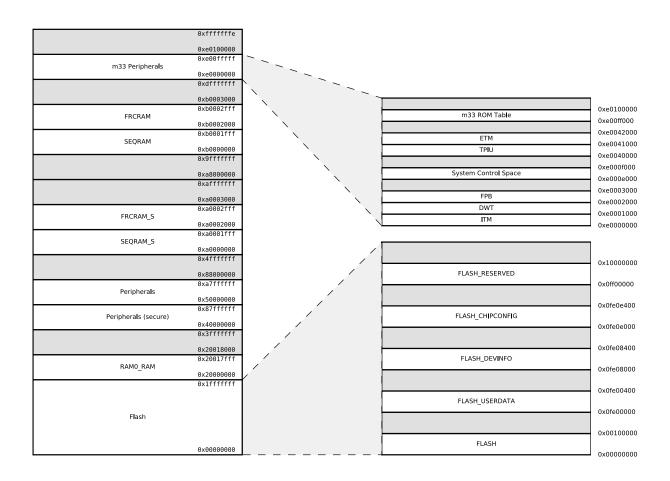


Figure 4.1. System Address Space with Core and Code Space Listing

Flash for the main program memory (CODE) is located at address 0x00000000 in the memory map of the EFR32xG21.

SRAM for the main data memory (RAM) is located at address 0x20000000 in the memory map of the EFR32xG21. When running code located in RAM, the Cortex-M33 uses the System bus interface to fetch instructions. This results in reduced performance as the Cortex-M33 accesses stack, other data in SRAM and peripherals using the System bus interface.

The Sequencer RAM (SEQRAM) is located at address 0xA0000000 and is used by the Sequencer for both instructions and data. This RAM is also available for general use if not required by the RF subsystem.

4.2.1 Bus Matrix

A multilayer AMBA AHB bus matrix connects the master bus interfaces to the AHB slaves. The bus matrix allows several AHB slaves to be accessed simultaneously. An AMBA APB interface is used for the peripherals, which are accessed through an AHB-to-APB bridge connected to the AHB bus matrix.

The CPU has two AHB bus masters (Code and System) so that it may retrieve instructions and data in parallel. The Code master is used to access all memory below address 0x20000000 and the System master access addresses 0x20000000 and above.

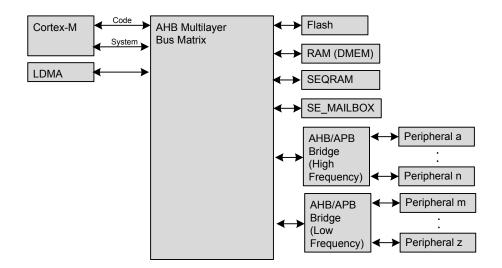


Figure 4.2. EFR32xG21 Bus System

4.2.1.1 Arbitration

The Bus Matrix uses a round-robin arbitration algorithm which enables high throughput and low latency, while starvation of simultaneous accesses to the same bus slave are eliminated. Round-robin does not assign a fixed priority to each bus master. The arbiter does not insert any bus wait-states during peak interaction. However, one wait state is inserted for master accesses occurring after a prolonged inactive time. This wait state allows for increased power efficiency during master idle time.

4.2.1.2 Bus Faults

System accesses from the core can receive a bus fault in the following condition(s):

- The core attempts to access an address that is not assigned to any peripheral or other system device. These faults can be enabled or disabled by setting the ADDRFAULTEN bit in the SYSCFG_CTRL register.
- The core attempts to access a peripheral register that is LOCKED.
- The core attempts to access a peripheral or system device that has its clock disabled. The radio subsystem is the only peripheral
 with an independent bus clock that can generate a fault of this type. This fault can be enabled or disabled by setting the ADDRFAULTEN bit in the SYSCFG_CTRL register.
- System RAM controller or RADIO RAM controller detects a 2bit ECC error. These faults can be enabled or disabled by setting the RAMECCERRFAULTEN bit in the SYSCFG_CTRL register
- Registers with synchronization requirements may generate bus faults if accessed incorrectly. See 4.2.4.4 Peripheral Access Performance for more details on register access types. In particular the following actions can cause bus faults:
 - Config register written while peripheral enabled.
 - · Sync register written while peripheral disabled
 - · LfSync register written while a previous write is pending
 - Peripheral disabled while any LfSync write is pending

In addition to any condition-specific bus fault control bits, the bus fault interrupt itself can be enabled or disabled in the same way as all other internal core interrupts.

4.2.2 Flash

The Flash retains data in any state and typically stores the application code and special user data. The Flash memory is typically programmed through the debug interface, but can also be erased and written to from software.

- · Up to 1024 kB of memory
- · Page size of 8 KB (minimum erase unit)
- · Minimum 10k erase cycles endurance
- · Greater than 10 years data retention at 85°C
- · Lock registers for memory protection
- · Data retention in any state

4.2.3 SRAM

The primary task of the SRAM memory is to store application data. Additionally, it is possible to execute instructions from SRAM, and the DMA may be set up to transfer data between the SRAM, Flash and peripherals.

The device contains several blocks of SRAM for various purposes including general data memory (RAM) and various RF subsystem rams (SEQRAM, FRCRAM). For more detailed information see 6. MSC - Memory System Controller .

- · Up to 96 kB of memory (RAM)
- · RAM blocks may be powered down when not in use
- Data retention of the entire memory in EM2 to EM3

4.2.4 Peripherals

The peripherals are mapped into the peripheral memory segment, each with a fixed size address range shown in the 4.2.4.1 Peripheral Map

4.2.4.1 Peripheral Map

This table shows the address range for each peripheral. In addition it shows the lowest energy mode in which the peripheral is powered. Note that EM3 is defined as EM2 with all clocks disabled. Therefore all peripherals powered in EM2 are also powered in EM3 but may not function if they require a running clock.

See the individual peripheral chapters for more information on low power operation.

Address Range	Module Name	Power Domain
0x40004000 - 0x40007FFF	EMU	EM2.B
0x40008000 - 0x4000BFFF	СМИ	EM2.B
0x4000C000 - 0x4000FFFF	HFXO0	EM1
0x40010000 - 0x40013FFF	HFRCO0	EM1
0x40018000 - 0x4001BFFF	FSRCO	EM4
0x4001C000 - 0x4001FFFF	DPLL0	EM1
0x40020000 - 0x40023FFF	LFXO	EM4
0x40024000 - 0x40027FFF	LFRCO	EM4
0x40028000 - 0x4002BFFF	ULFRCO	EM4
0x40030000 - 0x40033FFF	MSC	EM1
0x40034000 - 0x40037FFF	ICACHE0	EM1
0x40038000 - 0x4003BFFF	PRS	EM2.B
0x4003C000 - 0x4003FFFF	GPIO	EM2.A
0x40040000 - 0x40043FFF	LDMA	EM1
0x40044000 - 0x40047FFF	LDMAXBAR	EM1
0x40048000 - 0x4004BFFF	TIMER0	EM1
0x4004C000 - 0x4004FFFF	TIMER1	EM1
0x40050000 - 0x40053FFF	TIMER2	EM1
0x40054000 - 0x40057FFF	TIMER3	EM1
0x40058000 - 0x4005BFFF	USART0	EM1
0x4005C000 - 0x4005FFFF	USART1	EM1
0x40060000 - 0x40063FFF	USART2	EM1
0x40064000 - 0x40067FFF	BURTC	EM4
0x40068000 - 0x4006BFFF	I2C1	EM1
0x40074000 - 0x40077FFF	LVGD	EM2.B
0x4007C000 - 0x4007FFFF	SYSCFG	EM1
0x40080000 - 0x40083FFF	BURAM	EM4
0x40088000 - 0x4008BFFF	GPCRC	EM1
0x44000000 - 0x44003FFF	RADIOAES	EM1
0x44004000 - 0x44007FFF	BUFC	EM1
0x44008000 - 0x4400BFFF	SMU	EM1
0x48000000 - 0x48003FFF	RTCC	EM2.A
0x4A000000 - 0x4A003FFF	LETIMER0	EM2.B

Address Range	Module Name	Power Domain
0x4A004000 - 0x4A007FFF	IADC0	EM2.B
0x4A008000 - 0x4A00BFFF	ACMP0	EM2.B
0x4A00C000 - 0x4A00FFFF	ACMP1	EM2.B
0x4A010000 - 0x4A013FFF	I2C0	EM2.B
0x4A014000 - 0x4A017FFF	HFRCOEM23	EM2.B
0x4A018000 - 0x4A01BFFF	WDOG0	EM2.B
0x4A01C000 - 0x4A01FFFF	WDOG1	EM2.B
0x4A020000 - 0x4A023FFF	AMUXCP0	EM2.B
0x4C000000 - 0x4C00007F	SEMAILBOX	EM1
0x50004000 - 0x50007FFF	EMU_NS	EM2.B
0x50008000 - 0x5000BFFF	CMU_NS	EM2.B
0x5000C000 - 0x5000FFFF	HFXO0_NS	EM1
0x50010000 - 0x50013FFF	HFRCO0_NS	EM1
0x50018000 - 0x5001BFFF	FSRCO_NS	EM4
0x5001C000 - 0x5001FFFF	DPLL0_NS	EM1
0x50020000 - 0x50023FFF	LFXO_NS	EM4
0x50024000 - 0x50027FFF	LFRCO_NS	EM4
0x50028000 - 0x5002BFFF	ULFRCO_NS	EM4
0x50030000 - 0x50033FFF	MSC_NS	EM1
0x50034000 - 0x50037FFF	ICACHE0_NS	EM1
0x50038000 - 0x5003BFFF	PRS_NS	EM2.B
0x5003C000 - 0x5003FFFF	GPIO_NS	EM2.A
0x50040000 - 0x50043FFF	LDMA_NS	EM1
0x50044000 - 0x50047FFF	LDMAXBAR_NS	EM1
0x50048000 - 0x5004BFFF	TIMER0_NS	EM1
0x5004C000 - 0x5004FFFF	TIMER1_NS	EM1
0x50050000 - 0x50053FFF	TIMER2_NS	EM1
0x50054000 - 0x50057FFF	TIMER3_NS	EM1
0x50058000 - 0x5005BFFF	USARTO_NS	EM1
0x5005C000 - 0x5005FFFF	USART1_NS	EM1
0x50060000 - 0x50063FFF	USART2_NS	EM1
0x50064000 - 0x50067FFF	BURTC_NS	EM4
0x50068000 - 0x5006BFFF	12C1_NS	EM1
0x50074000 - 0x50077FFF	LVGD_NS	EM2.B
0x5007C000 - 0x5007FFFF	SYSCFG_NS	EM1
0x50080000 - 0x50083FFF	BURAM_NS	EM4
0x50088000 - 0x5008BFFF	GPCRC_NS	EM1

Address Range	Module Name	Power Domain
0x54000000 - 0x54003FFF	RADIOAES_NS	EM1
0x54004000 - 0x54007FFF	BUFC_NS	EM1
0x54008000 - 0x5400BFFF	SMU_NS	EM1
0x58000000 - 0x58003FFF	RTCC_NS	EM2.A
0x5A000000 - 0x5A003FFF	LETIMERO_NS	EM2.B
0x5A004000 - 0x5A007FFF	IADC0_NS	EM2.B
0x5A008000 - 0x5A00BFFF	ACMP0_NS	EM2.B
0x5A00C000 - 0x5A00FFFF	ACMP1_NS	EM2.B
0x5A010000 - 0x5A013FFF	I2C0_NS	EM2.B
0x5A014000 - 0x5A017FFF	HFRCOEM23_NS	EM2.B
0x5A018000 - 0x5A01BFFF	WDOG0_NS	EM2.B
0x5A01C000 - 0x5A01FFFF	WDOG1_NS	EM2.B
0x5A020000 - 0x5A023FFF	AMUXCP0_NS	EM2.B
0x5C000000 - 0x5C00007F	SEMAILBOX_NS	EM1
0xA8004000 - 0xA8007FFF	FRC	EM1
0xA800C000 - 0xA800FFFF	AGC	EM1
0xA8010000 - 0xA8013FFF	RFCRC	EM1
0xA8014000 - 0xA8017FFF	MODEM	EM1
0xA8018000 - 0xA801BFFF	SYNTH	EM1
0xA801C000 - 0xA801FFFF	PROTIMER	EM1
0xA8020000 - 0xA8023FFF	RAC	EM1
0xB8004000 - 0xB8007FFF	FRC_NS	EM1
0xB800C000 - 0xB800FFFF	AGC_NS	EM1
0xB8010000 - 0xB8013FFF	RFCRC_NS	EM1
0xB8014000 - 0xB8017FFF	MODEM_NS	EM1
0xB8018000 - 0xB801BFFF	SYNTH_NS	EM1
0xB801C000 - 0xB801FFFF	PROTIMER_NS	EM1
0xB8020000 - 0xB8023FFF	RAC_NS	EM1

4.2.4.2 Peripheral non-word access behavior

When writing to peripheral registers, all accesses are treated as 32-bit accesses. This means that writes to a register need to be large enough to cover all bits of register, otherwise, any uncovered bits may become corrupted from the partial-word transfer. Thus, the safest practice is to always do 32-bit writes to peripheral registers.

When reading, there is generally no issue with partial word accesses, however, note that any read action (e.g. FIFO popping) will be triggered regardless of whether the actual FIFO bit-field was included in the transfer size.

4.2.4.3 Peripheral Bit Set and Clear

The EFR32xG21 supports bit set, bit clear, and bit toggle access to most peripheral registers. The bit set and bit clear functionality (also called Bit Access) enables modification of bit fields without the need to perform a read-modify-write. Also, the operation is contained within a single bus access. Bit access registers and their addresses are shown in the register map for each peripheral. Peripherals with no SET, CLR, or TGL registers in the register map to not support these functions.

Each register with Bit Set functionality will have a _SET register. Whenever a bit in the SET register is written to a 1 the corresponding bit in its target register is set. The SET register is located at TARGET + 0x1000 where TARGET is the address of the target register and has the same name as the target register with '_SET' appended.

Each register with Bit Clear functionality will have a CLR register. Whenever a bit in the CLR register is written to a 1 the corresponding bit in its target register is cleared. The CLR register is located at TARGET + 0x2000 where TARGET is the address of the target register and has the same name as the target register with '_CLR' appended.

Each register with Bit Toggle functionality will have a TGL register. Whenever a bit in the TGL register is written to a 1 the corresponding bit in its target register is inverted. The TGL register is located at TARGET + 0x3000 where TARGET is the address of the target register and has the same name as the target register with '_TGL' appended.

Note: It is possible to combine bit clear and bit set operations in order to arbitrarily modify multi-bit register fields without affecting other fields in the same register. In this case, care should be taken to ensure that the field does not have intermediate values that can lead to erroneous behavior. For example, if bit clear and bit set operations are used to change an analog tuning register field from 0x2 to 0x4 by clearing bit 1 and then setting bit 2, the field would take on a value of zero for short time. If the analog module is active at the time, this could lead to undesired behavior.

4.2.4.4 Peripheral Access Performance

The Cortex-M33, DMA Controller, and peripherals run on clocks which can be pre-scaled separately. Clocks and pre-scaling are described in more detail in 8. CMU - Clock Management Unit. This section describes the access performance for a peripheral register based on its frequency relative to the CPUCLK frequency and its access type. For this discussion, PERCLK refers to a selected peripheral's clock frequency and CPUCLK refers to the core's clock frequency.

The type of each register in a peripheral is indicated in the 'Access' column of the peripherals register table. Register types are: ENA-BLE, CONFIG, SYNC, LFSYNC, and INTFLAG. If not type is listed then the register is a Generic register.

4.2.4.4.1 Generic Registers

Registers with no type listed are generic registers. They may be read or written to at any time. Access will not stall the CPU.

4.2.4.4.2 CONFIG Registers

CONFIG Registers contain configuration that does not change during peripheral operation.

CONFIG registers may only be written when a peripheral is disabled. Writing to a CONFIG register when a peripheral is enabled will result in a BUSFAULT. CONFIG register writes will not stall the CPU.

CONFIG registers may be read at any time. Reads will not stall the CPU.

4.2.4.4.3 SYNC Registers

SYNC registers are used to communicate with running high-speed peripherals where PERCLK is expected to be either higher or marginally slower (within an order of magnitude) than CPUCLK. For example a timer running at 80Mhz when the core is at 40Mhz or at 10Mhz when the core is 80Mhz. In this case CPU stalls of several PERCLOCK cycles do not significantly impact overall system performance in most systems.

SYNC registers may only be written to when the peripheral is enabled. Writing to a SYNC register when a peripheral is disabled will result in a BUSFAULT. A write will take several (2 - 3) PERCLK cycles to complete (take effect) during which time the entire module will be in a pending state. If a SYNC register is written to while the peripheral is already in a pending state, the CPU is stalled until the previous write finishes. If a SYNC register is written to while the peripheral is not in a pending state, the CPU is not stalled.

SYNC registers may be read at any time. If a SYNC register is read while the peripheral is disabled, the CPU is not stalled. If a SYNC register is read while the peripheral is enabled, the CPU will be stalled for several (2 -3) PERCLK cycles while up to date values are retrieved from the peripheral.

4.2.4.4.4 LFSYNC Registers

LFSYNC registers are used to communicate with running low frequency peripherals where PERCLK is expected to be much lower than the CPU clock and synchronization delays may be long. For example, a LETIMER running at 32Khz when the core is at 80Mhz. In this case CPU stalls of several PERCLOCK cycles represent a significant blockage of the CPU and need to be avoided whenever possible. LFSYNC registers accommodate this by allowing the CPU to write the register and continue to do other work while the value is synchronized.

Each LFSYNC register has a SYNCBUSY bit indicating if it is currently pending. Software should check the busy status bit before writing to an LFSYNC register. If a LFSYNC register is written to while it is in a pending state, a BUSFAULT will occur. A write will take will take several (3 -4) PERCLK cycles to complete during which time the register will be in a pending state with the busy status bit set. Software may use the busy status bit to determine when the write has taken effect.

LFSYNC registers may be read at any time. The CPU is never stalled on a read. Some LFSYNC registers are static, meaning the value is not modified by hardware. If a static LFSYNC register is read while pending, the pending (recently written) data may be returned even though it has not yet taken effect. Some LFSYNC registers are volatile, meaning the value may be modified by hardware. If a volatile LFSYNC register is read, it will return the current value of the register, ignoring any pending (recently written) data that has not yet taken effect.

4.2.4.4.5 ENABLE Registers

ENABLE registers contain the enable bit for a peripheral.

ENABLE registers may be written at any time. When the peripheral is enabled it takes some time for the enable to take effect during which time the module is pending. Peripherals will be in the pending state for a few (2 - 3) PERCLK cycles when first enabled. Since the clock source for the peripheral may not be running before the peripheral is enabled, the start up time for the clock source may increase the pending time. See EFR32xG21 Wireless Gecko for more information on on-demand clock sources.

Disabling a high frequency module will stall the CPU until all pending SYNC writes have completed and any pending enable has completed. If the module is fully enabled and no SYNC writes are pending, the disable will be instantaneous. Disabling low frequency peripheral which a LFSYNC is pending will result in a bus fault. Disabling a low frequency peripherals while an enable is still pending causes no CPU stall.

ENABLE registers may be read at any time.

4.2.4.4.6 INTFLAG Registers

INTFLAG registers contain interrupt flags. To set or clear an interrupt flag, the _SET or _CLR register alias must be used. Writing directly to the INTFLAG register will have no effect.

Note that for an interrupt to occur when a flag is set the IRQ must be enabled in the NVIC.

5. Radio Transceiver

Quick Facts

What?

The Radio Transceiver provides access to transmit and receive data, radio settings and control interface.

Why?

The Radio Transceiver enables the user to communicate using a wide range of data rates, modulation and frame formats.

How?

Dynamic or fixed frame lengths, optional address recognition, flexible CRC and crypto schemes makes the EFR32 Series 2 perfectly suit any application using low or medium data rate radio communication.

5.1 Introduction

The Radio Transceiver of the EFR32 Series 2 enables the user to control a wide range of settings and options for tailoring radio operation precisely to the users need. It provides access to the transmit and receive data buffers and supports both dynamic and static frame lengths, as well as automatic address filtering and CRC insertion/verification.

As seen in the Radio Overview illustration (Figure 5.1 Radio Overview on page 52), the radio consists of several modules all responsible for specific tasks. Please refer to the abbreviations section (Appendix 1. Abbreviations) for a comprehensive description of acronyms.

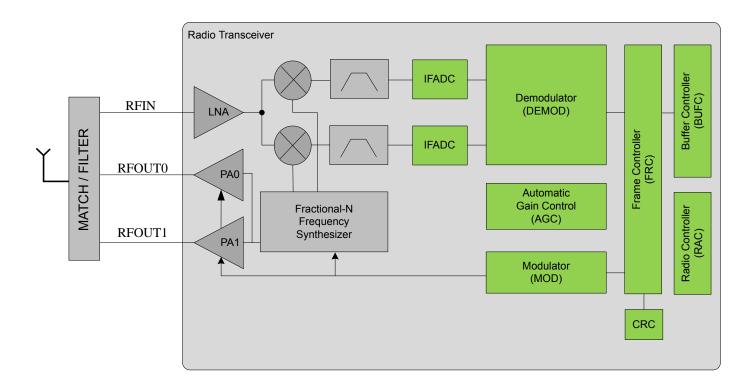


Figure 5.1. Radio Overview

During transmission (TX), the Radio Controller enables the SYNTH, Modulator and PA. The Modulator requests data from the Frame Controller, which reads data from a buffer. Based upon modulation format and data to send, the Modulator manipulates the SYNTH to output the correct frequency and phase. When the whole frame has been transmitted, the radio can automatically switch to receive mode.

In receive mode (RX), the radio controller enables the LNA, SYNTH, Mixer, ADC and Demodulator. The Demodulator searches for valid frames according to modulation format and data rate. If a frame is detected, the demodulated data is handed to the Frame Controller, which stores the data in the Buffer. When the complete frame has been received (determined by the Frame Controller), it is possible to either go to TX or stay in RX to search for a new frame.

The Radio Transceiver interface is accessible through software drivers provided by Silicon Labs.

6. MSC - Memory System Controller

011001010110111001100101011110010

Quick Facts

What?

The user can perform flash memory read, read configuration, and write operations through the Memory System Controller (MSC). SRAM operation may be configured though System Configuration (SYSCFG).

Why?

The MSC allows the application code and user data to be stored in non-volatile flash memory. Certain memory system functions, such as program memory wait-states and flash lock bits are configured from the MSC peripheral register interface, giving the developer the ability to dynamically customize the memory system performance, security level, energy consumption and error handling capabilities to the requirements at hand.

How?

The MSC integrates a low-energy flash IP with a charge pump, enabling minimum energy consumption while eliminating the need for external programming voltage to erase the memory. An easy to use write and erase interface is supported by an internal, fixed-frequency oscillator and autonomous flash timing and control reduces software complexity while not using other timer resources.

A highly efficient low energy instruction cache reduces the number of flash reads significantly, thus saving energy. Performance is also improved when wait-states are used, since many of the wait-states are eliminated. Built-in performance counters can be used to measure the efficiency of the instruction cache.

Instruction prefetcher improves program execution performance by reducing the number of wait-state cycles needed.

6.1 Introduction

The Memory System Controller (MSC) is the program memory unit of the EFR32xG21 microcontroller. The flash memory is readable and writable from both the Cortex-M33 and DMA. The flash memory is divided into two blocks: the main block and the information block. Program code is normally written to the main block. The information block is available for special user data. There is also a read-only page in the information block containing system and device calibration data. Flash read and write operations are supported in energy modes EM0 and EM1.

6.2 Features

- · AHB read interface
 - Scalable access performance to optimize the Cortex-M33 code interface
 - · Advanced energy optimization functionality
 - · Conditional branch target prefetch suppression
 - · Cortex-M33 disfolding of if-then (IT) blocks
 - · Instruction Cache
 - · Instruction Prefetch
 - · DMA read support in EM0 and EM1
- · Command and status interface
 - · Flash write and erase
 - · Accessible from Cortex-M33 in EM0
 - DMA write support in EM0 and EM1
 - · Core clock independent Flash timing
 - · Internal oscillator and internal timers for precise and autonomous Flash timing
 - General purpose timers are not occupied during Flash erase and write operations
 - · No special time scaling registers needed
 - · Configurable interrupt erase abort
 - · Improved interrupt predictability
 - · Memory and bus fault control
- · Security features
 - · Lockable debug access
 - · Page lock registers
 - · SW Mass erase and User Data lock bits
- · End-of-write and end-of-erase interrupts

6.3 Functional Description

The size of the main flash block is device dependent. The largest size available is 1024 kB (128 pages). The information block has 1 KB available for user data. The information block also contains chip configuration data located in a reserved area. The main block is mapped to address 0x000000000 and the information block is mapped to address 0x0FE00000. Table 6.1 MSC Flash Memory Mapping on page 54 outlines how the flash is mapped in the memory space. All flash memory is organized into 8 KB pages.

Table 6.1. MSC Flash Memory Mapping

Block	Page	Base address	Write/Erase by	Software Reada- ble?	Purpose/Name	Size
Main	0	0x00000000	Software, debug	Yes	User code and data	16 KB - 1024 kB
	1	0x00002000	Software, debug	Yes		
			Software, debug	Yes		
	127 ¹	0x000FE000	Software, debug	Yes		
Information	N/A	0x0FE00000	Software	Yes	User Data (UD)	1 KB
	N/A	0x0FE08000	-	Yes	Device Information (DI)	1 KB

Note:

1. 128 pages for largest device.

6.3.1 Ram Configuration

The SYSCFG module contains controls for configuring the various RAM blocks on the device. Options include enabling EM2/EM3 data retention, ECC, prefetch, and cache. For a complete description see 6.6 SYSCFG - System Configuration.

6.3.2 Instruction Cache

The instruction cache improves the speed and power consumption of the Cortex-M33 by providing fast, low-power access to recently executed instructions. For detailed information see 6.5 ICACHE - Instruction Cache

6.3.3 Device Information (DI) Page

This read-only page holds calibration data from the production test, several unique device IDs, and other part specific information. For a complete description see 6.4 DEVINFO - Device Info Page.

6.3.4 User Data (UD) Page Description

This is the user data page in the information block. The page can be erased and written by the Secure Element.

This page is not erased as part of a mass erase and can only be erased by issuing a command to the Secure Element.

6.3.5 Bootloader

The EFR32xG21 supports use of the Gecko Bootloader detailed in *UG266: Silicon Labs Gecko Bootloader User's Guide* (https://www.silabs.com/support/resources).To enable bootloader functionality the second stage of the bootloader must be configured and programmed into the first 16KB of flash. The first stage of the bootloader is provided by the SE and is not user accessible. More details on SE bootloader support see the SE peripheral documentation.

6.3.6 Post-reset Behavior

Calibration values are automatically written to registers by the MSC before application code start-up. The values can also be read from the DI page by software. Other information such as the device ID and production date is also stored in the DI page and is readable from software.

As part of the reset, hardware performs repeated flash reads to determine when flash is fully powered up and available for use by the CPU. PWRUPCKBDFAILCOUNT in MSC_STATUS contains the number of failed reads during the last reset.

6.3.7 Flash Startup

On transitions from EM2/3 to EM0, the flash must be powered up. The time this takes depends on the current operating conditions. To have a deterministic wake time, set STDLY0 in MSC_STARTUP to 0x64 and clear STDLY1, ASTWAIT, STWSEN and STWS. This will result in a 10 us delay before the flash is ready. The system will wake up before this, but the CPU core will stall on the first access to the flash until it is ready. Execute code from RAM or cache to get a faster CPU wake time.

To get a faster flash wake time that depends on the current operating conditions, set STDLY0 to 0x32 and set ASTWAIT in MSC STARTUP. When configured this way, the system will poll the flash to determine when it is ready, and then start execution.

For the fastest possible wakeup, code may be run with a set of wait-states initially and then automatically switched to normal operation. Set STDLY0 to 0x32, STDLY1 to 0x32, and set ASTWAIT and STWSEN. Then configure STWS in MSC_STARTUP to the number of wait-states to run with. With this setup, execution will begin with the given number of wait-states after 5 uS, and the system will run with reduced throughput due to the wait-states for another 5 us before returning to normal full speed operation

The recommended setting for MSC_STARTUP register is to set STDLY0 to 0x32 for a 5 us wait and set ASTWAIT to one for active sampling. Set STWSEN to zero to bypass second delay period. This provides the best wakeup time without sacrificing power consumption.

Flash wakeup on demand is supported when wakeup from EM2/3 to EM0. Set bit FLASHPWRUPONDEMAND of register EMU_CTRL to enable the power up on demand. When enabled, flash will not be powered up until accessed. In this case it is possible for the MCU to wake, execute out of RAM or cache, and return to sleep mode without ever powering on the Flash. Software can force the flash to power up by writing PWRUP in MSC_CMD. When flash is powered via MSC_CMD the MSC_IF.PWRUPF interrupt flag will be set when power up is complete and the CPU will be interrupted if MSC_IEN.PWRUPF is set.

6.3.8 Wait-states

Since the CPU may be clocked faster than the flash can respond it is necessary to configure wait-states for flash accesses at higher CPU clock speeds. See the device Datasheet for information on the maximum allowed frequency for each wait-state setting. To configure the flash wait-states set the MODE field in MSC_READCTRL.

When changing wait states, care should be taken that the system is never in an invalid state. To ensure this, MODE should be changed after the clock is changed when reducing clock speed and before the clock is changed when increasing clock speed.

In addition to the flash wait-state configuration, users must also correctly configure RAM wait states as discussed in 6.6.3 RAM Wait-states.

6.3.9 Cortex-M33 If-Then Block Folding

The Cortex-M33 offers a mechanism known as if-then block folding. This is a form of speculative prefetching where small if-then blocks are collapsed in the prefetch buffer if the condition evaluates to false. The instructions in the block then appear to execute in zero cycles. With this scheme, performance is optimized at the cost of higher energy consumption as the processor fetches more instructions from memory than it actually executes. To disable the mode, write a 1 to the DISFOLD bit in the NVIC Auxiliary Control Register; see the Cortex-M33 Technical Reference Manual for details. Normally, it is expected that this feature is most efficient when operating with 0 wait-states. Folding is enabled by default.

6.3.10 Line Buffering (Prefetch)

The MSC reads a 2 word line from flash on any flash access. The data being accessed is returned immediately and the other word locally cached so that it can be provided immediately if accessed. This has the effect of pre-fetching the second word when the first is read resulting in fewer wait-states when executing sequential code. This feature may be disabled by setting DOUTBUFEN in MSC_READCTRL.

6.3.11 Erase and Write Operations

The 20 MHz FSRCO is used for timing during flash write and erase operations. The default values in MSC_FLASHPROGRAMTIME and MSC FLASHERASETIME contain the recommended programming configuration.

To erase a page first set WREN in MSC_WRITECTRL and load any address in the page to be erased into the MSC_ADDRB register. Next check INVADDR, LOCKED, and WREADY in MSC_STATUS to ensure that the address is valid, not locked, and the MSC is ready to modify flash. Writing ERASEPAGE in MSC_WRITEMD will execute the page erase operation. ERASE in MSC_IF will be set when the page erase is complete. If ERASE in MSC_IEN is set, the end of a page erase will also trigger an interrupt. Finally, clear WREN to disable flash operations.

In addition to a page erase, a mass erase will clear the entire contents of the main flash array. A mass erase can be initiated by the Secure Element. User Data page contents are not included in a mass erase.

To perform a programming operation, set WREN and load the address to be programmed into the MSC_ADDRB register. Next check INVADDR, LOCKED, WREADY, and WDATAREADY in MSC_STATUS to ensure that the address is valid, not locked, the MSC is ready to modify flash, and the write data buffer is clear. Writing data to MSC_WDATA will begin the programming operation. If a burst write is being performed, the next data word can be programmed to MSC_WDATA as soon as WDATAREADY is set. WRITE in MSC_IF will be set when the programming operation is complete. If WRITE in MSC_IEN is set, the end of the program operation will also trigger an interrupt. Finally, clear WREN to disable flash operations.

If data is written to the MSC_WDATA register faster than it can be processed, WDATAOV in MSC_IF will be set. If WDATAOV in MSC_IEN is set an interrupt will also be fired.

The MSC_ADDRB register only has to be written once when writing to sequential words. After each word is written, ADDRB is incremented automatically by 4. The INVADDR bit of the MSC_STATUS register is set if the loaded address is outside the flash. The LOCKED bit of the MSC_STATUS register is set if the page addressed is locked. Any attempts to erase or write to the page are ignored if INVADDR or the LOCKED bits of the MSC_STATUS register are set.

Write and erase operations may be aborted by software. To abort an erase, set the ERASEABORT bit in the MSC_WRITECMD register. To abort a write, set WRITEEND in MSC_WRITECMD

For a DMA write, CLEARWDATA in MSC_WRITECMD to assert a DMA request and transfer the first word. Alternately the first word may be programmed manually into MSC_WDATA by code.

By default, if any interrupt occurs during an erase operation, the erase is aborted. This feature may be disabled by clearing IRQERA-SEABORT in MSC_WRITECTRL. When an erase is aborted due to an interrupt, ERASEABORTED in MSC_STAUTS is set by hardware.

Software may observe the status of the MSC via the MSC_STATUS register. When a flash operation is in progress, BUSY will be set. If a flash operation has been requested but not yet started, PENDING will be set. This may occur if a subsystem such as the radio controller is performing MSC operations. When the write buffer underflows, TIMEOUT will be set. Buffer underflow is a normal part of the write procedure since it will occur once the last word has been written and no more data is available.

The Flash memory is organized into 64-bit wide double-words. Each 64-bit double-word can be written only twice between erase cycles. The lower and upper 32-bit words may be written sequentially in any order, or one at a time. Each flash bit is 1 after erase. Writing a 0 will clear the bit. Writing a 1 will not change the bit value.

While it is possible to write twice to the lower or upper 32-bit word of the 64-bit double word, then the other 32-bit word cannot be used. In this case, it is permitted to write to either the lower or upper 32-bit word twice between each erase, so long as no bit is ever cleared more than once.

Note: The ERASEPAGE, and CMD_WDATA registers cannot safely be written from code in Flash. It is recommended to place a small code section in RAM to set these bits and wait for the operation to complete. Also note that DMA transfers to or from any other address in Flash while a write or erase operation is in progress will produce unpredictable results.

Note: During a write or erase, flash read accesses will be stalled, effectively halting code execution from flash. Code execution continues upon write/erase completion. Code residing in RAM or ICACHE may be executed during a write/erase operation.

6.3.11.1 Low-Power Write/Erase

To limit maximum current, the programming operations can be slowed down. Set LPWRITE in MSC_WRITECTRL to double the write/erase time, halving the write/erase current.

6.3.11.2 Flash Lock

The ability to program or erase individual flash pages may be disabled using the MSC_PAGELOCKn registers. The bits in these registers may only be set to 1 by software on the device and are cleared when the device is reset. This means that once locked, a page may not be unlocked until a reset occurs. Users wishing to lock accesses to flash should implement code to write to the MSC_PAGELOCKn registers immediately after a reset. Any page locked in this way cannot be written to or erased.

User Data is locked by default, and all User Data write and erase operations must be performed via the SE (refer to emlib API documentation for SE User Data write and erase commands). Mass erase is enabled out of reset, however if firmware sets MELOCKBIT in the MSC_MISCLOCKWORD register, then mass erase can only be issued by the SE.

6.4 DEVINFO - Device Info Page

The Device Info Page holds factory programmed information about the device. It contains the following data:

- · Calibration values for reconfiguring the device
- · Unique ID's
- OPN identifiers (family, feature set, flash size, etc.)

6.4.1 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description								
0x000	DEVINFO_INFO	R	DI Information								
0x004	DEVINFO_PART	R	Part Info								
0x008	DEVINFO_MEMINFO	R	Memory Info								
0x00C	DEVINFO_MSIZE	R	Memory Size								
0x010	DEVINFO_PKGINFO	R	Misc Device Info								
0x014	DEVINFO_CUSTOMINFO	R	Custom Part Info								
0x018	DEVINFO_SWFIX	R	SW Fix Register								
0x01C	DEVINFO_SWCAPA0	R	Software Restriction								
0x020	DEVINFO_SWCAPA1	R	Software Restriction								
0x028	DEVINFO_EXTINFO	R	External Component Info								
0x040	DEVINFO_EUI48L	R	EUI 48 Low								
0x044	DEVINFO_EUI48H	R	EUI 48 High								
0x048	DEVINFO_EUI64L	R	EUI64 Low								
0x04C	DEVINFO_EUI64H	R	EUI64 High								
0x050	DEVINFO_CALTEMP	R	Calibration temperature Information								
0x054	DEVINFO_EMUTEMP	R	EMU Temperature Sensor Calibration Information								
0x058	DEVINFO_HFRCODPLLCALn	R	HFRCODPLL Calibration								
0x0A0	DEVINFO_HFRCOEM23CALn	R	HFRCOEM23 Calibration								
0x130	DEVINFO_MODULENAME0	R	Module Name Information								
0x134	DEVINFO_MODULENAME1	R	Module Name Information								
0x138	DEVINFO_MODULENAME2	R	Module Name Information								
0x13C	DEVINFO_MODULENAME3	R	Module Name Information								
0x140	DEVINFO_MODULENAME4	R	Module Name Information								
0x144	DEVINFO_MODULENAME5	R	Module Name Information								
0x148	DEVINFO_MODULENAME6	R	Module Name Information								
0x14C	DEVINFO_MODULEINFO	R	Module Information								
0x150	DEVINFO_MODXOCAL	R	Module External Oscillator Calibration Information								
0x180	DEVINFO_IADC0GAIN0	R	IADC Gain Calibration								
0x184	DEVINFO_IADC0GAIN1	R	IADC Gain Calibration								
0x188	DEVINFO_IADC0OFFSETCAL0	R	IADC Offset Calibration								
0x18C	DEVINFO_IADC0NORMALOFF- SETCAL0	R	IADC Offset Calibration								
0x190	DEVINFO_IADC0NORMALOFF- SETCAL1	R	IADC Offset Calibration								
0x194	DEVINFO_IADC0HISPDOFF- SETCAL0	R	IADC Offset Calibration								

Offset	Name	Туре	Description
0x198	DEVINFO_IADC0HISPDOFF- SETCAL1	R	IADC Offset Calibration
0x1FC	DEVINFO_LEGACY	R	Legacy Device Info

6.4.2 Register Description

6.4.2.1 DEVINFO_INFO - DI Information

Offset	Bit	Position							
0x000	33 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Reset	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0x0							
Access	м м	α.							
Name	DEVINFOREV	CRC							

Bit	Name	Reset	Access	Description
31:24	DEVINFOREV	0x5	R	DI Page Version
	DEVINFO layout revisio	n as unsigned	l integer (initially	[,] 1)
23:16	PRODREV	0x0	R	Production Revision
	Production revision as u	nsigned integ	er	
15:0	CRC	0x0	R	CRC
	CRC of DI-page (CRC-1	6-CCITT)		

6.4.2.2 DEVINFO_PART - Part Info

Offset	Bit Position																															
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	1 2 3 4 5 5 6 7 8 8 8 7 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7							_	0							
Reset		•			>	2						000							000													
Access					۵	۷							۵	۲			c															
Name					> IIV							FAMILYNUM												=								

Bit	Name	Reset	Access	Description				
DIL	Ivallie	Reset	Access	Description				
31:30	Reserved	To ensur ventions	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-				
29:24	FAMILY	0x0	R	Device Family				
	Encoded portion of	the Device Fam	ily					
	Value	Mode		Description				
	0	FG	FG Flex Gecko					
	1	MG	MG Mighty Gecko					
	2	BG		BlueGecko				
23:22	Reserved	To ensur ventions	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-				
21:16	FAMILYNUM	0x0	R	Device Family				
	Numeric portion of t	he Device Fami	ly					
15:0	DEVICENUM	0x0	R	Device Number				
	Device Number. The B123	e device numbe	r is one letter a	nd 3 digits. NUMBER = (alpha-'A')*1000 + numeric. 0 = A000; 1123 =				

6.4.2.3 DEVINFO_MEMINFO - Memory Info

Offset	Bit P	osition
0x008	1	5 4 5 7 1 1 1 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1 2
Reset	0×0	000000000000000000000000000000000000000
Access	α	α α
Name	DILEN	UDPAGESIZE

Bit	Name	Reset	Access	Description
31:16	DILEN	0x0	R	Length of DI Page
	Length of DI area (numb	er of 32-bit w	ords included in	CRC)
15:8	UDPAGESIZE	0x0	R	User Data Page Size
	User Data page size			
7:0	FLASHPAGESIZE	0x0	R	Flash Page Size
	Flash page size in bytes	coded as 2 [^] ((MEMINFO.PA	GESIZE +10) & 0xFF. For example, the value of 0xFF = 512 bytes

6.4.2.4 DEVINFO_MSIZE - Memory Size

Offset															Bi	t Po	sitio	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	-	0
Reset		'	'					0×0										000														
Access											<u>~</u>													۵	۷							
Name						SRAM																										

Bit	Name	Reset	Access	Description
31:27	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
26:16	SRAM	0x0	R	Sram Size
	Ram size, kbyte count as	s unsighed int	eger (eg. 16)	
15:0	FLASH	0x0	R	Flash Size
	Flash size, kbyte count a	s unsigned in	teger (eg. 128)	

6.4.2.5 DEVINFO_PKGINFO - Misc Device Info

Offset															Bi	t Po	siti	on																		
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	. ₆	2	_	0				
Reset									0 0 0 0											•																
Access										α									α									α.								
Name												H																	TEMPGRADE							

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensur ventions	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
23:16	PINCOUNT	0x0	R	Pin Count
	Device pin count as u	unsigned intege	er (eg. 48)	
15:8	PKGTYPE	0x0	R	Package Type
	Package identifier as	character		
	Value	Mode		Description
	74	WLCSP		WLCSP package
	76	BGA		BGA package
	77	QFN		QFN package
	81	QFP		QFP package
7:0	TEMPGRADE	0x0	R	Temperature Grade
	Temperature Grade of	of produt as un	signed integer	enumeration
	Value	Mode		Description
	0	N40TO85	5	-40 to 85 degC
	1	N40TO12	25	-40 to 125 degC
	2	N40TO10	05	-40 to 105 degC
	3	N0TO70		0 to 70 degC

6.4.2.6 DEVINFO_CUSTOMINFO - Custom Part Info

Offset	Bit Position	
0x014	15 0 0 0 2 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0	0 - 7 7 8 8 8 8 9 9 1 7 9 9 9
Reset	0×0	
Access	α	
Name	PARTNO	

Bit	Name	Reset	Access	Description							
31:16	PARTNO	0x0	R	Part Number							
	Custom part identifier as	unsigned into	eger (eg. 903). (65535 for standard product							
15:0	Reserved	To ensure o	nsure compatibility with future devices, always write bits to 0. More information in 1.2 Con- ions								

6.4.2.7 DEVINFO_SWFIX - SW Fix Register

Offset	Bit Position
0x018	31 32 33 34 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37
Reset	0xfffff
Access	α
Name	RSK

Bit	Name	Reset	Access	Description
31:0	RSV	0xFFFFFF FF	R	Reserved
	Reserved for future use			

6.4.2.8 DEVINFO_SWCAPA0 - Software Restriction

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	5	4	3	2	1	0
Reset		•				•	•		•		5	OX O		•	2	2			2) X			ç	e S		•	5	3			0	2
Access											۵	۷			۵	۷			۵	צ			٥	צ			٥				Ω	۲
Name											Ī	20			TORINICO				DTCMADT	B SWAK			7,77	1							ZICBEE	ZIGBEE

Bit	Name	Reset	Access	Description
31:22	Reserved	To ensure o	compatibility witl	h future devices, always write bits to 0. More information in 1.2 Con-
21:20	SRI	0x0	R	RAIL Capability
	RAIL capability level			
	Value	Mode		Description
	0	LEVEL0		RAIL capability not available
	1	LEVEL1		RAIL enabled
	2	LEVEL2		N/A
	3	LEVEL3		N/A
19:18	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
17:16	CONNECT	0x0	R	Connect Capability
	Connect stack capabilit	y level		
	Value	Mode		Description
	0	LEVEL0		Connect stack capability not available
	1	LEVEL1		Connect enabled
	2	LEVEL2		N/A
	3	LEVEL3		N/A
15:14	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
13:12	BTSMART	0x0	R	Bluetooth Smart Capability
	Bluetooth SMART stack	k capability lev	el	
	Value	Mode		Description
	0	LEVEL0		Bluetooth SMART stack capability not available
	1	LEVEL1		Bluetooth SMART enabled
	2	LEVEL2		N/A
	3	LEVEL3		N/A

Bit	Name	Reset	Access	Description
11:10	Reserved			vith future devices, always write bits to 0. More information in 1.2 Con-
9:8	RF4CE	0x0	R	RF4CE Capability
	RF4CE stack capa	ability level		
	Value	Mode		Description
	0	LEVEL0		RF4CE stack capability not available
	1	LEVEL1		RF4CE stack enabled
	2	LEVEL2		N/A
	3	LEVEL3		N/A
7:6	Reserved	To ensure o	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
5:4	THREAD	0x0	R	Thread Capability
	Thread stack capa	ability level		
	Value	Mode		Description
	0	LEVEL0		Thread stack capability not available
	1	LEVEL1		Thread stack enabled
	2	LEVEL2		N/A
	3	LEVEL3		N/A
3:2	Reserved	To ensure o	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
1:0	ZIGBEE	0x0	R	Zigbee Capability
	ZigBee stack capa	ability level		
	Value	Mode		Description
	0	LEVEL0		Zigbee stack capability not available
	1	LEVEL1		Green Power only
	2	LEVEL2		Zigbee and Green Power
	3	LEVEL3		Zigbee Only

6.4.2.9 DEVINFO_SWCAPA1 - Software Restriction

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset		•					'				•			•		'	•	•	•					•				•	•	000	0X0	0x0
Access																														<u>~</u>	<u>~</u>	2
Name																														GWEN	NCPEN	RFMCUEN

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
2	GWEN	0x0	R	Gateway
	Gateway enabled part			
1	NCPEN	0x0	R	NCP
	Network co-processor e	nabled part. I	NCP only if RFM	CUEN = 0
0	RFMCUEN	0x0	R	RF-MCU
	RF-MCU enabled part.	RF-MCU only	if NCPEN = 0	

6.4.2.10 DEVINFO_EXTINFO - External Component Info

Offset		Bit Po	sition	
0x028	31 30 29 28 27 27 26 25 27 27	23 22 21 20 20 19 17 17	6 9 9 8	L 0 0 4 0 1 0
Reset		0×0	0×0	0×0
Access		Œ	ď	ď
Name		REV	CONNECTION	ТҮРЕ

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
23:16	REV	0x0	R	Revision
	MCM Revision			
15:8	CONNECTION	0x0	R	Connection
	Connection protocol to e	external interfa	ace	
	Value	Mode		Description
	0	SPI		SPI control interface
	255	NONE		No interface
7:0	TYPE	0x0	R	Туре
	External Component			
	Value	Mode		Description
	255	NONE		
	-			

6.4.2.11 DEVINFO_EUI48L - EUI 48 Low

Offset															Bi	t Po	sitio	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset		0X0 0X																														
Access		δ 8 8																														
Name				ω 124 124 124 124 124 124 124 124 124 124	5																OINIO											

Bit	Name	Reset	Access	Description
31:24	OUI48L	0x0	R	OUI48L
	Lower Octet of EUI48 O	rganizationally	/ Unique Identif	er
23:0	UNIQUEID	0x0	R	Unique ID
	Unique identifier			

6.4.2.12 DEVINFO_EUI48H - EUI 48 High

Offset															Bi	t Po	siti	on														
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	_	0
Reset		0 X X X X X X X X X X X X X X X X X X X																					Š	e e e	•	•						
Access								ב	ב															٥	۲							
Name								מהימהמ	>															107	L0400							

Bit	Name	Reset	Access	Description
31:16	RESERVED	0xFFFF	R	RESERVED
15:0	OUI48H	0x0	R	OUI48H
	Upper two Octets of EU	I48 OUI		

6.4.2.13 DEVINFO_EUI64L - EUI64 Low

Offset															Bi	t Po	sitio	on														
0x048	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	æ	7	9	2	4	က	2	_	0
Reset		8															-															
Access		<u>&</u> ~																														
Name																																

Bit	Name	Reset	Access	Description
31:0	UNIQUEL	0x0	R	UNIQUEL
	Lower 32 bits of EUI64 L	Jnique Identif	ier	

6.4.2.14 DEVINFO_EUI64H - EUI64 High

Offset															Bi	t Po	siti	on														
0x04C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	3	2	1	0
Reset		OX OX																														
Access		δ																														
Name												184	+ 200															H				

Bit	Name	Reset	Access	Description							
31:8	OUI64	0x0	R	OUI64							
	24-bit OUI identifier										
7:0	UNIQUEH	0x0	R	UNIQUEH							
	Upper 8 bits of EUI64 unique identifier										

6.4.2.15 DEVINFO_CALTEMP - Calibration temperature Information

Offset		Bit Position																														
0x050	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•		•			•					•		•		•		•	•		•							2	2	•		
Access																												Δ	۲			
Name																												TEMD				

Bit	Name	Reset	Access	Description							
31:8	Reserved	To ensure o	To ensure compatibility with future devices, always write bits to 0. More information in 1 ventions								
7:0	TEMP	0x0	R	Cal Temp							
	Calibration temperature as an unsigned int in DegC. (0x19 = 25 DegC)										

6.4.2.16 DEVINFO_EMUTEMP - EMU Temperature Sensor Calibration Information

Offset	Bit Position																															
0x054	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•	•	•	•	•	•	•	•	•	•		•	•	•			•		•			•		0x0	•	•	•	•		
Access																										~						
Name																										EMUTEMPROOM						

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
10:2	EMUTEMPROOM	0x0	R	Emu Room Temperature
1:0	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-

6.4.2.17 DEVINFO_HFRCODPLLCALn - HFRCODPLL Calibration

Offset	Bit Position											
0x058	30 29 28	27 26 27 27 23 23 23 21 21	20 10 10 10 10 10 10 10 10 10 10 10 10 10	V 0 7 4 8 7 F 0								
Reset	0x0	0% 0% 0%	000 000 000	0x0								
Access	α.	м м м	и и и	α.								
Name	IREFTC	CLKDIV	FREQRANGE LDOHP FINETUNING	JUNING								

Bit	Name	Reset	Access	Description
31:28	IREFTC	0x0	R	
	Tempco Trim			
27:26	CMPSEL	0x0	R	
	Comparator Load Select			
25:24	CLKDIV	0x0	R	
	Locally Divide HFRCO C	lock Output		
23:21	CMPBIAS	0x0	R	
	Comparator Bias Curren	t		
20:16	FREQRANGE	0x0	R	
	Frequency Range			
15	LDOHP	0x0	R	
	LDO High Power Mode			
14	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
13:8	FINETUNING	0x0	R	
	Fine Tuning Value			
7	Reserved	To ensure o	compatibility witi	n future devices, always write bits to 0. More information in 1.2 Con-
6:0	TUNING	0x0	R	
	Tuning Value			

6.4.2.18 DEVINFO_HFRCOEM23CALn - HFRCOEM23 Calibration

Offset															Ві	t Po	siti	on														
0x0A0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset		2	2	•	2	OX O	2	e X		0×0				0X0	•		0x0				Š	Š							0×0			
Access		۵	۷		۵	۲	۵	۲		<u>~</u>				<u>~</u>			2				٥	צ							<u>~</u>			
Name		CTO	_		CADO	CIVITORIA	3 2	CLA CLA		CMPBIAS				FREQRANGE			ГРОНР				Ē								TUNING			

Bit	Name	Reset	Access	Description
31:28	IREFTC	0x0	R	
	Tempco Trim			
27:26	CMPSEL	0x0	R	
	Comparator Load Select			
25:24	CLKDIV	0x0	R	
	Locally Divide HFRCO C	lock Output		
23:21	CMPBIAS	0x0	R	
	Comparator Bias Curren	t		
20:16	FREQRANGE	0x0	R	
	Frequency Range			
15	LDOHP	0x0	R	
	LDO High Power Mode			
14	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
13:8	FINETUNING	0x0	R	
	Fine Tuning Value			
7	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
6:0	TUNING	0x0	R	
	Tuning Value			

6.4.2.19 DEVINFO_MODULENAME0 - Module Name Information

Offset		Bit Po	sition	
0x130	31 30 29 28 27 27 26 26 27 27	23 22 21 20 20 19 17 17	6 9 9 8	V 0 0 4 8 0 T O
Reset	OXFF	0xFF	0xFF	0×FF
Access	α.	α	α	<u>د</u>
Name	MODCHAR4	MODCHAR3	MODCHAR2	MODCHAR1

Bit	Name	Reset	Access	Description
31:24	MODCHAR4	0xFF	R	
	Fourth character of Modu	ıle Name, 0xF	FF = unwritten, (0x00 = character not used in name
23:16	MODCHAR3	0xFF	R	
	Third character of Module	e Name, 0xFF	= unwritten, 0x	00 = character not used in name
15:8	MODCHAR2	0xFF	R	
	Second character of Mod	lule Name, 0x	rF = unwritten,	0x00 = character not used in name
7:0	MODCHAR1	0xFF	R	
	First character of Module	Name, 0xFF	= unwritten, 0x0	00 = character not used in name

6.4.2.20 DEVINFO_MODULENAME1 - Module Name Information

Offset															Bi	t Po	siti	on														
0x134	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•	•	2	L L X O	•		•				2	L L X O	•	•				•		L	•	•	•			•	Ļ	L	•		•
Access				۵	۲							۵	۲							٥	צ								צ			
Name				SOVI CON								70VI JUV	YYYUON								MODON AAA							-	MODOHARS			

Bit	Name	Reset	Access	Description
31:24	MODCHAR8	0xFF	R	
	Character of Module Na	me, 0xFF = ι	ınwritten, 0x00 =	character not used in name
23:16	MODCHAR7	0xFF	R	
	Character of Module Na	me, 0xFF = ι	ınwritten, 0x00 =	character not used in name
15:8	MODCHAR6	0xFF	R	
	Character of Module Na	me, 0xFF = ι	ınwritten, 0x00 =	character not used in name
7:0	MODCHAR5	0xFF	R	
	Character of Module Na	ıme, 0xFF = ι	ınwritten, 0x00 =	character not used in name

6.4.2.21 DEVINFO_MODULENAME2 - Module Name Information

Offset		Bit Po	sition							
0x138	31 30 29 28 27 27 26 25 27 27	23 22 22 20 19 19 17 17	6 9 9 8	r 9 8 4 8 2 t 0						
Reset	0×FF	0xFF	0xFF	0xFF						
Access	α.	α	α	α.						
Name	MODCHAR12	MODCHAR11	MODCHAR10	MODCHAR9						

Bit	Name	Reset	Access	Description
31:24	MODCHAR12	0xFF	R	
	Character of Module I	Name, 0xFF =	unwritten, 0x00	= character not used in name
23:16	MODCHAR11	0xFF	R	
	Character of Module I	Name, 0xFF =	unwritten, 0x00	= character not used in name
15:8	MODCHAR10	0xFF	R	
	Character of Module I	Name, 0xFF =	unwritten, 0x00	= character not used in name
7:0	MODCHAR9	0xFF	R	
	Character of Module I	Name, 0xFF =	unwritten, 0x00	= character not used in name

6.4.2.22 DEVINFO_MODULENAME3 - Module Name Information

Offset		Bit Po	sition					
0x13C	31 30 29 28 27 27 26 25 27	23 22 22 21 20 19 19 17 17 16	6 9 9 8	L 0 0 4 8 0 1 0				
Reset	0×FF	0xFF	0xFF	0xFF				
Access	α.	α α α						
Name	MODCHAR16	MODCHAR15	MODCHAR14	MODCHAR13				

Bit	Name	Reset	Access	Description
31:24	MODCHAR16	0xFF	R	
	Character of Module	Name, 0xFF =	unwritten, 0x00	= character not used in name
23:16	MODCHAR15	0xFF	R	
	Character of Module	Name, 0xFF =	unwritten, 0x00	= character not used in name
15:8	MODCHAR14	0xFF	R	
	Character of Module	Name, 0xFF =	unwritten, 0x00	= character not used in name
7:0	MODCHAR13	0xFF	R	
	Character of Module	Name, 0xFF =	unwritten, 0x00	= character not used in name

6.4.2.23 DEVINFO_MODULENAME4 - Module Name Information

Offset															Bi	t Po	sitio	on														
0x140	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset			•	2	L X							2	- 3							L .	L S	•		•					OXFF F	•		
Access				۵	צ							۵	۷							٥	۲							1	ď			
Name					<u> </u>							OLD CITY									Y Y Y								MODCHAR17			

Bit	Name	Reset	Access	Description
31:24	MODCHAR20	0xFF	R	
	Character of Module Na	me, 0xFF = ι	unwritten, 0x00	= character not used in name
23:16	MODCHAR19	0xFF	R	
	Character of Module Na	ıme, 0xFF = ι	unwritten, 0x00	= character not used in name
15:8	MODCHAR18	0xFF	R	
	Character of Module Na	ıme, 0xFF = ι	unwritten, 0x00	= character not used in name
7:0	MODCHAR17	0xFF	R	
	Character of Module Na	ıme, 0xFF = ι	unwritten, 0x00	= character not used in name

6.4.2.24 DEVINFO_MODULENAME5 - Module Name Information

Offset	HZ24 R OXFF R OX													
0x144	31 30 29 28 27 27 26 27 27 27	23 22 22 21 20 119 149 149 149 149 149 149 149 149 149	6 9 9 8	V 0 0 4 8 0 T O										
Reset	0×FF	OXFF	0xFF	0×F										
Access	α.	ď	α	ď										
Name	MODCHAR24		MODCHAR22	MODCHAR21										

Bit	Name	Reset	Access	Description
31:24	MODCHAR24	0xFF	R	
	Character of Module Na	me, 0xFF = ur	nwritten, 0x00 =	character not used in name
23:16	MODCHAR23	0xFF	R	
	Character of Module Na	me, 0xFF = ur	nwritten, 0x00 =	character not used in name
15:8	MODCHAR22	0xFF	R	
	Character of Module Na	me, 0xFF = ur	nwritten, 0x00 =	character not used in name
7:0	MODCHAR21	0xFF	R	
	Character of Module Na	me, 0xFF = ur	nwritten, 0x00 =	character not used in name

6.4.2.25 DEVINFO_MODULENAME6 - Module Name Information

Offset															Bi	t Pc	siti	on														
0x148	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	7	_	0
Reset	90 NA																															
Access								۵	۲											0	۲								<u>~</u>			
Name								\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20												MODULARZO								MODCHAR25			

Bit	Name	Reset	Access	Description
31:16	RSV	0xFFFF	R	
	Reserved for future use			
15:8	MODCHAR26	0xFF	R	
	Last possible character	of module nar	ne, 0xFF = unw	ritten, 0x00 = character not used in name
7:0	MODCHAR25	0xFF	R	
	0xFF = unwritten, 0x00 =	= character no	ot used in name	

6.4.2.26 DEVINFO_MODULEINFO - Module Information

Offset															Bi	t Pc	siti	on														
0x14C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset	0x1	0x1	0x1					0x1FF					0x1	0x1	0x1	0x1	0x1				0x7F					0x7				0x1F		
Access	2	22	22					2					22	2	22	22	22				~					2				ď		
Name	EXTVALID	PHYLIMITED	PADCDC					MODNUMBERMSB					HFXOCALVAL	LFXOCALVAL	EXPRESS	LFXO	TYPE				MODNUMBER					ANTENNA				HWREV		

Bit	Name	Reset	Access	Description
31	EXTVALID	0x1	R	
	EXTINFO entry used			
	Value	Mode		Description
	0	EXTUSE)	EXT used
	1	EXTUNUS	SED	EXT not used
30	PHYLIMITED	0x1	R	
	PHY Limited			
	Value	Mode		Description
	0	LIMITED		
	1	UNLIMITE	ED	
29	PADCDC	0x1	R	
	PAVDD Connection			
	Value	Mode		Description
	0	VDCDC		PAVDD connected to Vdcdc
	1	OTHER		PAVDD connected to Vdd or other
28:20	MODNUMBERMSB	0x1FF	R	
	Counter allowing uniqu	e identificatio	n of module per	lookup when combined with MODNUMBER
19	HFXOCALVAL	0x1	R	
	HFXO Factory Calibrat	ed		
	Value	Mode		Description
	0	VALID		HFXO calibration in MODXOCAL is valid
	1	NOTVALI	D	HFXO calibration in MODXOCAL is not valid
18	LFXOCALVAL	0x1	R	

Bit	Name	Reset	Access	Description
	LFXO Factory Calibrated	d		
	Value	Mode		Description
	0	VALID		LFXO Tuning in MODXOCAL is valid
	1	NOTVALID		LFXO Tuning value in MODXOCAL is not valid
17	EXPRESS	0x1	R	
	Blue Gecko Express			
	Value	Mode		Description
	0	SUPPORTE	ED	Blue Gecko Express is supported
	1	NONE		Blue Gecko Express is not supported
16	LFXO	0x1	R	
	Module has LFXO			
	Value	Mode		Description
	0	NONE		LFXO is not installed
	1	PRESENT		LFXO is installed
15	TYPE	0x1	R	
	Module Type			
	Value	Mode		Description
	0	PCB		PCB
	1	SIP		SIP
14:8	MODNUMBER	0x7F	R	
	Counter allowing unique	identification	of module per lo	pokup when combined with MODNUMBER MSB
7:5	ANTENNA	0x7	R	
	Module Antenna Type			
	Value	Mode		Description
	0	BUILTIN		Built-in Antenna
	1	CONNECT	OR	RF Connector
	2	RFPAD		RF Pad
	3	INVERTED	F	F-invert PCB
4:0	HWREV	0x1F	R	
	Module Hardware Revis	ion. Starting fi	rom 0	

6.4.2.27 DEVINFO_MODXOCAL - Module External Oscillator Calibration Information

Offset		Bit Posi	ition	
0x150	31 30 29 28 27 27 27 26 25 26 25 27 27 27 27 27 28 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	22 21 20 20 20 19 18 17 17	15 17 17 18 8	ν Θ π 4 π ν τ Ο
Reset		0x7F	0×FF	OXFF.
Access		α	α	<u>~</u>
Name		LFXOCAPTUNE	HFXOCTUNEXOANA	HFXOCTUNEXIANA

Bit	Name	Reset	Access	Description
31:23	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
22:16	LFXOCAPTUNE	0x7F	R	
	LFXO Cap Tuning			
15:8	HFXOCTUNEXOANA	0xFF	R	
	Tuning capacitance on X	(O		
7:0	HFXOCTUNEXIANA	0xFF	R	
	Tuning capacitance on X	KI		

6.4.2.28 DEVINFO_IADC0GAIN0 - IADC Gain Calibration

Offset															Bi	t Po	siti	on														
0x180	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	_	0
Reset		000000000000000000000000000000000000000																•						2	OXO		'		•			
Access		Š Š																						ב	צ							
Name								CAINCAINC																0	GAINCAINAT							

Bit	Name	Reset	Access	Description
31:16	GAINCANA2	0x0	R	
	Input Gain = 2x			
15:0	GAINCANA1	0x0	R	
	Input Gain = 1x and 0.5x	[

6.4.2.29 DEVINFO_IADC0GAIN1 - IADC Gain Calibration

Offset															Bi	t Po	siti	on														
0x184	31															16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset		8																						Š	e S	•			•			
Access		ි ~																						ב	צ							
Name									GAIIACAINA4															\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	GAINCAINAS							

Bit	Name	Reset	Access	Description
31:16	GAINCANA4	0x0	R	
	Input Gain = 4x			
15:0	GAINCANA3	0x0	R	
	Input Gain = 3x			

6.4.2.30 DEVINFO_IADC0OFFSETCAL0 - IADC Offset Calibration

Offset	Bit Position															osition																
0x188	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset	000																•		•	•			0	e X		•						
Access		α														α																
Name									OFFSELANAIRIACO																OFFSELANABASE							

Bit	Name	Reset	Access	Description								
31:16	OFFSETANA1HIACC	0x0	R									
	High-accuracy OSR adju	ustment term										
15:0	OFFSETANABASE	0x0	R									
	Base analog offset term											

6.4.2.31 DEVINFO_IADC0NORMALOFFSETCAL0 - IADC Offset Calibration

Offset	Bit Position
0x18C	1 1
Reset	000
Access	α α
Name	OFFSETANA1NORM

Bit	Name	Reset	Access	Description										
31:16	OFFSETANA2NORM	0x0	R											
	Normal mode offset gain adjustment term													
15:0	OFFSETANA1NORM 0x0 R													
	Normal mode analog offset term at OSR=2x, gain = 1x													

6.4.2.32 DEVINFO_IADC0NORMALOFFSETCAL1 - IADC Offset Calibration

Offset	Bit Position	sition											
0x190	1 1 <th>0</th>	0											
Reset		0×0											
Access	s	<u></u>											
Name		OFFSETANA3NORM											

Bit	Name	Reset	Access	Description									
31:16	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-									
15:0	OFFSETANA3NORM	0x0	R										
	Normal mode offset term for OSR>=4x												

6.4.2.33 DEVINFO_IADC0HISPDOFFSETCAL0 - IADC Offset Calibration

Offset	Bit Po	sition											
0x194	1 1 <t< th=""><th>2 4 5 7 1 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<>	2 4 5 7 1 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
Reset	0×0	000											
Access	α.	α.											
Name	OFFSET ANA2HISPD	OFFSETANA1HISPD											

Bit	Name	Reset	Access	Description										
31:16	OFFSETANA2HISPD	0x0	R											
	High speed mode offset gain adjustment term													
15:0	OFFSETANA1HISPD	0x0	R											
	High speed mode analog offset term at OSR=2x, gain = 1x													

6.4.2.34 DEVINFO_IADC0HISPDOFFSETCAL1 - IADC Offset Calibration

Offset	Bit Po	sition											
0x198	2	5 4 5 7 7 7 0 6 8 7 9 5 7 7 0 0											
Reset		0×0											
Access		α											
Name		OFFSETANA3HISPD											

Bit	Name	Reset	Access	Description									
31:16	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-									
15:0	OFFSETANA3HISPD	0x0	R										
	High-speed mode offset term for OSR>=4x												

6.4.2.35 DEVINFO_LEGACY - Legacy Device Info

Offset	Bit Position																												
0x1FC	31 31 32 33 34 35 35 35 35 35 35 35 35 35 35 35 35 35													15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset	08×0														•	•		•			•		•					•	
Access																													
Name	DEVICEFAMILY																												

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure ventions	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
23:16	DEVICEFAMILY	0x80	R	Device Family
	Device Family			
	Value	Mode		Description
	16	EFR32MG	61P	EFR32 Mighty Gecko Family Series 1 Device Config 1
	17	EFR32MG	61B	EFR32 Mighty Gecko Family Series 1 Device Config 1
	18	EFR32MG	61V	EFR32 Mighty Gecko Family Series 1 Device Config 1
	19	EFR32BG	1P	EFR32 Blue Gecko Family Series 1 Device Config 1
	20	EFR32BG	1B	EFR32 Blue Gecko Family Series 1 Device Config 1
	21	EFR32BG	1V	EFR32 Blue Gecko Family Series 1 Device Config 1
	25	EFR32FG	1P	EFR32 Flex Gecko Family Series 1 Device Config 1
	26	EFR32FG	1B	EFR32 Flex Gecko Family Series 1 Device Config 1
	27	EFR32FG	1V	EFR32 Flex Gecko Family Series 1 Device Config 1
	28	EFR32MG	612P	EFR32 Mighty Gecko Family Series 1 Device Config 2
	29	EFR32MG	612B	EFR32 Mighty Gecko Family Series 1 Device Config 2
	30	EFR32MG	612V	EFR32 Mighty Gecko Family Series 1 Device Config 2
	31	EFR32BG	12P	EFR32 Blue Gecko Family Series 1 Device Config 2
	32	EFR32BG	12B	EFR32 Blue Gecko Family Series 1 Device Config 2
	33	EFR32BG	12V	EFR32 Blue Gecko Family Series 1 Device Config 2
	37	EFR32FG	12P	EFR32 Flex Gecko Family Series 1 Device Config 2
	38	EFR32FG	12B	EFR32 Flex Gecko Family Series 1 Device Config 2
	39	EFR32FG	12V	EFR32 Flex Gecko Family Series 1 Device Config 2
	40	EFR32MG	613P	EFR32 Mighty Gecko Family Series 13 Device Config 3
	41	EFR32MG	613B	EFR32 Mighty Gecko Family Series 13 Device Config 3
	42	EFR32MG	613V	EFR32 Mighty Gecko Family Series 1 Device Config 3
	43	EFR32BG	13P	EFR32 Blue Gecko Family Series 1 Device Config 3

Bit	Name	Reset Access	Description
	44	EFR32BG13B	EFR32 Blue Gecko Family Series 1 Device Config 3
	45	EFR32BG13V	EFR32 Blue Gecko Family Series 1 Device Config 3
	49	EFR32FG13P	EFR32 Flex Gecko Family Series 1 Device Config 3
	50	EFR32FG13B	EFR32 Flex Gecko Family Series 1 Device Config 3
	51	EFR32FG13V	EFR32 Flex Gecko Family Series 1 Device Config 3
	52	EFR32MG14P	EFR32 Mighty Gecko Family Series 1 Device Config 4
	53	EFR32MG14B	EFR32 Mighty Gecko Family Series 1 Device Config 4
	54	EFR32MG14V	EFR32 Mighty Gecko Family Series 1 Device Config 4
	55	EFR32BG14P	EFR32 Blue Gecko Family Series 1 Device Config 4
	56	EFR32BG14B	EFR32 Blue Gecko Family Series 1 Device Config 4
	57	EFR32BG14V	EFR32 Blue Gecko Family Series 1 Device Config 4
	61	EFR32FG14P	EFR32 Flex Gecko Family Series 1 Device Config 4
	62	EFR32FG14B	EFR32 Flex Gecko Family Series 1 Device Config 4
	63	EFR32FG14V	EFR32 Flex Gecko Family Series 1 Device Config 4
	71	EFM32G	EFM32 Gecko Device Family
	72	EFM32GG	EFM32 Giant Gecko Device Family
	73	EFM32TG	EFM32 Tiny Gecko Device Family
	74	EFM32LG	EFM32 Leopard Gecko Device Family
	75	EFM32WG	EFM32 Wonder Gecko Device Family
	76	EFM32ZG	EFM32 Zero Gecko Device Family
	77	EFM32HG	EFM32 Happy Gecko Device Family
	81	EFM32PG1B	EFM32 Pearl Gecko Device Family Series 1 Device Config 1
	83	EFM32JG1B	EFM32 Jade Gecko Device Family Series 1 Device Config 1
	85	EFM32PG12B	EFM32 Pearl Gecko Device Family Series 1 Device Config 2
	87	EFM32JG12B	EFM32 Jade Gecko Device Family Series 1 Device Config 2
	89	EFM32PG13B	EFM32 Pearl Gecko Device Family Series 1 Device Config 3
	91	EFM32JG13B	EFM32 Jade Gecko Device Family Series 1 Device Config 3
	100	EFM32GG11B	EFM32 Giant Gecko Device Family Series 1 Device Config 1
	103	EFM32TG11B	EFM32 Giant Gecko Device Family Series 1 Device Config 1
	120	EZR32LG	EZR32 Leopard Gecko Device Family
	121	EZR32WG	EZR32 Wonder Gecko Device Family
	122	EZR32HG	EZR32 Happy Gecko Device Family
	128	SERIES2V0	DI page is encoded with the series 2 layout. Check alternate location.
15:0	Reserved	To ensure compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-

6.5 ICACHE - Instruction Cache

The ICACHE provides fast access to recently executed instructions improving both speed and power consumption of code execution. The instruction cache is enabled by default, but can be disabled by setting CACHEDIS in ICACHE_CTRL. When enabled, the instruction cache typically reduces the number of flash reads significantly, thus saving energy. In most cases, a cache hit-rate of more than 70 % is achievable. When a 32-bit instruction fetch hits in the cache, the data is returned to the processor in one clock cycle, bypassing the flash accesses wait-states. The cache content is retained in EM2 and EM3.

The instruction cache is connected directly to the CODE bus on the ARM core and functions as a memory access filter between the processor and the memory system, as illustrated in Figure 6.1 Instruction Cache Block Diagram on page 87. The cache consists of an access filter, lookup logic, SRAM, and three performance counters. The access filter checks if a transfer is an instruction fetch located in a cacheable region. If it is the cache lookup logic and SRAM is enabled. Otherwise, the cache is bypassed and the access is forwarded to the memory system. If lookup is enabled data is either returned from the cache (hit) or fetch from the memory system and cached (miss).

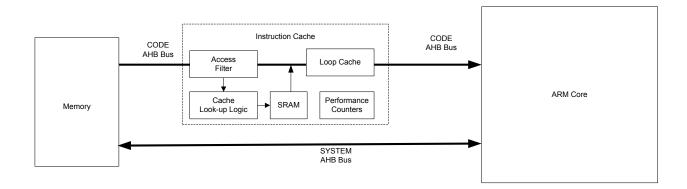


Figure 6.1. Instruction Cache Block Diagram

Note that while all access to code spaces use the CODE bus only instruction fetches are cached. Data accesses to the CODE region are passed through the ICACHE.

6.5.1 Cache Operation

It is highly recommended to keep the cache enabled. To improve cache-efficiency, sections of code with very low cache hit rate should not be cached. This is achieved by placing these code sections in non-cacheable MPU regions and setting USEMPU in IC-ACHE_CTRL. When USEMPU is set, instruction fetches to non-cacheable MPU regions will not be looked up or saved in cache. This feature may also be used to avoid instructions from low-power memory taking up space from more power-hungry memory. For more information on the MPU see the ARM Cortex-M33 MPU documentation.

The optional loop-cache is optimized to store smaller code-loops efficiently. The loop-cache is enabled when LPLEVEL in IC-ACHE_LPMODE is set to ADVANCED or MINACTIVITY. The difference between the two settings is that when MINACTIVITY is selected loop-cache outputs may be gated off to reduce power at the cost of more wait-states due to loop-cache misses. Having LPLEVEL set to BASIC disables the loop-cache functionality completely. NESTFACTOR in ICACHE _LPMODE is used to decide when to stick with the currently detected loop rather than start tracking a new loop. Optimal value will depend on the actual code running, meaning that this setting may be tuned for optimal performance.

By default, the instruction cache is automatically invalidated when the contents of the flash is changed (i.e. written or erased). In many cases, however, the application only makes changes to data in the flash, not code. In this case, the automatic invalidate feature can be disabled by setting AUTOFLUSHDIS in ICACHE_CTRL. The cache can also be manually invalidated by writing 1 to FLUSH in ICACHE_CMD.

In the event that a parity error in the cache is detected, the RAMERROR flag will be set in ICACHE_IF. The data is automatically reloaded when this occurs so no action is required by software. This flag informational only, and can be used to detect the rate of corruption events. If RAMERROR in ICACHE_IEN is set, an interrupt will be triggered.

The cache is automatically flushed whenever a BUS-FAULT occurs. If this occurs during performance counting the counts will be effected.

6.5.2 Performance Measurement

To measure the hit-rate of a code-section, the built-in performance counters can be used. Before the section, start the performance counters by setting STARTPC in ICACHE_CMD register. This starts the performance counters, counting from 0. At the end of the section, stop the performance counters by setting STOPPC in ICACHE_CMD. The number of cache hits and cache misses for that section can then be read from PCHITS and PCMISSES. The cache hit-ratio can be calculated as PCHITS / (PCHITS + PCMISSES). PCAHITS contains the loopcache hits only. Any hits in PCAHITS are also counted in PCHITS. The loopcache hit-ratio can be calculated as PCAHITS / (PCHITS + PCMISSES). When PCHITS/PCAHITS/PCMISSES overflow, the HITOF/AHITOF/MISSOF interrupt flags are set respectively. These flags must be cleared by software. The range of the performance counters can be extended by increasing a counter in the interrupt routine. The performance counters only count when a cache lookup is performed. Access to non-cacheable regions, data fetches, and access made while the ICACHE is disabled do not increment PCMISSES.

Software may check the if the performance counters are running using PCRUNNING in ICACHE_STATUS.

6.5.3 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	ICACHE_IPVERSION	R	IP Version
0x004	ICACHE_CTRL	RW	Control Register
0x008	ICACHE_PCHITS	RH	Performance Counter Hits
0x00C	ICACHE_PCMISSES	RH	Performance Counter Misses
0x010	ICACHE_PCAHITS	RH	Performance Counter Advanced Hits
0x014	ICACHE_STATUS	RH	Status Register
0x018	ICACHE_CMD	W	Command Register
0x01C	ICACHE_LPMODE	RW	Low Power Mode
0x020	ICACHE_IF	RWH INTFLAG	Interrupt Flag
0x024	ICACHE_IEN	RW	Interrupt Enable
0x1000	ICACHE_IPVERSION_SET	R	IP Version
0x1004	ICACHE_CTRL_SET	RW	Control Register
0x1008	ICACHE_PCHITS_SET	RH	Performance Counter Hits
0x100C	ICACHE_PCMISSES_SET	RH	Performance Counter Misses
0x1010	ICACHE_PCAHITS_SET	RH	Performance Counter Advanced Hits
0x1014	ICACHE_STATUS_SET	RH	Status Register
0x1018	ICACHE_CMD_SET	w	Command Register
0x101C	ICACHE_LPMODE_SET	RW	Low Power Mode
0x1020	ICACHE_IF_SET	RWH INTFLAG	Interrupt Flag
0x1024	ICACHE_IEN_SET	RW	Interrupt Enable
0x2000	ICACHE_IPVERSION_CLR	R	IP Version
0x2004	ICACHE_CTRL_CLR	RW	Control Register
0x2008	ICACHE_PCHITS_CLR	RH	Performance Counter Hits
0x200C	ICACHE_PCMISSES_CLR	RH	Performance Counter Misses
0x2010	ICACHE_PCAHITS_CLR	RH	Performance Counter Advanced Hits
0x2014	ICACHE_STATUS_CLR	RH	Status Register
0x2018	ICACHE_CMD_CLR	W	Command Register
0x201C	ICACHE_LPMODE_CLR	RW	Low Power Mode
0x2020	ICACHE_IF_CLR	RWH INTFLAG	Interrupt Flag
0x2024	ICACHE_IEN_CLR	RW	Interrupt Enable
0x3000	ICACHE_IPVERSION_TGL	R	IP Version
0x3004	ICACHE_CTRL_TGL	RW	Control Register
0x3008	ICACHE_PCHITS_TGL	RH	Performance Counter Hits
0x300C	ICACHE_PCMISSES_TGL	RH	Performance Counter Misses
0x3010	ICACHE_PCAHITS_TGL	RH	Performance Counter Advanced Hits

Offset	Name	Туре	Description
0x3014	ICACHE_STATUS_TGL	RH	Status Register
0x3018	ICACHE_CMD_TGL	W	Command Register
0x301C	ICACHE_LPMODE_TGL	RW	Low Power Mode
0x3020	ICACHE_IF_TGL	RWH INTFLAG	Interrupt Flag
0x3024	ICACHE_IEN_TGL	RW	Interrupt Enable

6.5.4 Register Description

6.5.4.1 ICACHE_IPVERSION - IP Version

Offset															Bi	t Po	siti	on														
0x000	33	30	29	78	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	9	ဝ	8	7	9	2	4	က	2	1	0
Reset		8																														
Access																۵	۷															
Name																ואטוספט/פו																

Bit	Name	Reset	Access	Description
31:0	IPVERSION	0x0	R	IP version ID
	The read only IPVERSIOn modules with different values	•		this module. There may be minor software changes required for

6.5.4.2 ICACHE_CTRL - Control Register

Offset															Ві	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•	•	•			•							•				•								•	•	•	•	0x0	0X0	0x0
Access																														RW	₩	RW
Name																														AUTOFLUSHDIS	USEMPU	CACHEDIS

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
2	AUTOFLUSHDIS	0x0	RW	Automatic Flushing Disable
	Disables automatic flu	shing based o	n Internal Flash	n write/erase
1	USEMPU	0x0	RW	Use MPU
	Use MPU to select nor	n/cacheable re	egions	
0	CACHEDIS	0x0	RW	Cache Disable
	Disables caching for a	Il regions		

6.5.4.3 ICACHE_PCHITS - Performance Counter Hits

Offset															Bi	t Po	siti	on														
0x008	31	30	29	78	27	26	25	24	23	22	21	20	9	8	17	16	15	14	13	12	7	5	6	∞	7	9	2	4	က	2	_	0
Reset																2	2															
Access																۵	۷															
Name		A STH																														

Bit	Name	Reset	Access	Description
31:0	PCHITS	0x0	R	Performance Counter Hits
	Hit counter value			

6.5.4.4 ICACHE_PCMISSES - Performance Counter Misses

Offset	Bit Position
0x00C	31 31 32 33 33 33 34 35 35 35 35 35 35 35 35 35 35 35 35 35
Reset	0×0
Access	α
Name	PCMISSES

Bit	Name	Reset	Access	Description
31:0	PCMISSES	0x0	R	Performance Counter Misses
	Miss counter value			

6.5.4.5 ICACHE_PCAHITS - Performance Counter Advanced Hits

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	စ	8	7	9	5	4	က	2	_	0
Reset		<u> </u>																														
Access		۵ 8																														
Name																OFILIA	Ē															

Bit	Name	Reset	Access	Description									
31:0	PCAHITS	0x0	R	Performance Counter Advanced Hits									
	Hit counter value for hits due to Advanced Buffering mode. These hits are also represented in PCHITS.												

6.5.4.6 ICACHE_STATUS - Status Register

Offset	Bit Position	
0x014	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0
Reset		0×0
Access		2
Name		PCRUNNING

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
0	PCRUNNING	0x0	R	PC Running
	Performance Counters a	re running		

6.5.4.7 ICACHE_CMD - Command Register

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	œ	7	ဖ	2	4	က	7	_	0
Reset			'											•		<u>'</u>	•			•						•			•	0x0	0×0	0x0
Access																														>	8	>
Name																														STOPPC	STARTPC	FLUSH

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
2	STOPPC	0x0	W	Stop Performance Counters
	Stops the Performance	Counters		
1	STARTPC	0x0	W	Start Performance Counters
	Starts the Performance	Counters		
0	FLUSH	0x0	W	Flush
	Clears Cached Data			

6.5.4.8 ICACHE_LPMODE - Low Power Mode

Offset															Ві	it Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	2	4	က	7	_	0
Reset			•		•		•			•				•	•	•				•	•	•				Š	OXV O				2	3
Access																										2	<u>}</u>				Š	2
Name																															I DI EVEI	- -

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
7:4	NESTFACTOR	0x2	RW	Low Power Nest Factor
				ontrol its estimation when a branch access is likely to be accessed in ove performance in code with deeply nested loops.
3:2	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
1:0	LPLEVEL	0x3	RW	Low Power Level
	Controls the low-power le	evel of the ca	che. In general,	the default setting is best for most applications.
	Value	Mode		Description
	0	BASIC		Base instruction cache functionality
	1	ADVANCE	D	Advanced buffering mode, where the cache uses the fetch pattern to predict highly accessed data and store it in low-energy memory
	3	MINACTIVI	TY	Minimum activity mode, which allows the cache to minimize activity in logic that it predicts has a low probability being used. This mode can introduce wait-states into the instruction fetch stream when the cache exits one of its low-activity states. The number of wait-states introduced is small, but users running with 0-wait-state memory and wishing to reduce the variability that the cache might introduce with additional wait-states may wish to lower the cache low-power level. Note, this mode includes the advanced buffering mode functionality.

6.5.4.9 ICACHE_IF - Interrupt Flag

Offset															Bi	it Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset			•										•	•	•	•			•	•				0X0						000	000	0x0
Access																								S.						₽	₩	RW
Name																								RAMERROR						AHITOF	MISSOF	HITOF

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
8	RAMERROR	0x0	RW	RAM error Interrupt Flag
	RAM parity error de	etected		
7:3	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
2	AHITOF	0x0	RW	Advanced Hit Overflow Interrupt Flag
	Advanced hit perfor	mance counter l	has overflowed	d
1	MISSOF	0x0	RW	Miss Overflow Interrupt Flag
	Miss performance of	counter has over	flowed	
0	HITOF	0x0	RW	Hit Overflow Interrupt Flag
	Hit performance co	unter has overflo	owed	

6.5.4.10 ICACHE_IEN - Interrupt Enable

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•	•	•					•		•				•		•	•	•				000			•		•	0×0	0x0	0x0
Access																								₩ M						RW	W.	RW
Name																								RAMERRORIEN						AHITOF	MISSOF	HITOF

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
8	RAMERRORIEN	0x0	RW	RAM error Interrupt Enable
	Enable RAMERROR inte	errupt		
7:3	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
2	AHITOF	0x0	RW	Advanced Hit Overflow Interrupt Enable
	Enable AHITOF interrup	t		
1	MISSOF	0x0	RW	Miss Overflow Interrupt Enable
	Enable MISSOF interrup	t		
0	HITOF	0x0	RW	Hit Overflow Interrupt Enable
	Enable HITOF interrupt			

6.6 SYSCFG - System Configuration

The SYSCFG block is used to configure SRAM. It also contains some interrupt flags for software use. The system has the following major SRAM blocks:

- DMEM0 Primary system data memory (RAM)
- FRCRAM Frame Rate Controller SRAM
- · SEQRAM Sequencer SRAM
- DEMODRAM Demodulator SRAM

6.6.1 Ram Retention

DMEM0 is broken into 16 KB banks. By default all banks are retained in EM2/EM3. Sleep mode current can be significantly reduced by fully powering down banks that do not need to be retained. To select the amount of RAM to be powered down in EM2/EM3, set RAM-RETNCTRL in SYSCFG_DMEM0RETCTRL to the desired value.

FRCRAM and SEQRAM may be powered down in EM2/EM3 if not required. To disable retention, set FRCRAMRETNCTRL or SEQ-RAMRETNCTRL in SYSCFG_RADIORAMRETCTRL.

6.6.2 ECC

DMEM0, FRCRAM, and SEQRAM support one bit correction and two bit detection ECC. To enable error detection for DMEM0, set RAMECCCHKEN in SYSCFG_DMEM0ECCCTRL. To enable error detection for FRCRAM and SEQRAM, set FRCRAMECCCHKEN and SEQRAMECCCHKEN in SYSCFG_RADIOECCCTRL. To enable auto-correction of one bit errors in DMEM0, set RAMECCEWEN in SYSCFG_DMEM0ECCCTRL. To enable auto-correction of one bit errors in FRCRAM and SEQRAM, set FRCRAMECCEWEN and SEQRAMECCEWEN in SYSCFG_RADIOECCCTRL.

When ECC error events are detected, the corresponding flags in SYSCFG_IF are set. When a flag is set, an interrupt will be triggered if the corresponding interrupt enable bit is set in SYSCFG_IEN.

When an error occurs, the address of the detected error is written to SYSCFG_DMEM0ECCADDR, SYSCFG_FRCRAMECCADDR, or SYSCF_SEQRAMECCERR depending on the source of the error.

The recommend procedure for initializing ECC RAM is to first enable ECC, then write zeros to all locations. This will clear the RAM and initialize the syndrome. If the ECC RAM is not written as described, then any reads to uninitialized RAM locations will result in an ECC error.

Note: The RAM ECC feature must be enabled to achieve good long term reliability. The long term reliability of the RAM is only specified with ECC enabled.

6.6.3 RAM Wait-states

The Cortex-M33 may be run faster than the RAM is capable of responding. In this case a RAM wait state must be enabled to ensure that the RAM has adequate response time. To enable wait states, set RAMWSEN in SYSCFG_DMEM0RAMCTRL or SEQRAMWSEN/FRCRAMWSEN in SYSCFG_RADIORAMCTRL.

To ensure the RAM is never run in an invalid region, the wait-state value should be changed before changing the clock frequency when increasing frequency, and after changing the clock frequency when decreasing clock frequency. See the 'General Operating Conditions' table in the device Data Sheet for details on the maximum allowed frequency for each wait-state setting.

6.6.4 RAM Prefetch

DEMEM0, FRCRAM, and SEQRAM support a one word pre-fetch buffer to improve performance of sequential accesses when waitstates are used. When enabled, the RAM wait-state occurs on only the first read of a sequential access.

When reading non-sequential data, the prefetch provides no benefit. Enabling the RAM Cache is recommended when prefetch is enabled to limit the power consumption impact of the prefetch.

To enable prefetch, set RAMPREFETCHEN in SYSCFG_DRAM0MEMCTRL, or FRCRAMPREFETCHEN/SEQRAMPREFETCHEN in SYSCFG_RADIORAMCTRL.

6.6.5 RAM Cache

DMEMO, FRCRAM, SEQRAM, and DEMODRAM have an optional 4 word cache which reduces the power consumed by sequential reads from RAM. The cache is enabled by setting RAMCACHEEN in SYSCFG_DMEMORAMCTRL, or DEMODRAMCACHEEN/FRCRAMCACHEEN/SEQRAMCACHEEN in SYSCFG_RADIORAMCTRL. When enabled a read from RAM will either be returned from the cache (HIT) or cause the cache to be updated with the contents of the 4 word cache-line the target word is on.

Since reading data from the cache consumes significantly less power than reading from the main array, the cache dramatically reduces the power consumption of sequential reads. However, in the case of random reads where all access are cache misses, use of the RAM cache will consume slightly more power due to the extra wide reads.

The RAM cache is independent of the prefetch and has no effect on the speed or throughput of RAM accesses.

6.6.6 Software Interrupts

The SYSCFG block also provides some software interrupts that can be used to communicate between software tasks. To trigger a software interrupt set the corresponding bit in SYSCFG IF.

6.6.7 Bus faults

By default, two bit ECC errors and reads to unmapped addresses trigger a BusFault. These bus fault sources can be disabled by clearing RAMECCERRFAULTEN and ADDRFAULTEN in SYSCFG_CTRL.

6.6.8 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	SYSCFG_IF	RWH INTFLAG	Interrupt Flag Register
0x004	SYSCFG_IEN	RW	Interrupt Enable Register
0x010	SYSCFG_CHIPREVHW	RWH	Hardwired Chip Rev values
0x014	SYSCFG_CHIPREV	RW	Part Family and Revision values
0x200	SYSCFG_CTRL	RW	Memory System Control Register
0x208	SYSCFG_DMEMORETNCTRL	RW	DMEM retention Control Register
0x210	SYSCFG_DMEM0ECCADDR	RH	DMEM ECC Error Address Register
0x214	SYSCFG_DMEM0ECCCTRL	RW	DMEM ECC Control Register
0x218	SYSCFG_DMEMORAMCTRL	RW	DMEM Control enable Register
0x400	SYSCFG_RADIORAM- RETNCTRL	RW	RADIO RAM Retention Control Register
0x408	SYSCFG_RADIOECCCTRL	RW	RADIO RAM ECC Control Register
0x40C	SYSCFG_RADIORAMCTRL	RW	RADIO RAM Control Register
0x410	SYSCFG_SEQRAMECCADDR	RH	SEQRAM ECC Error Address Register
0x414	SYSCFG_FRCRAMECCADDR	RH	FRCRAM ECC Error Address Register
0x1000	SYSCFG_IF_SET	RWH INTFLAG	Interrupt Flag Register
0x1004	SYSCFG_IEN_SET	RW	Interrupt Enable Register
0x1010	SYSCFG_CHIPREVHW_SET	RWH	Hardwired Chip Rev values
0x1014	SYSCFG_CHIPREV_SET	RW	Part Family and Revision values
0x1200	SYSCFG_CTRL_SET	RW	Memory System Control Register
0x1208	SYSCFG_DMEM0RETNCTRL_S ET	RW	DMEM retention Control Register
0x1210	SYSCFG_DMEM0EC- CADDR_SET	RH	DMEM ECC Error Address Register
0x1214	SYSCFG_DMEM0ECCCTRL_SE T	RW	DMEM ECC Control Register
0x1218	SYSCFG_DMEM0RAMCTRL_S ET	RW	DMEM Control enable Register
0x1400	SYSCFG_RADIORAM- RETNCTRL_SET	RW	RADIO RAM Retention Control Register
0x1408	SYSCFG_RADIO- ECCCTRL_SET	RW	RADIO RAM ECC Control Register
0x140C	SYSCFG_RADIO- RAMCTRL_SET	RW	RADIO RAM Control Register
0x1410	SYSCFG_SEQRAMEC- CADDR_SET	RH	SEQRAM ECC Error Address Register
0x1414	SYSCFG_FRCRAMEC- CADDR_SET	RH	FRCRAM ECC Error Address Register
0x2000	SYSCFG_IF_CLR	RWH INTFLAG	Interrupt Flag Register

Offset	Name	Туре	Description
0x2004	SYSCFG_IEN_CLR	RW	Interrupt Enable Register
0x2010	SYSCFG_CHIPREVHW_CLR	RWH	Hardwired Chip Rev values
0x2014	SYSCFG_CHIPREV_CLR	RW	Part Family and Revision values
0x2200	SYSCFG_CTRL_CLR	RW	Memory System Control Register
0x2208	SYSCFG_DMEM0RETNCTRL_C LR	RW	DMEM retention Control Register
0x2210	SYSCFG_DMEM0EC- CADDR_CLR	RH	DMEM ECC Error Address Register
0x2214	SYSCFG_DMEM0ECCCTRL_CL R	RW	DMEM ECC Control Register
0x2218	SYSCFG_DMEM0RAMCTRL_C LR	RW	DMEM Control enable Register
0x2400	SYSCFG_RADIORAM- RETNCTRL_CLR	RW	RADIO RAM Retention Control Register
0x2408	SYSCFG_RADIO- ECCCTRL_CLR	RW	RADIO RAM ECC Control Register
0x240C	SYSCFG_RADIO- RAMCTRL_CLR	RW	RADIO RAM Control Register
0x2410	SYSCFG_SEQRAMEC- CADDR_CLR	RH	SEQRAM ECC Error Address Register
0x2414	SYSCFG_FRCRAMEC- CADDR_CLR	RH	FRCRAM ECC Error Address Register
0x3000	SYSCFG_IF_TGL	RWH INTFLAG	Interrupt Flag Register
0x3004	SYSCFG_IEN_TGL	RW	Interrupt Enable Register
0x3010	SYSCFG_CHIPREVHW_TGL	RWH	Hardwired Chip Rev values
0x3014	SYSCFG_CHIPREV_TGL	RW	Part Family and Revision values
0x3200	SYSCFG_CTRL_TGL	RW	Memory System Control Register
0x3208	SYSCFG_DMEM0RETNCTRL_T GL	RW	DMEM retention Control Register
0x3210	SYSCFG_DMEM0EC- CADDR_TGL	RH	DMEM ECC Error Address Register
0x3214	SYSCFG_DMEM0ECCCTRL_T GL	RW	DMEM ECC Control Register
0x3218	SYSCFG_DMEMORAMCTRL_T GL	RW	DMEM Control enable Register
0x3400	SYSCFG_RADIORAM- RETNCTRL_TGL	RW	RADIO RAM Retention Control Register
0x3408	SYSCFG_RADIO- ECCCTRL_TGL	RW	RADIO RAM ECC Control Register
0x340C	SYSCFG_RADIO- RAMCTRL_TGL	RW	RADIO RAM Control Register
0x3410	SYSCFG_SEQRAMEC- CADDR_TGL	RH	SEQRAM ECC Error Address Register

Offset	Name	Туре	Description
0x3414	SYSCFG_FRCRAMEC- CADDR_TGL	RH	FRCRAM ECC Error Address Register

6.6.9 Register Description

6.6.9.1 SYSCFG_IF - Interrupt Flag Register

Offset															Ві	it Po	ositi	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		'	0x0	0x0		'	0x0	0x0			'			•	0x0	0x0		'	•	'					'		•		0×0	0x0	0x0	0x0
Access			Z.	₩ M			₩ M	Z M							₩ M	Z.													% M	₩ M	₩ M	A M
Name			FRCRAMERR2BIF	FRCRAMERR1BIF			SEQRAMERR2B	SEQRAMERR1B							RAMERR2B	RAMERR1B													SW3	SW2	SW1	SW0

Bit	Name	Reset	Access	Description
31:30	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
29	FRCRAMERR2BIF	0x0	RW	FRCRAM 2-bit ECC Error Interrupt flag
	FRCRAM 2-bit ECC Erro	or Interrupt fla	g.	
28	FRCRAMERR1BIF	0x0	RW	FRCRAM 1-bit ECC Error Interrupt flag
	FRCRAM 1-bit ECC Erro	or Interrupt fla	g.	
27:26	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
25	SEQRAMERR2B	0x0	RW	SEQRAM 2-bit ECC Error Interrupt flag
	SEQRAM 2-bit ECC Err	or Interrupt fla	ıg.	
24	SEQRAMERR1B	0x0	RW	SEQRAM 1-bit ECC Error Interrupt flag
	SEQRAM 1-bit ECC Err	or Interrupt fla	ıg.	
23:18	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
17	RAMERR2B	0x0	RW	RAM 2-bit ECC Error Interrupt flag
	RAM 2-bit ECC Error Int	errupt flag.		
16	RAMERR1B	0x0	RW	RAM 1-bit ECC Error Interrupt flag
	RAM 1-bit ECC Error Int	errupt flag.		
15:4	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
3	SW3	0x0	RW	Software Interrupt 3
	Software interrupts			
2	SW2	0x0	RW	Software Interrupt 2
	Software interrupts			
1	SW1	0x0	RW	Software Interrupt 1
	Software interrupts			

Bit	Name	Reset	Access	Description
0	SW0	0x0	RW	Software Interrupt 0
	Software interrupts			

6.6.9.2 SYSCFG_IEN - Interrupt Enable Register

Offset															Ві	it Po	ositi	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•	000	000		•	0×0	0x0							000	0x0		•							•	•	•	•	000	0x0	000	0x0
Access			RW	RW			S.	RW							R W	RW													₩ M	RW	RW W	RW
Name			FRCRAMERR2BIEN	FRCRAMERR1BIEN			SEQRAMERR2B	SEQRAMERR1B							RAMERR2B	RAMERR1B													SW3	SW2	SW1	SW0

Bit	Name	Reset	Access	Description
31:30	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
29	FRCRAMERR2BIEN	0x0	RW	FRCRAM 2-bit ECC Error Interrupt enable
	Set to enable the FRCF	RAM2ERR2BIF	- Interrupt	
28	FRCRAMERR1BIEN	0x0	RW	FRCRAM 1-bit ECC Error Interrupt enable
	Set to enable the FRCF	RAM2ERR1BIF	- Interrupt	
27:26	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
25	SEQRAMERR2B	0x0	RW	SEQRAM 2-bit ECC Error Interrupt enable
	Set to enable the SEQF	RAM2ERR2BIF	- Interrupt	
24	SEQRAMERR1B	0x0	RW	SEQRAM 1-bit ECC Error Interrupt enable
	Set to enable the SEQF	RAM2ERR1BIF	- Interrupt	
23:18	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
17	RAMERR2B	0x0	RW	RAM 2-bit ECC Error Interrupt enable
	Set to enable the RAME	ERR2BIF Inter	rupt	
16	RAMERR1B	0x0	RW	RAM 1-bit ECC Error Interrupt enable
	Set to enable the RAME	ERR1BIF Inter	rupt	
15:4	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
3	SW3	0x0	RW	Software interrupt 3
	Set to enable the Softw	are Interrupts		
2	SW2	0x0	RW	Software interrupt 2
	Set to enable the Softw	are Interrupts		
1	SW1	0x0	RW	Software interrupt 1
	Set to enable the Softw	are Interrupts		
0	SW0	0x0	RW	Software interrupt 0

Bit	Name	Reset	Access	Description
	Set to enable the Softwa	re Interrupts		

6.6.9.3 SYSCFG_CHIPREVHW - Hardwired Chip Rev values

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	တ	8	7	9	5	4	က	2	_	0
Reset			•		•									•	•	2	2						2		•				,	OX O		
Access																<u> </u>							2	<u>}</u>					2	<u>}</u>		
Name																QCINIM							> 174	L AIMIL						200		

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensur ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:12	MINOR	0x0	RW	Chip Rev Minor value
	Hardwired Chip R	evision Minor sigr	nal value	
11:6	FAMILY	0x0	RW	Chip Family value
	Hardwired Chip Fa	amily signal value		
5:0	MAJOR	0x0	RW	Chip Rev Major value
	Hardwired Chip R	evision Major sigr	nal value	

6.6.9.4 SYSCFG_CHIPREV - Part Family and Revision values

Offset															Bi	t Po	sitio	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	တ	∞	7	9	5	4	က	2	_	0
Reset			•		•	•			•							2	2						,	OX O					2	200		
Access																20	2						2	<u> </u>					2	<u>}</u>		
Name																							> 1840							Y OF Y		

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensur ventions	e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
19:12	MINOR	0x0	RW	Part Revision Minor value
	Part Revision Minor va	lue		
11:6	FAMILY	0x0	RW	Part Family value
	Part Family value			
5:0	MAJOR	0x0	RW	Part Revision Major value
	Part Revision Major va	lue		

6.6.9.5 SYSCFG_CTRL - Memory System Control Register

Offset															Bi	t Po	siti	on														
0x200	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	-	0
Reset			•				•		•		•					•		•								•	×		•			0x1
Access																											₽					RW
Name																											RAMECCERRFAULTEN					ADDRFAULTEN

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure c	ompatibility with	future devices, always write bits to 0. More information in 1.2 Con-
5	RAMECCERRFAULTEN	0x1	RW	Two bit ECC Error Bus Fault Response Enable
	When this bit is set, bus f	aults are gen	erated if 2-bit E	CC error occurs
4:1	Reserved	To ensure c	ompatibility with	future devices, always write bits to 0. More information in 1.2 Con-
0	ADDRFAULTEN	0x1	RW	Invalid Address Bus Fault Response Enable
	When this bit is set, bus f	aults are gen	erated on acces	sses to unmapped parts of system and code address space

6.6.9.6 SYSCFG_DMEM0RETNCTRL - DMEM retention Control Register

Offset															Bi	t Po	siti	on														
0x208	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•	•			•	•			•												•	•					•	000		
Access																														₩ M		
Name																														RAMRETNCTRL		

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
4:0	RAMRETNCTRL	0x0	RW	DMEM0 blockset retention control
	DMEM0 RAM blockse	et retention cont	trols in EM23 w	ith full access in EM01. Block 0 may never be powered down.
	Value	Mode		Description
	0	ALLON		None of the RAM blocks powered down
	16	BLK5		Power down RAM block 5 (address range 0x20014000-0x20017FFF)
	24	BLK4TO5		Power down RAM blocks 4 and above (address range 0x20010000-0x20017FFF)
	28	BLK3TO5		Power down RAM blocks 3 and above (address range 0x2000C000-0x20017FFF)
	30	BLK2TO5		Power down RAM blocks 2 and above (address range 0x20008000-0x20017FFF)
	31	BLK1TO5		Power down RAM blocks 1 and above (address range 0x20004000-0x20017FFF)

6.6.9.7 SYSCFG_DMEM0ECCADDR - DMEM ECC Error Address Register

Offset															Bi	t Po	siti	on														
0x210	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	5	4	က	7	_	0
Reset							•						•			2	3					•					•		•			
Access																۵	۷															
Name																	NO PONITION OF THE PONITION OF															

Bit	Name	Reset	Access	Description									
31:0	DMEM0ECCADDR	0x0	R	DMEM0 RAM ECC Error Address									
	Indicates address of SysRAM banks at which ECC error occured												

6.6.9.8 SYSCFG_DMEM0ECCCTRL - DMEM ECC Control Register

Offset															Bi	t Po	siti	on														
0x214	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	7	_	0
Reset			'	•			•				•				•									'	•	'				•	0x0	0x0
Access																															RW	R M
Name																															RAMECCCHKEN	RAMECCEWEN

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1	RAMECCCHKEN	0x0	RW	RAM ECC Check Enable
	RAM ECC Check Enable) .		
0	RAMECCEWEN	0x0	RW	RAM ECC Write Enable
	RAM ECC Write Enable,	when set EC	C is enabled	

6.6.9.9 SYSCFG_DMEM0RAMCTRL - DMEM Control enable Register

Offset	Bit Position		
0x218	3 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 +	0
Reset		0x0	0x0
Access		RW RW	RW
Name		RAMPREFETCHEN RAMWSEN	RAMCACHEEN

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure ventions	compatibility w	with future devices, always write bits to 0. More information in 1.2 Con-
2	RAMPREFETCHEN	0x0	RW	RAM Prfetch Enable
	RAM Prefectch Enable.	Setting this b	oit will enable p	refetch access on RAM data.
1	RAMWSEN	0x0	RW	RAM WAIT STATE Enable
	When set adds a wait s	tate to DMEM	10 accesses.	
0	RAMCACHEEN	0x0	RW	RAM CACHE Enable
	RAM CACHE Enable, v	hen this bit is	s set the built-in	4-word buffer of RAM is enabled

6.6.9.10 SYSCFG_RADIORAMRETNCTRL - RADIO RAM Retention Control Register

Offset															Ві	t Po	siti	on														
0x400	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	1	0
Reset		•	•		•		•	•	•			•			•	•						•		000				•	•			0x0
Access																								Z.								RW
Name																								FRCRAMRETNCTRL								SEQRAMRETNCTRL

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
8	FRCRAMRETNCTRL	0x0	RW	FRCRAM Memory Shutdown Control Register
	FRC RAM power-down	in EM23 with	full access in EM	101
	Value	Mode		Description
	0	ALLON		FRCRAM not powered down
	1	FRCBLK		Power down FRCRAM (address range 0x50002000-0x50002FFF)
7:1	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
0	SEQRAMRETNCTRL	0x0	RW	SEQRAM Memory Shutdown Control Register
	SEQUENCER RAM pov	ver-down in E	M23 with full acc	cess in EM01
	Value	Mode		Description
	0	ALLON		SEQRAM not powered down
	1	SEQBLK		Power down SEQRAM (address range 0x50000000-0x50001FFF)

6.6.9.11 SYSCFG_RADIOECCCTRL - RADIO RAM ECC Control Register

Offset		Bit Position																														
0x408	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	0	8	7	9	5	4	က	2	_	0
Reset			•	•	•		•	•		•					•	•	•	•					0X0	0X0			•				0X0	0x0
Access																							₽	₽							Z.	S N
Name																							FRCRAMECCCHKEN	FRCRAMECCEWEN							SEQRAMECCCHKEN	SEQRAMECCEWEN

Bit	Name	Reset	Access	Description							
31:10	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-							
9	FRCRAMECCCHKEN	0x0	RW	FRCRAM ECC Check Enable							
	FRCRAM ECC Check E	RCRAM ECC Check Enable.									
8	FRCRAMECCEWEN	0x0	RW	FRCRAM ECC Write Enable							
	FRCRAM ECC Write En	able, when se	et ECC is enable	ed .							
7:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-							
1	SEQRAMECCCHKEN	0x0	RW	SEQRAM ECC Check Enable							
	SEQRAM ECC Check Enable.										
0	SEQRAMECCEWEN	0x0	RW	SEQRAM ECC Write Enable							
	SEQRAM ECC Write En	able, when se	et ECC is enable	ed							

6.6.9.12 SYSCFG_RADIORAMCTRL - RADIO RAM Control Register

Offset	Bit Position		
0x40C	3 3 4 5 5 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 - 0	0
Reset	000000000000000000000000000000000000000	000 000	0X 0
Access	X X X X	W W	<u>×</u>
Name	DRAMCACHEEN AMWSEN AMCACHEEN	SEQRAMPREFETCHEN SEQRAMWSEN	SEQRAMCACHEEN

Bit	Name	Reset	Access	Description
				·
31:25	Reserved	ventions	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
24	DEMODRAMCACHEEN	0x0	RW	DEMODRAM CACHE Enable
	DEMODRAM CACHE En	able, when s	et the built-in 4-	word buffer of RAM is enabled
23:19	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
18	FRCRAMPREFETCH- EN	0x0	RW	FRCRAM Prfetch Enable
	FRCRAM Prefectch Enal	ole. Setting th	is bit will enable	prefetch access on SEQRAM data.
17	FRCRAMWSEN	0x0	RW	FRCRAM WAIT STATE Enable
	Setting this bit will add a	wait state to F	RCRAM acces	ses.
16	FRCRAMCACHEEN	0x0	RW	FRCRAM CACHE Enable
	FRCRAM CACHE Enable	e, when set th	ne builtin 4-word	buffer of RAM is enabled
15:3	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
2	SEQRAMPREFETCH- EN	0x0	RW	SEQRAM Prfetch Enable
	SEQRAM Prefectch Enal	ole. Setting th	is bit will enable	prefetch access on SEQRAM data.
1	SEQRAMWSEN	0x0	RW	SEQRAM WAIT STATE Enable
	Setting this bit will add wa	ait state to SE	WRAM accesse	es.
0	SEQRAMCACHEEN	0x0	RW	SEQRAM CACHE Enable
	SEQRAM CACHE Enable	e, when set th	ne builtin 4-word	buffer of RAM is enabled

6.6.9.13 SYSCFG_SEQRAMECCADDR - SEQRAM ECC Error Address Register

Offset	Bit Position								
0x410	31 30 30 30 30 30 30 30 30 30 30 30 30 30								
Reset	000								
Access	α								
Name	SEQRAMECCADDR								

Bit	Name	Reset	Access	Description					
31:0	SEQRAMECCADDR	0x0	R	SEQRAM ECC Error Address					
	Indicates Address of SEQRAM at which ECC error occured								

6.6.9.14 SYSCFG_FRCRAMECCADDR - FRCRAM ECC Error Address Register

Offset	Bit Position
0x414	1 1
Reset	0×0
Access	α
Name	FRCRAMECCADDR

Bit	Name	Reset	Access	Description					
31:0	FRCRAMECCADDR	0x0	R	FRCRAM ECC Error Address					
	Indicates Address of FRCRAM at which ECC error occured								

6.7 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	MSC_IPVERSION	R	IP version ID
0x008	MSC_READCTRL	RW	Read Control Register
0x00C	MSC_WRITECTRL	RW	Write Control Register
0x010	MSC_WRITECMD	W	Write Command Register
0x014	MSC_ADDRB	RW	Page Erase/Write Address Buffer
0x018	MSC_WDATA	RW	Write Data Register
0x01C	MSC_STATUS	RH	Status Register
0x020	MSC_IF	RWH	Interrupt Flag Register
0x024	MSC_IEN	RW	Interrupt Enable Register
0x034	MSC_USERDATASIZE	R	user data regsion size
0x038	MSC_CMD	W	Command Register
0x03C	MSC_LOCK	W	Configuration Lock Register
0x040	MSC_MISCLOCKWORD	RW	Mass erase and User data page lock word
0x120	MSC_PAGELOCK0	RW	Main space page 0-31 lock word
0x124	MSC_PAGELOCK1	RW	Main space page 32-63 lock word
0x128	MSC_PAGELOCK2	RW	Main space page 64-95 lock word
0x12C	MSC_PAGELOCK3	RW	Main space page 96-127 lock word
0x1A0	MSC_TESTCTRL	RW	Flash test control register
0x1000	MSC_IPVERSION_SET	R	IP version ID
0x1008	MSC_READCTRL_SET	RW	Read Control Register
0x100C	MSC_WRITECTRL_SET	RW	Write Control Register
0x1010	MSC_WRITECMD_SET	W	Write Command Register
0x1014	MSC_ADDRB_SET	RW	Page Erase/Write Address Buffer
0x1018	MSC_WDATA_SET	RW	Write Data Register
0x101C	MSC_STATUS_SET	RH	Status Register
0x1020	MSC_IF_SET	RWH	Interrupt Flag Register
0x1024	MSC_IEN_SET	RW	Interrupt Enable Register
0x1034	MSC_USERDATASIZE_SET	R	user data regsion size
0x1038	MSC_CMD_SET	W	Command Register
0x103C	MSC_LOCK_SET	W	Configuration Lock Register
0x1040	MSC_MISCLOCKWORD_SET	RW	Mass erase and User data page lock word
0x1120	MSC_PAGELOCK0_SET	RW	Main space page 0-31 lock word
0x1124	MSC_PAGELOCK1_SET	RW	Main space page 32-63 lock word
0x1128	MSC_PAGELOCK2_SET	RW	Main space page 64-95 lock word
0x112C	MSC_PAGELOCK3_SET	RW	Main space page 96-127 lock word

Offset	Name	Туре	Description
0x11A0	MSC_TESTCTRL_SET	RW	Flash test control register
0x2000	MSC_IPVERSION_CLR	R	IP version ID
0x2008	MSC_READCTRL_CLR	RW	Read Control Register
0x200C	MSC_WRITECTRL_CLR	RW	Write Control Register
0x2010	MSC_WRITECMD_CLR	W	Write Command Register
0x2014	MSC_ADDRB_CLR	RW	Page Erase/Write Address Buffer
0x2018	MSC_WDATA_CLR	RW	Write Data Register
0x201C	MSC_STATUS_CLR	RH	Status Register
0x2020	MSC_IF_CLR	RWH	Interrupt Flag Register
0x2024	MSC_IEN_CLR	RW	Interrupt Enable Register
0x2034	MSC_USERDATASIZE_CLR	R	user data regsion size
0x2038	MSC_CMD_CLR	W	Command Register
0x203C	MSC_LOCK_CLR	W	Configuration Lock Register
0x2040	MSC_MISCLOCKWORD_CLR	RW	Mass erase and User data page lock word
0x2120	MSC_PAGELOCK0_CLR	RW	Main space page 0-31 lock word
0x2124	MSC_PAGELOCK1_CLR	RW	Main space page 32-63 lock word
0x2128	MSC_PAGELOCK2_CLR	RW	Main space page 64-95 lock word
0x212C	MSC_PAGELOCK3_CLR	RW	Main space page 96-127 lock word
0x21A0	MSC_TESTCTRL_CLR	RW	Flash test control register
0x3000	MSC_IPVERSION_TGL	R	IP version ID
0x3008	MSC_READCTRL_TGL	RW	Read Control Register
0x300C	MSC_WRITECTRL_TGL	RW	Write Control Register
0x3010	MSC_WRITECMD_TGL	W	Write Command Register
0x3014	MSC_ADDRB_TGL	RW	Page Erase/Write Address Buffer
0x3018	MSC_WDATA_TGL	RW	Write Data Register
0x301C	MSC_STATUS_TGL	RH	Status Register
0x3020	MSC_IF_TGL	RWH	Interrupt Flag Register
0x3024	MSC_IEN_TGL	RW	Interrupt Enable Register
0x3034	MSC_USERDATASIZE_TGL	R	user data regsion size
0x3038	MSC_CMD_TGL	W	Command Register
0x303C	MSC_LOCK_TGL	W	Configuration Lock Register
0x3040	MSC_MISCLOCKWORD_TGL	RW	Mass erase and User data page lock word
0x3120	MSC_PAGELOCK0_TGL	RW	Main space page 0-31 lock word
0x3124	MSC_PAGELOCK1_TGL	RW	Main space page 32-63 lock word
0x3128	MSC_PAGELOCK2_TGL	RW	Main space page 64-95 lock word
0x312C	MSC_PAGELOCK3_TGL	RW	Main space page 96-127 lock word
0x31A0	MSC_TESTCTRL_TGL	RW	Flash test control register

6.8 Register Description

6.8.1 MSC_IPVERSION - IP version ID

Offset	Bit Position										
0x000	3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4										
Reset	000000000000000000000000000000000000000										
Access											
Name	IPVERSION										

Bit	Name	Reset	Access	Description
31:0	IPVERSION	0x0	R	IP Version ID
	The read only IPVERSION modules with different v			this module. There may be minor software changes required for

6.8.2 MSC_READCTRL - Read Control Register

Offset		Bit Position																										
0x008	30 30 30 30 30 30 30 30 30 30 30 30 30 3						21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	-	0
Reset					5	NX C								000							•		•					
Access					2	<u>}</u>						₩ W																
Name							U C	<u>М</u>								DOUTBUFEN												

Bit	Name	Reset	Access	Description							
31:22	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-							
21:20	MODE 0x2 RW			Read Mode							
	switched to the h	igher frequency. Wh	nen changing to	must be set to a large number of wait states before the core clock is o a lower frequency, this register should be set to a lower number of completed The maximum frequency for each wait state setting is listed							
	Value	Mode		Description							

	Value	Mode		Description
	0	WS0		Zero wait-states inserted in fetch or read transfers
	1	WS1		One wait-state inserted for each fetch or read transfer.
	2	WS2		Two wait-states inserted for eatch fetch or read transfer.
	3	WS3		Three wait-states inserted for eatch fetch or read transfer.
19:13	Reserved	To ensur		with future devices, always write bits to 0. More information in 1.2 Con-
12	DOUTBUFEN	0x0	RW	Flash dout pipeline buffer enable

Flash dout buffer prefetch enable. Once disabled, every read will be a new flash read operation, even the new read from the same flash entry as previous read (prefetch hit).

11:0	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Con-
		ventions

6.8.3 MSC_WRITECTRL - Write Control Register

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	1	0
Reset																													000		0x0	0x0
Access																													W.		RW	RW
Name																													LPWRITE		IRQERASEABORT	WREN

Bit	Name	Reset	Access	Description									
31:4	Reserved	To ensure ventions	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions										
3	LPWRITE	0x0	0x0 RW Low-Power Erase										
	When set, write times m	et, write times might double while reducing current consumption											
2	Reserved	To ensure ventions	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions										
1	IRQERASEABORT	0x0	RW	Abort Page Erase on Interrupt									
	When this bit is set to 1, any Cortex-M33 interrupt aborts any current page erase operation. Executing that interrupt vector from Flash will halt the CPU.												
0	WREN	0x0 RW Enable Write/Erase Controller											
	When this bit is set, the MSC write and erase functionality is enabled												

6.8.4 MSC_WRITECMD - Write Command Register

Offset	Bit Position								
0x010	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Reset		000 000 000							
Access		> > >							
Name		CLEARWDATA ERASEABORT WRITEEND ERASEPAGE							

Bit	Name	Reset	Access	Description								
31:13	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-								
12	CLEARWDATA	0x0	W	Clear WDATA state								
	Will set WDATAREADY	and DMA req	d DMA request. Should only be used when no write is active.									
11:6	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-								
5	ERASEABORT	0x0	W	Abort erase sequence								
	Writing to this bit will abort an ongoing erase sequence.											
4:3	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-								
2	WRITEEND	0x0	W	End Write Mode								
	Write 1 to abort a write of	ommand.										
1	ERASEPAGE	0x0	W	Erase Page								
	Erase any user defined page selected by the MSC_ADDRB register. The WREN bit in the MSC_WRITECTRL register must be set in order to use this command.											
0	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-								

6.8.5 MSC_ADDRB - Page Erase/Write Address Buffer

Offset	Bit Position										
0x014	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Reset	OXO										
Access	<u>₹</u>										
Name	ADDRB R										

Bit	Name	Reset	Access	Description						
31:0	ADDRB	0x0	RW	Page Erase or Write Address Buffer						
	This register holds the page address for the erase or write operation. This register is loaded into the internal MSC.									

This register holds the page address for the erase or write operation. This register is loaded into the internal MSC_ADDR register when the LADDRIM field in MSC_CMD is set.

6.8.6 MSC_WDATA - Write Data Register

Offset															Bi	t Pc	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		OX O																														
Access		W 0×0																														
Name																Y V	^^ *															

Bit	Name	Reset	Access	Description
31:0	DATAW	0x0	RW	Write Data
	The data to be written to MSC_STATUS is set. The			This register must be written when the WDATAREADY bit of write mask.

6.8.7 MSC_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	2	4	က	7	_	0
Reset		2	OXO		0x1					l.	'					0x0								'		0x0	0x0	0x0	0x1	0x0	0x0	0x0
Access		۵	۷		2											2										2	22	22	22	2	2	22
Name			TWACTCABUTAILCOOM		WREADY											REGLOCK										TIMEOUT	PENDING	ERASEABORTED	WDATAREADY	INVADDR	LOCKED	BUSY

Bit	Name	Reset	Access	Description
31:28	PWRUPCKBDFAIL- COUNT	0x0	R	Flash power up checkerboard pattern chec
	This field tells how mar	ny times chec	kboard pattern	check fail occured after a reset sequence.
27	WREADY	0x1	R	Flash Write Ready
	When this bit is set, flas	sh completes	the power up s	equence and ready for write/erase command.
26:17	Reserved	To ensure ventions	e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
16	REGLOCK	0x0	R	Register Lock Status
	Indicates the current st	atus of regist	er lock	
	Value	Mode		Description
	0	UNLOCK	ED	
	1	LOCKED		
15:7	Reserved	To ensure	e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
6	TIMEOUT	0x0	R	Write command timeout flag
	Flag indicates the lates cessed.	t write comm	and completes	with data buffer timeout. Bit cleared when new write command pro-
5	PENDING	0x0	R	Write command is in queue
	When set, write comma	and is pendin	g and waiting fo	or previous write/erase sequence to finish. New commands are ignor-
4	ERASEABORTED	0x0	R	The Current Flash Erase Operation Aborted
	When set, the current e	erase operation	on was aborted	by interrupt.
3	WDATAREADY	0x1	R	WDATA Write Ready
				read by MSC Flash Write Controller and the register may be updated bit is cleared when writing to MSC_WDATA.

Bit	Name	Reset	Access	Description
	Set when software	e attempts to load	an invalid (unm	napped) address into ADDR
1	LOCKED	0x0	R	Access Locked
	When set, the last	t erase or write is a	borted due to	erase/write access constraints
0	BUSY	0x0	R	Erase/Write Busy
	When set, an eras	se or write operation	n is in progres	s and new commands are ignored

6.8.8 MSC_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	7	_	0
Reset																								000						0x0	000	0x0
Access																								R ≪						₽	₽	RW
Name																								PWRUPF						WDATAOV	WRITE	ERASE

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
8	PWRUPF	0x0	RW	Flash Power Up Sequence Complete Flag
	Set after MSC_CMD.PW	RUP received	d, flash power u	p completed and ready for read/write
7:3	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
2	WDATAOV	0x0	RW	Host write buffer overflow
	If set, flash controller wri	te buffer over	flow detected	
1	WRITE	0x0	RW	Host Write Done Interrupt Read Flag
	Set when a write is done			
0	ERASE	0x0	RW	Host Erase Done Interrupt Read Flag
	Set when erase is done			

6.8.9 MSC_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x024	31	33	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	∞	7	9	2	4	က	7	_	0
Reset			•																					000		•				0x0	000	0x0
Access																								Z.						W.	₩ M	RW
Name																								PWRUPF						WDATAOV	WRITE	ERASE

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure o	compatibility witi	n future devices, always write bits to 0. More information in 1.2 Con-
8	PWRUPF	0x0	RW	Flash Power Up Sequence Complete
	enable flash powerup do	one interrupt		
7:3	Reserved	To ensure o	compatibility witi	n future devices, always write bits to 0. More information in 1.2 Con-
2	WDATAOV	0x0	RW	write data buffer overflow irq enable
	enable write data buffer	overflow inter	rupt	
1	WRITE	0x0	RW	Write Done Interrupt enable
	enable write done interru	upt		
0	ERASE	0x0	RW	Erase Done Interrupt enable
	enable erase done inter	rupt		

6.8.10 MSC_USERDATASIZE - user data regsion size

Offset															Ві	it Po	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset		•		•		•					•	•	•		•	•	•		•					•		•			2	2X0		
Access																														r		
Name																													L	USEKDALASIZE		

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
5:0	USERDATASIZE	0x4	R	User Data Size
	This field determines use	er data region	size. SIZE = 25	56B * USERDATASIZE.

6.8.11 MSC_CMD - Command Register

Offset															Bi	t Po	siti	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	11	10	တ	8	7	9	5	4	က	2	_	0
Reset								•				•			•		•							•	•	•	•					0x0
Access																																>
Name																																PWRUP

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
0	PWRUP	0x0	W	Flash Power Up Command
	Write to this bit to power	up the Flash.	IRQ PWRUPF	will be fired when the power up sequence is completed.

6.8.12 MSC_LOCK - Configuration Lock Register

Offset															Bi	t Po	siti	on														
0x03C	31	30	53	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	=	9	6	8	7	9	5	4	က	2	_	0
Reset) X							
Access																								3	≥							
Name																								ĺ	KKEY							
Name																								-								

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensur ventions	, ,	with future devices, always write bits to 0. More information in 1.2 Con-
15:0	LOCKKEY	0x0	W	Configuration Lock
				access to MSC_CTRL, MSC_READCTRL, MSC_WRITECTRL. Write the register, bit 0 is set when the lock is enabled.
	the unlock code to	enable access. \		the register, bit 0 is set when the lock is enabled.

6.8.13 MSC_MISCLOCKWORD - Mass erase lock word

Offset	Bit Position	
0x040	31 31 32 33 33 33 34 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36	0
Reset		0X0
Access		X
Name		MELOCKBIT

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
0	MELOCKBIT	0x0	RW	Mass Erase Lock
	If zero mass erase is en	abled. Only th	ne SE may clear	these bits; therefore only the SE can initiate a mass erase.

6.8.14 MSC_PAGELOCK0 - Main space page 0-31 lock word

Offset															Bi	t Po	sitio	on														
0x120	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	စ	∞	7	9	2	4	က	2	_	0
Reset																2	3															
Access																2	<u>}</u>															
Name																FIGNO	LOCABIL															

Bit	Name	Reset	Access	Description
31:0	LOCKBIT	0x0	RW	page lock bit
	•	nds to page (rased. Setting a bit will prevent corresponding page from being page 1 bit[31] for page 31. These bits may only be set. A reset is

6.8.15 MSC_PAGELOCK1 - Main space page 32-63 lock word

Offset															Bi	t Po	sitio	on														
0x124	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	ω	7	9	2	4	က	2	_	0
Reset		ος ο ω ω ω ω ω ω ω ω ω																														
Access																2	<u>}</u>															
Name																FIGNOCI	LOCABI															

Bit	Name	Reset	Access	Description
31:0	LOCKBIT	0x0	RW	page lock bit

Zero means the corresponding page can be written/erased. Setting a bit will prevent corresponding page from being modified. Bit[0] corresponds to page 32, and bit[1] for page 33... bit[31] for page 63. These bits may only be set. A reset is required to clear the register.

6.8.16 MSC_PAGELOCK2 - Main space page 64-95 lock word

Offset															Bi	t Po	sitio	on														
0x128	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Reset							•		•				•			2	3			•												
Access																2	2															
Name																FIGNO																

Bit	Name	Reset	Access	Description
31:0	LOCKBIT	0x0	RW	page lock bit

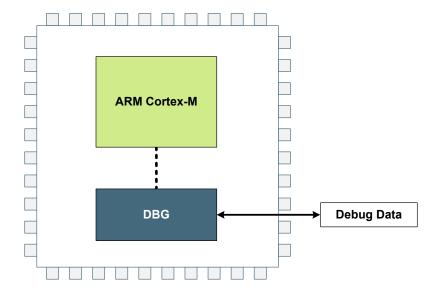
Zero means the corresponding page can be written/erased. Setting a bit will prevent corresponding page from being modified. Bit[0] corresponds to page 64, and bit[1] for page 65... bit[31] for page 95. These bits may only be set. A reset is required to clear the register.

6.8.17 MSC_PAGELOCK3 - Main space page 96-127 lock word

Offset	Bit Position	
0x12C	1 1 <th>. 0</th>	. 0
Reset	000	
Access	. See See See See See See See See See Se	
Name	LOCKBIT	

Bit	Name	Reset	Access	Description
31:0	LOCKBIT	0x0	RW	page lock bit

Zero means the corresponding page can be written/erased. Setting a bit will prevent corresponding page from being modified. Bit[0] corresponds to page 96, and bit[1] for page 97... bit[31] for page 127. These bits may only be set. A reset is required to clear the register.


6.8.18 MSC_TESTCTRL - Flash test control register

Offset															Bi	t Po	siti	on														
0x1A0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset			'				'		000			•	•			'		'	•	'				•		'	'		'			
Access									₩ W																							
Name									XADRINC																							
									×																							

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure ventions	e compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
23	XADRINC	0x0	RW	Pattern check XADR Inc Mode
	X address Increment			
	Value	Mode		Description
	0	ONE		
	1	TWO		
22:0	Reserved	To ensure	e compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-

7. DBG - Debug Interface

Quick Facts

What?

The Debug Interface is used to program and debug EFR32xG21 devices.

Why?

The Debug Interface makes it easy to re-program and update the system in the field, and allows debugging with minimal I/O pin usage.

How?

The Cortex-M33 supports advanced debugging features. EFR32xG21 devices can use a minimum of two port pins for debugging or programming. The internal and external state of the system can be examined with debug extensions supporting instruction or data access break and watch points.

7.1 Introduction

The EFR32xG21 devices include hardware debug support through a 2-pin serial-wire debug (SWD) interface or a 4-pin Joint Test Action Group (JTAG) interface, as well as an Embedded Trace Module (ETM) for data/instruction tracing. In addition, there is also a Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages.

For more technical information about the debug interface the reader is referred to:

- · ARM Cortex-M33 Technical Reference Manual
- · ARM CoreSight Components Technical Reference Manual
- ARM Debug Interface v5 Architecture Specification
- IEEE Standard for Test Access Port and Boundary-Scan Architecture, IEEE 1149.1-2013

7.2 Features

- Debug Access Port Serial Wire JTAG (DAPSWJ)
 - · Implements the ADIv5 debug interface
- ARM Trustzone
 - · Enables secure debugging
- · Breakpoint unit (BPU)
 - · Implement up to 8 hardware breakpoints
- · Data Watch point and Trace (DWT) unit
 - · Implement up to 4 watch points, trigger resources and system profiling
- Instrumentation Trace Macrocell (ITM)
 - Application-driven trace source that supports printf style debugging
- Embedded Trace Macrocell v3.5 (ETM)
 - Real time instruction and data trace information of the processor
- · Cross Trigger Interface (CTI)
 - · Issues synchronous triggers based on system events
 - · Can be used to generate IRQs or route to PRS signalling

7.3 Functional Description

There are debug and trace pins available on the device. Operation of these pins is described in the following sections.

7.3.1 Debug Pins

The following pins are the debug connections for the device:

- Serial Wire Clock Input and Test Clock Input (SWCLKTCK) (SWCLK): This pin is enabled after power-up and has a built-in pull-down.
- Serial Wire Data Input/Output and Test Mode Select Input (SWDIOTMS) (SWDIO): This pin is enabled after power-up and has a built-in pull-up.
- Test Data Output (TDO): This pin is assigned to JTAG functionality after power-up. However, it remains in high-Z state until the first valid JTAG command is received.
- Test Data Input (TDI): This pin is assigned to JTAG functionality after power-up. However, it remains in high-Z state until the first valid JTAG command is received. Once enabled, the pin has a built-in pull-up.
- · Serial Wire Viewer (SWV): This pin is disabled after reset.

The debug pins have integrated pull devices that are enabled by default after a reset. Leaving them enabled may increase current consumption if the pins are connected to power or ground. The debug pins have enable bits in the GPIO_DBGROUTEPEN register; refer to the GPIO chapter for more details. Upon disabling the debug pins, debug contact with the device is lost once the DAPSWJ power request bits are deasserted. By default after a power cycle, the DAPSWJ is in JTAG mode. If during a debugging session the device is switched to SWD mode, a power cycle is needed to return to JTAG mode.

7.3.2 Embedded Trace Macrocell V3.5 (ETM)

ETM makes it possible to non-intrusively trace both instruction and data from the processor in real time. Trace can be controlled through a set of triggering and filtering resources. The resources include 4 address comparators, 2 data value comparators, 2 counters, a context ID comparator and a sequencer. Before enabling the ETM, the CMU_TRACECLKCTRL register must be configured to select the desired trace clock source. (See the CMU chapter for details.)

The trace can be exported through a set of trace pins, which include:

- Trace Clock (TCLK): Functions as a sample clock for the trace. This pin is disabled after reset.
- Trace Data 0 (TD0): The trace data pin provides the compressed trace stream. This pin is disabled after reset.

For information on how to configure the ETM, see the ARM Embedded Trace Macrocell Architecture Specification. The Trace Clock and Trace Data pins are enabled through a GPIO register. For more information on how to enable the ETM pins, refer to the GPIO chapter.

7.3.3 Debug and EM2/EM3

Debug connectivity in EM2 and EM3 is unavailable by default, to reduce current consumption. Debugging through EM2 and EM3 can be enabled by setting the EM2DBGEN bit in the EMU_CTRL register. Setting EM2DBGEN ensures that power domain associated with the debug circuitry will remain active, but will result in a small amount of additional current in EM2 and EM3.

Leaving the debugger connected when issuing a WFI or WFE to enter EM2 or EM3 will make the system enter a special EM2 mode. This mode differs from regular EM2 and EM3 in that the high frequency clocks are still enabled, and certain core functionality is still powered in order to maintain debug functionality. Because of this, the current consumption in this mode is closer to EM1, and it is, therefore, important to deassert the power requests in the DAPSWJ and disconnect the debugger before undertaking current consumption measurements.

7.4 DBG Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x1000	DBG_DCIWDATA	RW	Write Data
0x1004	DBG_DCIRDATA	R	Read Data
0x1008	DBG_DCISTATUS	R	Status
0x10FC	DBG_DCIID	R	Identification
0x1110	DBG_SYSCOM0	R	Communication Status
0x1114	DBG_SYSCOM1	R	Communication Status
0x1120	DBG_SYSPWR0	R	Power Status
0x1130	DBG_SYSCLK0	R	Clocking Status
0x11FC	DBG_SYSID	R	Identification

7.5 DBG Register Description

7.5.1 DBG_DCIWDATA - Write Data

Offset															Bi	t Pc	sitio	on														
0x1000	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	1	10	6	œ	7	9	5	4	က	2	_	0
Reset																2	2															
Access																2	<u> </u>															
Name																V + V () V 1	Ţ Ţ															

Bit	Name	Reset	Access	Description
31:0	WDATA	0x0	RW	Challenge Write Data
	Data Sent to the Challen	ige Interface		

7.5.2 DBG_DCIRDATA - Read Data

Offset															Bi	t Po	sitio	on														
0x1004	31	30	29	28	27	26	25	24	23	22	21	20	9	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																2	2															
Access																۵	۲															
Name																\	ל ל ל ל															

Bit	Name	Reset	Access	Description
31:0	RDATA	0x0	R	Challenge Read Data
	Data Response from the	e Challenge Ir	nterface	

7.5.3 DBG_DCISTATUS - Status

Offset	Bit Position	
0x1008	30 30 30 30 30 30 30 30 30 30 30 30 30 3	8
Reset		000
Access		α
Name		RDATAVALID WPENDING

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure o	ompatibility with	future devices, always write bits to 0. More information in 1.2 Con-
8	RDATAVALID	0x0	R	Read Data Valid
	Response from the chall	enge interface	e is valid. Cleare	d on a read of DCIRDATA.
7:1	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
		ventions		
0	WPENDING	ventions 0x0	R	Write Pending

7.5.4 DBG_DCIID - Identification

Offset															Bi	t Po	siti	on														
0x10FC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	9	2	4	က	2	1	0
Reset																7,77	5															
Access																۵	צ															
Name																2	⊇															

Bit	Name	Reset	Access	Description
31:0	ID	0xDC11D	R	Identification
	Debug Challenge Interfa	ce ID		

7.5.5 DBG_SYSCOM0 - Communication Status

Offset															Ві	t Po	ositi	on														
0x1110	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset		•												0×0	000	0×0				Š) X				0x0	000	0×0	0x0	0×0	0x0	0x0	0x0
Access														œ	œ	22				٥	۲				2	œ	œ	22	œ	œ	œ	<u>~</u>
Name														RADIOSYNTHEN	RADIOPAEN	RADIOLNAEN					LDIMACHACI				I2C1BSY	I2C0BSY	USART2TXBSY	USART2RXBSY	USART1TXBSY	USART1RXBSY	USART0TXBSY	USARTORXBSY

Bit	Name	Reset	Access	Description
31:19	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
18	RADIOSYNTHEN	0x0	R	RADIO Synthesizer Enabled
	RF Synthesiszer Enable	ed for Radio T	X and RX	
17	RADIOPAEN	0x0	R	RADIO Power Amplifer Enabled
	RF Power Amplifer Ena	bled for Radio	TX	
16	RADIOLNAEN	0x0	R	RADIO Low Noise Amplifer Enabled
	RF Low Noise Amplifer	Enabled for F	Radio RX	
15:8	LDMACHACT	0x0	R	LDMA Channel Active
	Active LDMA Channels			
7	I2C1BSY	0x0	R	I2C1 Busy
	I2C1 Transaction in pro	gress		
6	I2C0BSY	0x0	R	I2C0 Busy
	I2C0 Transaction in pro	gress		
5	USART2TXBSY	0x0	R	USART2 Transmit Busy
	USART2 Transmit Activ	е		
4	USART2RXBSY	0x0	R	USART2 Receive Busy
	USART2 Receive Active	е		
3	USART1TXBSY	0x0	R	USART1 Transmit Busy
	USART1 Transmit Activ	e		
2	USART1RXBSY	0x0	R	USART1 Receive Busy
	USART1 Receive Active	е		
1	USART0TXBSY	0x0	R	USART0 Transmit Busy
	USART0 Transmit Activ	e		
0	USART0RXBSY	0x0	R	USART0 Receive Busy
	USART0 Receive Active	е		

7.5.6 DBG_SYSCOM1 - Communication Status

Offset															Bi	t Pos	tion															
0x1114	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	5 2	<u>-</u>	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset		0x0 26 25 23 23 23 24 22 25 25 25 25 25 25 25 25 25 25 25 25														2	2															
Access			α 0 0														۵															
Name						0	۲ ۲																5									

Bit	Name	Reset	Access	Description
31:20	PRS	0x0	R	Peripheral Reflex Signals
	Peripheral Reflex Signa	l Channel Va	lue	
19:0	GPIO	0x0	R	General Purpose Input
	General Purpose Input	Value		

7.5.7 DBG_SYSPWR0 - Power Status

Offset															Ві	t Po	siti	on														
0x1120	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset			'												'	<u>'</u>			000	0×0	0x0	000	0x0	000	0x0	0×0	000	000	0x0	0x0	0x0	0x0
Access																			2	2	<u>~</u>	œ	<u>~</u>	œ	œ	œ	œ	œ	œ	œ	œ	ď
Name																			RTNDRAM5	RTNDRAM4	RTNDRAM3	RTNDRAM2	RTNDRAM1	RTNDRAMO	VS2	VS1	NS0	EM3	EM2	EM1P	EM1	EMO

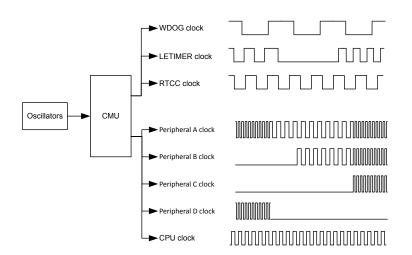
Bit	Name	Reset	Access	Description
31:14	Reserved	To ensure ventions	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
13	RTNDRAM5	0x0	R	Retained RAM5
	Retained RAM5 Instance			
12	RTNDRAM4	0x0	R	Retained RAM4
	Retained RAM4 Instance			
11	RTNDRAM3	0x0	R	Retained RAM3
	Retained RAM3 Instance			
10	RTNDRAM2	0x0	R	Retained RAM2
	Retained RAM2 Instance			
9	RTNDRAM1	0x0	R	Retained RAM1
	Retained RAM1 Instance			
8	RTNDRAM0	0x0	R	Retained RAM0
	Retained RAM0 Instance			
7	VS2	0x0	R	Voltage State 2
	System is in Voltage Stat	e 2		
6	VS1	0x0	R	Voltage State 1
	System is in Voltage Stat	e 1		
5	VS0	0x0	R	Voltage State 0
	System is in Voltage Stat	e 0		
4	EM3	0x0	R	Energy Mode 3
	System is in Energy Mod	e 3		
3	EM2	0x0	R	Energy Mode 2
	System is in Energy Mod	e 2		
2	EM1P	0x0	R	Energy Mode 1 Peripheral
	System is in Energy Mod	e 1 Periphei	ral	
1	EM1	0x0	R	Energy Mode 1
	System is in Energy Mod	e 1		

Bit	Name	Reset	Access	Description
0	EM0	0x0	R	Energy Mode 0
	System is in Energy Mod	de 0		

7.5.8 DBG_SYSCLK0 - Clocking Status

Offset															Bi	t Po	siti	on														
0x1130	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset			'	000	000	000	000	0x0	0x0	0x0	0X0	0x0	0×0	0X0	000	0×0	000	0×0	0x0	0X0	0x0	0×0	0x0	000	0x0	000	000	0×0	000	0x0	000	0x0
Access				22	22	<u>~</u>	2	<u>~</u>	22	<u>~</u>	22	<u>~</u>	2	2	2	22	2	22	2	2	2	22	2	œ	2	2	2	22	22	2	22	<u>~</u>
Name				RNGULFRCO	RNGLFRCO	RNGLFXO	RNGHFRCOEM23	RNGHFRCODPLL	RNGSYXO	RNGFSRCO	RNGI2C0	RNGWDOG1	RNGWDOG0	RNGPRORTC	RNGLETIMERO	RNGACMP1	RNGACMP0	RNGIADC	RNGDPLL	RNGLDMA	RNGGPCRC	RNGI2C1	RNGUSART2	RNGUSART1	RNGUSARTO	RNGTIMER3	RNGTIMER2	RNGTIMER1	RNGTIMERO	RNGRADIO	RNGRTCC	RNGBURTC

Bit	Name	Reset	Access	Description
31:29	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
28	RNGULFRCO	0x0	R	Running ULFRCO Clock
	ULFRCO Clock is runni	ng		
27	RNGLFRCO	0x0	R	Running LFRCO Clock
	LFRCO Clock is running)		
26	RNGLFXO	0x0	R	Running LFXO Clock
	LFXO Clock is running			
25	RNGHFRCOEM23	0x0	R	Running HFRCOEM23 Clock
	HFRCOEM23 Clock is r	unning		
24	RNGHFRCODPLL	0x0	R	Running HFRCODPLL Clock
	HFRCODPLL Clock is r	unning		
23	RNGSYXO	0x0	R	Running SYXO Clock
	SYXO Clock is running			
22	RNGFSRCO	0x0	R	Running FSRCO Clock
	FSRCO Clock is running	9		
21	RNGI2C0	0x0	R	Running I2C0 Clock
	I2C0 Clock is running			
20	RNGWDOG1	0x0	R	Running WDOG1 Clock
	WDOG1 Clock is runnin	g		
19	RNGWDOG0	0x0	R	Running WDOG0 Clock
	WDOG0 Clock is runnin	g		
18	RNGPRORTC	0x0	R	Running PRORTC Clock
	PRORTC Clock is runni	ng		
17	RNGLETIMER0	0x0	R	Running LETIMER0 Clock
	LETIMER0 Clock is run	ning		
16	RNGACMP1	0x0	R	Running ACMP1 Clock


Bit	Name	Reset	Access	Description
	ACMP1 Clock is running			
15	RNGACMP0	0x0	R	Running ACMP0 Clock
	ACMP0 Clock is running			
14	RNGIADC	0x0	R	Running IADC Clock
	IADC Clock is running			
13	RNGDPLL	0x0	R	Running DPLL Clock
	DPLL Clock is running			
12	RNGLDMA	0x0	R	Running LDMA Clock
	LDMA Clock is running			
11	RNGGPCRC	0x0	R	Running GPCRC Clock
	GPCRC Clock is running			
10	RNGI2C1	0x0	R	Running I2C1 Clock
	I2C1 Clock is running			
9	RNGUSART2	0x0	R	Running USART2 Clock
	USART2 Clock is running	g		
8	RNGUSART1	0x0	R	Running USART1 Clock
	USART1 Clock is running	g		
7	RNGUSART0	0x0	R	Running USART0 Clock
	USART0 Clock is running	9		
6	RNGTIMER3	0x0	R	Running TIMER3 Clock
	TIMER3 Clock is running	l		
5	RNGTIMER2	0x0	R	Running TIMER2 Clock
	TIMER2 Clock is running	l		
4	RNGTIMER1	0x0	R	Running TIMER1 Clock
	TIMER1 Clock is running	l		
3	RNGTIMER0	0x0	R	Running TIMER0 Clock
	TIMER0 Clock is running	l		
2	RNGRADIO	0x0	R	Running RADIO Clock
	RADIO Clock is running			
1	RNGRTCC	0x0	R	Running RTCC Clock
	RTCC Clock is running			
0	RNGBURTC	0x0	R	Running BURTC Clock
	BURTC Clock is running			

7.5.9 DBG_SYSID - Identification

Offset	Bit Position
0x11FC	0 1 2 3 4 5 2 6 0 4 7 1 1 2 1 3 1 4 1 1 2 1 1 2 1 1 2 1 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Reset	0x5451D
Access	α
Name	Ω

Bit	Name	Reset	Access	Description
31:0	ID	0x5451D	R	Identification
	System Block ID			

8. CMU - Clock Management Unit

Quick Facts

What?

The CMU controls clock switching and distribution. EFR32xG21 supports 7 different oscillators with minimized power consumption and short start-up time. The CMU has HW support for calibration of RC oscillators.

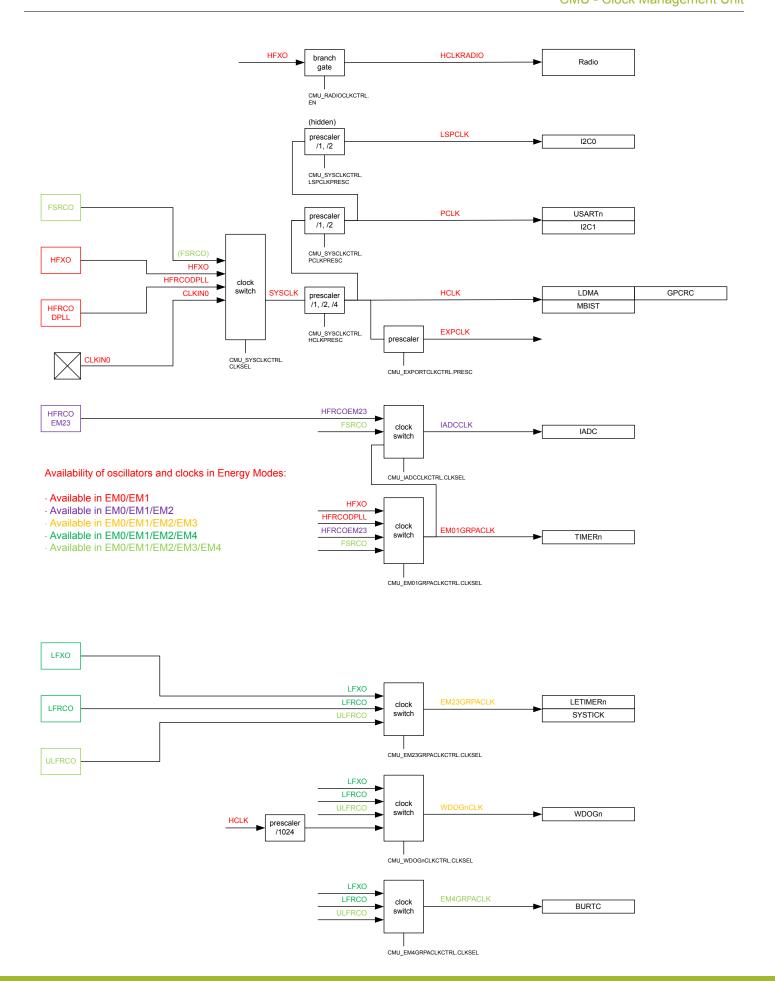
Why?

Oscillators and clocks contribute significantly to the power consumption of the MCU. With the low power oscillators combined with the flexible clock control scheme, it is possible to minimize the energy consumption in any given application.

How?

The CMU switches different clock sources for various peripherals and sets the prescaler for the bus clocks. The short oscillator start-up times makes duty-cycling between active mode and the different low energy modes (EM2 DeepSleep, EM3 Stop, and EM4) very efficient. The calibration feature ensures high accuracy RC oscillators. Interrupt are available to avoid CPU polling of flags.

8.1 Introduction


The Clock Management Unit (CMU) is responsible for switching among various oscillator sources and provide clocks to the peripheral modules. Oscillators are automatically turned on and off based on demand from the peripherals to minimize power consumption.

8.2 Features

- · Multiple clock sources available:
 - 38 MHz 40 MHz High Frequency Crystal Oscillator (HFXO)
 - 1 MHz 80 MHz High Frequency RC Oscillator (HFRCODPLL)
 - 1 MHz 38 MHz Deep Sleep High Frequency RC Oscillator (HFRCOEM23)
 - 20 MHz Fast Startup RC Oscillator (FSRCO)
 - 1 MHz 38 MHz External Clock from Input Pins (CLKIN0)
 - 32768 Hz Low Frequency Crystal Oscillator (LFXO)
 - 32768 Hz Low Frequency RC Oscillator (LFRCO)
 - 1000 Hz Ultra Low Frequency RC Oscillator (ULFRCO)
- · On-demand oscillator request.
- · Low power oscillators.
- · Fast start-up times.
- · Cascaded prescalers for AHB Clocks (HCLK) and APB Clocks (PCLK).
- Clock gating on an individual basis to all peripherals based on module enable.
- · Reset on an individual basis for Timer and IADC based on module enable.
- · Selectable clocks can be output on external pins and/or PRS.
- Deep Sleep High Frequency RC oscillator (HFRCOEM23), which is asynchronous to the system clock, can be selected for IADC operation or debug trace functionality.
- · Hardware support for calibration of RC oscillators.

8.3 Functional Description

An overview of the CMU is shown in Figure 8.1 CMU Overview on page 140. This figure shows the CMU for the largest device in the EFR32xG21 family. Please refer to the Configuration Summary in the Device Datasheet to see which core and peripheral modules, and therefore clock connections, are present in a specific device.

Note: This figure does not necessarily show every clock for every peripheral. These are documented in the register descriptions.

8.3.1 System Clocks

8.3.1.1 SYSCLK - Bus Clock

SYSCLK is the selected System Clock. HCLK is an optionally prescaled version of SYSCLK. PCLK is an optionally prescaled version of HCLK. The SYSCLK, and therefore HCLK and PCLK, can be driven by a high-frequency oscillator or be driven from a pin. By default, the FSRCO is selected as the bootup oscillator. To change the selected clock source, write to the CLKSEL bitfield in CMU_SYSCLKCTRL. If an invalid option is programmed into CLKSEL, FSRCO will be selected. The SYSCLK is running in EM0 Active and EM1 Sleep and is automatically stopped in EM2 DeepSleep.

The prescaler setting can be changed dynamically and the new setting takes effect immediately. When switching to a higher frequency oscillator source, prescaler setting should be adjusted before clock selection to prevent over clocking. For the same reason, when switching to a lower frequency oscillator source, prescaler setting cannot be adjusted until the clock selection is made.

The HFXO clock is fed directly to the Radio Transceiver. The clock received by the Radio Transceiver is therefore not affected by the selected clock source for SYSCLK nor by any clock prescaler.

8.3.1.2 HCLK - AHB Clock

HCLK is a prescaled version of SYSCLK. This clock drives the AHB bus interface. Example modules include the CPU, Cache, Bus Matrix, MSC, RAM, LDMA and GPIO. HCLK can be prescaled by setting HCLKPRESC in CMU_SYSCLKCTRL to DIV2 or DIV4. This prescales HCLK to all AHB bus clocks and is typically used to save energy in applications where the system is not required to run at the highest frequency. The setting can be changed dynamically and the new setting takes effect immediately. Some of the modules that are driven by this clock can be clock gated completely when not in use. This is done by clearing the module enable (EN) bit in the module's EN register.

8.3.1.3 PCLK - APB Clock

PCLK is a prescaled version of HCLK. This clock drives the APB bus interface. Example modules include USART and I2C. PCLK can be prescaled by setting PCLKPRESC in CMU_SYSCLKCTRL to DIV2. This prescales PCLK to all APB bus clocks and is necessary to prevent PCLK from exceeding the maximum frequency of 50 MHz. The setting can be changed dynamically and the new setting takes effect immediately. Some of the peripherals that are driven by this clock can be clock gated completely when not in use. This is done by clearing the module enable (EN) bit in the module's EN register.

8.3.1.4 LSPCLK - Low Speed APB Clock

LSPCLK is a prescaled version of PCLK. This clock drives the Low Speed APB bus interface. Example modules include I2C. LSPCLK is always prescaled by two. This prescales LSPCLK to all Low Speed APB bus clocks and is necessary to prevent LSPCLK from exceeding the maximum frequency of 25 MHz. Some of the peripherals that are driven by this clock can be clock gated completely when not in use. This is done by clearing the module enable (EN) bit in the module's EN register.

8.3.1.5 HCLKRADIO - AHB Radio Clock

HCLKRADIO is fed from HFXO which drives the radio subsystem including an asynchronous bus bridge. Some of the radio peripherals that are driven by this clock can be clock gated completely when not in use. This is done by clearing the module enable (EN) bit in the module's EN register. The radio peripherals can also be gated simultaneously by clearing the EN bit in the CMU_RADIOCLKCTRL register. This action also shuts off the asynchronous bus bridge. When the asynchronous bus bridge is off, any access to the radio registers will result in a bus fault.

After enabling the radio asynchronous bus bridge by setting the EN bit in the CMU_RADIOCLKCTRL register, user should check the radio clock running status bit in CMU_STATUS.RADIOCLKRUNNING before attempting transfers to the radio subsystem. Otherwise, there will be a long peformance penalty on the first transfer, because the bus will be stalled until the radio clock turns on to receive the transfer. If HFXO is not already running, this can be a long startup time.

Before disabling the radio asynchronous bus bridge by clearing the EN bit in the CMU_RADIOCLKCTRL register, user must ensure no activity is ongoing across AHB to host system. Doing so can lock up the entire bus, due to handshaking in the asynchronous bridge crossing.

8.3.1.6 EM01GRPACLK - Energy Mode 01 Group A Clock

EM01GRPACLK is the selected clock for the Group A Peripherals operating in Energy Modes 0 or 1. These are typically high clock frequency peripheral modules. There are several selectable sources for EM01GRPACLK: HFXO, HFRCODPLL, HFRCOEM23, and FSRCO. In addition, the EM01GRPACLK can be disabled. The selection is configured using the CLKSEL field in CMU EM01GRPACLKCTRL.

Each High Frequency Peripheral that is clocked by EM01GRPACLK may have its own prescaler setting and enable bit. The prescaler settings, if available, can be found in the peripheral's control registers. The enable bit can be found in the module's EN register.

8.3.1.7 EM23GRPACLK - Energy Mode 2 and 3 Group A Clock

EM23GRPACLK is the selected clock for the Group A Peripherals operating down to Energy Modes 2 or 3. These are typically low energy consumption peripheral modules. There are three selectable sources for EM23GRPACLK: LFRCO, LFXO and ULFRCO. In addition, the EM23GRPACLK can be disabled. The selection is configured using the CLKSEL field in CMU_EM23GRPACLKCTRL.

Each Low Energy Peripheral that is clocked by EM23GRPACLK may have its own prescaler setting and enable bit. The prescaler settings, if available, can be found in the peripheral's control registers. The enable bit can be found in the module's EN register.

8.3.1.8 EM4GRPACLK - Energy Mode 4 Group A Clock

EM4GRPACLK is the selected clock for the Group A Peripherals operating down to Energy Mode 4. These are typically ultra low energy consumption peripheral modules. There are three selectable sources for EM4GRPACLK: LFRCO, LFXO and ULFRCO. In addition, the EM4GRPACLK can be disabled. The selection is configured using the CLKSEL field in CMU_EM4GRPACLKCTRL.

Note: EM4GRPACLK is in a different power domain than EM23GRPACLK, which makes it available all the way down to EM4.

Each Low Energy Peripheral that is clocked by EM4GRPACLK may have its own prescaler setting and enable bit. The prescaler settings, if available, can be found in the peripheral's control registers. The enable bit can be found in the module's EN register.

8.3.1.9 IADCCLK - IADC Clock

IADCCLK is the selected clock for the IADC. The IADCCLK source may be selected from EM01GRPACLK, HFRCOEM23, or FSRCO. In addition, the IADCCLK can be disabled. The selection is configured using the CLKSEL field in CMU IADCCLKCTRL.

Note: When using a Timer as the synchronous trigger for IADC conversion, EM01GRPACLK must be selected, because Timers run from EM01GRPACLK.

IADC has its own prescaler setting and enable bit. The prescaler settings can be found in the IADC's control registers. The enable bit can be found in the IADC's EN register.

Whichever clock source is selected as the IADC clock via the CLKSEL bitfield in the CMU_IADCCLKCTRL register, this clock will become active automatically when needed. The IADC can automatically start and stop it.

8.3.1.10 TRACECLK - Debug Trace Clock

The CMU selects the clock used for debug trace via the CLKSEL field of CMU_TRACECLKCTRL register. The user can choose the HCLK when it is below 50 MHz. When HCLK is above 50 MHz, use HFRCOEM23 to avoid data pump overflow. The selected debug trace clock will be used to run the Cortex-M33 trace logic. Note that register should be set to select HCLK or HFRCOEM23 before enabling ETM, all other values are reserved.

8.3.1.11 WDOGCLK - Watchdog Timer Clock

The Watchdog Timer (WDOG) can be configured to use one of four different clock sources: LFRCO, LFXO, ULFRCO, or HCLKDIV1024. Select option HCLKDIV1024 to track Watchdog timeout with CPU clock speed.

8.3.2 Switching Clock Source

The FSRCO oscillator is a fixed frequency (20 MHz), low energy oscillator with extremely short start-up time. Therefore, this oscillator is chosen by hardware as the clock source for SYSCLK when the device starts up (e.g. after reset).

Software can switch between the different clock sources at run-time. For example, when the HFRCODPLL is the clock source, software can switch to HFXO by writing the field CLKSEL in the CMU_SYSCLKCTRL register. See Figure 8.2 CMU Switching from HFRCO to HFXO before HFXO is ready on page 143 for a description of the sequence of events for this specific operation.

When switching the SYSCLK to HFXO via the CLKSEL bitfield in CMU_SYSCLKCTRL, HFXO is automatically started. Switching to an oscillator that is not ready yet, the SYSCLK will stop for the duration of the oscillator start-up time. This effectively stalls the Core Modules. It is possible to avoid this by first enabling the target oscillator (e.g. HFXO) and then waiting for that oscillator to become ready before switching the clock source. This way, the system continues to run on the HFRCO until the target oscillator (e.g. HFXO) is ready and provides a reliable clock. This sequence of events is shown in Figure 8.3 CMU Switching from HFRCO to HFXO after HFXO is ready on page 144.

Generally, all oscillators have a separate flag that is set when the oscillator is ready. This flag can also be configured to generate an interrupt.

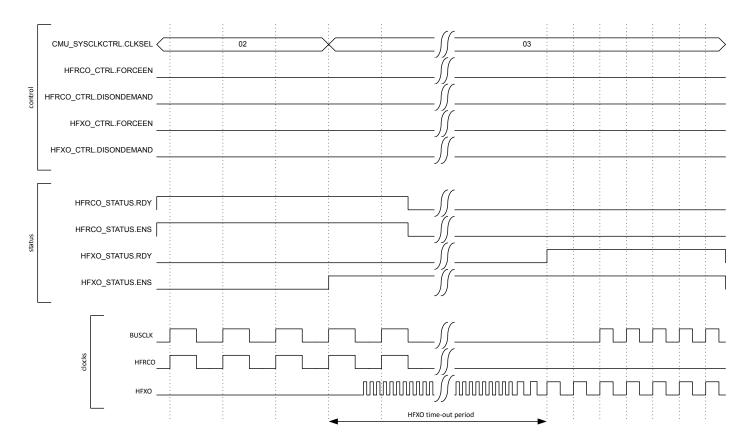


Figure 8.2. CMU Switching from HFRCO to HFXO before HFXO is ready

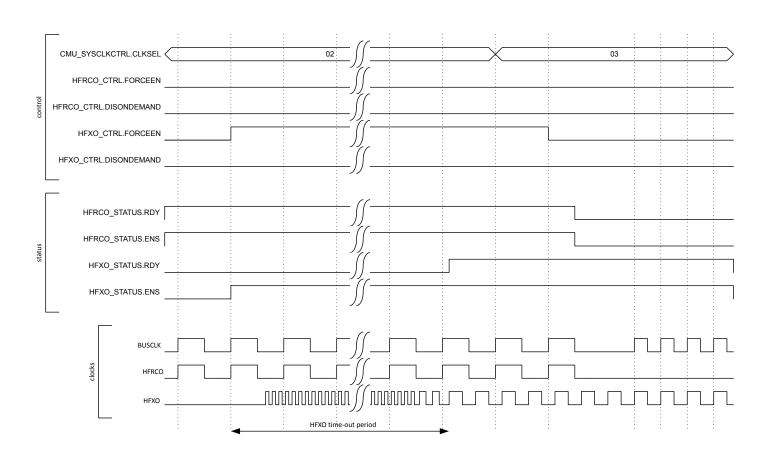


Figure 8.3. CMU Switching from HFRCO to HFXO after HFXO is ready

Switching clock source for various clock switches is done by setting the CLKSEL bitfields in CMU_*CLKCTRL. To ensure no stalls in the peripherals, the clock source should be ready before switching to it.

Note: To save energy, remember to disable all clock switches and/or module enable bits when not in use.

8.3.3 RC Oscillator Calibration

The CMU has built-in hardware support to efficiently calibrate RC oscillators (LFRCO, HFRCODPLL, HFRCOEM23) at run-time, see Figure 8.4 Hardware Support for RC Oscillator Calibration on page 145 for an illustration of this circuit.

The concept is to select a reference and compare the RC frequency with the reference frequency. When the calibration circuit is started, one down-counter running on a selectable clock (DOWNSEL in CMU_CALCTRL) and one up-counter running on a selectable clock (UPSEL in CMU_CALCTRL) are started simultaneously. Reference clocks may also be routed through the PRS channels via the CAL-UP and CALDN consumer inputs. The top value for the down-counter must be written (CALTOP in CMU_CALCTRL) before calibration is started. The down-counter counts for CALTOP + 1 cycles. When the down-counter has reached 0, the up-counter is sampled and the CALRDY interrupt flag in the IF register is set. If CONT in CMU_CALCTRL is cleared, the counters are stopped after finishing the ongoing calibration. If continuous mode is selected by setting CONT in CMU_CALCTRL, the down-counter reloads the top value and continues counting, while the up-counter restarts from 0.

Software can then read out the sampled up-counter value from CMU_CALCNT. The up-counter has counted (the sampled value)+ 1 cycles. The ratio between the reference and the oscillator subject to the calibration can easily be found using (the top value)+1 and (the sampled value)+1. Overflows of the up-counter will not occur. If the up-counter reaches its top value before the down-counter reaches 0, the up-counter stays at its top value. Calibration can be started and stopped by writing CALSTART and CALSTOP bitfields in CMU CALCMD, respectively. With this hardware support, it is simple to write efficient software calibration algorithms.

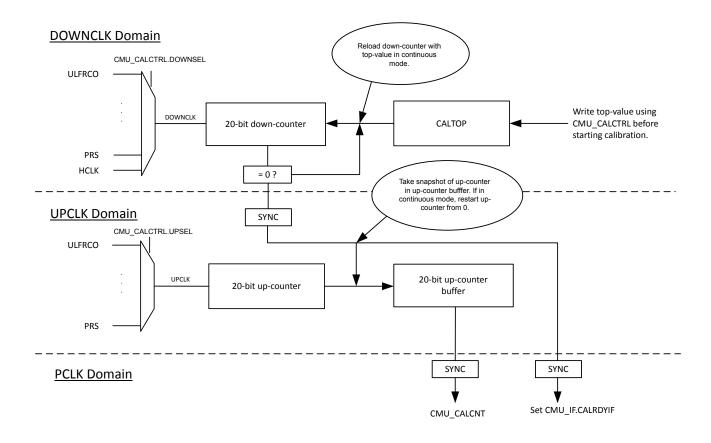


Figure 8.4. Hardware Support for RC Oscillator Calibration

The counter operation for single and continuous mode are shown in Figure 8.5 Single Calibration (CONT=0) on page 146 and Figure 8.6 Continuous Calibration (CONT=1) on page 147 respectively.

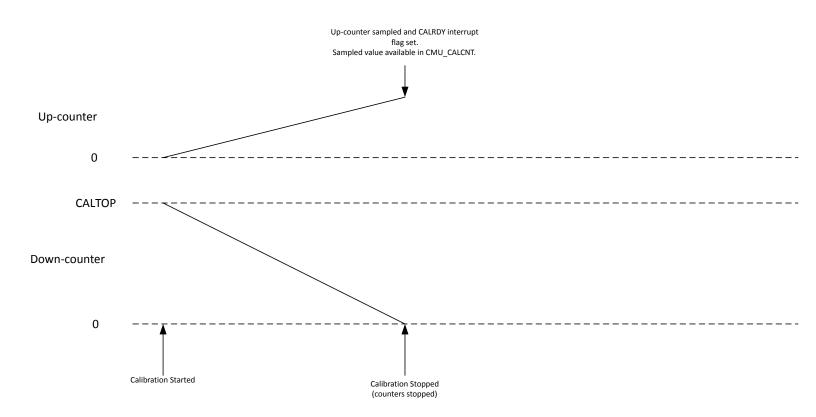


Figure 8.5. Single Calibration (CONT=0)

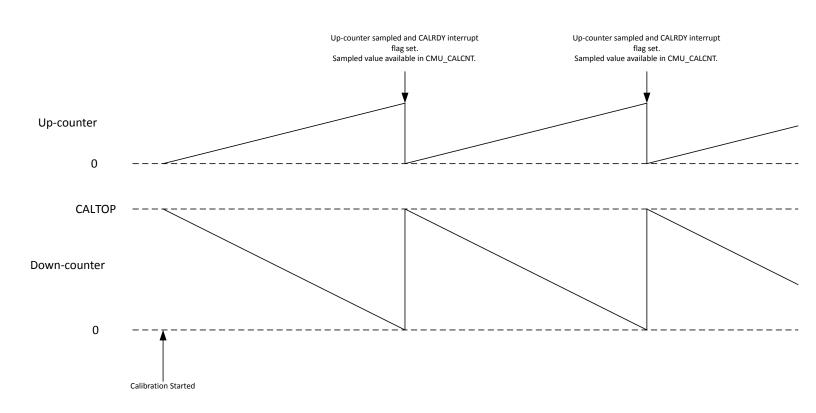


Figure 8.6. Continuous Calibration (CONT=1)

8.3.4 Energy Modes

The availability of oscillators and system clocks depends on the chosen energy mode. By default, the high frequency oscillators (HFRCODPLL, HFRCOEM23, and HFXO) and high frequency clocks (SYSCLK, HCLK, PCLK, RADIOCLK, and EM01GRPACLK) are available down to EM1 Sleep. From EM2 DeepSleep onwards these oscillators and clocks are normally off, although special cases exist as summarized in Table 8.1 Oscillator and clock availability in Energy Modes on page 148. The CMU overview figure in Figure 8.1 CMU Overview on page 140 also indicates which oscillators and clocks can be used in what energy modes.

The low frequency oscillators (LFRCO and LFXO) are available in all energy modes except in EM3 Stop when they are off by definition. By default, these oscillators are also off in EM4 Shutoff, but they can be requested on in these states as well if needed. The ultra low frequency oscillator (ULFRCO) is on in all energy modes, except for EM4 Shutoff, but it can be requested on in that state as well if needed. The low frequency clocks (EM23GRPACLK, EM4GRPACLK, WDOGCLK, RTCCCLK, and PRORTCCLK) are in various power domains and therefore their availability not only depends on the chosen clock source, but also on the chosen energy mode as indicated in Table 8.1 Oscillator and clock availability in Energy Modes on page 148.

Table 8.1. Oscillator and clock availability in Energy Modes

	EM0 Active / EM1 Sleep	EM2 DeepSleep	EM3 Stop	EM4 Shutoff
HFRCODPLL	On ¹	Off	Off	Off
HFXO	On ¹	Off	Off	Off
HFRCOEM23	On ¹	On ²	On ²	Off
LFRCO, LFXO	On ¹	On ¹	Off	On ³
ULFRCO	On	On	On	On ³
SYSCLK, HCLK, PCLK, RADIOCLK, EM01GRPACLK	On ¹	Off	Off	Off
IADCCLK	On ¹	On ²	On ²	Off
EM23GRPACLK, WDOGCLK, RTCCCLK, PRORTCCLK	On ¹	On ¹	On ⁴	Off
EM4GRPACLK	On ¹	On ¹	On ⁴	On ³

- 1 Under software control.
- 2 Default off, but kept active if used by the IADC.
- 3 Default off, but kept active if used by BURTC.
- 4 On only if ULFRCO is used as clock source.

8.3.5 Clock Output on a Pin

It is possible to configure the CMU to output clocks on the CMU_CLK pins. This clock selection is done using the CLKOUTSEL bitfields in CMU_EXPORTCLKCTRL. The required output pins must be enabled in the GPIO_DBUSCMU_ROUTEEN register and the pin locations can be configured in the GPIO_DBUSCMU_CLKOUT ROUTE register. The following clocks can be output on a pin:

- HCLK and EXPCLK. The HCLK is the high frequency clock for AHB. The EXPCLK is a prescaled version of HCLK as controlled by the PRESC bitfield in the CMU EXPORTCLKCTRL register.
- The qualified clock from any of the oscillators. A qualified clock will not have any glitches or skewed duty-cycle during startup. For the LFXO and HFXO, correct configuration of the TIMEOUT bitfield(s) in LFXO_CFG and HFXO_XTALCFG, respectively is required to guarantee a properly qualified clock.

HCLK will not have a 50-50 duty cycle when any other division factor than 1 is used for HCLKPRESC bitfield in CMU_SYSCLKCTRL (i.e. if HCLKPRESC is not equal to 0). In such a case, the exported EXPCLK will also not be 50-50 when its division factor is not set to an even number in the PRESC bitfield of the CMU_EXPORTCLKCTRL register.

8.3.6 Clock Input from a Pin

It is possible to configure the CMU to input a clock from the CMU_CLKI0. This clock can be selected to drive SYSCLK and DPLL reference using CMU_SYSCLKCTRL.CLKSEL and CMU_DPLLREFCLKCTRL.CLKSEL respectively. The required input pin locations can be configured in the GPIO_DBUSCMU_CLKINOROUTE register.

8.3.7 Clock Output on PRS

The CMU can be used as a PRS producer. It can output clocks onto PRS which can be selected by a consumer as CMUCLKOUT. The clocks which can be produced via CMUCLKOUT are selected via the CLKOUTSEL fields in CMU_EXPORTCLKCTRL.

Note that the CLKOUTSEL fields are also used for selecting which clock is output onto a pin as described in 8.3.5 Clock Output on a Pin. In contrast with clock output on a pin however, output of a clock onto PRS does not depend on any configuration of the GPIO DBUSCMU ROUTEEN and GPIO DBUSCMU CLKOUT ROUTE registers.

8.3.8 Interrupts

The interrupts generated by the CMU module are combined into one interrupt vector. If CMU interrupts are enabled, an interrupt will be made if one or more of the interrupt flags in CMU_IF and their corresponding bits in CMU_IEN are set.

8.3.9 Protection

It is possible to lock the control and command registers to prevent unintended software writes to critical clock settings. This is controlled by the CMU_LOCK register.

The WDOGCLKCTRL registers are separately locked by CMU_WDOGLOCK register. This is to prevent EM3 Stop mode from disabling the watch dog clocks inadvertently.

In addition to software locks, hardware locks are implemented to prevent metastability. CMU_CALCTRL is locked by hardware when calibration is started by CMU_CALCMD.CALSTART. CMU_DPLLREFCLKCTRL is locked by hardware when DPLL is enabled via DPLL_EN.EN. Because these switches are not glitch-less, clock selection must be configured before enabling the operation and cannot be changed during operation.

8.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	CMU_IPVERSION	R	IP version ID
0x008	CMU_STATUS	RH	Status Register
0x010	CMU_LOCK	w	Configuration Lock Register
0x014	CMU_WDOGLOCK	w	WDOG Configuration Lock Register
0x020	CMU_IF	RWH INTFLAG	Interrupt Flag Register
0x024	CMU_IEN	RW	Interrupt Enable Register
0x050	CMU_CALCMD	w	Calibration Command Register
0x054	CMU_CALCTRL	RW	Calibration Control Register
0x058	CMU_CALCNT	R	Calibration Result Counter Register
0x070	CMU_SYSCLKCTRL	RW	System Clock Control
0x080	CMU_TRACECLKCTRL	RW	Debug Trace Clock Control
0x090	CMU_EXPORTCLKCTRL	RW	Export Clock Control
0x100	CMU_DPLLREFCLKCTRL	RW	Digital PLL Reference Clock Control
0x120	CMU_EM01GRPACLKCTRL	RW	EM01 Peripheral Group A Clock Control
0x140	CMU_EM23GRPACLKCTRL	RW	EM23 Peripheral Group A Clock Control
0x160	CMU_EM4GRPACLKCTRL	RW	EM4 Peripheral Group A Clock Control
0x180	CMU_IADCCLKCTRL	RW	IADC Clock Control
0x200	CMU_WDOG0CLKCTRL	RW	Watchdog0 Clock Control
0x208	CMU_WDOG1CLKCTRL	RW	Watchdog1 Clock Control
0x240	CMU_RTCCCLKCTRL	RW	RTCC Clock Control
0x280	CMU_RADIOCLKCTRL	RW	Radio Clock Control
0x1000	CMU_IPVERSION_SET	R	IP version ID
0x1008	CMU_STATUS_SET	RH	Status Register
0x1010	CMU_LOCK_SET	W	Configuration Lock Register
0x1014	CMU_WDOGLOCK_SET	W	WDOG Configuration Lock Register
0x1020	CMU_IF_SET	RWH INTFLAG	Interrupt Flag Register
0x1024	CMU_IEN_SET	RW	Interrupt Enable Register
0x1050	CMU_CALCMD_SET	W	Calibration Command Register
0x1054	CMU_CALCTRL_SET	RW	Calibration Control Register
0x1058	CMU_CALCNT_SET	R	Calibration Result Counter Register
0x1070	CMU_SYSCLKCTRL_SET	RW	System Clock Control
0x1080	CMU_TRACECLKCTRL_SET	RW	Debug Trace Clock Control
0x1090	CMU_EXPORTCLKCTRL_SET	RW	Export Clock Control
0x1100	CMU_DPLLREFCLKCTRL_SET	RW	Digital PLL Reference Clock Control

Offset	Name	Туре	Description
0x1120	CMU_EM01GRPACLKCTRL_SE	RW	EM01 Peripheral Group A Clock Control
0x1140	CMU_EM23GRPACLKCTRL_SE T	RW	EM23 Peripheral Group A Clock Control
0x1160	CMU_EM4GRPACLKCTRL_SET	RW	EM4 Peripheral Group A Clock Control
0x1180	CMU_IADCCLKCTRL_SET	RW	IADC Clock Control
0x1200	CMU_WDOG0CLKCTRL_SET	RW	Watchdog0 Clock Control
0x1208	CMU_WDOG1CLKCTRL_SET	RW	Watchdog1 Clock Control
0x1240	CMU_RTCCCLKCTRL_SET	RW	RTCC Clock Control
0x1280	CMU_RADIOCLKCTRL_SET	RW	Radio Clock Control
0x2000	CMU_IPVERSION_CLR	R	IP version ID
0x2008	CMU_STATUS_CLR	RH	Status Register
0x2010	CMU_LOCK_CLR	W	Configuration Lock Register
0x2014	CMU_WDOGLOCK_CLR	W	WDOG Configuration Lock Register
0x2020	CMU_IF_CLR	RWH INTFLAG	Interrupt Flag Register
0x2024	CMU_IEN_CLR	RW	Interrupt Enable Register
0x2050	CMU_CALCMD_CLR	W	Calibration Command Register
0x2054	CMU_CALCTRL_CLR	RW	Calibration Control Register
0x2058	CMU_CALCNT_CLR	R	Calibration Result Counter Register
0x2070	CMU_SYSCLKCTRL_CLR	RW	System Clock Control
0x2080	CMU_TRACECLKCTRL_CLR	RW	Debug Trace Clock Control
0x2090	CMU_EXPORTCLKCTRL_CLR	RW	Export Clock Control
0x2100	CMU_DPLLREFCLKCTRL_CLR	RW	Digital PLL Reference Clock Control
0x2120	CMU_EM01GRPACLKCTRL_CLR	RW	EM01 Peripheral Group A Clock Control
0x2140	CMU_EM23GRPACLKCTRL_CLR	RW	EM23 Peripheral Group A Clock Control
0x2160	CMU_EM4GRPACLKCTRL_CLR	RW	EM4 Peripheral Group A Clock Control
0x2180	CMU_IADCCLKCTRL_CLR	RW	IADC Clock Control
0x2200	CMU_WDOG0CLKCTRL_CLR	RW	Watchdog0 Clock Control
0x2208	CMU_WDOG1CLKCTRL_CLR	RW	Watchdog1 Clock Control
0x2240	CMU_RTCCCLKCTRL_CLR	RW	RTCC Clock Control
0x2280	CMU_RADIOCLKCTRL_CLR	RW	Radio Clock Control
0x3000	CMU_IPVERSION_TGL	R	IP version ID
0x3008	CMU_STATUS_TGL	RH	Status Register
0x3010	CMU_LOCK_TGL	W	Configuration Lock Register
0x3014	CMU_WDOGLOCK_TGL	w	WDOG Configuration Lock Register
0x3020	CMU_IF_TGL	RWH INTFLAG	Interrupt Flag Register
0x3024	CMU_IEN_TGL	RW	Interrupt Enable Register

Offset	Name	Туре	Description
0x3050	CMU_CALCMD_TGL	w	Calibration Command Register
0x3054	CMU_CALCTRL_TGL	RW	Calibration Control Register
0x3058	CMU_CALCNT_TGL	R	Calibration Result Counter Register
0x3070	CMU_SYSCLKCTRL_TGL	RW	System Clock Control
0x3080	CMU_TRACECLKCTRL_TGL	RW	Debug Trace Clock Control
0x3090	CMU_EXPORTCLKCTRL_TGL	RW	Export Clock Control
0x3100	CMU_DPLLREFCLKCTRL_TGL	RW	Digital PLL Reference Clock Control
0x3120	CMU_EM01GRPACLKCTRL_TG	RW	EM01 Peripheral Group A Clock Control
0x3140	CMU_EM23GRPACLKCTRL_TG	RW	EM23 Peripheral Group A Clock Control
0x3160	CMU_EM4GRPACLKCTRL_TGL	RW	EM4 Peripheral Group A Clock Control
0x3180	CMU_IADCCLKCTRL_TGL	RW	IADC Clock Control
0x3200	CMU_WDOG0CLKCTRL_TGL	RW	Watchdog0 Clock Control
0x3208	CMU_WDOG1CLKCTRL_TGL	RW	Watchdog1 Clock Control
0x3240	CMU_RTCCCLKCTRL_TGL	RW	RTCC Clock Control
0x3280	CMU_RADIOCLKCTRL_TGL	RW	Radio Clock Control

8.5 Register Description

8.5.1 CMU_IPVERSION - IP version ID

Offset															Bi	t Po	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset		•	0×0																													
Access			<u>α</u>																													
Name		IPVERSION R																														

Bit	Name	Reset	Access	Description
31:0	IPVERSION	0x0	R	IP Version ID
	The read only IPVERSIC modules with different va	•		his module. There may be minor software changes required for

8.5.2 CMU_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	ω	7	9	5	4	က	2	_	0
Reset	0x0	0×0		•		•	•					•	•			•									•		•					0x0
Access	2	2																														~
Name	LOCK	WDOGLOCK																														CALRDY

Bit	Name	Reset	Access	Description
31	LOCK	0x0	R	Configuration Lock Status
	Indicates the curren	t status of config	juration lock	
	Value	Mode		Description
	0	UNLOCK	ED	
	1	LOCKED		
30	WDOGLOCK	0x0	R	Configuration Lock Status for WDOG
	Indicates the curren	t status of WDO	G configuration	lock
	Value	Mode		Description
	0	UNLOCK	ED	
	1	LOCKED		
29:1	Reserved	To ensure ventions	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
0	CALRDY	0x0	R	Calibration Ready
	Calibration is Ready	(0 when calibra	tion is ongoing).

8.5.3 CMU_LOCK - Configuration Lock Register

Offset	Bit Po	sition
0x010	31 30 29 28 27 27 26 25 25 27 27 27 19 19 11	2 4 4 5 4 6 7 7 7 8 8 8 9 9 4 8 8 9 9 9 9 10 </th
Reset		0x93F7
Access		>
Name		LOCKKEY

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
15:0	LOCKKEY	0x93F7	W	Configuration Lock Key
	Write any other value that	an the unlock	code to lock reg	isters from editing. Write the unlock code to unlock.
	Value	Mode		Description
	37879	UNLOCK		

8.5.4 CMU_WDOGLOCK - WDOG Configuration Lock Register

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	∞	7	9	2	4	က	2	_	0
Reset																								736367	0,435,37							
Access																								}	\$							
Name																								711100								

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
15:0	LOCKKEY	0x5257	W	Configuration Lock Key
	Write any other va	lue than the unlock	code to lock	registers from editing. Write the unlock code to unlock.
	Value	Mode		Description
	21079	UNLOCK		

8.5.5 CMU_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset		•			•							•				•				•				•	•		•	•	•	•	0x0	0x0
Access																															W.	RW
Name																															CALOF	CALRDY

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1	CALOF	0x0	RW	Calibration Overflow Interrupt Flag
	Set when calibration over	rflow has occ	urred (i.e. if a ne	ew calibration completes before CMU_CALSTATUS has been read)
0	CALRDY	0x0	RW	Calibration Ready Interrupt Flag
	Set when calibration is c	ompleted		

8.5.6 CMU_IEN - Interrupt Enable Register

Offset	Bit Position		
0x024	33 34 35 36 37 38 39 30 31 31 32 33 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 6 6 6 6 7 8	-	0
Reset		0x0	0x0
Access		A N	Z.
Name		 	CALRDY

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1	CALOF	0x0	RW	Calibration Overflow Interrupt Enable
	Enable/disable CALOF in	nterrupt		
0	CALRDY	0x0	RW	Calibration Ready Interrupt Enable
	Enable/disable CALRDY	interrupt		

8.5.7 CMU_CALCMD - Calibration Command Register

Offset															Bi	t Po	siti	on														
0x050	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	9	6	8	7	9	5	4	က	2	_	0
Reset																															0x0	0x0
Access																															>	>
Name																															CALSTOP	CALSTART

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1	CALSTOP	0x0	W	Calibration Stop
	Stops the calibration	counters.		
0	CALSTART	0x0	W	Calibration Start
	Starts the calibration	n, effectively load	ding the CMU_	CALCTRL.CALCNT into the down-counter and start decrementing.

8.5.8 CMU_CALCTRL - Calibration Control Register

Offset															Bi	t Po	siti	on														
0x054	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	8	7	9	5	4	က	2	_	0
Reset		2	2			5	e X		0×0		'	0X0 >																				
Access		Ž	<u>}</u>			2	<u>}</u>		W.				₩ 3																			
Name		I I I I I I I I I I I I I I I I I I I	DOWING			IDOLI	UPSEL		CONT			CALTOP																				

Bit	Name	Reset	Access	Description
31:28	DOWNSEL	0x0	RW	Calibration Down-counter Select
	Selects clock sour	rce for the calibration	on down-count	er. Only change when calibration circuit is off.
	Value	Mode		Description
	0	DISABLEI)	Down-counter is not clocked
	1	HCLK		HCLK is clocking down-counter
	2	PRS		PRS is clocking down-counter
	3	HFXO		HFXO is clocking down-counter
	4	LFXO		LFXO is clocking down-counter
	5	HFRCODI	PLL	HFRCODPLL is clocking down-counter
	6	HFRCOE	M23	HFRCOEM23 is clocking down-counter
	9	FSRCO		FSRCO is clocking down-counter
	10	LFRCO		LFRCO is clocking down-counter
	11	ULFRCO		ULFRCO is clocking down-counter
27:24	UPSEL	0x0	RW	Calibration Up-counter Select
	Selects clock sour	rce for the calibration	on up-counter.	Only change when calibration circuit is off.
	Value	Mode		Description
	0	DISABLEI)	Up-counter is not clocked
	1	PRS		PRS is clocking up-counter
	2	HFXO		HFXO is clocking up-counter
	3	LFXO		LFXO is clocking up-counter
	4	HFRCODI	PLL	HFRCODPLL is clocking up-counter
	5	HFRCOE	M23	HFRCOEM23 is clocking up-counter
	8	FSRCO		FSRCO is clocking up-counter
	9	LFRCO		LFRCO is clocking up-counter
	10	ULFRCO		ULFRCO is clocking up-counter
23	CONT	0x0	RW	Continuous Calibration

Bit	Name	Reset	Access	Description
	Set this bit to enab	ole continuous cali	bration	
22:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:0	CALTOP	0x0	RW	Calibration Counter Top Value
	Write top value be	fore calibration.		

8.5.9 CMU_CALCNT - Calibration Result Counter Register

Offset															Bi	t Po	siti	on														
0x058	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset																						2	8									
Access																						۵	<u> </u>									
Name																						FINC										

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
19:0	CALCNT	0x0	R	Calibration Result Counter Value
	Read calibration result w	hen Calibrati	on Ready flag h	as been set.

8.5.10 CMU_SYSCLKCTRL - System Clock Control

Offset	Bit Position	
0x070	2 3 4 4 5 6 6 7 7 8 8 8 9 9 10 <	13 3 4 4 4 7 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reset		000 000 1000
Access		X X X X
Name		HCLKPRESC PCLKPRESC CLKSEL

Bit	Name	Reset	Access	Description
31:14	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
13:12	HCLKPRESC	0x0	RW	HCLK Prescaler
	Specifies the clock of	livider for HCLK		
	Value	Mode		Description
	0	DIV1		HCLK is SYSCLK divided by 1
	1	DIV2		HCLK is SYSCLK divided by 2
	3	DIV4		HCLK is SYSCLK divided by 4
11	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
10	PCLKPRESC	0x0	RW	PCLK Prescaler
	Specifies the clock of	livider for PCLK		
	Value	Mode		Description
	0	DIV1		PCLK is HCLK divided by 1
	1	DIV2		PCLK is HCLK divided by 2
9:3	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
2:0	CLKSEL	0x1	RW	Clock Select
	Selects the clock so	urce for SYSCL	ζ.	
	Value	Mode		Description
	1	FSRCO		FSRCO is clocking SYSCLK
	2	HFRCODE	PLL	HFRCODPLL is clocking SYSCLK
	3	HFXO		HFXO is clocking SYSCLK
	4	CLKIN0		CLKIN0 is clocking SYSCLK

8.5.11 CMU_TRACECLKCTRL - Debug Trace Clock Control

Offset															Ві	t Po	siti	on													
0x080	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	∞	7	9	5	4	က	2	- 0
Reset						•												•									•				X0
Access																															R
Name																															CLKSEL

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure ventions	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	CLKSEL	0x1	RW	Clock Select
	Selects the clock	source for debug to	race logic.	
	Value	Mode		Description
	2	HCLK		HCLK is clocking TRACECLK
	3	HFRCOE	M23	HFRCOEM23 is clocking TRACECLK

8.5.12 CMU_EXPORTCLKCTRL - Export Clock Control

Offset															Bi	t Po	siti	on														
0x090	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	3	2	_	0
Reset						0×0								2	2							Š) X							0×0		
Access						₽								2	<u>}</u>							2	<u>}</u>							X N		
Name						PRESC								CHOTIONIO	71351							1 H 2 H 1 C 2	ᅦ							CLKOUTSELO		

	,	,	·	
Bit	Name	Reset	Access	Description
31:29	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
28:24	PRESC	0x0	RW	EXPORTCLK Prescaler
	Specifies the clock of	divider for EXPO	RTCLK (relativ	e to SYSCLK).
23:20	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
19:16	CLKOUTSEL2	0x0	RW	Clock Output Select 2
	Controls the clock o	utput 2 multiplex	er.	
	Value	Mode		Description
	0	DISABLE	D	CLKOUT2 is not clocked
	1	HCLK		HCLK is clocking CLKOUT2
	2	HFEXPCI	LK	HFEXPCLK is clocking CLKOUT2
	3	ULFRCO		ULFRCO is clocking CLKOUT2
	4	LFRCO		LFRCO is clocking CLKOUT2
	5	LFXO		LFXO is clocking CLKOUT2
	6	HFRCOD	PLL	HFRCODPLL is clocking CLKOUT2
	7	HFRCOE	M23	HFRCOEM23 is clocking CLKOUT2
	8	HFXO		HFXO is clocking CLKOUT2
	9	FSRCO		FSRCO is clocking CLKOUT2
15:12	Reserved	To ensure	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
11:8	CLKOUTSEL1	0x0	RW	Clock Output Select 1
	Controls the clock o	utput 1 multiplex	er.	
	Value	Mode		Description
	0	DISABLE	D	CLKOUT1 is not clocked
	1	HCLK		HCLK is clocking CLKOUT1
	2	HFEXPCI	LK	HFEXPCLK is clocking CLKOUT1

Bit	Name	Reset Access	Description
	3	ULFRCO	ULFRCO is clocking CLKOUT1
	4	LFRCO	LFRCO is clocking CLKOUT1
	5	LFXO	LFXO is clocking CLKOUT1
	6	HFRCODPLL	HFRCODPLL is clocking CLKOUT1
	7	HFRCOEM23	HFRCOEM23 is clocking CLKOUT1
	8	HFXO	HFXO is clocking CLKOUT1
	9	FSRCO	FSRCO is clocking CLKOUT1
7:4	Reserved	To ensure compatibility w	rith future devices, always write bits to 0. More information in 1.2 Con-
3:0	CLKOUTSEL0	0x0 RW	Clock Output Select 0
	Controls the clock or	utput 0 multiplexer.	
	Value	Mode	Description
			Beschildin
	0	DISABLED	CLKOUT0 is not clocked
			<u> </u>
	0	DISABLED	CLKOUT0 is not clocked
	0	DISABLED HCLK	CLKOUT0 is not clocked HCLK is clocking CLKOUT0
	0 1 2	DISABLED HCLK HFEXPCLK	CLKOUT0 is not clocked HCLK is clocking CLKOUT0 HFEXPCLK is clocking CLKOUT0
	0 1 2 3	DISABLED HCLK HFEXPCLK ULFRCO	CLKOUT0 is not clocked HCLK is clocking CLKOUT0 HFEXPCLK is clocking CLKOUT0 ULFRCO is clocking CLKOUT0
	0 1 2 3 4	DISABLED HCLK HFEXPCLK ULFRCO LFRCO	CLKOUT0 is not clocked HCLK is clocking CLKOUT0 HFEXPCLK is clocking CLKOUT0 ULFRCO is clocking CLKOUT0 LFRCO is clocking CLKOUT0
	0 1 2 3 4 5	DISABLED HCLK HFEXPCLK ULFRCO LFRCO LFRCO	CLKOUT0 is not clocked HCLK is clocking CLKOUT0 HFEXPCLK is clocking CLKOUT0 ULFRCO is clocking CLKOUT0 LFRCO is clocking CLKOUT0 LFXO is clocking CLKOUT0
	0 1 2 3 4 5	DISABLED HCLK HFEXPCLK ULFRCO LFRCO LFRCO HFRCODPLL	CLKOUT0 is not clocked HCLK is clocking CLKOUT0 HFEXPCLK is clocking CLKOUT0 ULFRCO is clocking CLKOUT0 LFRCO is clocking CLKOUT0 LFXO is clocking CLKOUT0 HFRCODPLL is clocking CLKOUT0
	0 1 2 3 4 5 6 7	DISABLED HCLK HFEXPCLK ULFRCO LFRCO LFRCO HFRCODPLL HFRCOEM23	CLKOUT0 is not clocked HCLK is clocking CLKOUT0 HFEXPCLK is clocking CLKOUT0 ULFRCO is clocking CLKOUT0 LFRCO is clocking CLKOUT0 LFXO is clocking CLKOUT0 HFRCODPLL is clocking CLKOUT0 HFRCOEM23 is clocking CLKOUT0

8.5.13 CMU_DPLLREFCLKCTRL - Digital PLL Reference Clock Control

Offset															Bi	t Po	siti	on														
0x100	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset		•				•									•												•				Q X	3
Access																															8	2
Name																															I KS I	CENCEL

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure ventions	compatibility (with future devices, always write bits to 0. More information in 1.2 Con-
1:0	CLKSEL	0x0	RW	Clock Select
	Selects the clock	source for DPLL ref	ference.	
	Value	Mode		Description
	0	DISABLED)	DPLLREFCLK is not clocked
	1	HFXO		HFXO is clocking DPLLREFCLK
	2	LFXO		LFXO is clocking DPLLREFCLK
	3	CLKIN0		CLKIN0 is clocking DPLLREFCLK

8.5.14 CMU_EM01GRPACLKCTRL - EM01 Peripheral Group A Clock Control

Offset															Bi	t Po	siti	on														
0x120	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	∞	7	9	5	4	က	2	_	0
Reset		•		•		•									•											•	•	•			0×	
Access																															X ≪	
Name																															CLKSEL	

Name	Reset	Access	Description
Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
CLKSEL	0x1	RW	Clock Select
Selects the clock source	for EM01 Gro	oup A Clock.	
Value	Mode		Description
1	HFRCODPL	LL	HFRCODPLL is clocking EM01GRPACLK
2	HFXO		HFXO is clocking EM01GRPACLK
3	HFRCOEM:	23	HFRCOEM23 is clocking EM01GRPACLK
4	FSRCO		FSRCO is clocking EM01GRPACLK
	CLKSEL Selects the clock source Value 1 2 3	Reserved To ensure of ventions CLKSEL Ox1 Selects the clock source for EM01 Gro Value Mode HFRCODPI HFXO HFRCOEM	Reserved To ensure compatibility with ventions CLKSEL 0x1 RW Selects the clock source for EM01 Group A Clock. Value Mode HFRCODPLL HFXO HFRCOEM23

8.5.15 CMU_EM23GRPACLKCTRL - EM23 Peripheral Group A Clock Control

Offset															Bi	t Po	siti	on														
0x140	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset																															2	5
Access																															7	2
Name																															11071	CLNSEL

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
1:0	CLKSEL	0x1	RW	Clock Select
	Selects the clock	source for EM23 G	roup A Clock.	
	Value	Mode		Description
	1	LFRCO		LFRCO is clocking EM23GRPACLK
	2	LFXO		LFXO is clocking EM23GRPACLK
	3	ULFRCO		ULFRCO is clocking EM23GRPACLK

8.5.16 CMU_EM4GRPACLKCTRL - EM4 Peripheral Group A Clock Control

Offset															Ві	t Po	siti	on														
0x160	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	∞	7	9	5	4	က	2	_	0
Reset																															2	Š
Access																															2	≥ Y
Name																															1007	CLKSEL

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure ventions	compatibility wit	th future devices, always write bits to 0. More information in 1.2 Con-
1:0	CLKSEL	0x1	RW	Clock Select
	Selects the clock source	e for EM4 Gro	up A Clock.	
	Value	Mode		Description
	1	LFRCO		LFRCO is clocking EM4GRPACLK
	2	LFXO		LFXO is clocking EM4GRPACLK
	3	ULFRCO		ULFRCO is clocking EM4GRPACLK

8.5.17 CMU_IADCCLKCTRL - IADC Clock Control

Offset	Bit Position	
0x180	1 1 <th>1 0</th>	1 0
Reset		0×1
Access		A W
Name		CLKSEL

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
1:0	CLKSEL	0x1	RW	Clock Select
	0 1 4 41 1 1	and the family DC	C EMAGED DAG	N. K. abasıldı massarı ba galaştadı aşışlaştı gasırına farı IADC seban diga
	bling the EM01GF	RACLK (e.g. becau		<u></u>
			ise of EM23 en	
	bling the EM01GF	RACLK (e.g. becau	se of EM23 en	Description

8.5.18 CMU_WDOG0CLKCTRL - Watchdog0 Clock Control

Offset	Bit Position	
0x200	30 30 30 30 30 30 30 30 30 4 4 4 4 4 4 4	0 1 2
Reset		<u>x</u>
Access		₩ M
Name		CLKSEL

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
2:0	CLKSEL	0x1	RW	Clock Select
	Selects the clock	source for WDOG0		
	Value	Mode		Description
	1	LFRCO		LFRCO is clocking WDOG0CLK
	2	LFXO		LFXO is clocking WDOG0CLK
	3	ULFRCO		ULFRCO is clocking WDOG0CLK
	4	HCLKDIV1	024	HCLKDIV1024 is clocking WDOG0CLK

8.5.19 CMU_WDOG1CLKCTRL - Watchdog1 Clock Control

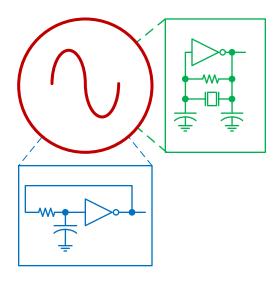
Offset	Bit Position	
0x208	33 34 35 36 37 38 39 30 31 32 33 34 35 36 36 37 38 39 40 <th>0 1 2</th>	0 1 2
Reset		<u>X</u>
Access		S S
Name		CLKSEL

Name	Reset	Access	Description									
Reserved	To ensure o	compatibility witl	n future devices, always write bits to 0. More information in 1.2 Con-									
CLKSEL	0x1	RW	Clock Select									
Selects the clock source	for WDOG1.											
Value	Mode		Description									
1	LFRCO		LFRCO is clocking WDOG1CLK									
2	LFXO		LFXO is clocking WDOG1CLK									
3	ULFRCO		ULFRCO is clocking WDOG1CLK									
4	HCLKDIV10	024	HCLKDIV1024 is clocking WDOG1CLK									
	CLKSEL Selects the clock source Value 1 2 3	Reserved To ensure of ventions CLKSEL Ox1 Selects the clock source for WDOG1. Value Mode LFRCO LFXO ULFRCO	Reserved To ensure compatibility with ventions CLKSEL 0x1 RW Selects the clock source for WDOG1. Value Mode 1 LFRCO 2 LFXO 3 ULFRCO									

8.5.20 CMU_RTCCCLKCTRL - RTCC Clock Control

Offset															Bi	t Po	siti	on														
0x240	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset																															3	Š
Access																															2	≥ Y
Name																															2	CLKSEL

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
1:0	CLKSEL	0x1	RW	Clock Select
	Selects the clock s	ource for RTCC.		
	Value	Mode		Description
	1	LFRCO		LFRCO is clocking RTCCCLK
	2	LFXO		LFXO is clocking RTCCCLK
	3	ULFRCO		ULFRCO is clocking RTCCCLK
		· · · · · ·		


8.5.21 CMU_RADIOCLKCTRL - Radio Clock Control

Offset															Bi	t Po	sitio	on														
0x280	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	0	∞	7	9	5	4	က	2	1	0
Reset				•																							•	•				0x0
Access																																₩ M
Name																																EN

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
0	EN	0x0	RW	Enable
	Enables clock			

9. Oscillators

Quick Facts

What?

The EFR32xG21 has a wide range of high frequency and low frequency oscillators.

Why?

The High Frequency oscillators support EM0/1 operation. The Low-frequency oscillators provide a low frequency clock for the low energy peripherals in EM/2/3/4.

How?

The HFXO uses a 38.4 MHz crystal. The LFXO supports an optional 32.768 kHz crystal. The RC oscillators are internal oscillators that require no external components.

9.1 Introduction

The EFR32xG21 has several oscillators. This chapter contains a detailed function description and register descriptions for each oscillator. The CMU chapter includes information on how to select clock sources. Each oscillator may require some initial configuration or calibration, before being enabled. The CMU supports clock on demand and can enable and disable oscillators. Therefore, it is important to properly configure each oscillator before selecting it as a clock source in the CMU.

9.2 HFXO - High Frequency Crystal Oscillator

9.2.1 Introduction

The High Frequency Crystal Oscillator (HFXO) uses an external high frequency crystal and provides a sequencer for starting up the crystal safely and reliably, while minimize energy consumption. An external sine wave clock source can also be used in the absence of a crystal.

9.2.2 Features

- Optimized for 38.4 MHz crystals
- Multiple programming options of start-up parameters to enable optimization of different crystals, supporting a wide range of ESR and ESL
- Programmable two-phase start-up to minimize energy consumption
- · Built-in current optimization (Automatic oscillation amplitude control)
- · Independent on-chip frequency tuning capacitors
- · Hardware request for on-demand enable/disable
- · Register lock

9.2.3 Functional Description

9.2.3.1 Enabling and Disabling

While the HFXO supports on-demand clocking, it is generally recommended to manually manage the HFXO, at least initially, because it requires software configuration and has a long start-up time. Software can set the FORCEEN to start HFXO and keep it enabled even if it is not selected as a clock source.

However, once started and before EM2 entry, switching the HFXO to on-demand mode may be desirable. This allows the MCU to enter EM2 and then restart the HFXO automatically upon EM2 exit. (During EM1P the HFXO can be conditionally started, depending on the wake-up trigger source.)

The HFXO can be enabled and disabled via both hardware and software mechanisms. Enabling via software is done by setting the FORCEEN bit in the HFXO_CTRL register. Disabling via software is done by setting the DISONDEMAND bit and clearing FORCEEN bit in the HFXO_CTRL register. The hardware controlled on-demand mode is enabled by clearing the FORCEEN and DISONDEMAND bits in the HFXO_CTRL register. Once configured the on-demand mode hardware can autonomously start and stop the HFXO based on various peripheral clock requests in combination with clock switch selections in the CMU. The HFXO is automatically stopped when entering EM2, EM3, or EM4. Hardware can also stop the HFXO via hardware in response to change in peripheral requests and clock switch selections in the CMU.

9.2.3.2 Start-up Time

The start-up time differs for different crystals and the HFXO has a configurable time-out to accommodate each crystal type. Software configures the timeout by setting the various TIMEOUT bit fields of the HFXO_XTALCFG register. The time-out delays the assertion of the RDY signal for HFXO. The programmed timeout should allow enough time for the oscillator to stabilize. The time-out can be optimized for the chosen crystal used in the application.

The start-up behavior of the HFXO also depends on how and how long the HFXO is disabled.

9.2.3.3 Configuration

The High Frequency Crystal Oscillator needs to be configured to ensure safe start-up for the given crystal. Refer to the Device Data sheet and application notes for guidelines in selecting correct components and crystals as well as for configuration trade-offs.

The HFXO crystal is connected to the HFXTAL I/HFXTAL O pins as shown in Figure 9.1 HFXO Pin Connection on page 171.

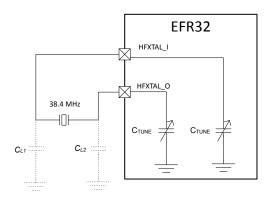


Figure 9.1. HFXO Pin Connection

Upon enabling the HFXO, a hardware state machine sequentially applies the configurable start-up state, intermediate start-up state, and steady state control settings from the HFXO_XTALCFG and HFXO_XTALCTRL registers. After reaching the steady operation state of the HFXO, it is recommended to further optimize current consumption using the Core Bias Optimization Algorithm to trade off noise and current consumption.

Refer to AN0016.2 for more information on settings for different crystals. Write the configuration values, which depends on the crystal's CL, RESR and oscillation frequency, into HFXO_XTALCFG and HFXO_XTALCTRL registers.

- · COREBIASSTARTUP (HFXO XTALCFG) current setting applied at start-up time
- · COREBIASSTARTUPI (HFXO_XTALCFG) current setting applied at intermediate start-up time
- · COREBIASANA (HFXO XTALCTRL) current setting applied at steady state
- CTUNEXISTARTUP (HFXO_XTALCFG) tuning cap setting for XI applied at start-up time
- CTUNEXIANA (HFXO XTALCTRL) tuning cap setting for XI applied at steady state
- CTUNEXOSTARTUP (HFXO_XTALCFG) tuning cap setting for XO applied at start-up time
- CTUNEXOANA (HFXO XTALCTRL) tuning cap setting for XO applied at steady state
- CTUNEFIXANA (HFXO_XTALCTRL) fixed tuning cap setting applied throughout
- · TIMEOUTSTEADY (HFXO_XTALCFG) duration for the steady state settling time
- TIMEOUTCBLSB (HFXO_XTALCFG) duration for the optimization settling after each step

All HFXO configuration needs to be performed prior to enabling the HFXO, whether via software by setting FORCEEN bit field, or allowing hardware request by clearing DISONDEMAND bit field in the HFXO_CTRL register.

By default, the HFXO is started in crystal mode, but it is possible to connect an active external sine or clipped sine wave clock source to the HFXTAL_I pin of the HFXO. By configuring the MODE field in HFXO_CFG to EXTCLK, the HFXO can be bypassed and the source clock can be provided through the HFXTAL_I pin.

9.2.3.4 Status Flags

The ENS flag in the HFXO_STATUS indicates if the HFXO has been successfully enabled. Once the HFXO oscillation amplitude has exceeded the start-up threshold and intermediate start-up threshold, the steady state settling timeout begins. When the steady state timeout has expired, the HFXO is ready for use as indicated by the RDY flag in the HFXO_STATUS. Once Core Bias Optimization is enabled, the COREBIASOPTRDY flag in the CMU_STATUS register indicates when the optimization is ready. It is advised to wait for this flag before using the HFXO, because optimization can cause minor disturbance to the oscillator frequency.

9.2.3.5 On-Demand Clocking

Hardware can request to enable the HFXO by setting the HFXO_STATUS.HWREQ bit field. The HFXO can also optionally be configured via the HFXO_STATUS.DISONDEMAND to shut down when no hardware request is present. This is known as on-demand clocking and allows the oscillator to be controlled without any software intervention. On-demand HFXO enable can be used, for example, upon wake-up of the Radio Controller (RAC). The RAC module always requires the HFXO for its operation. Any hardware request for HFXO, including request from RAC, is indicated in the HWREQ bit field of the HFXO_STATUS register. This request enables the HFXO, provided that DISONDEMAND bit field is cleared in HFXO_CTRL register. The HFXO is only disabled by hardware upon EM2, EM3 or EM4 entry.

A typical use scenario of the on-demand feature is as follows. Set up the PRORTC to periodically generate a compare match. Setup a PRS channel which uses this PRORTC compare match as its source to cause a wake-up into EM1. Setup the RAC to use the PRS channel as its source for TXEN or RXEN. Now, when the EFR32 is in EM2 and the RTCC generates a compare match, a wake-up into EM1 occurs, and the HFXO will automatically start. When HFXO is ready, the RAC performs its work and triggers a transition back into EM2 when finished. The system starts, uses, and stops the HFXO without ever being in EM0.

The HFXO analog circuitry can optionally continue operating with the clock output shut off when the HFXO is disabled. This is configured by setting the KEEPWARM bit in HFXO STATUS.

9.2.3.6 Interrupts

RDYIF and COREBIASOPTRDYIF are interrupt flags as well as status flags. This allows software flexibility to implement interrupt service routine or polling loop for these events. When steady state timeout has exceeded, sticky RDYIF is set until it is cleared by software. If optimization is enabled, sticky COREBIASOPTRDYIF is set when optimization is completed successfully. However, if optimization fails to complete, sticky COREBIASOPTERRIF is set, and the HFXO control state machine stays in the error state until the oscillator is disabled. Similarly, if HFXO fails to start-up, meaning it has not reached the steady state, sticky DNSERRIF is set. The HFXO control state machine stays in the error state until the oscillator is disabled.

9.2.3.7 Protection

It is possible to lock the control registers, configuration registers, and command register to prevent unintended software writes to critical clock settings. This is controlled by the HFXO_LOCK register. A LOCK bit is available in HFXO_STATUS register. Furthermore, these registers are locked automatically by hardware to prevent clock domain crossing malfunction. To gain access to these registers while oscillator is in steady operation state, set FORCEEN to 1, then set DISONDEMAND to 1 in the HFXO_CTRL register. A FSMLOCK bit in HFXO_STATUS register indicates when it is safe for software to update control registers and configuration registers. When software is finished with updates, put the oscillator back to on-demand mode by clearing DISONDEMAND to 0, followed by clearing FORCEEN to 0 in the HFXO_CTRL register. While DISONDEMAND is 0, FSMLOCK is always set, even if hardware is not requesting. This is to prevent a race condition between software access and hardware lock.

9.2.3.8 Tuning

While the oscillator is running in steady operation state, it may be desirable to change control settings. One example is frequency tuning by modifying the tuning capacitance via CTUNEXIANA and CTUNEXOANA fields in the HFXO_XTALCTRL register. When tuning, care should be taken to make small changes to the CTUNE registers. Ideally, change the CTUNE registers by one LSB at a time and alternate between the XI and XO registers. Sufficient wait time for settling, on the order of TIMEOUTSTEADY, should pass before new frequency measurement is taken.

Note: While the HFXO can support crystals with a tuning range of 38 MHz to 40 MHz, the radio specifically requires a 38.4 MHz crystal. There may also be specific crystal tolerance requirements for each RF protocol supported by the radio.

9.2.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	HFXO_IPVERSION	R	IP version ID
0x010	HFXO_XTALCFG	RWH	Crystal Configuration Register
0x018	HFXO_XTALCTRL	RWH	Crystal Control Register
0x020	HFXO_CFG	RWH	Configuration Register
0x028	HFXO_CTRL	RWH	Control Register
0x050	HFXO_CMD	W	Command Register
0x058	HFXO_STATUS	RH	Status Register
0x070	HFXO_IF	RWH INTFLAG	Interrupt Flag Register
0x074	HFXO_IEN	RW	Interrupt Enable Register
0x080	HFXO_LOCK	W	Configuration Lock Register
0x1000	HFXO_IPVERSION_SET	R	IP version ID
0x1010	HFXO_XTALCFG_SET	RWH	Crystal Configuration Register
0x1018	HFXO_XTALCTRL_SET	RWH	Crystal Control Register
0x1020	HFXO_CFG_SET	RWH	Configuration Register
0x1028	HFXO_CTRL_SET	RWH	Control Register
0x1050	HFXO_CMD_SET	W	Command Register
0x1058	HFXO_STATUS_SET	RH	Status Register
0x1070	HFXO_IF_SET	RWH INTFLAG	Interrupt Flag Register
0x1074	HFXO_IEN_SET	RW	Interrupt Enable Register
0x1080	HFXO_LOCK_SET	W	Configuration Lock Register
0x2000	HFXO_IPVERSION_CLR	R	IP version ID
0x2010	HFXO_XTALCFG_CLR	RWH	Crystal Configuration Register
0x2018	HFXO_XTALCTRL_CLR	RWH	Crystal Control Register
0x2020	HFXO_CFG_CLR	RWH	Configuration Register
0x2028	HFXO_CTRL_CLR	RWH	Control Register
0x2050	HFXO_CMD_CLR	W	Command Register
0x2058	HFXO_STATUS_CLR	RH	Status Register
0x2070	HFXO_IF_CLR	RWH INTFLAG	Interrupt Flag Register
0x2074	HFXO_IEN_CLR	RW	Interrupt Enable Register
0x2080	HFXO_LOCK_CLR	W	Configuration Lock Register
0x3000	HFXO_IPVERSION_TGL	R	IP version ID
0x3010	HFXO_XTALCFG_TGL	RWH	Crystal Configuration Register
0x3018	HFXO_XTALCTRL_TGL	RWH	Crystal Control Register
0x3020	HFXO_CFG_TGL	RWH	Configuration Register
0x3028	HFXO_CTRL_TGL	RWH	Control Register

Offset	Name	Туре	Description					
0x3050	HFXO_CMD_TGL	W	Command Register					
0x3058	HFXO_STATUS_TGL	RH	Status Register					
0x3070	HFXO_IF_TGL	RWH INTFLAG	Interrupt Flag Register					
0x3074	HFXO_IEN_TGL	RW	Interrupt Enable Register					
0x3080	HFXO_LOCK_TGL	W	Configuration Lock Register					

9.2.5 Register Description

9.2.5.1 HFXO_IPVERSION - IP version ID

Offset		Bit Position																														
0x000	31	0 2 3 4 5 6 7 8 8 7 9 8 7 9 8 7 9 8 7 9 9 7 9 9 9 9																														
Reset		× × × × × × × × × × × × × × × × × × ×																														
Access		<u>~</u>																														
Name																ID//EDOI/OI																

Bit	Name	Reset	Access	Description								
31:0	IPVERSION	0x1	R	IP Version ID								
	The read only IPVERSIOn modules with different values	ON field gives the version for this module. There may be minor software changes required for values of IPVERSION.										

9.2.5.2 HFXO_XTALCFG - Crystal Configuration Register

Offset	Bit Position												
0x010	30 30 28 28	27 26 26 27 23 23 23 23 20 20 20 20 20 20 20 20 20 20 20 20 20	18 17 19 19	6 4 6 6 6 4 6 6	11 10 10 17 17 19 19 19 19 19 19 19 19 19 19 19 19 19	ω 7 F O							
Reset		0x4 0x4	0x3	0x3	0x13	0XB							
Access		W W	AN N	RW	RW	RW							
Name		TIMEOUTCBLSB	CTUNEXOSTARTUP	CTUNEXISTARTUP	COREBIASSTARTUP	COREBIASSTARTUPI							

Name	Reset	Access	Description
Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
TIMEOUTCBLSB	0x4	RW	Core Bias LSB Change Timeout
wait duration for the CO	OREBIAS char	nge to settle out	, used at each step of COREBIAS optimization algorithm
Value	Mode		Description
0	T8US		
1	T20US		
2	T41US		
3	T62US		
4	T83US		
5	T104US		
6	T125US		
7	T166US		
8	T208US		
9	T250US		
10	T333US		
11	T416US		
12	T833US		
13	T1250US		
14	T2083US		
15	T3750US		
TIMEOUTSTEADY	0x4	RW	Steady State Timeout
wait duration for the ste	eady state sett	ings to settle ou	ıt
Value	Mode		Description
	TIMEOUTCBLSB wait duration for the CC Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TIMEOUTSTEADY wait duration for the ste	Ventions TIMEOUTCBLSB 0x4 wait duration for the COREBIAS char Value Mode 0 T8US 1 T20US 2 T41US 3 T62US 4 T83US 5 T104US 6 T125US 7 T166US 8 T208US 9 T250US 10 T333US 11 T416US 12 T833US 13 T1250US 14 T2083US 15 T3750US TIMEOUTSTEADY 0x4 wait duration for the steady state sett	Ventions TIMEOUTCBLSB 0x4 RW wait duration for the COREBIAS change to settle out Value Mode 0 T8US 1 T20US 2 T41US 3 T62US 4 T83US 5 T104US 6 T125US 7 T166US 8 T208US 9 T250US 10 T333US 11 T416US 12 T833US 13 T1250US 14 T2083US 15 T3750US TIMEOUTSTEADY 0x4 RW Wait duration for the steady state settings to settle out

Bit	Name	Reset	Access	Description
	0	T16US		
	1	T41US		
	2	T83US		
	3	T125US		
	4	T166US		
	5	T208US		
	6	T250US		
	7	T333US		
	8	T416US		
	9	T500US		
	10	T666US		
	11	T833US		
	12	T1666US		
	13	T2500US		
	14	T4166US		
	15	T7500US		
19:16	CTUNEXOSTARTUP	0x3	RW	Startup Tuning Capacitance on XO
	4 most significant bits of	CTUNEXOA	NA applied durir	ng startup phase
15:12	CTUNEXISTARTUP	0x3	RW	Startup Tuning Capacitance on XI
	4 most significant bits of	CTUNEXIAN	A applied during	g startup phase
11:6	COREBIASSTARTUP	0x13	RW	Startup Core Bias Current
	6 most significant bits of	COREBIASA	NA applied duri	ng startup phase
5:0	COREBIASSTARTUPI	0xB	RW	Intermediate Startup Core Bias Current
	6 most significant bits of	COREBIASA	NA applied duri	ng intermediate startup phase

9.2.5.3 HFXO_XTALCTRL - Crystal Control Register

Offset		Bit Position																																
0x018	31	30	59	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	. ო	2	- 0	_		
Reset	0x0			•	2	S	2,2	S				788								,	SXS C								0x10		·	_		
Access	Z N				20	2	2	<u>}</u>				<u>8</u>	<u>}</u>				RW									RW W								
Name	SKIPCOREBIASOPT				COBEDCENIANA	CONFIDENCE	VIA VIA DIVI	CIONETIANIA				CTINEXOANA								L L	CLUNEXIANA				COREBIASANA									

Bit	Name	Reset	Access	Description
31	SKIPCOREBIASOPT	0x0	RW	Skip Core Bias Optimization
				n at next startup. Reuse the value stored in COREBIASANA. At the n algorithm, hardware sets this bit to skip optimization during sub-
30:28	Reserved	To ensure ventions	compatibility witl	n future devices, always write bits to 0. More information in 1.2 Con-
27:26	COREDGENANA	0x3	RW	Core Degeneration
	Core degeneration con	trol		
	Value	Mode		Description
	0	NONE		
	1	DGEN33		
	2	DGEN50		
	3	DGEN100		
25:24	CTUNEFIXANA	0x3	RW	Fixed Tuning Capacitance
	Adds or removes fixed	capacitance c	n XI or XO	
	Value	Mode		Description
	0	NONE		
	1	ΧI		
	2	XO		
	3	вотн		
23:16	CTUNEXOANA	0x8C	RW	Tuning Capacitance on XO
	Approximately 80fF per	step. 0 is mir	n. 255 is max.	
15:8	CTUNEXIANA	0x8C	RW	Tuning Capacitance on XI
	Approximately 80fF per	step. 0 is mir	n. 255 is max.	
7:0	COREBIASANA	0x10	RW	Core Bias Current

Bit	Name	Reset	Access	Description
	Approximately 10uA per			

9.2.5.4 HFXO_CFG - Configuration Register

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	7	_	0
Reset			•	•		•		•		•	•		•			•	•		•		•			•	•	•		•	0x0	0x0		0x0
Access																													₹	Z.		RW W
Name																													SQBUFSCHTRGANA	ENXIDCBIASANA		MODE

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3	SQBUFSCHTRGANA	0x0	RW	Squaring Buffer Schmitt Trigger
	Used in EXTCLK mode t	to prevent self	foscillation	
	Value	Mode		Description
	0	DISABLE		
	1	ENABLE		
2	ENXIDCBIASANA	0x0	RW	Enable XI Internal DC Bias
	Set to enable internal DO	C bias. Bit is i	gnored in XTAL	mode.
1	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
0	MODE	0x0	RW	Crystal Oscillator Mode
	Set this to configure the	external sour	ce for the HFXO	
	Value	Mode		Description
	0	XTAL		crystal oscillator
	1	EXTCLK		external sinusoidal clock can be supplied on XI pin.
	,			

9.2.5.5 HFXO_CTRL - Control Register

Offset		Bit Position																														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset		•	•			•			•			•				•		•				•		•			0X0	0x0		•	0x1	0x0
Access																											Z.	W.			RW	RW W
Name																											FORCEX02GNDANA	FORCEXIZGNDANA			DISONDEMAND	FORCEEN

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
5	FORCEXO2GNDANA	0x0	RW	Force XO Pin to Ground
	Set to enable grounding	of XO pin.		
	Value	Mode		Description
	0	DISABLE		Disabled (not pulled)
	1	ENABLE		Enabled (pulled)
4	FORCEXI2GNDANA	0x0	RW	Force XI Pin to Ground
	Set to enable grounding	of XI pin. Do	not enable if MC	DDE=EXTCLK and an external source is supplied.
	Value	Mode		Description
	0	DISABLE		Disabled (not pulled)
	1	ENABLE		Enabled (pulled)
3:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1	DISONDEMAND	0x1	RW	Disable On-demand Mode
	Set to ignore hardware CTRL registers while FS			scillator. This bit must be set in order to modify various CFG and
0	FORCEEN	0x0	RW	Force Enable
	Force the oscillator to ru	ın even withou	ut a hardware re	quest.

9.2.5.6 HFXO_CMD - Command Register

Offset	Bit Position																															
0x050	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	_	0
Reset		•		'	'		'		'		'		'	<u>'</u>	•	'		'		•			•	'		'	•			1	•	000
Access																																>
Name																																COREBIASOPT

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
0	COREBIASOPT	0x0	W	Core Bias Optimizaton
	ture changes by more that	an 40degC. D	o not run this co	runs it one time. Optimization should be executed if the tempera- ommand while the radio is in RX or TX modes. Do not issue this s asserted, or the previous command may be cancelled.

9.2.5.7 HFXO_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x058	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset	0x0	0x0			'		'	1			'				0×0	0×0		'		•				'					•		000	0x0
Access	2	2													22	2															22	22
Name	LOCK	FSMLOCK													HWREQ	ENS															COREBIASOPTRDY	RDY

Bit	Name	Reset	Access	Description
31	LOCK	0x0	R	Configuration Lock Status
	Indicates the current sta	itus of confi	guration lock	
	Value	Mode		Description
	0	UNLOCK	ED	
	1	LOCKED		
30	FSMLOCK	0x0	R	FSM Lock Status
	Indicates the current sta	itus of config	guration locked b	by FSM running
	Value	Mode		Description
	0	UNLOCK	ED	
	1	LOCKED		
29:18	Reserved	To ensure	e compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
17	HWREQ	0x0	R	Oscillator Requested by Hardware
	Oscillator is requested by	y hardware		
16	ENS	0x0	R	Enabled Status
	Oscillator is enabled.			
15:2	Reserved	To ensure ventions	e compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
1	COREBIASOPTRDY	0x0	R	Core Bias Optimization Ready
	Core bias optimization a	algorithm is	complete. New c	ore bias value updated to XTALCTRL.
0	RDY	0x0	R	Ready Status
	Oscillator is enabled an	d start-up tir	ne has exceeded	d.

9.2.5.8 HFXO_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x070	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	5	4	က	7	_	0
Reset	0x0		000			'					'				'			'		'				'	•		'	'	'		000	0x0
Access	Z.		₩ M																												₩ M	X N
Name	COREBIASOPTERR		DNSERR																												COREBIASOPTRDY	RDY

Bit	Name	Reset	Access	Description
31	COREBIASOPTERR	0x0	RW	Core Bias Optimization Error Interrupt
	Core bias current optimiz	zation algorith	m fails to compl	ete.
30	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
29	DNSERR	0x0	RW	Did Not Start Error Interrupt
	Crystal oscillator fails to	startup.		
28:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1	COREBIASOPTRDY	0x0	RW	Core Bias Optimization Ready Interrupt
	Core bias current optimiz	zation algorith	m is complete.	
0	RDY	0x0	RW	Ready Interrupt
	Oscillator is ready (start-	up time excee	eded).	

9.2.5.9 HFXO_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x074	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset	000		000			'			'				'	•	'	<u>'</u>		'		'				'	•		•		•		0x0	0x0
Access	₩ W		₩ W																												RW	A W
Name	COREBIASOPTERR		DNSERR																												COREBIASOPTRDY	RDY

Bit	Name	Reset	Access	Description
31	COREBIASOPTERR	0x0	RW	Core Bias Optimization Error Interrupt
	Core bias current optimiz	zation algorith	m fails to compl	ete.
30	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
29	DNSERR	0x0	RW	Did Not Start Error Interrupt
	Crystal oscillator fails to	startup.		
28:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1	COREBIASOPTRDY	0x0	RW	Core Bias Optimization Ready Interrupt
	Core bias current optimiz	zation algorith	m is complete.	
0	RDY	0x0	RW	Ready Interrupt
	Oscillator is ready (start-	up time excee	eded).	

9.2.5.10 HFXO_LOCK - Configuration Lock Register

Offset	Bit Po	sition
0x080	33 33 34 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reset		0x580E
Access		>
Name		LOCKKEY

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure ventions	compatibility w	with future devices, always write bits to 0. More information in 1.2 Con-
15:0	LOCKKEY	0x580E	W	Configuration Lock Key
	Write any other value	than the unlock	code to lock re	egisters from editing. Write the unlock code to unlock.
	Value	Mode		Description
	22542	UNLOCK		

9.3 HFRCO - High-Frequency RC Oscillator

9.3.1 Introduction

The HFRCO is a calibrated internal High Frequency RC oscillator.

9.3.2 Features

- 1 MHz 80 MHz High Frequency RC Oscillator with DPLL working in EM01 (HFRCODPLL)
- 1 MHz 40 MHz High Frequency RC Oscillator working in EM23 (HFRCOEM23)
- · Low start-up time
- · Run-time band change or tuning

9.3.3 Functional Description

9.3.3.1 Start-up

The HFRCO starts up quickly in a few micro-seconds (refer to device data sheet for start-up time specifications.) After the start-up time, the RDY status bit will go high and the RDY interrupt will be triggered. It can take another two clock cycles for the clock to propagate through the CMU before the clock is seen by peripherals.

9.3.3.2 On-Demand Clocking

Hardware can request to enable the HFRCO by setting the HFRCO_STATUS.HWREQ bit field. The HFRCO can also optionally be configured via the HFRCO_STATUS.DISONDEMAND to shut down when no hardware request is present. This is known as on-demand clocking and allows the oscillator to be controlled without any software intervention. This means that HFRCO receives a request for clock from the CMU whenever the oscillator clock is needed. These requests can come at any time from any power domain (depending on the which peripheral is requesting the clock.)

9.3.3.3 Calibration

Several different frequencies are calibrated during production test on every device. In order to use a factory-calibrated value, software must read the value from the appropriate location in the DEVINFO page and write it to the CAL register.

The TUNING and FINETUNING bit fields in the CAL register can be used to trim HFRCO manually.

Software may write the CAL register at any time. If there is already a frequency updating occuring, the current change would apply when the previous update is done. FREQBSY in STATUS register indicates if the updating is finished.

The minimum and maximum frequencies attainable for each setting of the FREQRANGE field are listed in the device data sheet.

Table 9.1. HFRCODPLL Calibration Frequencies

DEVINFO Location	Target Frequency
HFRCODPLLCAL0	4 MHz
HFRCODPLLCAL3	7 MHz
HFRCODPLLCAL6	13 MHz
HFRCODPLLCAL7	16 MHz
HFRCODPLLCAL8	19 MHz (default)
HFRCODPLLCAL10	26 MHz
HFRCODPLLCAL11	32 MHz
HFRCODPLLCAL12	38 MHz
HFRCODPLLCAL13	48 MHz
HFRCODPLLCAL14	56 MHz
HFRCODPLLCAL15	64 MHz
HFRCODPLLCAL16	80 MHz

Table 9.2. HFRCOEM23 Calibration Frequencies

DEVINFO Location	Target Frequency
HFRCOEM23CAL0	4 MHz
HFRCOEM23CAL3	7 MHz
HFRCOEM23CAL6	13 MHz
HFRCOEM23CAL7	16 MHz
HFRCOEM23CAL8	19 MHz (default)
HFRCOEM23CAL10	26 MHz
HFRCOEM23CAL11	32 MHz
HFRCOEM23CAL12	40 MHz

9.3.3.4 Interrupts

HFRCO has one interrupt: IF.RDY. RDY is triggered when the timeout has finished and the qualified HFRCO clock is ready. The clock is gated until it is ready.

9.3.3.5 Status Flags

9.3.3.5.1 FREQBSY

The FREQBSY bit indicates the HFRCO is busy updating its frequency after writing to the CAL register. The FREQBSY bit should be used whenever frequency is changed. E.g. After software writes to the CAL register, FREQBSY would assert immediately. Software should wait for FREQBSY to be zero before attempting to write to the CAL register again.

For band-change, FREQBSY would not de-assert until after the timeout upon being re-enabled.

For normal start-up, FREQBSY would not assert.

When DPLL is on, FREQBSY would not assert as the frequency change is not caused by writing to the CAL register. When disabling DPLL the last tuning value is written back to the CAL register, which will assert FREQBSY.

9.3.3.5.2 ENS

ENS indicates the HFRCO is enabled. This flag is used to check if the HFRCO is enabled by any requester.

Note: When a band change occurs, the HFRCO is disabled and re-enabled. This will cause the ENS bit to briefly de-assert.

9.3.3.5.3 RDY

RDY indicates HFRCO is enabled and start-up timeout has exceeded. Used to check if the HFRCO clock is ready after enable.

Band-change would de-assert RDY as it would go through another

9.3.3.5.4 SYNCBUSY

SYNCBUSY indicates ongoing synchronization of CAL register fields. Same as all other modules.

9.3.3.6 Forced Oscillator Control

The HFRCO can be forced on and off using the FORCEEN and DISONDEMAND bits in the CTRL register.

Setting FORCEEN will force the oscillator core to run, but peripherals will still need to request the clock to un-gate the clock signal.

9.3.3.7 Oscillator Modes

The HFRCO has three modes of operation, an **on-demand** mode (which is the normal software use case), a **force on** and a **force off** mode.

In **on-demand** mode the oscillator will start whenever a peripheral requests the it. Which in most cases is whenever the module is enabled.

In **force on** mode the analog core will run independently of whether it is requested or not. This can be useful for measuring analog current without any digital load on the clocks.

In **force off** mode, the analog core will be shut off independently of whether it is requested or not. This can be useful for changing analog test settings without risking glitches on the clock.

The DISONDEMAND bit can also be used to give software full control over the clock for exceptional cases where software control is desired.

Table 9.3. Oscillator modes

Bit Field	FORCEEN	DISONDEMAND
On-Demand (normal operation)	0	0
Forced On	1	X
Forced Off	0	1

9.3.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	HFRCO_IPVERSION	R	IP Version ID
0x004	HFRCO_CTRL	RW	Ctrl Register
0x008	HFRCO_CAL	RWH SYNC	Calibration Register
0x00C	HFRCO_STATUS	RH	Status Register
0x010	HFRCO_IF	RWH INTFLAG	Interrupt Flag Register
0x014	HFRCO_IEN	RW	Interrupt Enable Register
0x01C	HFRCO_LOCK	W	Lock Register
0x1000	HFRCO_IPVERSION_SET	R	IP Version ID
0x1004	HFRCO_CTRL_SET	RW	Ctrl Register
0x1008	HFRCO_CAL_SET	RWH SYNC	Calibration Register
0x100C	HFRCO_STATUS_SET	RH	Status Register
0x1010	HFRCO_IF_SET	RWH INTFLAG	Interrupt Flag Register
0x1014	HFRCO_IEN_SET	RW	Interrupt Enable Register
0x101C	HFRCO_LOCK_SET	W	Lock Register
0x2000	HFRCO_IPVERSION_CLR	R	IP Version ID
0x2004	HFRCO_CTRL_CLR	RW	Ctrl Register
0x2008	HFRCO_CAL_CLR	RWH SYNC	Calibration Register
0x200C	HFRCO_STATUS_CLR	RH	Status Register
0x2010	HFRCO_IF_CLR	RWH INTFLAG	Interrupt Flag Register
0x2014	HFRCO_IEN_CLR	RW	Interrupt Enable Register
0x201C	HFRCO_LOCK_CLR	W	Lock Register
0x3000	HFRCO_IPVERSION_TGL	R	IP Version ID
0x3004	HFRCO_CTRL_TGL	RW	Ctrl Register
0x3008	HFRCO_CAL_TGL	RWH SYNC	Calibration Register
0x300C	HFRCO_STATUS_TGL	RH	Status Register
0x3010	HFRCO_IF_TGL	RWH INTFLAG	Interrupt Flag Register
0x3014	HFRCO_IEN_TGL	RW	Interrupt Enable Register
0x301C	HFRCO_LOCK_TGL	W	Lock Register

9.3.5 Register Description

9.3.5.1 HFRCO_IPVERSION - IP Version ID

Offset	Bit Position
0x000	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Reset	0×0
Access	~
Name	IPVERSION

Bit	Name	Reset	Access	Description
31:0	IPVERSION	0x0	R	IP Version ID
	The read only IPVERSIC modules with different va	•		his module. There may be minor software changes required for

9.3.5.2 HFRCO_CTRL - Ctrl Register

Offset															Bi	t Po	ositi	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	8	7	9	5	4	က	7	-	0
Reset				•	•						•			•	•		•						•			•	•		•		0x0	0x0
Access																															RW	₩ W
Name																															DISONDEMAND	FORCEEN

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure o	compatibility witl	n future devices, always write bits to 0. More information in 1.2 Con-
1	DISONDEMAND	0x0	RW	Disable On-demand
	Setting this bit disable H	FRCO on-der	nand feature	
0	FORCEEN	0x0	RW	Force Enable
	Setting this bit force HFF	RCO enabled		

9.3.5.3 HFRCO_CAL - Calibration Register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		2	X X		5	7	5	OXO		0x3			•	0x8		•	0x1				2						•	•	0x7F			
Access		7	≥ Ľ		2	<u>}</u>	2	≥ Y		R ≪				R			RW				2	<u>}</u>							R			
Name		CTO	-		CMD	CINITORI	3 3	CLAU!		CMPBIAS				FREQRANGE			ГРОНР				CININI	_							TUNING			

Bit	Name	Reset	Access	Description
31:28	IREFTC	0xA	RW	Tempco Trim on Comparator Current
	Writing this field adj	usts the tempera	ture coefficient	trim on comparator current.
27:26	CMPSEL	0x2	RW	Comparator Load Select
	Writing this field adj	usts the active lo	oad for compara	ators.
25:24	CLKDIV	0x0	RW	Locally Divide HFRCO Clock Output
	Writing this field cor	figures the HFR	CO clock outpu	ıt divider.
	Value	Mode		Description
	0	DIV1		Divide by 1.
	1	DIV2		Divide by 2.
	2	DIV4		Divide by 4.
23:21	CMPBIAS	0x3	RW	Comparator Bias Current
	Writing this field adj	usts the HFRCC	comparator bia	as current.
20:16	FREQRANGE	0x8	RW	Frequency Range
	Writing this field adj	usts the HFRCO	frequency rang	ge.
15	LDOHP	0x1	RW	LDO High Power Mode
	Settings this bit puts	the HFRCO LD	O in high powe	r mode.
14	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
13:8	FINETUNING	0x1F	RW	Fine Tuning Value
	Writing this field adj	usts the HFRCO	fine tuning valu	ue. Higher value means lower frequency.
7	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
6:0	TUNING	0x7F	RW	Tuning Value
	Writing this field adj	usts the HFRCO	tuning value. H	ligher value means lower frequency.
	•		-	·

9.3.5.4 HFRCO_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset	0X0		'						'							0×0				'				'			'		•	0×0	0×0	0x0
Access	2															œ														2	œ	~
Name	LOCK															ENS														SYNCBUSY	FREQBSY	RDY

Bit	Name	Reset	Access	Description
31	LOCK	0x0	R	Lock Status
	If set, all HFRCO lockab	le registers ar	e locked.	
	Value	Mode		Description
	0	UNLOCKE	D	
	1	LOCKED		
30:17	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
16	ENS	0x0	R	Enable Status
	HFRCO is enabled.			
15:3	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
2	SYNCBUSY	0x0	R	Synchronization Busy
	This bit is set when there	e is an ongoin	g synchronizatio	n of CAL register bitfields.
1	FREQBSY	0x0	R	Frequency Updating Busy
	HFRCO is busy updating	g frequency.		
0	RDY	0x0	R	Ready
	HFRCO is enabled and	start-up time l	nas exceeded.	

9.3.5.5 HFRCO_IF - Interrupt Flag Register

Offset															Bi	t Pc	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	11	10	တ	8	7	9	5	4	က	2	_	0
Reset		•	•		•		•					•		•		•		•	•		•			•	•		•			•	•	0x0
Access																																RW
Name																																RDY

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
0	RDY	0x0	RW	Ready Interrupt Flag
	Set when HFRCO is rea	dy (start-up tii	me exceeded).	

9.3.5.6 HFRCO_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	တ	∞	7	9	2	4	က	7	_	0
Reset						•	•		•		•	•	•	•	•									•	•			•		•	•	0x0
Access																																R W
Name																																RDY

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
0	RDY	0x0	RW	RDY Interrupt Enable
	Enable/disable the RDY	interrupt		

9.3.5.7 HFRCO_LOCK - Lock Register

Offset	Bit Po	osition
0x01C	33 3 3 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Reset		0x8195
Access		>
Name		LOCKKEY

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure o	compatibility witl	n future devices, always write bits to 0. More information in 1.2 Con-
15:0	LOCKKEY	0x8195	W	Lock Key
	Write any other value that	an the unlock	code to lock reg	isters from editing. Write the unlock code to unlock.
	Value	Mode		Description
	33173	UNLOCK		

9.4 DPLL - Digital Phased Locked Loop

9.4.1 Introduction

The Digital Phase-Locked Loop (DPLL) uses a reference clock to generate a desired clock frequency at a specified ratio to the reference clock.

9.4.2 Features

- · Frequency Lock Mode
- · Phase-Lock Mode
- Output frequency = F_{REF}*(N+1)/(M+1), where N and M are 12-bit values
- · Very fast lock time
- · Very fast transient tracking
- · Low output jitter
- · Lock detection with an interrupt
- · Lock fail detection with interrupts

9.4.3 Functional Description

9.4.3.1 Enabling and Disabling

The DPLL can be enabled and disabled by software via the DPLL EN register. Before enabling DPLL, software should:

- 1. Select reference clock by setting the CLKSEL field in CMU DPLLREFCLKCTRL.
- 2. The CMU should not be running from the HFRCO. If necessary, the CMU should switch to the FSRCO until after the DPLL has locked to avoid over-clocking due to overshoot. If necessary, select FRSCO or HFXO in the CMU_SYSCLKCTRL register CLKSEL field
- 3. Configure the DPLL.
- 4. Make certain that the ENS bit in DPLL STATUS is low.

The DPLL is disabled automatically when entering EM2, EM3, or EM4. Note that disabling the DPLL will not automatically turn off the reference clock. The CLKSEF field in CMU_DPLLREFCLKCTRL must be set to DISABLED before entering EM2 or the selected REFCLK may continue to run in EM2.

9.4.3.2 Lock Modes

The DPLL provides two lock modes, referred to as frequency-lock loop mode (FREQLL) and phase-lock loop mode (PHASELL). FREQLL mode keeps the DCO frequency-locked to the reference clock, which means the DCO frequency will be accurate. However, the phase error can accumulate over time and cause a non-zero average frequency error. FREQLL mode also provides better jitter and transient performance. PHASELL mode keeps the DCO phase-locked to the reference clock, which means the phase error does not accumulate over time, which makes the average frequency error zero. FREQLL mode should be used unless specific phase requirement exists.

9.4.3.3 Configurations

The formula for the DPLL output frequency is FREF*(N+1)/(M+1). The user should calculate N and M in DPLL_CFG1 to achieve the target frequency. Note that with a larger value of N, the DCO lock time would increase and DCO jitter would decrease. Both effects are approximately linear. This relationship can be used to select N for a given application to strike a compromise between lock time and output jitter. For example if an ratio of 3 is desired, the DPLL could be configured as {N=599, M=199} for fast lock time but high jitter, or as {N=2999, M=999} for lower jitter but longer lock time.

Note: All configuration settings should be done before enabling the DPLL. They should not be changed when DPLL is running. The final tuning values can be read back from TUNING and FINETUNING in HFRCO_CAL, after DPLL is disabled and DPLLENS in DPLL STATUS is low.

9.4.3.4 Lock Detection

The DPLL has 3 different types of output events: ready, lock fail due to period underflow, and lock fail due to period overflow. Each of the events has its own interrupt flag. DPLLRDY is set when DPLL successfully locks to the reference clock based on the software configuration. DPLLLOCKFAILLOW is set when the DPLL fails to lock because the period lower boundary is hit. DPLLLOCKFAILHIGH is set when the DPLL fails to lock because the period upper boundary is hit. If the interrupt flags are set and the corresponding interrupt enable bits in DPLL_IEN are set, the DPLL will request an interrupt. Based on different interrupt events, software should take different actions:

- If the DPLLRDY interrupt is received first, it means target clock is ready and it is safe to switch to use DCO's output.
- If the DPLLLOCKFAILLOW interrupt is received first, it indicates the RANGE in HFRCO_CAL is too small. Software should disable the DPLL and write a larger value to RANGE, then enable the DPLL again to lock.
- If the DPLLLOCKFAILHIGH interrupt is received first, it indicates the RANGE in HFRCO_CAL is too large. Software should disable DPLL and write a smaller value to RANGE, then enable DPLL again to lock.
- If the DPLLRDY interrupt is received first and then DPLLLOCKFAILLOW or DPLLLOCKFAILHIGH is received later, it means reference clock drifted over 1% and the DPLL has lost its locked status.
 - If AUTORECOVER in DPLL_CFG is not set, software should disable the DPLL and enable DPLL again to lock.
 - If AUTORECOVER in DPLL_CFG is set, hardware will re-lock automatically. When the target frequency is near the boundary of a
 range, the drift may cause underflow or overflow. In this case the fail interrupt will still be received. Software should disable the
 DPLL and modify RANGE in HFRCO_CAL in corresponding direction, depending on whether the DPLLLOCKFAILLOW or
 DPLLLOCKFAILHIGH bit is set. Then enable DPLL again to lock.

9.4.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	DPLL_IPVERSION	R	IP Version
0x004	DPLL_EN	RW ENABLE	Enable
0x008	DPLL_CFG	RW CONFIG	Config
0x00C	DPLL_CFG1	RW CONFIG	Config1
0x010	DPLL_IF	RWH INTFLAG	Interrupt Flag
0x014	DPLL_IEN	RW	Interrupt Enable
0x018	DPLL_STATUS	RH	Status
0x024	DPLL_LOCK	W	Lock
0x1000	DPLL_IPVERSION_SET	R	IP Version
0x1004	DPLL_EN_SET	RW ENABLE	Enable
0x1008	DPLL_CFG_SET	RW CONFIG	Config
0x100C	DPLL_CFG1_SET	RW CONFIG	Config1
0x1010	DPLL_IF_SET	RWH INTFLAG	Interrupt Flag
0x1014	DPLL_IEN_SET	RW	Interrupt Enable
0x1018	DPLL_STATUS_SET	RH	Status
0x1024	DPLL_LOCK_SET	W	Lock
0x2000	DPLL_IPVERSION_CLR	R	IP Version
0x2004	DPLL_EN_CLR	RW ENABLE	Enable
0x2008	DPLL_CFG_CLR	RW CONFIG	Config
0x200C	DPLL_CFG1_CLR	RW CONFIG	Config1
0x2010	DPLL_IF_CLR	RWH INTFLAG	Interrupt Flag
0x2014	DPLL_IEN_CLR	RW	Interrupt Enable
0x2018	DPLL_STATUS_CLR	RH	Status
0x2024	DPLL_LOCK_CLR	W	Lock
0x3000	DPLL_IPVERSION_TGL	R	IP Version
0x3004	DPLL_EN_TGL	RW ENABLE	Enable
0x3008	DPLL_CFG_TGL	RW CONFIG	Config
0x300C	DPLL_CFG1_TGL	RW CONFIG	Config1
0x3010	DPLL_IF_TGL	RWH INTFLAG	Interrupt Flag
0x3014	DPLL_IEN_TGL	RW	Interrupt Enable
0x3018	DPLL_STATUS_TGL	RH	Status
0x3024	DPLL_LOCK_TGL	W	Lock

9.4.5 Register Description

9.4.5.1 DPLL_IPVERSION - IP Version

Offset	Bit Position
0x000	33 34 36 37 38 39 30 30 31 32 33 34 35 36 37 47 48 40
Reset	0×0
Access	α
Name	IPVERSION

Bit	Name	Reset	Access	Description
31:0	IPVERSION	0x0	R	IP Version ID
	The read only IPVERSIO modules with different va	•		this module. There may be minor software changes required for

9.4.5.2 DPLL_EN - Enable

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	3	2	1	0
Reset		•	•	•	•	•		•				•		•	•	•		•									•					0x0
Access																																RW
Name																																EN

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
0	EN	0x0	RW	Module Enable
				d write to CONFIG type registers before setting the ENABLE bit. er setting the ENABLE bit.

9.4.5.3 DPLL_CFG - Config

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset			'	•	'		'				•			'		<u>'</u>									•	000			'	0x0	000	0x0
Access																										₩ N				RW	₩ M	ZW W
Name																										DITHEN				AUTORECOVER	EDGESEL	MODE

Bit	Name	Reset	Access	Description
31:7	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
6	DITHEN	0x0	RW	Dither Enable Control
	Set to enable dither fur	nction		
5:3	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
2	AUTORECOVER	0x0	RW	Automatic Recovery Control
	Set to enable automati	c recovery fun	ction	
1	EDGESEL	0x0	RW	Reference Edge Select
	This bit controls which	edge of refere	nce is detected	
0	MODE	0x0	RW	Operating Mode Control
	This bit controls which	mode DPLL is	operating when	enabled
	Value	Mode		Description
	0	FLL		Frequency Lock Mode
	1	PLL		Phase Lock Mode

9.4.5.4 DPLL_CFG1 - Config1

Offset															Bi	t Po	siti	on														
0x00C	33	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset	8 8																															
Access										2	<u>}</u>															Ž	≥					
Name										z	2															2						

Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
27:16	N	0x0	RW	Factor N
	The locked DCO freque	ncy is given b	y: Fdco = Fref *	(N + 1)/(M+1). N is required to be larger than 300.
15:12	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
11:0	M	0x0	RW	Factor M
	The locked DCO freque	ncy is given b	y: Fdco = Fref *	(N + 1)/(M+1). M can be any value.

9.4.5.5 DPLL_IF - Interrupt Flag

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset						•																			•					0x0	0x0	0x0
Access																														RW	RW	S.
Name																														LOCKFAILHIGH	LOCKFAILLOW	LOCK

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure o	compatibility witi	n future devices, always write bits to 0. More information in 1.2 Con-
2	LOCKFAILHIGH	0x0	RW	Lock Failure High Interrupt Flag
	Set when DPLL fail to lo	ck because of	f period overflow	ı.
1	LOCKFAILLOW	0x0	RW	Lock Failure Low Interrupt Flag
	Set when DPLL fail to lo	ck because of	f period underflo	w.
0	LOCK	0x0	RW	Lock Interrupt Flag
	Set when DPLL achieve	the lock.		

9.4.5.6 DPLL_IEN - Interrupt Enable

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	2	4	က	7	_	0
Reset			•		'		'							'							<u>'</u>		•	'	•		'		'	000	0x0	0x0
Access																														₩ M	W.	ZW W
Name																														LOCKFAILHIGH	LOCKFAILLOW	LOCK

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
2	LOCKFAILHIGH	0x0	RW	LOCKFAILHIGH Interrupt Enable
	LOCKFAILHIGH Interru	ıpt Enable		
1	LOCKFAILLOW	0x0	RW	LOCKFAILLOW Interrupe Enable
	LOCKFAILLOW Interru	pe Enable		
0	LOCK	0x0	RW	LOCK interrupt Enable
	LOCK interrupt Enable			

9.4.5.7 DPLL_STATUS - Status

Offset															Bi	t Po	sitio	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	တ	8	7	9	5	4	က	2	-	0
Reset	000		•	•			•		•	•		•									•						•		•	•	0x0	0×0
Access	2																														Я	Я
Name	LOCK																														ENS	RDY

Bit	Name	Reset	Access	Description
31	LOCK	0x0	R	Lock Status
	Indicates the current sta	itus of configu	ration lock	
	Value	Mode		Description
	0	UNLOCKE	D	DPLL is unlocked
	1	LOCKED		DPLL is locked
30:2	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
1	ENS	0x0	R	Enable Status
	DPLL is enabled.			
0	RDY	0x0	R	Ready Status
	DPLL is enabled and lo	cked.		

9.4.5.8 DPLL_LOCK - Lock

Offset															Bi	t Pc	siti	on														
0x024	31	99	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset		•	•	•	•	•	•	•	•	•		•	•	•		•		•	•	•			•	27400	0.87 10.2	•	•				•	
Access																								}	>							
Name																								711100	LOCANE							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
15:0	LOCKKEY	0x7102	W	Lock Key
	Write any other va	lue than the unlock	code to lock	registers from editing. Write the unlock code to unlock.
	Value	Mode		Description
	28930	UNLOCK		Unlock code

9.5 LFXO - Low-Frequency Crystal Oscillator

9.5.1 Introduction

The Low Frequency Crystal Oscillator (LFXO) uses an external 32.768 kHz crystal to provide an accurate low-frequency clock. The module is available in all energy modes, except EM3. The main interaction is with the CMU through the clock requesting mechanism.

9.5.2 Features

High-level features.

- · Crystal calibration
- Functional in all energy modes, except EM3
- · Failure detection and EM4WU
- · External CMOS mode
- Edge interrupts and EM2WU
- · On-demand oscillator enabling

9.5.3 Functional Description

9.5.3.1 Modes

The LFXO can be used in three different modes. The mode can be programmed by setting MODE bit field in the LFXO_CFG register. If MODE is set to XTAL, the LFXO is programmed to operate in crystal mode and a 32.768 kHz crystal oscillator should be connected to LF crystal pads, LFXTAL_I and LFXTAL_O (see the device data sheet for details). If MODE is set to BUFEXTCLK, the LFXO is programmed to operate in external sine mode and the sine wave should be supplied to LFXTAL_I pin. If MODE is set to DIGEXTCLK, LFXO is programmed to operate in external CMOS mode and the external 32.768 kHz clock should be provided on LFXTAL_I pin. See the register descriptions for more details.

9.5.3.2 Enabling

There are two ways to turn on the LFXO clock. One is to turn it on in FORCEON mode by setting FORCEEN bit to 1 in LFXO_CTRL register. Another is to keep it ready to be turned on in ONDEMAND mode by setting FORCEEN bit to 0 and DISONDEMAND bit to 0 in LFXO_CTRL register. This means that the oscillator will be off unless its clock requested. When a peripheral requests the clock, hardware will automatically enable the LFXO without any software intervention. The oscillator will remain on as long as the peripheral requests it. DISONDEMAND setting does not have any impact when FORCEEN set to 1. LFXO is in FORCEOFF mode when FORCEEN set to 0 and DISONDEMAND set to 1. In FORCEOFF mode all requests are blocked and LFXO will not generate the clock. The LFXO clock is available in all energy modes, except EM3.

9.5.3.3 Clock Qualification

The clock should not be used immediately after enabling LFXO, until the clock has had time to stabilize. Therefore a number of cycles are required to qualify the clock. Before the clock is qualified, no clock requesters will receive the LFXO clock. The number of cycles used to qualify the clock can be programmed by setting TIMEOUT bit field in the LFXO_CFG register. The TIMEOUT default value is set the 32,728 cycles, which is much more than necessary for stabilization. The stabilization time required will depend on the particular crystal, oscillator settings, and frequency accuracy requirements. A value of 4096 clocks is generally recommended for most applications. A low timeout of 2 cycles may be used in DIGEXTCLK mode in order to filter out the first glitch from the pad. The 2 clock cycle timeout should not be used with crystals. There are two status bits and one interrupt associated with enabling the oscillator and qualifying its clock. Once the oscillator gets enabled the ENS bit in LFXO_STATUS register will be set high. Note that due to the nature of on demand clocking, the oscillator can be enabled anytime, so if software reads ENS low it is not safe to assume that ENS stays low during the next instruction. It is only safe to assume that oscillator is OFF at the time ENS is being read. Similarly, if software reads ENS high it is not safe to assume that ENS stays high during the next instruction. Once the clock is qualified, the RDY status is set high in the LFXO STATUS register. The same uncertainties also apply to the RDY bit. However, software can wait for RDY bit to go high to detect that LFXO clock is qualified. Or it can enable the interrupt with RDYIEN in LFXO IEN register and receive RDYIF interrupt available in LFXO IF register. RDYIF also acts as EM2 wakeup source if RDYIEN set high. If put into FORCEON mode, the LFXO will start the qualification and once qualified it will gate off the clock but immediately start with no qualification upon receiving a request. If in ONDEMAND mode, the LFXO starts the qualification every time it is switched from off to on due to clock requests. The qualification can take up to 32k cycles. Note that only enabling RDY interrupt does not act as a clock request.

9.5.3.4 Edge Detection Interrupts

There is a possibility for software to detect rising or falling edges of the LFXO clock. The edge detection is enabled if any of POSEDG-EIEN and NEGEDGEIEN is set to 1. The corresponding flags are available in POSEDGEIF and NEGEDGEIF. If none of the interrupts are enabled, the edge detection is disabled and POSEDGEIF and NEGEDGEIF hold their last value until cleared or set by software. Disabling the edge detection is only allowed on NEGEDGEIF. Both flags act as EM2 wakeup sources if the corresponding IEN is set high.

9.5.3.5 Clock Failure

In case the oscillator or crystal stops or does not output clock when expected, a failure interrupt can be raised. The failure occurs if fewer than 3 LFXO clock positive edges happen during one 1ms. The failure detection is enabled by setting FAILDETEN to 1 in LFXO_CTRL register. This bit acts as a clock requester. Once enabled, failure detection status can be checked by reading FAILIF in LFXO_IF register. If FAILIEN is set high, failure will generate both interrupt and EM2 wakeup. Failure detection is also implemented as EM4 wakeup source. To wakeup from EM4 on LFXO failure detection, set FAILDETEM4WUEN high in LFXO_CTRL.

9.5.3.6 Automatic Gain Control

AGC and HIGHAMPL in LFXO_CFG are settings applied to the LFXO oscillator. Both settings provide higher crystal oscillation amplitude. This will improve duty cycle in the output clock and give lower sensitivity to noise, but at the cost of higher current consumption. The AGC bit is used to enable the Automatic Gain Control module that adjusts the amplitude of the oscillations. It is enabled by default. When disabled, the LFXO will run at the start-up current and the crystal will oscillate rail-to-rail or limited by the start-up current. The HIGHAMPL bit will have no effect when AGC is disabled. When AGC is enabled setting the HIGHAMPL bit will give about 70% higher crystal oscillation amplitude.

9.5.3.7 Force Off

It is not allowed to write to LFXO_CFG unless LFXO is in FORCEOFF mode. If this guideline is violated, the write access is blocked and a bus fault is generated. Writing to CFG registers has no effect in DIGEXTCLK mode. Note: when putting the oscillators to FORCE-OFF mode, wait for ENS status to go low for the oscillator to completely shut off. Once the oscillator is forced off, it is safe to write to the LFXO_CFG register.

9.5.3.8 Register Synchronization

While the CFG registers are static LFXO configuration, LFXO_CAL register has GAIN and CAPTUNE bit fields which can be written to while the oscillator is running. This is used to calibrate the LFXO clock. These registers are allowed to be written only if CALBSY in LFXO_SYNCBUSY register is low. If this guideline is violated, the write access is blocked and a bus fault is generated. CALBSY is guaranteed to be low in FORCEOFF mode. When exiting FORCEOFF mode, CALBSY will go high and stay high until the initial internal synchronization is done. CALBSY is also guaranteed to be low in DIGEXTCLK mode since writing to CAL register has no effect in DIGEXTCLK mode. CAPTUNE is allowed to be incremented or decremented by one LSB when not in FORCEOFF mode. Note that CAPTUNE tunes the internal capacitors connected to LFXTAL_I and LFXTAL_O pads (see Register map for more details). By programming GAIN bit field it is possible to optimize start-up time and power consumption for a given crystal. Internal capacitances are not provided on all chips (see the device data sheet for more details).

9.5.3.9 Register Lock

See the LFXO_LOCK register on how to lock certain registers. Registers LFXO_CTRL, LFXO_CFG, and LFXO_CAL are lockable. The LOCK bit in LFXO_STATUS register is available to check whether the registers are locked. If locked, all updates to these registers are blocked and bus faults are issued.

9.5.3.10 Reset Behavior

Upon reset, the LFXO is configured for the safe crystal start-up. The TIMEOUT is set to 32k cycles, The MODE is set to XTAL and the reset state is FORCEOFF. In order to minimize the start-up time and power consumption for a given crystal, it is possible to adjust the start-up gain in the oscillator by programming GAIN in LFXO_CAL. All controls are retained in EM4, except LFXO_IEN register which is reset after EM4 wakeup.

9.5.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	LFXO_IPVERSION	R	LFXO IP version
0x004	LFXO_CTRL	RW	LFXO Control Register
0x008	LFXO_CFG	RW	LFXO Configuration Register
0x010	LFXO_STATUS	RH	LFXO Status Register
0x014	LFXO_CAL	RW LFSYNC	LFXO Calibration Register
0x018	LFXO_IF	RWH INTFLAG	Interrupt Flag Register
0x01C	LFXO_IEN	RW	Interrupt Enable Register
0x020	LFXO_SYNCBUSY	RH	LFXO Sync Busy Register
0x024	LFXO_LOCK	W	Configuration Lock Register
0x1000	LFXO_IPVERSION_SET	R	LFXO IP version
0x1004	LFXO_CTRL_SET	RW	LFXO Control Register
0x1008	LFXO_CFG_SET	RW	LFXO Configuration Register
0x1010	LFXO_STATUS_SET	RH	LFXO Status Register
0x1014	LFXO_CAL_SET	RW LFSYNC	LFXO Calibration Register
0x1018	LFXO_IF_SET	RWH INTFLAG	Interrupt Flag Register
0x101C	LFXO_IEN_SET	RW	Interrupt Enable Register
0x1020	LFXO_SYNCBUSY_SET	RH	LFXO Sync Busy Register
0x1024	LFXO_LOCK_SET	W	Configuration Lock Register
0x2000	LFXO_IPVERSION_CLR	R	LFXO IP version
0x2004	LFXO_CTRL_CLR	RW	LFXO Control Register
0x2008	LFXO_CFG_CLR	RW	LFXO Configuration Register
0x2010	LFXO_STATUS_CLR	RH	LFXO Status Register
0x2014	LFXO_CAL_CLR	RW LFSYNC	LFXO Calibration Register
0x2018	LFXO_IF_CLR	RWH INTFLAG	Interrupt Flag Register
0x201C	LFXO_IEN_CLR	RW	Interrupt Enable Register
0x2020	LFXO_SYNCBUSY_CLR	RH	LFXO Sync Busy Register
0x2024	LFXO_LOCK_CLR	W	Configuration Lock Register
0x3000	LFXO_IPVERSION_TGL	R	LFXO IP version
0x3004	LFXO_CTRL_TGL	RW	LFXO Control Register
0x3008	LFXO_CFG_TGL	RW	LFXO Configuration Register
0x3010	LFXO_STATUS_TGL	RH	LFXO Status Register
0x3014	LFXO_CAL_TGL	RW LFSYNC	LFXO Calibration Register
0x3018	LFXO_IF_TGL	RWH INTFLAG	Interrupt Flag Register
0x301C	LFXO_IEN_TGL	RW	Interrupt Enable Register
0x3020	LFXO_SYNCBUSY_TGL	RH	LFXO Sync Busy Register

Offset	Name	Туре	Description
0x3024	LFXO_LOCK_TGL	W	Configuration Lock Register

9.5.5 Register Description

9.5.5.1 LFXO_IPVERSION - LFXO IP version

Offset															Bi	t Po	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Reset		000																														
Access		Š <u>r</u>																														
Name																IDVED CION																

Bit	Name	Reset	Access	Description
31:0	IPVERSION	0x0	R	IP Version ID
	The read only IPVERSIOn modules with different values	•		this module. There may be minor software changes required for

9.5.5.2 LFXO_CTRL - LFXO Control Register

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•				•				•			•	•			•				•				•	000	000			0X1	000
Access																											Z.	RW			₩ M	₩ W
Name																											FAILDETEM4WUEN	FAILDETEN			DISONDEMAND	FORCEEN

Bit	Name	Reset	Access	Description									
31:6	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-									
5	FAILDETEM4WUEN	0x0	RW	LFXO Failure Detection EM4WU Enable									
	Set this bit to enable EM	4 exit on the	oscillator failure	detection.									
4	FAILDETEN	0x0	RW	LFXO Failure Detection Enable									
	Set this bit to enable the	oscillator failu	ure detection fea	ature. Note that setting this bit will enable the oscillator core.									
3:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-									
1	DISONDEMAND	0x1	RW	LFXO Disable On-demand requests									
	Set this bit to disable On	-demand requ	uests.										
0	FORCEEN	0x0	RW	LFXO Force Enable									
	Set this bit to enable the oscillator core. The oscillator core is enabled regardless of On-demand requests.												

9.5.5.3 LFXO_CFG - LFXO Configuration Register

Offset		Bit Position																														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset			•		'		'							•						'	<u>'</u>		0x7				5	2			000	0x1
Access																							RW				2	2			W.	RW
Name																							TIMEOUT				П	<u> </u>			HIGHAMPL	AGC

Bit	Name	Reset	Access	Description						
31:11	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-						
10:8	TIMEOUT	0x7	RW	LFXO Start-up Delay						
	Configures the sta	rt-up delay for LF	XO.							
	Value	Mode		Description						
	0	CYCLES2	2	Timeout period of 2 cycles						
	1	CYCLES	256	Timeout period of 256 cycles						
	2	CYCLES	IK	Timeout period of 1024 cycles						
	3	CYCLES2	2K	Timeout period of 2048 cycles						
	4	CYCLES4	łK	Timeout period of 4096 cycles						
	5	CYCLES	ВК	Timeout period of 8192 cycles						
	6	CYCLES	16K	Timeout period of 16384 cycles						
	7	CYCLES	32K	Timeout period of 32768 cycles						
7:6	Reserved	To ensure ventions	e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-						
5:4	MODE	0x0	RW	LFXO Mode						
	Selects the LFXO	mode.								
	Value	Mode		Description						
	0	XTAL		A 32768Hz crystal should be connected to the LF crystal pads. Voltage must not exceed VDDIO.						
	1	BUFEXTO	CLK	An external sine source with minimum amplitude 100mv (zero to-peak) and maximum amplitude 500mV (zero-to-peak) shou be connected in series with LFXTAL_I pin. Minimum voltage should be larger than ground and maximum voltage smaller than VDDIO. The sine source does not need to be ac coupled externally as it is ac couples inside LFXO. LFXTAL_O is free to be used as a general purpose GPIO.						
	2	DIGEXTO	ELK	An external 32KHz CMOS clock should be provided on LFXTAL_I. LFXTAL_O is free to be used as a general purpose GPIO.						

Bit	Name	Reset	Access	Description								
3:2	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-								
1	HIGHAMPL	0x0	RW	LFXO High Amplitude Enable								
	Set this bit to enable hig	h XTAL oscilla	ation amplitude.									
0	AGC	0x1 RW LFXO AGC Enable										
	Set this bit to enable automatic gain control which limits XTAL oscillation amplitude.											

9.5.5.4 LFXO_STATUS - LFXO Status Register

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	11	10	9	8	7	9	5	4	က	2	_	0
Reset	0x0													0x0										0x0								
Access	2													œ										~								
Name	LOCK											ENS																RDY				

Bit	Name	Reset	Access	Description								
31	LOCK	0x0	R	LFXO Locked Status								
	If set, all LFXO lockable	e registers are	e locked.									
	Value	Mode		Description								
	0	UNLOCKE	ED .	LFXO lockable registers are not locked								
	1	LOCKED		LFXO lockable registers are locked								
30:17	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-								
16	ENS	0x0	R	LFXO Enable Status								
	LFXO is enabled.											
15:1	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-								
0	RDY	0x0	R	LFXO Ready Status								
	LFXO is enabled and start-up time has exceeded.											

9.5.5.5 LFXO_CAL - LFXO Calibration Register

Offset	Bit Position		
0x014	33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 40 <th>6 8 ~</th> <th>9 4 6 7 - 0</th>	6 8 ~	9 4 6 7 - 0
Reset		0x2	0x0
Access		A S	RW
Name		GAIN	CAPTUNE

Bit	Name	Reset	Access	Description										
31:10	Reserved	To ensure ventions	e compatibility w	with future devices, always write bits to 0. More information in 1.2 Con-										
9:8	GAIN	0x2	0x2 RW LFXO Startup Gain											
	The optimal value dep	ends on the c	hosen crystal.											
7	Reserved	To ensure ventions	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions											
6:0	CAPTUNE	0x0	RW	Internal Capacitance Tuning										
	Program internal load capacitance connected between X_N pin and ground and X_P pin and ground. The bus affects tuning capacitances on both pins symmetrically. CAPTUNE value must not exceed 0x4F. When updating CAPTUNE, its value must only be incremented or decremented by 1 which provides a tuning step of 0.25pF. The maximum value is estimated to be 20pF. Please refer to the device Datasheet for more information.													

9.5.5.6 LFXO_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset		'	'		'		'				'		'	•	•		•			'									0x0	0×0	0x0	0x0
Access																													W.	RW	W.	W.
Name																													FAIL	NEGEDGE	POSEDGE	RDY

Bit	Name	Reset	Access	Description									
31:4	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-									
3	FAIL	0x0	RW	LFXO Failure Interrupt Flag									
	Set when LFXO failure is	detected. W	rite 1 to clear the	e interrupt flag.									
2	NEGEDGE	0x0 RW Falling Edge Interrupt Flag											
	Triggers on every negati	ve edge of the	e LFXO clock.										
1	POSEDGE	0x0	RW	Rising Edge Interrupt Flag									
	Triggers on every positiv	e edge of the	LFXO clock.										
0	RDY	0x0	RW	LFXO Ready Interrupt Flag									
	Set when LFXO is ready (start-up time exceeded). Write 1 to clear the interrupt flag.												

9.5.5.7 LFXO_IEN - Interrupt Enable Register

Offset	Bit Position			
0x01C	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2	_	0
Reset	QX C	000	000	0x0
Access	≥ 2	Z ×	S.	RW
Name	EA	NEGEDGE	POSEDGE	RDY

Bit	Name	Reset	Access	Description								
31:4	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-								
3	FAIL	0x0	RW	LFXO Failure Interrupt Enable								
	Write 1 to enable FAILIF											
2	NEGEDGE	0x0	RW	Falling Edge Interrupt Enable								
	Write 1 to enable NEGE	DGEIF.										
1	POSEDGE	0x0	RW	Rising Edge Interrupt Enable								
	Write 1 to enable POSEI	to enable POSEDGEIF.										
0	RDY	0x0	RW	LFXO Ready Interrupt Enable								
	Write 1 to enable RDYIF											

9.5.5.8 LFXO_SYNCBUSY - LFXO Sync Busy Register

Offset	Bit Position	
0x020	33	0
Reset		0x0
Access		2
Name		CAL

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
0	CAL	0x0	R	LFXO Synchronization status
	This bit is set when there bit is set.	e is an ongoin	g synchronization	on of CAL register bitfields. Do not write to CAL register while this

9.5.5.9 LFXO_LOCK - Configuration Lock Register

Offset	Bit Po	sition
0x024	33 34 35 36 37 38 39 30 30 31 32 33 34 35 36 37 38 39 30 30 30 30 30 40 <th>2 4 5 4 6 7 7 7 8 8 8 9 9 9 10 <</th>	2 4 5 4 6 7 7 7 8 8 8 9 9 9 10 <
Reset		0x1A20
Access		>
Name		LOCKKEY

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure ventions	compatibility wi	ith future devices, always write bits to 0. More information in 1.2 Con-
15:0	LOCKKEY	0x1A20	W	Lock Key
	Write any other value the	han UNLOCK	to lock CTRL, C	CFG and CAL registers. Write UNLOCK value to unlock the registers.
	Value	Mode		Description
	6688	UNLOCK		Unlock LFXO lockable registers
	·			

9.6 LFRCO - Low-Frequency RC Oscillator

9.6.1 Introduction

The LFRCO is an integrated low-frequency (32.768 kHz) RC oscillator and can be used as a timing reference in low energy modes, when crystal accuracy is not required.

9.6.2 Features

- · 32.768 kHz oscillator
- High Accuracy
- · Available in all energy modes, except EM3
- · On-demand
- EM2 wakeup interrupt for oscillator ready
- · EM2 wakeup interrupts for rising and falling edges of the clock
- · Lockable registers
- · Trim bit synchronization

9.6.3 Functional Description

9.6.3.1 Start-up

The LFRCO has a fast start-up time. Please refer to the data sheet electrical specifications for the exact start-up time. When the oscillator has started up and is ready to use, the RDY status bit will go high and the RDY interrupt will be triggered. After startup, it may take two cycles for the clock to propagate through the CMU to the peripherals.

9.6.3.2 On-Demand Clocking

Hardware can request to enable the LFRCO by setting the LFRCO_STATUS.HWREQ bit field. The LFRCO can also optionally be configured via the LFRCO_STATUS.DISONDEMAND to shut down when no hardware request is present. This is known as on-demand clocking and allows the oscillator to be controlled without any software intervention.

9.6.3.3 Calibration

The LFRCO is trimmed in production and the trim values are automatically written to the FREQTRIM field in the LFRCO_CAL register, before user code execution. Normally, software does not need to modify the to the LFRCO_CAL register. However, it is possible for software to re-calibrate the LFRCO by modifying the FREQTRIM value. This might be desired, for example if re-calibration is needed at a specific temperature, or there is a desire to use different trim values at different temperatures.

It is possible to recalibrate the LFRCO by modifying the FREQTRIM value in the LFRCO_CAL register. Software may modify the LFRCO_CAL register while it is running. However, the LFRCO_CAL has hardware synchronization, and should only be written after checking that SYNCBUSY CALBSY is not set.

9.6.3.4 Interrupts

LFRCO has three interrupts, RDYIF, POSEDGEIF and NEGEDGEIF. Each will trigger an EM2 wakeup if the corresponding IEN is set.

RDYIF is triggered after start-up, when the LFRCO startup sequence is complete and the oscillator is ready to use.

POSEDGEIF and NEGEDGEIF are triggered by the rising and falling edge of LFRCO respectively. These flags will only get set if either of the interrupts are enabled (with POSEDGEIEN or NEGEDGEIEN), as the interrupt enable acts as a clock requester and keeps the oscillator running.

9.6.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	LFRCO_IPVERSION	R	IP version
0x008	LFRCO_STATUS	RH	Status Register
0x00C	LFRCO_CAL	RW	Calibration Register
0x014	LFRCO_IF	RWH INTFLAG	Interrupt Flag Register
0x018	LFRCO_IEN	RW	Interrupt Enable Register
0x01C	LFRCO_SYNCBUSY	RH	Synchronization Busy Register
0x020	LFRCO_LOCK	W	Configuration Lock Register
0x1000	LFRCO_IPVERSION_SET	R	IP version
0x1008	LFRCO_STATUS_SET	RH	Status Register
0x100C	LFRCO_CAL_SET	RW	Calibration Register
0x1014	LFRCO_IF_SET	RWH INTFLAG	Interrupt Flag Register
0x1018	LFRCO_IEN_SET	RW	Interrupt Enable Register
0x101C	LFRCO_SYNCBUSY_SET	RH	Synchronization Busy Register
0x1020	LFRCO_LOCK_SET	W	Configuration Lock Register
0x2000	LFRCO_IPVERSION_CLR	R	IP version
0x2008	LFRCO_STATUS_CLR	RH	Status Register
0x200C	LFRCO_CAL_CLR	RW	Calibration Register
0x2014	LFRCO_IF_CLR	RWH INTFLAG	Interrupt Flag Register
0x2018	LFRCO_IEN_CLR	RW	Interrupt Enable Register
0x201C	LFRCO_SYNCBUSY_CLR	RH	Synchronization Busy Register
0x2020	LFRCO_LOCK_CLR	W	Configuration Lock Register
0x3000	LFRCO_IPVERSION_TGL	R	IP version
0x3008	LFRCO_STATUS_TGL	RH	Status Register
0x300C	LFRCO_CAL_TGL	RW	Calibration Register
0x3014	LFRCO_IF_TGL	RWH INTFLAG	Interrupt Flag Register
0x3018	LFRCO_IEN_TGL	RW	Interrupt Enable Register
0x301C	LFRCO_SYNCBUSY_TGL	RH	Synchronization Busy Register
0x3020	LFRCO_LOCK_TGL	W	Configuration Lock Register

9.6.5 Register Description

9.6.5.1 LFRCO_IPVERSION - IP version

Offset	Bit Position
0x000	31
Reset	0×0
Access	α
Name	IPVERSION

Bit	Name	Reset	Access	Description
31:0	IPVERSION	0x0	R	IP version ID
	The read only IPVERSION	•		this module. There may be minor software changes required for

9.6.5.2 LFRCO_STATUS - Status Register

Offset		Bit Pos														osition																
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	0
Reset	0x0		'		'		'	•								0×0		•	•	'		•										0x0
Access	2															œ																~
Name	LOCK															ENS																RDY

Bit	Name	Reset	Access	Description
31	LOCK	0x0	R	Lock Status
	This bit is set when LFR	CO is locked.		
	Value	Mode		Description
	0	UNLOCKE	D	Access to configuration registers not locked
	1	LOCKED		Access to configuration registers locked
30:17	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
16	ENS	0x0	R	Enabled Status
	This bit is set when LFR	CO is enablin	g the analog co	re.
15:1	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
0	RDY	0x0	R	Ready Status
	This bit is set when qual	ification is do	ne and LFRCO i	s ready.

9.6.5.3 LFRCO_CAL - Calibration Register

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	8	7	9	5	4	က	2	_	0
Reset											•		•																0xA5			
Access																												i	¥ M			
Name																													FREQTRIM			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
7:0	FREQTRIM	0xA5	RW	Frequency Trim
	Trims the clock frequence	y of the LFRO	co	

9.6.5.4 LFRCO_IF - Interrupt Flag Register

Offset	Bit Position																															
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset		'	'		'			•	•		•		•			•		'	•		•	•					'		•	0x0	0x0	0x0
Access																														W.	ZW W	RW
Name																														NEGEDGE	POSEDGE	RDY

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure o	compatibility witi	n future devices, always write bits to 0. More information in 1.2 Con-
2	NEGEDGE	0x0	RW	Falling Edge Interrupt Flag
	Triggers on every negati	ve edge of the	e LFRCO clock.	
1	POSEDGE	0x0	RW	Rising Edge Interrupt Flag
	Triggers on every positive edge of the LFRCO clock.			
0	RDY	0x0	RW	Ready Interrupt Flag
	Triggers when the oscilla	ator becomes	ready	

9.6.5.5 LFRCO_IEN - Interrupt Enable Register

Offset	Bit Position		
0x018	3 4 5 6 7 8 8 7 9 8 9 7 9 9 9 9 9 9 9 9 9 9 9 9	7 -	0
Reset		000	0x0
Access		R W	₩ M
Name		NEGEDGE POSEDGE	RDY

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
2	NEGEDGE	0x0	RW	Falling Edge Interrupt Enable
	Enables the negedge int	errupt and wil	I cause the osci	llator to run. EM2 wakeup source.
1	POSEDGE	0x0	RW	Rising Edge Interrupt Enable
	Enables the posedge interrupt and will cause the oscillator to run. EM2 wakeup source.			
0	RDY	0x0	RW	Ready Interrupt Enable
	Enables the ready interrupt. EM2 wakeup source.			

9.6.5.6 LFRCO_SYNCBUSY - Synchronization Busy Register

Offset	Bit Position	
0x01C	33 4 5 6 6 7 7 8 8 10	0
Reset		0x0
Access		<u>~</u>
Name		CAL

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
0	CAL	0x0	R	CAL Busy
	CAL register synchronization busy bit			

9.6.5.7 LFRCO_LOCK - Configuration Lock Register

Offset	Bit Position				
0x020	33 34 35 36 37 38 39 30 30 31 32 33 34 35 36 37 31 32 33 34 35 36 37 37 48 49 40 <th>2 4 5 7 7 7 0 8 8 7 9 4 8 7 7 7 0</th>	2 4 5 7 7 7 0 8 8 7 9 4 8 7 7 7 0			
Reset		0x2603			
Access		>			
Name		LOCKKEY			

Name	Reset	Access	Description
Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
LOCKKEY	0x2603	W	Lock Key
Writing the lock key them.	will unlock the Ifro	co configurati	on registers (CAL, CTRL and TEST). Writing any other value will lock
Value	Mode		Description
0	LOCK		Lock Configuration Registers
9731	UNLOCK		Unlock Configuaration Registers
	Reserved LOCKKEY Writing the lock key them. Value 0	Reserved To ensure ventions LOCKKEY 0x2603 Writing the lock key will unlock the lfrethem. Value Mode LOCK	Reserved To ensure compatibility ventions LOCKKEY 0x2603 W Writing the lock key will unlock the Ifrco configurati them. Value Mode LOCK

9.7 FSRCO - Fast Start RCO

9.7.1 Introduction

This is an RC oscillator which can start and stop very fast. It is a fixed frequency oscillator, with no frequency configurability and as such any user of this clock can rely on it being a specific frequency independent of the system state. This is the first oscillator used during power up and hence it minimizes dependency to other blocks.

9.7.2 Features

- · 20 MHz nominal frequency
- · Low energy consumption

9.7.3 Functional Description

There are no programmable registers in this module. Software can choose to use this as system clock in the CMU block. the only way to enable or disable the FSRCO is by requesting it as a clock source in the CMU clock select registers.

9.7.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	FSRCO_IPVERSION	R	IP Version
0x1000	FSRCO_IPVERSION_SET	R	IP Version
0x2000	FSRCO_IPVERSION_CLR	R	IP Version
0x3000	FSRCO_IPVERSION_TGL	R	IP Version

9.7.5 Register Description

9.7.5.1 FSRCO_IPVERSION - IP Version

Offset		Bit Position											
0x000	31	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
Reset		OXO OX											
Access		<u>α</u>											
Name		PVERSION R											

Bit	Name	Reset	Access	Description							
31:0	IPVERSION	0x0	R	IP Version							
	The read only IPVERSION field gives the version for this module. There may be minor software changes required for modules with different values of IPVERSION.										

9.8 ULFRCO - Ultra Low Frequency RC Oscillator

9.8.1 Introduction

The ULFRCO is a ultra low power 1 kHz oscillator which is always on in all energy modes except EM4. The ULFRCO is available to many low-frequency peripherals as a lower power alternative to one of the 32 kHz oscillators. This oscillator is also used for internal bias and housekeeping tasks.

9.8.2 Features

- · 1 kHz nominal frequency
- · Low energy consumption

9.8.3 Functional Description

There are no user programmable registers in this module. The oscillator will stop on EM4 entry and restart automatically on EM4 exit.

10. SMU - Security Management Unit

Quick Facts

What?

The Security Management Unit (SMU) provides configuration and status reporting for ARM TrustZone on the EFR32xG21.

Why?

Enables a robust solution at the system level.

How?

Hardware context switching and enhanced security provided by ARM TrustZone. Extension of the ARM MPU to control peripheral access.

10.1 Introduction

The Security Management Unit is used to configure and extend TrustZone bus level security provided by the Cortex-M33. In addition it increases the effective MPU regions by providing MPU control over peripheral access.

10.2 Features

- · Per peripheral privileged and secure attributes
- · Per master privileged and secure attributes
- · Separate interrupt flags for privileged, secure, or instruction access exceptions.
- · Separate interrupt flag for secure master access exceptions
- Secure and Privileged exception IRQs
- · Configurable secure, non-secure, and non-secure-callable memory regions.

10.3 Functional Description

10.3.1 Bus Level Security

Bus level security is the ability to control the flow of information on the device. The components of bus level security are the Cortex-M33, the Bus Master Protect Unit (BMPU), and the Peripheral Protection Unit (PPU) as highlighted in Figure 10.1 Bus Level Security Implementation on page 219. The SMU controls and configures all the components used in bus level security.

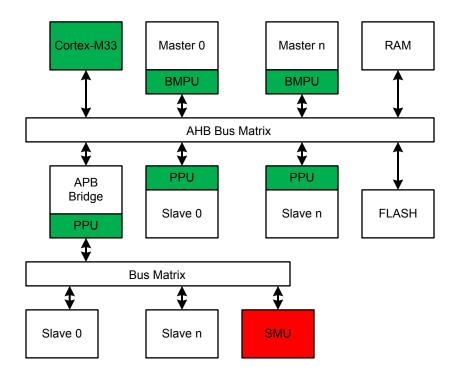


Figure 10.1. Bus Level Security Implementation

The BMPU is responsible for preventing masters (CPU, DMA, Etc..) from accessing secure addresses without authorization. For example, if a DMA configured as non-secure tries to access memory that is marked secure the BMPU will prevent access and set the corresponding interrupt flag. The BMPU prevents access of secure addresses by non-secure masters. The Cortex-M33 has BMPU functionality built into the TrustZone implementation.

The PPU is primarily responsible for blocking access to privileged peripherals from unprivileged masters. In addition, it also ensures that secure and non-secure peripherals are only accessible at the appropriate secure or non-secure addresses as described in 10.3.6 Configuring Peripherals.

Since FLASH and RAM have no PPU, bus masters of any privilege state may access those resources. The Cortex-M33 has an MPU which prevents execution of privileged memory when the CPU is in an unprivileged state. For more information on the MPU refer to the ARM Cortex-M33 documentation.

10.3.2 Privileged Access Control

The Cortex-M33 and all other masters can be in either the privileged or unprivileged state. All bus access to peripherals are tested for privilege level by the PPU and resolved as shown in Table 10.1 Privileged Access Table on page 220.

If an exception is detected on a write, the write will be ignored and the appropriate interrupt flag set. If an exception is detected on a read 0x0 will be returned and the appropriate interrupt flag set.

Table 10.1. Privileged Access Table

Master Attribute	Peripheral Attribute	Result
privileged	privileged	Success
privileged	unprivileged	Success
unprivileged	privileged	Exception
unprivileged	unprivileged	Success

10.3.3 Secure Access Control

The Cortex-M33 and all other masters can be in either the secure or non-secure state. All bus accesses are tested for security status by the BMPUs and PPUs and resolve as shown in Table 10.2 Secure Access Table on page 220 Secure access is computed using the secure attribute of the master and the address region being accessed. If a peripheral is being accessed, the secure attribute of the peripheral is also used. For more information on the relationship between the address regions and peripheral security attributes please see 10.3.6 Configuring Peripherals

If an exception is detected on a write the write will be ignored and the appropriate interrupt flag set. If an exception is detected on a read 0x0 will be returned and the appropriate interrupt flag set.

Table 10.2. Secure Access Table

Master Attribute	Address Attribute	Peripheral Attribute	Result
secure	secure	N/A	Success
secure	secure	secure	Success
secure	secure	non-secure	Exception
secure	non-secure	N/A	Exception
secure	non-secure	secure	Exception
secure	non-secure	non-secure	Success
non-secure	secure	N/A	Exception
non-secure	secure	secure	Exception
non-secure	secure	non-secure	Exception
non-secure	non-secure	N/A	Success
non-secure	non-secure	secure	Exception
non-secure	non-secure	non-secure	Success

10.3.4 ARM TrustZone

ARM TrustZone is used to control what addresses are accessible by the CPU at any given time. There are two security states: secure and non-secure. In addition the MPU provides two privilege levels: privileged and unprivileged. This results in 4 possible states: secure-privileged, non-secure-privileged, secure-unprivileged and non-secure-unprivileged.

Non-secure code may not directly call secure code. To call secure code, non-secure code must first call a shim located in specially marked non-secure-callable memory. Unprivileged code may invoke privileged code and change the processor state to privileged by either issuing an SVC instruction or taking an interrupt. The processor is returned to unprivileged state when software manually reconfigures the security state or exits an interrupt.

For more information on secure/non-secure and privileged/unprivileged state transitions see the ARM Cortex-M33 documentation.

There are two primary use cases for TrustZone and the MPU. The first is simply partitioning a monolithic application in to the 4 states to protect some pieces of the system from bugs or attacks on others. The second is to use a RTOS to isolate several tasks from each other. In this case the RTOS itself normally consumes the privileged states with all other code running in the unprivileged states. Whenever a task switch occurs the RTOS can reconfigure the device so the new task has access to only the components it requires, protecting other tasks from interference.

In both use cases the TrustZone and MPU feature of the Cortex-M33 both secures and accelerates mode transitions while the SMU provides the ability to configure the security and privilege attributes of peripherals and memory.

The core is in secure-privileged state after a reset.

10.3.5 Configuring Masters

The SMU provides the ability to configure the current secure and privileged attribute of all bus masters except for the CPU which is controlled as described in 10.3.4 ARM TrustZone.

To configure the privileged attribute of a master set the appropriate bit in SMU_BMPUPATDn. To configure the secure attribute of a master set the appropriate bit in SMU_BMPUPSATDn.

10.3.6 Configuring Peripherals

The SMU provides the ability to configure the current secure and privileged state of all peripherals. To configure the privileged attribute of a peripheral set the appropriate bit in SMU PPUPATDn.

Each peripheral is accessible at one of two addresses: A secure address and an non-secure address. Which address is valid depends on the security attribute of the peripheral configured in the SMU. When configured as secure a peripheral may only be accessed at its secure address and when configured as non-secure the peripheral may only be accessed at its non-secure address. This forces code to be aware of the security attribute of the peripheral being accessed, preventing secure code from accessing a non-secure peripheral unintentionally.

The device memory map contains 4 regions of fixed length and fixed security attribute to facilitate the secure access of peripherals and RF peripherals. There is one secure (0x4000000) and one non-secure (0x5000000) region for peripherals and one secure (0xA000000) and non-secure (0xB0000000) region for the radio subsystem. While each peripheral can be configured independently the radio subsystem is configured as a unit.

To configure the security attribute of a peripheral set the appropriate bit in SMU PPUSATDn.

10.3.7 Configuring Memory

The SMU provides the ability to configure the security attribute of memory. There are 13 configurable regions in total. There are three regions in FLASH (0 - 2) and three in RAM (4-6) which have pre-determined secure attributes and user selectable sizes. Regions 3 and 11 cover the flash info page and ARM EPPB space respectively and have a fixed size. These regions can be configured as secure or non-secure by setting ESAUR3NS in SMU ESAURTYPES0 and ESAUR11NS in SMU ESAURTYPES1 respectively.

The size of the FLASH and RAM regions are controlled by the SMU_ESAURMBRxy registers as shown in Table 10.3 Memory Configuration Regions on page 222. Region sizes are adjusted in 4 kB increments with the lower 12 bits of SMU_ESAURMBRxy ignored. The non-secure-callable regions may be set to size 0 but secure and non-secure regions must be at least 4 kB.

Table 10.3. Memory Configuration Regions

Region	Memory	Attributes	Start	End
0	FLASH	secure	0x0000000	SMU_ESAURMBR01
1	FLASH	non-secure-callable	SMU_ESAURMBR01	SMU_ESAURMBR12
2	FLASH	non-secure	SMU_ESAURMBR12	0x0FE00000
3	FLASH (info page)	secure or non-secure	0x0FE00000	0x0FFFFFF
4	RAM	secure	0x20000000	SMU_ESAURMBR45
5	RAM	non-secure-callable	SMU_ESAURMBR45	SMU_ESAURMBR56
6	RAM	non-secure	SMU_ESAURMBR56	0x2FFFFFF
7	Peripherals	secure	0x40000000	0x4FFFFFF
8	Peripherals	non-secure	0x50000000	0x5FFFFFF
9	SEQRAM/ FRCRAM	secure	0xA0000000	0xAFFFFFF
10	SEQRAM/ FRCRAM	non-secure	0xB0000000	0xBFFFFFF
11	EPPB	secure or non-secure	0xE0044000	0xE00FDFFF
12	Cortex-M33 Processor ROM table	exempt	0xE00FE000	0xE00FEFFF

10.3.8 Cortex-M33 Integration

In addition to the SMU based access controls the Cortex-M33 has additional security features for controlling both secure and privileged access.

The Security Attribution Unit (SAU) provides that ability to setup secure memory regions in addition to those configured by the SMU. To disable the SAU and rely entirely on the SMU for security management clear ENABLE and set ALLNS in the SAU CTRL register. To enable a combination of SMU and SAU control set ENABLE in the SAU CTRL register. If both ENABLE and ALLNS are cleared all Cortex-M33 will treat all transactions as secure.

When both SAU and SMU are in use, a memory address is considered secure if either the SAU or SMU have it configured as secure. When enabled the SAU applies ONLY to access by the Cortex-M33 and does not effect any other masters. For more information on the SAU refer to ARM documentation.

Note: It is highly recommended that systems avoid using the SAU unless necessary. Since the SAU does not affect any masters outside the Cortex-M33, extreme care must be taken to ensure the SAU regions can not be trivially by bypassed through use of another master such as the DMA.

In addition to the Cortex-M33 MPU provides the ability to control which regions of FLASH and RAM are marked as privileged and prevent execution of privileged code by a CPU in unprivileged state. For more information on the configuration and use of the MPU refer to ARM documentation.

10.3.9 Exception Handling

When a BMPU detects a non-secure master attempting to access a secure address, the BMPUSECIF in SMU_IF is set and the ID of the Master block is written to SMU_BMPUFS. If BMPUSECIEN is set and the SMU's Secure IRQ enabled, the CPU will be interrupted.

When a PPU detects an access to a secure peripheral at its non-secure address or an access to a non-secure peripheral at its secure address, PPUSECIF in SMU_IF is set and the ID of the peripheral being accessed is written to SMU_PPUFS. If PPUSECIEN is set and the SMU's Secure IRQ enabled, the CPU will be interrupted.

If a PPU detects an attempt to fetch an instruction from a peripheral, PPUINSTIF in SMU_IF will be set and the ID of the peripheral being accessed is written to SMU_PPUFS. If PPUINSTIEN is set and the SMU's Privileged IRQ enabled, the CPU will be interrupted.

If a PPU detects an attempt to access a privileged peripheral by an unprivileged master, PPUPRIVIF in SMU_IF will be set and the ID of the peripheral being accessed is written to SMU_PPUFS. If PPUPRIVIEN is set and the SMU's Privileged IRQ enabled, the CPU will be interrupted.

When any IRQ is trigged the Cortex-M33 is automatically placed in the privileged state. The security state is determined by configuration inside the Cortex-M33. Refer to ARM's documentation for more details.

If the SMU is configured in an inconsistent way, the SMUPRGERR flag in SMU_STATUS will be set. One example of an invalid configuration is setting SMU_ESAURMBR01 to a value larger than SMU_ESAURMBR23. SMUPRGERR should be checked after the SMU is configured.

10.3.10 SMU Lock

The SMU registers can be locked to prevent unintended modifications. SMULOCK in SMU_STATUS indicates if the SMU is currently locked. To unlock the SMU write 0xACCE55 to the SMU_LOCK register. To lock write any other value to SMU_LOCK.

In addition to locking the SMU registers the SMU can prevent access to the Cortex-M33 ASU, MPU, SMPU, VTOR and VTAIRCR registers. To lock access to one or more of these blocks set the corresponding bit in SMU M33CTRL.

10.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	SMU_IPVERSION	R	IP Version
0x004	SMU_STATUS	RH	Status Register
0x008	SMU_LOCK	w	Lock Register
0x00C	SMU_IF	RWH INTFLAG	Interrupt Flag Register
0x010	SMU_IEN	RW	Interrupt Enable Register
0x020	SMU_M33CTRL	RW	M33 Control Settings
0x040	SMU_PPUPATD0	RW	Privileged Access
0x044	SMU_PPUPATD1	RW	Privileged Access
0x060	SMU_PPUSATD0	RW	Secure Access
0x064	SMU_PPUSATD1	RW	Secure Access
0x140	SMU_PPUFS	RH	Fault Status
0x150	SMU_BMPUPATD0	RW	Privileged Attribute
0x170	SMU_BMPUSATD0	RW	Secure Attribute
0x250	SMU_BMPUFS	RH	Fault Status
0x254	SMU_BMPUFSADDR	RH	Fault Status Address
0x260	SMU_ESAURTYPES0	RW	Region Types 0
0x264	SMU_ESAURTYPES1	RW	Region Types 1
0x270	SMU_ESAUMRB01	RW	Movable Region Boundary
0x274	SMU_ESAUMRB12	RW	Movable Region Boundary
0x280	SMU_ESAUMRB45	RW	Movable Region Boundary
0x284	SMU_ESAUMRB56	RW	Movable Region Boundary
0x1000	SMU_IPVERSION_SET	R	IP Version
0x1004	SMU_STATUS_SET	RH	Status Register
0x1008	SMU_LOCK_SET	W	Lock Register
0x100C	SMU_IF_SET	RWH INTFLAG	Interrupt Flag Register
0x1010	SMU_IEN_SET	RW	Interrupt Enable Register
0x1020	SMU_M33CTRL_SET	RW	M33 Control Settings
0x1040	SMU_PPUPATD0_SET	RW	Privileged Access
0x1044	SMU_PPUPATD1_SET	RW	Privileged Access
0x1060	SMU_PPUSATD0_SET	RW	Secure Access
0x1064	SMU_PPUSATD1_SET	RW	Secure Access
0x1140	SMU_PPUFS_SET	RH	Fault Status
0x1150	SMU_BMPUPATD0_SET	RW	Privileged Attribute
0x1170	SMU_BMPUSATD0_SET	RW	Secure Attribute
0x1250	SMU_BMPUFS_SET	RH	Fault Status

Offset	Name	Туре	Description
0x1254	SMU_BMPUFSADDR_SET	RH	Fault Status Address
0x1260	SMU_ESAURTYPES0_SET	RW	Region Types 0
0x1264	SMU_ESAURTYPES1_SET	RW	Region Types 1
0x1270	SMU_ESAUMRB01_SET	RW	Movable Region Boundary
0x1274	SMU_ESAUMRB12_SET	RW	Movable Region Boundary
0x1280	SMU_ESAUMRB45_SET	RW	Movable Region Boundary
0x1284	SMU_ESAUMRB56_SET	RW	Movable Region Boundary
0x2000	SMU_IPVERSION_CLR	R	IP Version
0x2004	SMU_STATUS_CLR	RH	Status Register
0x2008	SMU_LOCK_CLR	W	Lock Register
0x200C	SMU_IF_CLR	RWH INTFLAG	Interrupt Flag Register
0x2010	SMU_IEN_CLR	RW	Interrupt Enable Register
0x2020	SMU_M33CTRL_CLR	RW	M33 Control Settings
0x2040	SMU_PPUPATD0_CLR	RW	Privileged Access
0x2044	SMU_PPUPATD1_CLR	RW	Privileged Access
0x2060	SMU_PPUSATD0_CLR	RW	Secure Access
0x2064	SMU_PPUSATD1_CLR	RW	Secure Access
0x2140	SMU_PPUFS_CLR	RH	Fault Status
0x2150	SMU_BMPUPATD0_CLR	RW	Privileged Attribute
0x2170	SMU_BMPUSATD0_CLR	RW	Secure Attribute
0x2250	SMU_BMPUFS_CLR	RH	Fault Status
0x2254	SMU_BMPUFSADDR_CLR	RH	Fault Status Address
0x2260	SMU_ESAURTYPES0_CLR	RW	Region Types 0
0x2264	SMU_ESAURTYPES1_CLR	RW	Region Types 1
0x2270	SMU_ESAUMRB01_CLR	RW	Movable Region Boundary
0x2274	SMU_ESAUMRB12_CLR	RW	Movable Region Boundary
0x2280	SMU_ESAUMRB45_CLR	RW	Movable Region Boundary
0x2284	SMU_ESAUMRB56_CLR	RW	Movable Region Boundary
0x3000	SMU_IPVERSION_TGL	R	IP Version
0x3004	SMU_STATUS_TGL	RH	Status Register
0x3008	SMU_LOCK_TGL	W	Lock Register
0x300C	SMU_IF_TGL	RWH INTFLAG	Interrupt Flag Register
0x3010	SMU_IEN_TGL	RW	Interrupt Enable Register
0x3020	SMU_M33CTRL_TGL	RW	M33 Control Settings
0x3040	SMU_PPUPATD0_TGL	RW	Privileged Access
0x3044	SMU_PPUPATD1_TGL	RW	Privileged Access
0x3060	SMU_PPUSATD0_TGL	RW	Secure Access

Offset	Name	Туре	Description
0x3064	SMU_PPUSATD1_TGL	RW	Secure Access
0x3140	SMU_PPUFS_TGL	RH	Fault Status
0x3150	SMU_BMPUPATD0_TGL	RW	Privileged Attribute
0x3170	SMU_BMPUSATD0_TGL	RW	Secure Attribute
0x3250	SMU_BMPUFS_TGL	RH	Fault Status
0x3254	SMU_BMPUFSADDR_TGL	RH	Fault Status Address
0x3260	SMU_ESAURTYPES0_TGL	RW	Region Types 0
0x3264	SMU_ESAURTYPES1_TGL	RW	Region Types 1
0x3270	SMU_ESAUMRB01_TGL	RW	Movable Region Boundary
0x3274	SMU_ESAUMRB12_TGL	RW	Movable Region Boundary
0x3280	SMU_ESAUMRB45_TGL	RW	Movable Region Boundary
0x3284	SMU_ESAUMRB56_TGL	RW	Movable Region Boundary

10.5 Register Description

10.5.1 SMU_IPVERSION - IP Version

Offset		Bit Position											
0x000	31	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
Reset		OXO OX											
Access		<u>α</u>											
Name		PVERSION R											

Bit	Name	Reset	Access	Description						
31:0	IPVERSION	0x0	R	IP Version						
	The read only IPVERSION field gives the version for this module. There may be minor software cha modules with different values of IPVERSION.									

10.5.2 SMU_STATUS - Status Register

Offset	Bit Position								
0x004	33 34 36 37 38 39 30 30 30 31 32 33 34 35 36 37 38 40 <td>- 0</td>	- 0							
Reset		0x0							
Access		<u>د</u> د							
Name		SMUPRGERR							

Bit	Name	Reset	Access	Description								
31:2	Reserved	To ensure ventions	To ensure compatibility with future devices, always write bits to 0. More information ventions									
1	SMUPRGERR	0x0	SMU Programming Error									
	Indicates if SMU Re	gisters were prog	grammed incor	rectly.								
0	SMULOCK	0x0	R	SMU Lock								
	Indicates if SMU Re	gisters are locke	d.									
	Value	Mode		Description								
	0 UNLOCKED											
	1	LOCKED										

10.5.3 SMU_LOCK - Lock Register

Offset														Bi	it Po	siti	on														
0x008	31	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset		·	•	•									•						ć	S S											
Access								> >																							
Name																			\L\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SMULUCKKEY											

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
23:0	SMULOCKKEY	0x0	W	
	Write anything but UNLO	OCK to lock re	egisters.	
	Value	Mode		Description
	11325013	UNLOCK		Unlocks Registers

10.5.4 SMU_IF - Interrupt Flag Register

Offset															Ві	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset	000																0x0		0x0													
Access	장 장 장 장																W.		RW													
Name															BMPUSEC	PPUSEC														PPUINST		PPUPRIV

Bit	Name	Reset	Access	Description
31:18	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
17	BMPUSEC	0x0	RW	BMPU Security Interrupt Flag
	Triggered when a securi	ty fault occurs	s in the Bus Mas	ster Protection Unit
16	PPUSEC	0x0	RW	PPU Security Interrupt Flag
	Triggered when a securi	ty fault occurs	s in the Peripher	al Protection Unit
15:3	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
2	PPUINST	0x0	RW	PPU Instruction Interrupt Flag
	Triggered when a instruc	ction fault occ	urs in the Periph	neral Protection Unit
1	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
0	PPUPRIV	0x0	RW	PPU Privilege Interrupt Flag
	Triggered when a privile	ge fault occur	s in the Periphe	ral Protection Unit

10.5.5 SMU_IEN - Interrupt Enable Register

Offset	Bit Position	
0x010	33 34 6 6 6 7 7 8 9 9 10 10	1 0
Reset	000000000000000000000000000000000000000	0x0
Access	R RW	RW
Name	BMPUSEC PPUSEC	PPUPRIV

Bit	Name	Reset	Access	Description
31:18	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
17	BMPUSEC	0x0	RW	BMPU Security Interrupt Flag
	Set to enable the BMPU	SEC Interrupt		
16	PPUSEC	0x0	RW	PPU Security Interrupt Flag
	Set to enable the PPUSI	ECIF Interrupt	:	
15:3	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
2	PPUINST	0x0	RW	PPU Instruction Interrupt Flag
	Set to enable the PPUIN	ISTIF Interrup	t	
1	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
0	PPUPRIV	0x0	RW	PPU Privilege Interrupt Flag
	Set to enable the PPUPI	RIVIF Interrup	t	

10.5.6 SMU_M33CTRL - M33 Control Settings

Offset															Bi	t Pc	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	19	6	ω	7	9	2	4	က	7	_	0
Reset		•	•	•			•	•						•	•	•	•	•				•	•		•	•	•	0×0	000	0x0	0x0	0x0
Access																												RW	W.	₩.	RW	RW
Name																												LOCKSAU	LOCKNSMPU	LOCKSMPU	LOCKNSVTOR	LOCKSVTAIRCR

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
4	LOCKSAU	0x0	RW	SAU LOCK bit
	Set this bit to lock the S	AU		
3	LOCKNSMPU	0x0	RW	NSMPU LOCK bit
	Set this bit to lock the N	ISMPU		
2	LOCKSMPU	0x0	RW	SMPU LOCK bit
	Set this bit to lock the S	MPU		
1	LOCKNSVTOR	0x0	RW	NSVTOR LOCK bit
	Set this bit to lock the N	ISVTOR		
0	LOCKSVTAIRCR	0x0	RW	SVTAIRCR LOCK bit
	Set this bit to lock the S	VTAIRCR		

10.5.7 SMU_PPUPATD0 - Privileged Access

Offset															Bi	t Po	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset	000	0X0	000	000	000	0x0	000	000	000	0x0	000	0x0	0X0	000	000	000	000	0×0	0x0	0×0	0x0	000	000	0X0	0x0	0X0	000	000	0x0	0x0	0x0	
Access	RW	Z.	₩ M	W.	W M	RW	₩ M	RW	W.	RW	W.	RW	W.	₩ M	W.	W.	W.	W.	RW	W.	RW	W.	W.	W.	W.	W.	W.	R _W	ZW W	W M	RW	
Name	RTCC	GPCRC	IFADCDEBUG	BURAM	SYSCFG	LVGD	CHIPTESTCTRL	I2C1	BURTC	USART2	USART1	USARTO	TIMER3	TIMER2	TIMER1	TIMERO	LDMAXBAR	LDMA	GPIO	PRS	ICACHE0	MSC	ULFRCO	LFRCO	LFXO	DPLL0	FSRCO	HFRC00	HFX00	СМО	ЕМО	

Bit	Name	Reset	Access	Description
31	RTCC	0x0	RW	RTCC Privileged Access
	RTCC Privileged Acce	ess		
30	GPCRC	0x0	RW	GPCRC Privileged Access
	GPCRC Privileged Ac	cess		
29	IFADCDEBUG	0x0	RW	IFADCDEBUG Privileged Access
	IFADCDEBUG Privile	ged Access		
28	BURAM	0x0	RW	BURAM Privileged Access
	BURAM Privileged Ac	cess		
27	SYSCFG	0x0	RW	SYSCFG Privileged Access
	SYSCFG Privileged A	ccess		
26	LVGD	0x0	RW	LVGD Privileged Access
	LVGD Privileged Acce	ess		
25	CHIPTESTCTRL	0x0	RW	CHIPTESTCTRL Privileged Access
	CHIPTESTCTRL Privi	leged Access		
24	I2C1	0x0	RW	I2C1 Privileged Access
	I2C1 Privileged Acces	s		
23	BURTC	0x0	RW	BURTC Privileged Access
	BURTC Privileged Acc	cess		
22	USART2	0x0	RW	USART2 Privileged Access
	USART2 Privileged Ad	ccess		
21	USART1	0x0	RW	USART1 Privileged Access
	USART1 Privileged Ad	ccess		
20	USART0	0x0	RW	USART0 Privileged Access
	USART0 Privileged Ad	ccess		
19	TIMER3	0x0	RW	TIMER3 Privileged Access
	TIMER3 Privileged Ac	cess		
18	TIMER2	0x0	RW	TIMER2 Privileged Access

Bit	Name	Reset	Access	Description
	TIMER2 Privileged Acce	ess		
17	TIMER1	0x0	RW	TIMER1 Privileged Access
	TIMER1 Privileged Acce	ess		
16	TIMER0	0x0	RW	TIMER0 Privileged Access
	TIMER0 Privileged Acce	ess		
15	LDMAXBAR	0x0	RW	LDMAXBAR Privileged Access
	LDMAXBAR Privileged A	Access		
14	LDMA	0x0	RW	LDMA Privileged Access
	LDMA Privileged Access	3		
13	GPIO	0x0	RW	GPIO Privileged Access
	GPIO Privileged Access			
12	PRS	0x0	RW	PRS Privileged Access
	PRS Privileged Access			
11	ICACHE0	0x0	RW	ICACHE0 Privileged Access
	ICACHE0 Privileged Acc	cess		
10	MSC	0x0	RW	MSC Privileged Access
	MSC Privileged Access			
9	ULFRCO	0x0	RW	ULFRCO Privileged Access
	ULFRCO Privileged Acc	ess		
8	LFRCO	0x0	RW	LFRCO Privileged Access
	LFRCO Privileged Acces	ss		
7	LFXO	0x0	RW	LFXO Privileged Access
	LFXO Privileged Access	i		
6	DPLL0	0x0	RW	DPLL0 Privileged Access
	DPLL0 Privileged Acces	s		
5	FSRCO	0x0	RW	FSRCO Privileged Access
	FSRCO Privileged Acce	ss		
4	HFRCO0	0x0	RW	HFRCO0 Privileged Access
	HFRCO0 Privileged Acc	ess		
3	HFXO0	0x0	RW	HFXO0 Privileged Access
	HFXO0 Privileged Acces	ss		
2	CMU	0x0	RW	CMU Privileged Access
	CMU Privileged Access			
1	EMU	0x0	RW	EMU Privileged Access
	EMU Privileged Access			
0	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-

10.5.8 SMU_PPUPATD1 - Privileged Access

Offset															Bi	t Po	siti	on														
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset			•													•			0x0	000	0x0	000	0x0	000	0×0	000	0X0	0x0	000	0x0	000	0x0
Access																			R N N	R N N	R N	% §	Z.	% §	Z N N	Z.	% ≷	% ≷	% §	₩ M	% §	₩ W
Name																			SEMAILBOX	AHBRADIO	SMU	BUFC	RADIOAES	AMUXCP0	WDOG1	WDOG0	HFRCOEM23	12C0	ACMP1	ACMP0	IADC0	LETIMERO

Bit	Name	Reset	Access	Description
31:14	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
13	SEMAILBOX	0x0	RW	SE MAILBOX Privileged Access
	SE MAILBOX Privilege	d Access		
12	AHBRADIO	0x0	RW	AHBRADIO Privileged Access
	AHBRADIO Privileged	Access		
11	SMU	0x0	RW	SMU Privileged Access
	SMU Privileged Access	3		
10	BUFC	0x0	RW	BUFC Privileged Access
	BUFC Privileged Acces	ss		
9	RADIOAES	0x0	RW	RADIOAES Privileged Access
	RADIOAES Privileged	Access		
8	AMUXCP0	0x0	RW	AMUXCP0 Privileged Access
	AMUXCP0 Privileged A	Access		
7	WDOG1	0x0	RW	WDOG1 Privileged Access
	WDOG1 Privileged Acc	cess		
6	WDOG0	0x0	RW	WDOG0 Privileged Access
	WDOG0 Privileged Acc	cess		
5	HFRCOEM23	0x0	RW	HFRCOEM23 Privileged Access
	HFRCOEM23 Privilege	d Access		
4	I2C0	0x0	RW	I2C0 Privileged Access
	I2C0 Privileged Access	;		
3	ACMP1	0x0	RW	ACMP1 Privileged Access
	ACMP1 Privileged Acc	ess		
2	ACMP0	0x0	RW	ACMP0 Privileged Access
	ACMP0 Privileged Acc	ess		
1	IADC0	0x0	RW	IADC0 Privileged Access
	IADC0 Privileged Acce	SS		
-				

Bit	Name	Reset	Access	Description
0	LETIMER0	0x0 RW		LETIMER0 Privileged Access
	LETIMER0 Privileged Ad	ccess		

10.5.9 SMU_PPUSATD0 - Secure Access

Offset															Ві	it Po	siti	on														
0x060	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset	000	0X0	000	000	000	0x0	000	0x0	000	0x0	0X0	0x0	0X0	0X0	0x0	000	0x0	0×0	000	0×0	000	000	0x0	000	000	0X0	000	000	0×0	000	0X0	
Access	RW	Z.	₩ M	W.	₩ M	RW	₩ M	RW	W.	RW	W.	RW	W.	W.	W.	₩ M	RW	W.	RW	W.	RW	W.	RW	W.	W.	W.	W.	R W	W.	₩.	Z.	
Name	RTCC	GPCRC	IFADCDEBUG	BURAM	SYSCFG	LVGD	CHIPTESTCTRL	I2C1	BURTC	USART2	USART1	USART0	TIMER3	TIMER2	TIMER1	TIMERO	LDMAXBAR	LDMA	GPIO	PRS	ICACHE0	MSC	ULFRCO	LFRCO	LFXO	DPLL0	FSRCO	HFRC00	HFX00	СМU	ЕМО	

Bit	Name	Reset	Access	Description
31	RTCC	0x0	RW	RTCC Secure Access
	RTCC Secure Access			
30	GPCRC	0x0	RW	GPCRC Secure Access
	GPCRC Secure Access			
29	IFADCDEBUG	0x0	RW	IFADCDEBUG Secure Access
	IFADCDEBUG Secure A	Access		
28	BURAM	0x0	RW	BURAM Secure Access
	BURAM Secure Access			
27	SYSCFG	0x0	RW	SYSCFG Secure Access
	SYSCFG Secure Access	s		
26	LVGD	0x0	RW	LVGD Secure Access
	LVGD Secure Access			
25	CHIPTESTCTRL	0x0	RW	CHIPTESTCTRL Secure Access
	CHIPTESTCTRL Secure	e Access		
24	I2C1	0x0	RW	I2C1 Secure Access
	I2C1 Secure Access			
23	BURTC	0x0	RW	BURTC Secure Access
	BURTC Secure Access			
22	USART2	0x0	RW	USART2 Secure Access
	USART2 Secure Access	3		
21	USART1	0x0	RW	USART1 Secure Access
	USART1 Secure Access	3		
20	USART0	0x0	RW	USART0 Secure Access
	USART0 Secure Access	S		
19	TIMER3	0x0	RW	TIMER3 Secure Access
	TIMER3 Secure Access			
18	TIMER2	0x0	RW	TIMER2 Secure Access

Bit	Name	Reset	Access	Description
	TIMER2 Secure Access			
17	TIMER1	0x0	RW	TIMER1 Secure Access
	TIMER1 Secure Access			
16	TIMER0	0x0	RW	TIMER0 Secure Access
	TIMER0 Secure Access			
15	LDMAXBAR	0x0	RW	LDMAXBAR Secure Access
	LDMAXBAR Secure Acco	ess		
14	LDMA	0x0	RW	LDMA Secure Access
	LDMA Secure Access			
13	GPIO	0x0	RW	GPIO Secure Access
	GPIO Secure Access			
12	PRS	0x0	RW	PRS Secure Access
	PRS Secure Access			
11	ICACHE0	0x0	RW	ICACHE0 Secure Access
	ICACHE0 Secure Access	3		
10	MSC	0x0	RW	MSC Secure Access
	MSC Secure Access			
9	ULFRCO	0x0	RW	ULFRCO Secure Access
	ULFRCO Secure Access			
8	LFRCO	0x0	RW	LFRCO Secure Access
	LFRCO Secure Access			
7	LFXO	0x0	RW	LFXO Secure Access
	LFXO Secure Access			
6	DPLL0	0x0	RW	DPLL0 Secure Access
	DPLL0 Secure Access			
5	FSRCO	0x0	RW	FSRCO Secure Access
	FSRCO Secure Access			
4	HFRCO0	0x0	RW	HFRCO0 Secure Access
	HFRCO0 Secure Access	i		
3	HFXO0	0x0	RW	HFXO0 Secure Access
	HFXO0 Secure Access			
2	СМИ	0x0	RW	CMU Secure Access
	CMU Secure Access			
1	EMU	0x0	RW	EMU Secure Access
	EMU Secure Access			
0	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-

10.5.10 SMU_PPUSATD1 - Secure Access

Offset															Bi	t Po	siti	on														
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset			•													•			0x0	000	0x0	000	0x0	000	0×0	000	0X0	0x0	000	0x0	000	0x0
Access																			R N N	Z.	R N	S.	R N N	₩	₩ M	R M M	₩	₩ N	§ N	₩ M	₹	A W
Name																			SEMAILBOX	AHBRADIO	SMU	BUFC	RADIOAES	AMUXCP0	WDOG1	WDOG0	HFRCOEM23	12C0	ACMP1	ACMP0	IADC0	LETIMERO

Bit	Name	Reset	Access	Description
31:14	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
13	SEMAILBOX	0x0	RW	SE MAILBOX Secure Access
	SE MAILBOX Secure Ad	ccess		
12	AHBRADIO	0x0	RW	AHBRADIO Secure Access
	AHBRADIO Secure Acc	ess		
11	SMU	0x0	RW	SMU Secure Access
	SMU Secure Access			
10	BUFC	0x0	RW	BUFC Secure Access
	BUFC Secure Access			
9	RADIOAES	0x0	RW	RADIOAES Secure Access
	RADIOAES Secure Acc	ess		
8	AMUXCP0	0x0	RW	AMUXCP0 Secure Access
	AMUXCP0 Secure Acce	ss		
7	WDOG1	0x0	RW	WDOG1 Secure Access
	WDOG1 Secure Access			
6	WDOG0	0x0	RW	WDOG0 Secure Access
	WDOG0 Secure Access			
5	HFRCOEM23	0x0	RW	HFRCOEM23 Secure Access
	HFRCOEM23 Secure A	ccess		
4	I2C0	0x0	RW	I2C0 Secure Access
	I2C0 Secure Access			
3	ACMP1	0x0	RW	ACMP1 Secure Access
	ACMP1 Secure Access			
2	ACMP0	0x0	RW	ACMP0 Secure Access
	ACMP0 Secure Access			
1	IADC0	0x0	RW	IADC0 Secure Access
	IADC0 Secure Access			

Bit	Name	Reset	Access	Description
0	LETIMER0	0x0	RW	LETIMER0 Secure Access
	LETIMER0 Secure Acce	ess		

10.5.11 SMU_PPUFS - Fault Status

Offset															Bi	t Po	siti	on														
0x140	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	19	6	∞	7	9	5	4	က	2	_	0
Reset																												2	OXO			
Access																												۵	צ			
																													ב ב			
Name																												allasasiilaa	<u>-</u> 			
																												0	0707			
																													τ			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
7:0	PPUFSPERIPHID	0x0	R	Peripheral I
	ID of the peripheral that	caused the fa	ult.	

10.5.12 SMU_BMPUPATD0 - Privileged Attribute

Offset															Bi	t Po	siti	on														
0x150	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset		•	•				•									•						•			•	•)X	0X1	0X	0x1	0 <u>X</u> 1	0×1
Access																											₩ N	W.	S.	W.	W.	RW
Name																											SEDMA	LDMA	RADIOIFADCDEBUG	BUFC	RADIOSUBSYSTEM	RADIOAES

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
5	SEDMA	0x1	RW	SE mailbox DMA privileged mode
	MCU to SE mailbox DMA	A privileged m	ode	
4	LDMA	0x1	RW	MCU LDMA privileged mode
	MCU LDMA privileged m	iode		
3	RADIOIFADCDEBUG	0x1	RW	RADIO IFADC debug privileged mode
	RADIO IFADC debug wr	ite privileged	mode	
2	BUFC	0x1	RW	RADIO BUFFER controller privileged mode
	RADIO BUFFER controll	er privileged	mode	
1	RADIOSUBSYSTEM	0x1	RW	RADIO subsystem masters privileged mode
	RADIO subsystem maste	ers (FRC and	SEQ) privileged	I mode
0	RADIOAES	0x1	RW	RADIO AES DMA privileged mode
	RADIO AES DMA privile	ged mode		

10.5.13 SMU_BMPUSATD0 - Secure Attribute

Offset															Ві	t Po	siti	on														
0x170	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	19	6	∞	7	9	2	4	က	2	_	0
Reset			•	1	•		'							'	'	'		•		•		'	•	'		•	0X	0X1	0X	0X	0X	0x1
Access																											₩ N	W.	₩ W	₩.	W.	RW
Name																											SEDMA	LDMA	RADIOIFADCDEBUG	BUFC	RADIOSUBSYSTEM	RADIOAES

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
5	SEDMA	0x1	RW	MCU to SE mailbox DMA secure mode
	MCU to SE mailbox DM	A secure mod	е	
4	LDMA	0x1	RW	MCU LDMA secure mode
	MCU LDMA secure mod	е		
3	RADIOIFADCDEBUG	0x1	RW	RADIO IFADC debug secure mode
	RADIO IADC debug writ	e secure mod	е	
2	BUFC	0x1	RW	RADIO BUFFER controller secure mode
	RADIO BUFFER control	ler secure mo	de	
1	RADIOSUBSYSTEM	0x1	RW	RADIO subsystem masters secure mode
	RADIO subsystem mast	ers (FRC and	SEQ) secure m	node
0	RADIOAES	0x1	RW	RADIO AES DMA secure mode
	RADIO AES DMA secur	e mode		

10.5.14 SMU_BMPUFS - Fault Status

Offset															Bi	t Po	siti	on														
0x250	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	2	4	က	7	_	0
Reset																													0x0			
Access																													ď			
Name																													BMPUFSMASTERID			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
7:0	BMPUFSMASTERID	0x0	R	Fault
	ID of master that triggere	ed fault.		

10.5.15 SMU_BMPUFSADDR - Fault Status Address

Offset	Bit Position	
0x254	1 1 <th>0</th>	0
Reset	0×0	
Access	<u>α</u>	
Name	BMPUFSADDR	

Bit	Name	Reset	Access	Description
31:0	BMPUFSADDR	0x0	R	Fault Address

10.5.16 SMU_ESAURTYPES0 - Region Types 0

Offset															Bi	t Po	siti	on														
0x260	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset				•			•									•				0X0						•						
Access																				₩ M												
Name																				ESAUR3NS												

Bit	Name	Reset	Access	Description
31:13	Reserved	To ensure c ventions	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
12	ESAUR3NS	0x0	RW	Region 3 Non-Secure
11:0	Reserved	To ensure c	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-

10.5.17 SMU_ESAURTYPES1 - Region Types 1

Offset															Bi	t Po	siti	on														
0x264	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	9	6	ω	7	9	5	4	က	2	-	_ o
Reset																				0X												
Access																				₩ N												
																				1NS												
Name																				UR1												
																				ESA												

Bit	Name	Reset	Access	Description
31:13	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
12	ESAUR11NS	0x0	RW	Region 11 Non-Secure
11:0	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-

10.5.18 SMU_ESAUMRB01 - Movable Region Boundary

Offset															Bi	t Po	siti	on														
0x270	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset								·					OXZOOO		ı				ı					•		•	1	'				
Access												2	<u>}</u>																			
Name												~	ESAUMRBUI																			

Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
27:12	ESAUMRB01	0x2000	RW	Moveable Region Boundary
	Moveable Region Bound	ary between	Region 0 and R	egion 1. Address Represents the start of Region 1 at a 4kB offset.
11:0	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-

10.5.19 SMU_ESAUMRB12 - Movable Region Boundary

Offset															Bi	t Po	siti	on													
0x274	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	9	6	8	7	9	2	4	က	2	- c
Reset							0x4000																								
Access							ŏ																								
Name												ECAL MADE 12	ESACIMINE																		

Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure ventions	compatibility wit	th future devices, always write bits to 0. More information in 1.2 Con-
27:12	ESAUMRB12	0x4000	RW	Moveable Region Boundary
	Moveable Region Boun	dary between	Region 1 and F	Region 2. Address Represents the start of Region 2 at a 4kB offset.
11:0	Reserved	To ensure ventions	compatibility wit	th future devices, always write bits to 0. More information in 1.2 Con-

10.5.20 SMU_ESAUMRB45 - Movable Region Boundary

Offset															Bi	t Po	siti	on														
0x280	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset							000000000000000000000000000000000000000														•	•	•		•							
Access												2	≩																			
Name												<u> </u>	ESAUMIKB45																			

Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
27:12	ESAUMRB45	0x2000	RW	Moveable Region Boundary
	Moveable Region Bound	ary between	Regions 4 and 5	5. This represents the starting address of Region 5.
11:0	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-

10.5.21 SMU_ESAUMRB56 - Movable Region Boundary

Offset															Bi	t Po	siti	on														
0x284	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	6	ω	7	9	5	4	က	2	-	0
Reset							0×4000																									
Access							NW 0x4																									
Name												FOALIMBER	ć																			

Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
27:12	ESAUMRB56	0x4000	RW	Moveable Region Boundary
	Moveable Region Bound	dary between	Regions 5 and 6	6. This represents the starting address of Region 6.
11:0	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-

11. SE - Secure Element Subsystem

Quick Facts

What?

The Secure Element Subsystem encapsulates security peripherals providing both improved system security and ease of use.

Why?

Isolation of security hardware from the Cortex-M33 protects the SE system from exploits that target the main CPU. The subsystem also provides autonomous cryptographic operations allowing the main CPU to perform other tasks or enter EM1 to save power.

How?

Security peripherals are completely isolated from the main CPU and controlled with a processor internal to the SE subsystem.

11.1 Introduction

The Secure Element (SE) provides several security features and acts as a barrier protecting the security hardware from activity on the Cortex-M33. It also enables autonomous operation of security features.

Available features include:

- Secure Boot with Root of Trust and Secure Loader (RTSL)
- Hardware Cryptographic Acceleration with DPA countermeasures for AES128/256, SHA-1, SHA-2 (up to 256-bit), ECC (up to 256-bit), ECDSA, ECDH and J-Pake
- True Random Number Generator (TRNG) compliant with NIST SP800-90 and AIS-31
- ARM® TrustZone®
- · Secure Debug with lock/unlock

All Secure Element functions are enabled by software. These functions are fully described in the Secure Element emlib online documentation located at the following link:

https://docs.silabs.com/mcu/latest/efr32mg21/group-SE

11.2 Security Features

11.2.1 Security Features Overview

- · Acceleration of cryptographic functions
 - · AES encryption and decryption with 128, 192, or 256-bit keys
 - Supported block cipher modes of operation for AES include: ECB, CTR, CBC, CFB, CBC-MAC, CMAC, CCM, GCM and GMAC.
 - · ECC over GF(P) up to 256-bit
 - Supported ECC NIST recommended curves include P-192 and P-256
 - · SHA-1 and SHA-2 up to 256-bit
- Secure Vault provides additional acceleration of cryptographic functions
 - · ECC over GF(P) up to 512-bit
 - ChaCha20 encryption
 - Supported ECC NIST recommended curves include P-192, P-256, P-384, and P-521
 - · Supported non-NIST Curve25519 for ECDH and Ed25519 for EdDSA
 - SHA-1 and SHA-2 up to 512-bit
 - Poly1305
- · True Random Number Generation
 - Entropy Source complies to NIST 800-90B requirements
 - Online Health tests comply to NIST 800-90 and AIS31 requirements
 - Random Data Passes NIST 800-22 and NIST 800-90B test suites
- Secure Boot Loader (First Stage Boot Loader)
- · Secure Vault also provides the following additional security features
 - Secure Key Storage
 - · Physically Unclonable Function (PUF)
 - · Secure Boot
 - Environmental Tamper Detect
 - · Physical Tamper Detect and Response

11.2.2 Secure Boot with Root of Trust and Secure Loader (RTSL)

The Secure Boot with RTSL authenticates a chain of trusted firmware that begins from an immutable memory (ROM).

It prevents malware injection, prevents rollback, ensures that only authentic firmware is executed and protects Over The Air updates.

More information on this feature can be found in the Application Note AN1218: Series 2 Secure Boot with RTSL.

11.2.3 Secure Debug

The SE provides a secure debug unlock function that allows users to grant debug access to locked devices on a device by device basis. To use this function the device must be programmed with a public Command key by the user. To unlock a device, a unique challenge (a device-unique persistent random set of bytes) must be read out and signed by the private key associated with public Command key creating an unlock token. The device can then be unlocked by providing the valid unlock token. The token can be used to unlock the device any number of times. There is also a command to force the device to update its challenge, which revokes the previously-generated token.

More information on Secure Debug can be found in the AN1190: EFR32xG21 Secure Debug application note.

Note: Secure debug locking a device will limit the capability for Silicon Labs to perform failure analysis on the device. Provide secure debug tokens for each device when submitting parts for failure analysis.

11.2.4 Cryptographic Accelerator

The Cryptographic Accelerator in Secure Element is an autonomous hardware accelerator with Differential Power Analysis (DPA) countermeasures to protect keys.

It supports AES encryption and decryption with 128/192/256-bit keys, ChaCha20 encryption (Secure Vault only), and Elliptic Curve Cryptography (ECC) to support public key operations and hashes.

Supported block cipher modes of operation for AES include:

- ECB (Electronic Code Book)
- CTR (Counter Mode)
- · CBC (Cipher Block Chaining)
- · CFB (Cipher Feedback)
- GCM (Galois Counter Mode)
- CCM (Counter with CBC-MAC)
- · CBC-MAC (Cipher Block Chaining Message Authentication Code)
- GMAC (Galois Message Authentication Code)

The Cryptographic Accelerator accelerates Elliptical Curve Cryptography and supports the NIST (National Institute of Standards and Technology) recommended curves including P-192 and P-256 for ECDH (Elliptic Curve Diffie-Hellman) key derivation and ECDSA (Elliptic Curve Digital Signature Algorithm) sign and verify operations. Secure Vault also supports NIST recommended curves P-384 and P521, as well as the non-NIST Curve25519 for ECDH and Ed25519 for EdDSA (Edwards-curve Digital Signature Algorithm)

Secure Element also supports ECJ-PAKE (Elliptic Curve variant of Password Authenticated Key Exchange by Juggling). Secure Vault additionally supports PBKDF2 (Password-Based Key Derivation Function 2).

Supported hashes include SHA-1, SHA2/224, and SHA-2/256. Secure Vault also supports SHA-2/384, SHA-2/512, and Poly1305.

This implementation provides a fast and energy efficient solution to state of the art cryptographic needs.

Note: AES_ECB, AES_CBC, AES_CBCMAC, and SHA-1 are provided for legacy compatibility and are not recommended for cryptographic purposes without thoroughly understanding their potential security weaknesses.

11.2.5 True Random Number Generation

The SE provides access to a non-deterministic random number generator based on a full hardware solution. The TRNG output passes the NIST 800-22 and AIS31 test suites. The TRNG module includes several built-in self tests to detect issues with the noise source, ensure entropy, and meet cryptography standards. The Repetition Count Test and Adaptive Proportion Test with window sizes of 64 and 4096 bits described in section 6.5.1.2 of NIST-800-90B are implemented in hardware and run continuously on the data.

http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf

The AIS31 Online Test described in section 5.5.3 of AIS 31 is also implemented in hardware, and runs continuously on the data.

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf

11.2.6 Secure Key Management with PUF

Secure Vault provides secure storage of cryptographic keys though the use of a Physically Unclonable Function (PUF). The PUF stores provides a unique root private key for each device. This key is never available outside the device and never made available to any code or hardware outside the Secure Vault including the Cortex-M33. In addition, the key provide by the PUF only exists when the device is powered up, defeating most physically destructive attacks based on de-processing.

The PUF protects user programmed or generated keys by encrypting them with the root private key before they are programmed in flash. These keys can then be decrypted and used by the Secure Vault, but are not useful to an attacker that extracts them from flash.

More information on this feature can be found in the Application Note AN1271: Secure Key Storage.

11.2.7 Anti-Tamper

Secure Vault provides internal tampers monitoring the system such as voltage, temperature, and electro-mechanical pulses as well as detecting tamper of the security sub-system itself. There are also 8 external configurable tamper pins for supporting external tamper sources like case tamper switches.

For each tamper event, the user is able to select the severity of the tamper response ranging from an interrupt, to a reset, to destroying the PUF reconstruction data which will make all the protected key material un-recoverable and effectively render the device inoperable. The tamper system also has an internal resettable event counter with programmable trigger threshold and refresh periods to mitigate false positive tamper events.

More information on this feature can be found in the Application Note AN1247: Anti-Tamper Protection Configuration and Use.

11.2.8 Secure Attestation

Secure Vault supports Secure Attestation, which begins with a secure identity that is created during the Silicon Labs manufacturing process. During device production, each device generates its own public/private keypair and securely stores the wrapped private key into immutable OTP memory, and this key never leaves the device. The corresponding public key is extracted from the device and inserted into a binary DER-encoded X.509 device certificate which is signed into a Silicon Labs CA chain and then programmed back into the chip into an immutable OTP memory.

This secure identity can be used to authenticate the chip at any time in the life of the product. The production certification chain can be requested remotely from the product. This certification chain can be used to verify that the device was authentically produced by Silicon Labs. The device unique public key is also bound to the device certificate in the certification chain. A challenge can be sent to the chip at any point in time to be signed by the device private key. The public key in the device certificate can then be used to verify the challenge response, proving that the device has access to the securely-stored private key, which prevents counterfeit products or impersonation attacks.

More information on this feature can be found in the Application Note AN1268: Authenticating Silicon Labs Devices Using Device Certificates.

11.3 SE Mailbox

All communication with the Secure Element Subsystem takes place through the SE Mailbox. Operations are performed by using the mailbox to sending a command and then receive the SE response. The mailbox is a bidirectional 64 word FIFO.

11.3.1 Sending Commands

The TX FIFO has two status flags in SE_TX_STATUS register. TXFULL is set when the FIFO is full and TXINT is set if there is space in the FIFO for at least 16 words. If TXINTEN in SE_CONFIGURATION is set an interrupt will be generated when TXINT is set.

Writing to any SE_DATAn register will result in data being placed in the FIFO. For example, to write 16 words to the FIFO software may write SE_DATA0 16 times, or may make a single write to each of the 16 SE_DATAn registers. If the FIFO is written when no space is available, the CPU will be stalled until spaces becomes available and the write can be completed.

To send a command, first check TXINT to ensure that there is space available in the FIFO. Then write SE_TX_HEADER with the command length and protection bit. Finally, write the command data into the SE_DATAn registers. While the command is being written, BYTERM in SE_TX_STATUS will contain the number of bytes remaining in the command. To ensure minimal performance impact, software should ensure that space exists in the FIFO before writing to it.

11.3.2 Receiving Responses

The RX FIFO has two status flags in SE_RX_STATUS register. RXEMPTY is set when the FIFO is empty and RXINT is set if there are at least 4 words in the FIFO or if the final word of the message is present in the FIFO. If RXINTEN in SE_CONFIGURATION is set, an interrupt will be generated when RXINT is set.

Reading from any SE_DATAn register will result in data being read from the FIFO. For example, to read 16 words from the FIFO, software may read SE_DATA0 16 times, or may make a single read from each of the 16 SE_DATAn registers. If the FIFO is read when it is empty and no message is available, a 0x0 will be read. If the FIFO is read when empty and a message is being processed, the CPU will be stalled until data becomes available.

Software may check for responses by polling RXINT, RXEMPTY, or RXHEADER in SE_RX_STATUS. The RXINT interrupt may also be used to notify the CPU when data is available. To receive a response first read the response header from SE_RX_HEADER. Software may read the message size from SE_RX_HEADER, or use BYTERM in SE_RX_STATUS, which contains the number of words remaining in the response.

The command status is available in both SE_RX_STATUS and SE_RX_HEADER and indicates if the command completed successfully.

11.3.3 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	SEMAILBOX_DATAx	RWH	RX/TX FIFO DATA
0x040	SEMAILBOX_TX_STATUS	RH	TX Status
0x044	SEMAILBOX_RX_STATUS	RH	RX Status
0x048	SEMAILBOX_TX_PROT	RH	TX Protection
0x04C	SEMAILBOX_RX_PROT	RH	RX Protection
0x050	SEMAILBOX_TX_HEADER	W	TX Header
0x054	SEMAILBOX_RX_HEADER	R	RX Header
0x058	SEMAILBOX_CONFIGURATION	RW	Configuration

11.3.4 Register Description

11.3.4.1 SEMAILBOX_DATAx - RX/TX FIFO DATA

Offset	Bit Position
0x000	33 34 36 37 38 38 39 30 31 31 32 33 34 35 36 37 38 39 40
Reset	0×0
Access	R¥
Name	DATA

Bit	Name	Reset	Access	Description
31:0	DATA	0x0	RW	FIFO Data
	FIFO Data			

11.3.4.2 SEMAILBOX_TX_STATUS - TX Status

Offset															Ві	t Po	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	2	4	က	2	_	0
Reset		•	'		'		'		0X0		000	0x0		•				•				•	•		OX OX	'		'			•	
Access									22		22	~												ב	צ							
Name																									BY I EKEM							

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure ventions	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
23	TXERROR	0x0	R	TX Error Flag
	Set on TX Error.			
22	Reserved	To ensure ventions	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
21	TXFULL	0x0	R	TX FIFO Full
	Set when the FIFO is fu	II.		
20	TXINT	0x0	R	Interrupt Status
	Interrupt status (same v sending a message).	alue as interro	upt signal). High	when TX FIFO is not almost-full (enough available space to start
19:16	Reserved	To ensure ventions	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
15:0	BYTEREM	0x0	R	Bytes Remaining
	Number of bytes remain	ing in the me	ssage	

11.3.4.3 SEMAILBOX_RX_STATUS - RX Status

Offset		Bit Position											
0x044	30 30 31 31 32 32 32 33 30 31 32 32 32 32 32 32 32 32 32 32 32 32 32	0 1 2 3 4 5 6 7 8 8 0 10 1 12 13 14 15 16 17 18 19 10 10											
Reset	000 000 000												
Access	\(\times \) \(<u>د</u>											
Name	RXERROR RXHEADER RXEMPTY RXINT												

Bit	Name	Reset	Access	Description									
ы	Name	Reset	Access	Description									
31:24	Reserved	To ensur ventions	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 ventions										
23	RXERROR	0x0	R	RX Error Flag									
	Set on RX Error.												
22	RXHEADER	0x0	R	RX Header									
	This bit is high wher	n the first word a	available in the	RX FIFO is a header									
21	RXEMPTY	0x0	R	RX FIFO Empty									
	Set when RX FIFO	is empty.											
20	RXINT	0x0	R	Interrupt Status									
	Interrupt status (san sage is ready in the			igh when RX FIFO is not almost-empty or when the end of the mesostart reading).									
19:16	STATUS	0x0	R	Message Status									
	This status tells if the command completed successfully or not												
15:0	BYTEREM	0x0	R	Bytes Remaining									
	Number of bytes remaining in the message												

11.3.4.4 SEMAILBOX_TX_PROT - TX Protection

Offset	Bit Position																															
0x048	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	7	_	0
Reset	000									0x0	0×0							'	<u>'</u>	•		•	<u>'</u>			'	•	•		1		
Access	α.								22	~	œ																					
Name	USER							NONSEC	PRIV	UNPROTECTED																						

Bit	Name	Reset	Access	Description							
31:24	USER	0x0	R	User Bits							
	User bits (reserved)										
23	NONSEC	0x0	R	Non-Secure Access							
	Non-Seccure access bit	(reserved)									
22	PRIV	0x0	R	Privileged Access							
	Priveledge Access bit (re	eserved)									
21	UNPROTECTED	0x0	R	Unprotected							
	When high, the protection bits are ignored.										
20:0	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-							

11.3.4.5 SEMAILBOX_RX_PROT - RX Protection

Offset															Bi	t Po	siti	on														
0x04C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		'	•	2	e e				0×0	0x0	000					•	•			•		'	<u>'</u>	'			'	'	'			
Access				۵	۲				œ	<u>~</u>	œ																					
Name				0101	K H O O				NONSEC	PRIV	UNPROTECTED																					

Bit	Name	Reset	Access	Description
31:24	USER	0x0	R	User Bits
	User bits (reserved)			
23	NONSEC	0x0	R	Non-Secure Access
	Non-Seccure access bit	(reserved)		
22	PRIV	0x0	R	Privileged Access
	Priveledge Access bit (re	eserved)		
21	UNPROTECTED	0x0	R	Unprotected
	When high, the protection	n bits are igno	ored.	
20:0	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-

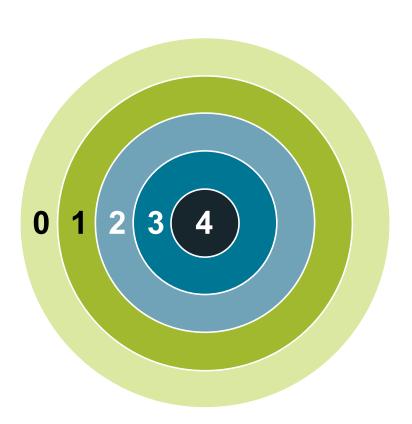
11.3.4.6 SEMAILBOX_TX_HEADER - TX Header

Offset	Bit Position
0x050	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Reset	000
Access	>
Name	UNPROTECTED

Bit	Name	Reset	Access	Description
31:22	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
21	UNPROTECTED	0x0	W	Unprotected
	If set protection bits ar	e ignored		
20:16	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
15:0	SIZE	0x0	W	Command Size
	Size of the command	being sent		

11.3.4.7 SEMAILBOX_RX_HEADER - RX Header

Offset															Bi	t Po	siti	on														
0x054	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	_	0
Reset		'	•	'	'		•				0×0			5	2					'				Š	e X	1	•			•		
Access											œ			۵	۷									ב	צ							
Name											UNPROTECTED			SILVES	200									17	SIZE							


Bit	Name	Reset	Access	Description
31:22	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
21	UNPROTECTED	0x0	R	Unprotected
	If set protection bits are	ignored		
20	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
19:16	STATUS	0x0	R	Command Status
	Status of the command			
15:0	SIZE	0x0	R	SIZE
	Size of the response me	ssage		

11.3.4.8 SEMAILBOX_CONFIGURATION - Configuration

Offset															Bi	t Po	siti	on														
0x058	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset																															0X0	0x0
Access																															Z N	RW
Name																															RXINTEN	TXINTEN

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1	RXINTEN	0x0	RW	RX Interrupt Enable
	When high, the RX interr	upt output is	enabled. This er	nable bit has no effect on the RX status register.
0	TXINTEN	0x0	RW	TX Interrupt Enable
	When high, the TX interr	upt output is e	enabled. This er	nable bit has no effect on the TX status register.

12. EMU - Energy Management Unit

Quick Facts

What?

The EMU (Energy Management Unit) handles the different low energy modes in EFR32xG21

Why?

The need for performance and peripheral functions varies over time in most applications. By efficiently scaling the available resources in real time to match the demands of the application, the energy consumption can be kept at a minimum.

How?

With a broad selection of energy modes, a high number of low-energy peripherals available even in EM2, and short wake-up time, applications can dynamically minimize energy consumption during program execution.

12.1 Introduction

The Energy Management Unit (EMU) manages all the low energy modes (EM) in EFR32xG21. Each energy mode manages whether the CPU and the various peripherals are available. The energy modes range from EM0 to EM4. EM0 mode provides the highest amount of features, enabling the CPU, Radio, and peripherals with the highest clock frequency. EM4 Mode provides the lowest power state, allowing the part to return to EM0 on a wake-up condition. The EMU also controls the internal regulators settings and voltage monitoring needed for optimal power configuration and protection.

12.2 Features

The primary features of the EMU are listed below:

- · Energy Modes control
 - Entry into EM4
 - · Configuration of regulators and clocks for each Energy Mode
 - · Configuration of various EM4 wake-up conditions
 - · Configuration of GPIO retention settings
- · Temperature sensor
- · Brown Out Detection
- Reset Management
 - Power-on Reset (POR)
 - Brown-out Detection (BOD) on the following power domains:
 - · Analog Unregulated Power Domain AVDD
 - · Digital Unregulated Power Domain DVDD
 - I/O Unregulated Power Domain IOVDDx
 - Regulated Digital Domain DECOUPLE (DEC)
 - · RESETn pin reset
 - Watchdog (WDOG) reset
 - Software triggered reset (SYSRESETREQ)
 - · Core LOCKUP condition
 - · EM4 Detection
 - · EM4 wakeup reset from GPIO pin
 - · Configurable reset levels
 - · A software readable register indicates the cause of the last reset

12.3 Functional Description

The EMU is responsible for managing the wide range of energy modes available in EFR32xG21. The block works in harmony with the entire platform to easily transition between energy modes in the most efficient manner possible. The following diagram Figure 12.1 EMU Overview on page 258, shows the relative connectivity to the various blocks in the system.

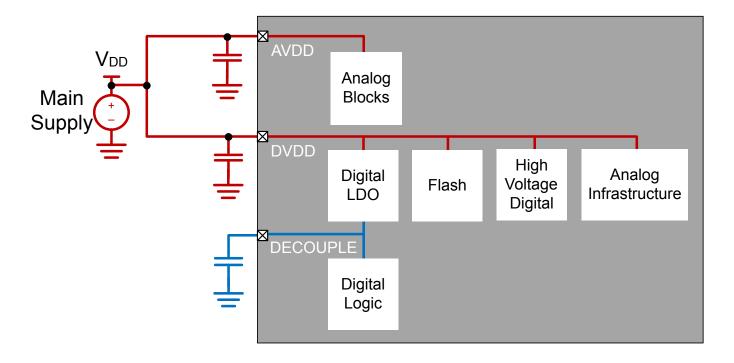


Figure 12.1. EMU Overview

The EMU is available on the peripheral bus. The energy management state machine controls the internal voltage regulators, oscillators, memories, and interrupt system. Events, interrupts, and resets can trigger the energy management state machine to return to the active state. This is further described in the following sections.

12.3.1 Energy Modes

EFR32xG21 features five main energy modes, referred to as Energy Mode 0 (EM0) through Energy Mode 4 (EM4). The Cortex-M33 is only available for program execution in EM0. In EM0 Active/EM1 Sleep any peripheral function can be enabled. EM2 through EM4, also referred to as low energy modes, provide a significantly reduced energy consumption while still allowing a rich set of peripheral functionality. The following Table 12.1 table on page 259 shows the possible transitions between different energy modes.

Table 12.1. Energy Mode Transitions

Current Mode	EM Transition Action											
	Enter EM0	Enter EM1	Enter EM2	Enter EM3	Enter EM4							
ЕМО		Sleep (WFI, WFE)	Deep Sleep (WFI, WFE)	Deep Sleep (WFI, WFE)	EM4 Entry							
EM1	IRQ		Peripheral wake up done ¹	Peripheral wake up done ¹								
EM2	IRQ	Peripheral wake up req ¹										
ЕМ3	IRQ	Peripheral wake up req ¹										
EM4	Wake Up											

Note:

Peripherals such as the IADC and radio have the ability to temporarily wake up the part from either EM2 or EM3 to EM1 in order to transfer data. Once completed, the part is automatically placed back into the EM2 or EM3 mode.

The Core can always request to go to EM1 with the WFI or WFE command during EM0. The core will be prevented from entering EM2 or EM3 if the radio is transferring data or if flash is programming or erasing.

An overview of supported energy modes and available functionality is shown in the following table. For each energy mode, the system will typically default to its lowest power configuration, with non-essential clocks and peripherals disabled. Functionality may be then selectively enabled by software.

Table 12.2. Energy Modes

	EM0 Active/EM1 Sleep	EM2	EM3	EM4
Wake-up time to EM0 Active/EM1 Sleep	-	TBD ¹	TBD ¹	TBD ¹
Cortex-M33 Core Active	Yes, in EM0 only	-	-	-
Debug	Available	See Note ²	See Note ²	-
Digital logic and system RAM retained	Yes	Yes	Yes	-
Flash Memory Access	Available	-	-	-
LDMA (Linked DMA Controller)	Available	Available ³	Available ³	-
RAC (Radio Controller)	Available	Available ⁴	-	-
Fast Startup Oscillator (FSRCO)	Available	-	-	-

^{1.} Peripheral wake-up from EM2/3 to EM1 and then automatically back to EM2/3 when done.

	EM0 Active/EM1 Sleep	EM2	ЕМ3	EM4
High Frequency Oscillators (HFXO,HFRCODPLL) and Clocks (BUSCLK, HCLK, PCLK, RADIOCLK, EM01GRPACLK)	Available	-	-	-
EM2/3 High Frequency Oscillator (HFRCOEM23) and ADC Clock (IADCCLK)	Available	Available ⁵	Available ⁵	-
Low Frequency Oscillators (LFRCO, LFXO)	Available	Available	-	Available ⁶
Low Energy Clocks (EM23GRPACLK, WDOGCLK, RTCCCLK, PRORTCCLK)	Available	Available	Available ⁷	-
EM4 Clock (EM4GRPACLK)	Available	Available	Available ⁷	Available ⁶
ULFRCO (Ultra Low Frequency Oscillator)	On	On	On	Available ⁶
SE (Secure Element)	Available	-	-	-
CRYPTO (Crypto Accelerator)	Available	-	-	-
TRNG (True Random Number Generator)	Available	-	-	-
GPCRC (General Purpose Cyclic Redundancy Check)	Available	-	-	-
AES (Encryption / Description Engine)	Available	-	-	-
BURTC	Available	Available	Available ⁷	Available
RTCC	Available	Available	Available ⁷	-
RTCC Memory Retained	Yes	Yes	Yes	-
USART (USART/SPI)	Available	-	-	-
I ² C	Available	Available ⁸ 12	Available ⁸	-
TIMER (Timer/Counter)	Available	-	-	-
LETIMER (Low Energy Timer)	Available	Available ¹²	Available ^{7 12}	-
WDOG (Watchdog)	Available	Available ¹²	Available ⁷ 12	-
ACMP (Analog Comparator)	Available	Available ⁹¹²	Available ⁹¹²	-
IADC (Analog to Digital Converter)	Available	Available ³ 12	Available ³ ¹²	-
EMU Temperature Change	Available	Available	Available	-
Brown-Out Detect/Power-on Reset	Available	Available	Available	Available
Pin Reset	Available	Available	Available	Available
PRS (Peripheral Reflex System)	Available	Available ¹²	Available ¹²	-
GPIO Pin Interrupts	Available	Available	Available	Available ¹⁰
GPIO Pin State Retention	Yes	Yes	Yes	Available 11

		EM0 Active/EM1 Sleep	EM2	EM3	EM4
--	--	----------------------	-----	-----	-----

Note:

- 1. Approximate time. Refer to the data sheet
- 2. Leaving the debugger connected when in EM2 or EM3 will cause the system to enter a higher power EM2 mode in which the high frequency clocks are still enabled and certain core functionality is still powered-up in order to maintain debug-functionality.
- 3. The LDMA can be used with some low power peripherals (e.g., IADC) in EM2/3. Features required by the LDMA which are not supported in EM2/3 (e.g., HCLK), will be automatically enabled prior to the LDMA transfer and then automatically disabled afterwards.
- 4. The RAC can be woken via a PRS interrupt to EM1 to transfer data. Once complete, the system will return to EM2.
- 5. Default off, but kept active if used by the IADC.
- 6. Default off, but kept active if used by the BURTC
- 7. Must be using ULFRCO
- 8. I2C0 only. Not supported on all GPIO Ports. Functionality limited to receive address recognition
- 9. ACMP functionality in EM2/3 limited to edge interrupt
- 10. Pin wake-up in EM4 supported only on GPIO_EM4WUx pins. Consult data sheet for complete list of pins.
- 11. If enabled in EMU->EM4CTRL.EM4IORETMODE.
- 12. Module is in the Low Power Domain B (PD0B). The entire PD0B will be kept on in EM2/3 (resulting in higher current draw) if any module in PD0B is enabled on EM2/3 entry.

The different energy modes are summarized in the following sections.

12.3.1.1 EM0

EM0 provides all system features.

- · Cortex-M33 is executing code
- · Radio functionality is available
- · High and low frequency clock trees are active
- · All oscillators are available
- · All peripheral functionality is available

12.3.1.2 EM1

EM1 disables the core but leaves the remaining system fully available.

- · Cortex-M33 is in sleep mode. Clocks to the core are off
- · Radio functionality is available
- · High and low frequency clock trees are active
- All oscillators are available
- · All peripheral functionality is available

12.3.1.3 EM2

This is the first level into the low power energy modes. Most of the high frequency peripherals are disabled or have reduced functionality. Memory and registers retain their values.

- · Cortex-M33 is in sleep mode. Clocks to the core are off.
- · Radio inactive
- · High frequency clock tree is inactive
- · Low frequency clock tree is active
- · The following oscillators are available
 - LFRCO, LFXO, ULFRCO, HFRCOEM23 (on demand, if used by the IADC)
- The following low frequency peripherals are available
 - · RTCC, BURTC, WDOG, LETIMER
- · The following analog peripherals are available (with potential limitations on functionality)
 - IADC, ACMP
- · Wake-up to EM0 through
 - Peripheral interrupt, reset pin, power on reset, asynchronous pin interrupt, I2C address recognition, or ACMP edge interrupt
- · Wake-up to EM1 through
 - · RAC data transfer request
 - · Part returns to EM2 when transfers are complete
- · RAM and register values are preserved
 - · RAM blocks may be optionally powered down for lower power
- · GPIO pin state is retained
- · RTCC memory is retained

12.3.1.4 EM3

In this low energy mode, all low frequency oscillators (LFXO, LFRCO) and all low frequency clocks derived from them, are stopped, as well as all high frequency clocks. Most peripherals are disabled or have reduced functionality. Memory and registers retain their values.

- · Cortex-M33 is in sleep mode. Clocks to the core are off.
- · Radio inactive
- · High frequency clock tree is inactive
- · All low frequency clock trees derived from the low frequency oscillators (LFXO, LFRCO) are inactive
- · The following oscillators are available
 - ULFRCO, HFRCOEM23 (on demand, if used by the IADC)
- · The following low frequency peripherals are available if clocked by the ULFRCO
 - RTCC, BURTC, WDOG
- The following analog peripherals are available (with potential limitations on functionality)
 - IADC
- · Wake-up to EM0 through
 - · Peripheral interrupt, reset pin, power on reset, asynchronous pin interrupt, I2C address recognition, or ACMP edge interrupt
- · Wake-up to EM1 through
 - · RAC data transfer request
 - Part returns to EM3 when transfers are complete
- · RAM and register values are preserved
 - · RAM blocks may be optionally powered down for lower power
- · GPIO pin state is retained
- · RTCC memory is retained

12.3.1.5 EM4

EM4 is the lowest energy mode of the part. There is no retention except for GPIO PAD state and BURAM values. Wake-up from EM4 requires a reset to the system, returning it back to EM0

- · Cortex-M33 is off
- · Radio is off.
- · High frequency clock tree is off
- Low frequency clock tree may be active
- · No RAM or register values are retained, except for the BURAM.
- The following oscillators are on if used by the BURTC:
 - · LFRCO, LFXO, ULFRCO
- · The following low frequency peripherals are available
 - BURTC
- · Wake-up to EM0 through
 - BURTC interrupt, reset pin, power on reset, asynchronous pin interrupt (on GPIO EM4WUx pins only)
- GPIO pin state may be retained (depending on EMU->EM4CTRL.EM4IORETMODE configuration)

12.3.2 Entering Low Energy Modes

The following sections describe the requirements for entering the various energy modes.

12.3.2.1 Entry Into EM1

Energy mode EM1 is entered when the Cortex-M33 executes the Wait For Interrupt (WFI) or Wait For Event (WFE) instruction while the SLEEPDEEP bit the Cortex-M33 System Control Register is cleared. The MCU can re-enter sleep automatically out of an Interrupt Service Routine (ISR) if the SLEEPONEXIT bit in the Cortex-M33 System Control Register is set. Refer to ARM documentation on entering Sleep modes.

Alternatively, EM1 can be entered from either EM2 or EM3 due to certain peripheral wake-up requests, allowing transfers from the peripheral to system RAM. The system will return back to EM2 or EM3 once the peripheral has completed its transfers and processing.

12.3.2.2 Entry Into EM2 or EM3

Energy mode EM2 or EM3 may be entered when all of the following conditions are true:

- · Radio state machine is in OFF state
- Cortex-M33 (if present) is in DEEPSLEEP state
- · Flash Program/Erase Inactive
- · DMA done with all current requests
- A debugger is not currently connected.

Energy mode EM2 is entered from EM0 when the Cortex-M33 executes the Wait For Interrupt (WFI) or Wait For Event (WFE) instruction while the SLEEPDEEP bit in the Cortex-M33 System Control Register is set. The MCU can re-enter DeepSleep automatically out of an Interrupt Service Routine (ISR) if the SLEEPONEXIT bit in the Cortex-M33 System Control Register is set. Refer to ARM documentation on entering Sleep modes.

Alternately, EM2 or EM3 is entered from EM1 upon the completion of a Peripheral Wake-Up Request from the RAC if no EM0 wake-up happens in the meantime.

When entering EM2 or EM3, if any peripheral on an auxiliary low power domain (PD0B, PD0C, etc.) is enabled, that auxiliary low power domain will be powered, causing higher current draw. Otherwise, the auxiliary power domain will be powered down. See 12.3.4 Power Domains for more information.

12.3.2.3 Entry Into EM4

Energy mode EM4 is entered through register access.

Software must ensure no modules are active, such as the Radio, when entering EM4.

Software may enter EM4 from EM0 by writing the sequence 2,3,2,3,2,3,2 to EM4CTRL->EM4ENTRY bit field. If the EM4BLOCK bit in WDOGn_CTRL is set, the CPU will be prevented from entering EM4 by software request.

An active debugger connection will prevent entry into EM4.

12.3.3 Exiting a Low Energy Mode

A system in EM2 and EM3 can be woken up to EM0 through regular interrupt requests from active peripherals. Since state and RAM retention is available, the EFR32 Series 2 is fully restored and can continue to operate as before it went into the Low Energy Mode.

Wake-up from EM4 is performed through a reset. Wake-up from a specific module must be enabled in that module's EM4WUEN register

Enabled interrupts that can cause wake-up from EM2, EM3, and EM4 are shown in the following table. The wake-up triggers always return the device to EM0. Additionally, any reset source will return to EM0.

Table 12.3. Wake-Up Triggers from Low Energy Modes

Peripheral	Wake-Up Trigger	EM2	ЕМ3	EM4
LETIMER	Any enabled interrupt	Yes	-	-
LFXO	Ready Interrupt	Yes	-	-
LFRCO	Ready Interrupt	Yes	-	-
WDOG	Any enabled interrupt	Yes	Yes	-
I ² C0	Receive address recognition	Yes	Yes	-
ACMP	Any enabled edge interrupt	Yes	Yes	-
RTCC	Any enabled interrupt	Yes	Yes	-
BURTC	Timeout	Yes	Yes	Yes ¹
EMU Temperature Sensor	Measured temperature outside the defined limits	Yes	Yes	-
Pin Interrupts	Transition	Yes ²	Yes ²	Yes ^{1 3}
Reset Pin	Assertion	Yes	Yes	Yes
Power	Cycle Off/On	Yes	Yes	Yes

Note:

- 1. Corresponding bit in the module's EM4WUEN must be set.
- 2. Available on Port A, Port B, and all EM4WU pins.
- 3. Only available on EM4WU pins.

12.3.4 Power Domains

The EFR32xG21 implements several independent power domains which are powered down to minimize supply current when not in use. Power domains are managed automatically by the EMU.

The lowest-energy power domain is the "high-voltage" power domain (PDHV), which supports extremely low-energy infrastructure and peripherals. Circuits powered from PDHV are always on and available in all energy modes.

The next power domain is the low power domain (PD0), which is further divided to power subsets of peripherals. All PD0 power domains are shut down in EM4. Circuits powered from PD0 power domains may be available in EM0, EM1, EM2, and EM3.

Low power domain A (PD0A) is the base power domain for EM2 and EM3 and will always remain on in EM0-EM3. It powers the most commonly-used EM2 and EM3-capable peripherals and infrastructure required to operate in EM2 and EM3. Auxiliary PD0 power domains (PD0B, PD0C, etc.) power additional EM2 and EM3-capable peripherals on demand. If any peripherals on one of the auxiliary power domains is enabled, that power domain will be active in EM2 and EM3. Otherwise, the auxiliary PD0 power domains will be shut down to reduce current.

Note: The number of PD0 power domains varies depending on the device family. All devices support at least the base PD0 power domain (PD0A). Refer to the device data sheet for information on the assignment of peripherals to auxiliary PD0 power domains.

The active power domain (PD1) powers the rest of the device circuitry, including the CPU core and EM0 / EM1 peripherals. PD1 is always powered on in EM0 and EM1. PD1 is always shut down in EM2, EM3, and EM4.

12.3.5 Brown Out Detector (BOD)

Brown out detectors ensure that the minimum supply required for the chip to operate properly and safely is provided to the EFR32xG21. Once triggered, a BOD will generate a system reset.

Each BOD raw output is visible via the EMU_ANASTATUS register and can also be routed to a GPIO via PRS for observability (see EMU PRS section for more details). In addition the xxxxMASKONCFGCHG status bits (also in the EMU_ANASTATUS register) indicate when a particular BOD is being masked by HW following a configuration change (enable/disable or trim change).

All BODs detect when the supply falls below a programmed threshold except DECOVMBOD (Over Voltage Monitoring), which detects when the supply goes above a predefined threshold.

All BOD can be individually enabled and masked. EMU TESTCTRL BODMASK can be used to mask all BOD's at once.

Table 12.4. EFR32xG21 BODs

BOD	Control Register	Supported Energy Modes	Function
DVDDBOD	EMU_DVDDBOD	EM0/1	Monitors the DVDD supply in EM0 and EM1. Hardware enables this BOD automatically in EM0/EM1 and disables it in EM2/EM3/EM4
DVDDLEBOD	EMU_DVDDLEBOD	EM2/3/4	Low Energy BOD monitors the DVDD supply in EM2/EM3/ EM4. DVDDLEBOD is automatically masked by hardware for ~100us after it is enabled to allow it to settle
DECBOD	EMU_DECBOD	EM0/1/2/3	Monitors the DECOUPLE supply. DECBOD is automatically masked by hardware for ~20us after it is enabled to allow it to settle.
DECOVMBOD	EMU_DECBOD	EM0/1/2/3	Monitors the DECOUPLE supply Over Voltage by detecting DECOUPLE going over a specified threshold. DECOVMBOD is automatically masked by hardware for ~20us after it is enabled to allow it to settle.
AVDDBOD	EMU_BOD3SENSE	EM0/1/2/3/4	Monitors the AVDD supply. Automatically masked by hardware for ~100us after it is enabled to allow it to settle.
IOVDDBOD	EMU_BOD3SENSE	EM0/1/2/3/4	Monitors the IOVDD supply. Automatically masked by hardware for ~100us after it is enabled to allow it to settle. (Note that some devices may have multiple IOVDD supplies.)

12.3.6 Reset Management Unit

EMU RMU (Reset Management Unit) ensures correct reset operation. It is responsible for connecting the different reset sources to the reset lines of the EFR32xG21. After reset, the M33 loads the stack pointer and program entry point from memory and start execution.

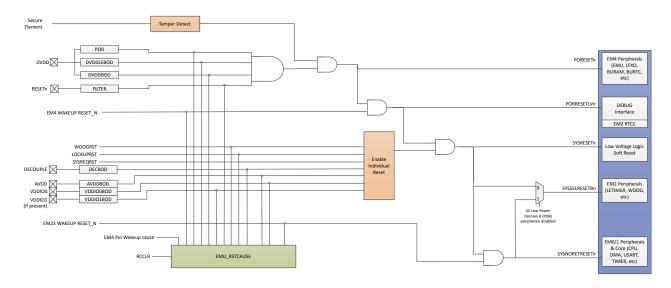


Figure 12.2. Reset Tree

There are two types of reset:

- HARD resets. Resets the entire chip. After a hard reset, the EFR32xG21 goes through its power up sequence. For reset timing specifications, please refer to the device datasheet.
- SOFT resets. Resets only some of the digital low voltage logic. Resets the MCU subsystems and peripherals but doesn't affect digital HV logic (e.g., Power control, BURTC). For reset timing specifications, please refer to the device datasheet.

EFR32xG21 Reset sources

- · Power-on Reset (POR)
 - The POR ensures that EFR32xG21 does not start up before the supply voltage DVDD has reached the threshold voltage VPORthr (see Device Datasheet Electrical Characteristics for details). Before the threshold voltage is reached, EFR32xG21 is kept in reset state.
- · RESET pin Reset
 - The RESETn pin includes an on-chip pull-up resistor, and can therefore be left unconnected if no external reset source is needed. Also connected to the RESETn line is a filter which prevents glitches from resetting the EFR32xG21.
- · EM4 wakeup
 - · System reset following EM4 exit.
- · Watchdog reset
 - The Watchdog circuit is a timer which (when enabled) must be cleared by software regularly. If software does not clear it, a
 Watchdog reset is activated. This functionality provides recovery from a software stalemate. Refer to the Watchdog section for
 specifications and description.
- · Core lockup condition
 - A MCU lockup is the result of the core being locked up because of an unrecoverable exception following the activation of the
 processor's built-in system state protection hardware.
- · Software triggered reset
 - Software may initiate a reset (e.g. if it finds itself in a non-recoverable state). By asserting the SYSRESETREQ in the Application Interrupt and Reset Control Register, a reset is issued.
- Brown-Out Detection (BOD)
 - EFR32xG21 has multiple built in Brown-out detection (BOD) circuits, which monitor supply voltage level during operation. BOD circuits compare supply voltage to a programmed threshold level and issue a reset request when triggered.
- · Secure Element Tamper detection
 - Secure Element may issue a system reset request upon tamper detection.

Whether a reset source trigger event lead to a system reset can be controlled via EMU_RMUCTRL register. EMU_RMURSTCAUSE register

User can determine the cause of the last reset by querying the EMU_RMURSTCAUSE register. Once read, EMU_RMURSTCAUSE should be cleared via EMU_CMD_RCCLR.

Table 12.5. Reset Sources Summary

RSTCAU SE Bit	Name	Туре	Can be Disabled?	Description
0	POR	Hard	No	Power On Reset.
1	PIN	Hard	No	Pin Reset.
2	EM4	Soft	No	EM4 Wakeup
3	WDOG0	Soft	Yes	Watchdog 0
4	WDOG1	Soft	Yes	Watchdog 1
5	LOCKUP	Soft	Yes	M33 Lockup
6	SYSREQ	Soft	Yes	M33 Core System Reset
7	DVDDBOD	Hard	No	DVDD BOD
8	DVDDLEBOD	Hard	No	DVDD LEBOD
9	DECBOD	Hard	Yes	DECOUPLE BOD
10	AVDDBOD	Soft	Yes	AVDD BOD
11	VDDIO0BOD	Soft	Yes	VDDIO 0 BOD
12	VDDIO1BOD	Soft	Yes	VDDIO 1 BOD (if VDDIO1 pin present)
13	TAMPER	Hard	No	Tamper Detection

RSTCAU SE Bit	Name	Туре	Can be Disabled?	Description					
14	SESYSREQ	Soft	Yes	Secure Element Core System Reset					
15	SELOCKUP	Soft	Yes	Secure Element Lockup					

12.3.7 Temperature Sensor

EMU provides a low energy periodic temperature measurement. A temperature measurement is taken every 250 ms, with the 9-bit result stored in TEMP bit-field in EMU_TEMP register. The temperature value is expressed in degree Kelvin.

EMU_TEMPLSB represents the measured temperature fractional part (in ¼ degree Kelvin).

Note: The EMU temperature sensor is always running periodically except in EM4 (shutoff) mode.

The EMU provides the following features around temperature changes:

- Interrupt when temperature is updated (EMU_IF_TEMP)
- Interrupt from LOW level trip (generate interrupt EMU_IF_TEMPLOWIF when measured temperature is below programmed threshold EMU_TEMPLIMITS_TEMPLOW)
- Interrupt from HIGH level trip (generate interrupt EMU_IF_TEMPHIGHIF when measured temperature is above programmed threshold EMU_TEMPLIMITS_TEMPHI)

High and Low thresholds are also specified as 9-bit degree Kelvin values.

Measured temperature can be converted to degrees Celsius by subtracting 273.15 (T_{Celsius} = T_{Kelvin} - 273.15).

12.3.8 Register Resets

Each EMU register requires retaining state in various energy modes and power transitions and will consequently need to be reset with a different condition. The following reset conditions will apply to the appropriate set of registers as marked in the Register Description table.

- · Reset with POR or Hard Pin Reset
- Reset with POR, Hard Pin Reset, or any BOD reset
- · Reset with SYSEXTENDEDRESETn
- · Reset with FULLRESETn (default)

If a register field is not marked with a specific reset condition then it is assumed to be reset with FULLRESETn.

12.3.9 Register Locks

EMU EMU_LOCK (for user accessible registers) can be used to control access to the EMU_RMUCTRL, EMU_CTRL, and EMU_DEC-BOD registers.

Additionally SE can also lock some of the EMU registers.

12.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x010	EMU_DECBOD	RW	DECOUPLE LVBOD Control register
0x020	EMU_BOD3SENSE	RW	BOD3SENSE Control register
0x060	EMU_LOCK	w	EMU Configuration lock register
0x064	EMU_IF	RWH INTFLAG	Interrupt Flags
0x068	EMU_IEN	RW	Interrupt Enables
0x06C	EMU_EM4CTRL	RW	EM4 Control
0x070	EMU_CMD	W	EMU Command register
0x074	EMU_CTRL	RW	EMU Control register
0x078	EMU_TEMPLIMITS	RW SYNC	EMU Temperature thresholds
0x084	EMU_STATUS	RH	EMU Status register
0x088	EMU_TEMP	RH SYNC	Temperature
0x090	EMU_RSTCTRL	RW	Reset Management Control register
0x094	EMU_RSTCAUSE	RH	Reset cause
0x0A0	EMU_DGIF	RWH INTFLAG	Interrupt Flags Debug
0x0A4	EMU_DGIEN	RW	Interrupt Enables Debug
0x0A8	EMU_SEIF	RWH INTFLAG	Interrupt Flags Secure Element
0x0AC	EMU_SEIEN	RW	Interrupt Enables Secure Elements
0x1010	EMU_DECBOD_SET	RW	DECOUPLE LVBOD Control register
0x1020	EMU_BOD3SENSE_SET	RW	BOD3SENSE Control register
0x1060	EMU_LOCK_SET	W	EMU Configuration lock register
0x1064	EMU_IF_SET	RWH INTFLAG	Interrupt Flags
0x1068	EMU_IEN_SET	RW	Interrupt Enables
0x106C	EMU_EM4CTRL_SET	RW	EM4 Control
0x1070	EMU_CMD_SET	W	EMU Command register
0x1074	EMU_CTRL_SET	RW	EMU Control register
0x1078	EMU_TEMPLIMITS_SET	RW SYNC	EMU Temperature thresholds
0x1084	EMU_STATUS_SET	RH	EMU Status register
0x1088	EMU_TEMP_SET	RH SYNC	Temperature
0x1090	EMU_RSTCTRL_SET	RW	Reset Management Control register
0x1094	EMU_RSTCAUSE_SET	RH	Reset cause
0x10A0	EMU_DGIF_SET	RWH INTFLAG	Interrupt Flags Debug
0x10A4	EMU_DGIEN_SET	RW	Interrupt Enables Debug
0x10A8	EMU_SEIF_SET	RWH INTFLAG	Interrupt Flags Secure Element
0x10AC	EMU_SEIEN_SET	RW	Interrupt Enables Secure Elements
0x2010	EMU_DECBOD_CLR	RW	DECOUPLE LVBOD Control register

Offset	Name	Туре	Description
0x2020	EMU_BOD3SENSE_CLR	RW	BOD3SENSE Control register
0x2060	EMU_LOCK_CLR	w	EMU Configuration lock register
0x2064	EMU_IF_CLR	RWH INTFLAG	Interrupt Flags
0x2068	EMU_IEN_CLR	RW	Interrupt Enables
0x206C	EMU_EM4CTRL_CLR	RW	EM4 Control
0x2070	EMU_CMD_CLR	W	EMU Command register
0x2074	EMU_CTRL_CLR	RW	EMU Control register
0x2078	EMU_TEMPLIMITS_CLR	RW SYNC	EMU Temperature thresholds
0x2084	EMU_STATUS_CLR	RH	EMU Status register
0x2088	EMU_TEMP_CLR	RH SYNC	Temperature
0x2090	EMU_RSTCTRL_CLR	RW	Reset Management Control register
0x2094	EMU_RSTCAUSE_CLR	RH	Reset cause
0x20A0	EMU_DGIF_CLR	RWH INTFLAG	Interrupt Flags Debug
0x20A4	EMU_DGIEN_CLR	RW	Interrupt Enables Debug
0x20A8	EMU_SEIF_CLR	RWH INTFLAG	Interrupt Flags Secure Element
0x20AC	EMU_SEIEN_CLR	RW	Interrupt Enables Secure Elements
0x3010	EMU_DECBOD_TGL	RW	DECOUPLE LVBOD Control register
0x3020	EMU_BOD3SENSE_TGL	RW	BOD3SENSE Control register
0x3060	EMU_LOCK_TGL	W	EMU Configuration lock register
0x3064	EMU_IF_TGL	RWH INTFLAG	Interrupt Flags
0x3068	EMU_IEN_TGL	RW	Interrupt Enables
0x306C	EMU_EM4CTRL_TGL	RW	EM4 Control
0x3070	EMU_CMD_TGL	W	EMU Command register
0x3074	EMU_CTRL_TGL	RW	EMU Control register
0x3078	EMU_TEMPLIMITS_TGL	RW SYNC	EMU Temperature thresholds
0x3084	EMU_STATUS_TGL	RH	EMU Status register
0x3088	EMU_TEMP_TGL	RH SYNC	Temperature
0x3090	EMU_RSTCTRL_TGL	RW	Reset Management Control register
0x3094	EMU_RSTCAUSE_TGL	RH	Reset cause
0x30A0	EMU_DGIF_TGL	RWH INTFLAG	Interrupt Flags Debug
0x30A4	EMU_DGIEN_TGL	RW	Interrupt Enables Debug
0x30A8	EMU_SEIF_TGL	RWH INTFLAG	Interrupt Flags Secure Element
0x30AC	EMU_SEIEN_TGL	RW	Interrupt Enables Secure Elements

12.5 Register Description

12.5.1 EMU_DECBOD - DECOUPLE LVBOD Control register

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	စ	∞	7	9	2	4	က	2	_	0
Reset		•					•								•			•	•				•	•		•	0x1	0x0			0x1	0x0
Access																											R ≪	R W			₩ M	RW
Name																											DECOVMBODMASK	DECOVMBODEN			DECBODMASK	DECBODEN

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
5	DECOVMBODMASK	0x1	RW	Over Voltage Monitor Mask
	DECOUPLE BOD Over	Voltage Monit	or Mask	
4	DECOVMBODEN	0x0	RW	Over Voltage Monitor enable
	DECOUPLE BOD Over	Voltage Monit	or enable. Enab	oles LVBOD below vref high. BOD is masked for 20us after enable
3:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1	DECBODMASK	0x1	RW	DECBOD Mask
	DECOUPLE BOD Mask			
0	DECBODEN	0x0	RW	DECBOD enable
	DECOUPLE BOD enabe	el. Enables LV	BOD above vre	f low. BOD is masked for 20us after enable

12.5.2 EMU_BOD3SENSE - BOD3SENSE Control register

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset							'		'		'			'	'			'	•				<u>'</u>							0x0	0x0	000
Access																														Z.	RW	A W
Name																														IOVDD1BODEN	IOVDD0BODEN	AVDDBODEN

Bit	Name	Reset	Access	Description						
31:3	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-						
2	IOVDD1BODEN	0x0	RW	VDDIO1 BOD enable						
	IOVDD1 BOD enable. B	OD output is a	automatically ma	asked for 100us by HW after enable is set						
1	IOVDD0BODEN	0x0	RW	VDDIO0 BOD enable						
	IOVDD0 BOD enable. B	OD output is a	automatically ma	asked for 100us by HW after enable is set						
0	AVDDBODEN	0x0 RW AVDD BOD enable								
	BOD output is automatic	ally masked for	or 100us by HW	after enable is set						

12.5.3 EMU_LOCK - EMU Configuration lock register

Offset															Bi	t Po	siti	on														
0x060	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	5	4	က	7	_	0
Reset		'	•		•		•	•		1		1		'		•			•					0 L	UXADES	•					•	
Access																								}	>							
Name																						\L\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	LOCKNEY									

Bit	Name	Reset	Access	Description					
31:16	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-					
15:0	LOCKKEY	0xADE8	W	Lock Key					
	Write any other value	e than the unlock	code to lock						
	Value	Mode		Description					
	44520	UNLOCK		Unlock EMU register					

12.5.4 EMU_IF - Interrupt Flags

Offset															Bi	t Po	siti	on														
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	_	0
Reset	0x0	000	0x0					0x0		•				•	000	0x0		•						•		•	•				•	
Access	RW	Z.	RW W					RW							₩ M	ZW W																
Name	TEMPHIGH	TEMPLOW	TEMP					EM23WAKEUP							IOVDD0BOD	AVDDBOD																

		_		
Bit	Name	Reset	Access	Description
31	TEMPHIGH	0x0	RW	Temperature high Interrupt flag
	Measured temperature a	bove thresho	ld	
30	TEMPLOW	0x0	RW	Temperature low Interrupt flag
	Measured temperature b	elow threshol	d	
29	TEMP	0x0	RW	Temperature Interrupt flag
	Temperature Update			
28:25	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
24	EM23WAKEUP	0x0	RW	EM23 Wake up Interrupt flag
	EM23 wake up			
23:18	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
17	IOVDD0BOD	0x0	RW	VDDIO0 BOD Interrupt flag
	IOVDD0 BOD triggered			
16	AVDDBOD	0x0	RW	AVDD BOD Interrupt flag
	AVDD BOD triggered			
15:0	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-

12.5.5 EMU_IEN - Interrupt Enables

Offset															Bi	t Po	siti	on														
0x068	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	_	0
Reset	0x0	000	000					0x0			•			•	000	0x0		•	•					•		•	•	•				
Access	R	₩ M	W.					RW							₩ W	W.																
Name	TEMPHIGH	TEMPLOW	TEMP					EM23WAKEUP							IOVDD0BOD	AVDDBOD																

Bit	Name	Reset	Access	Description
31	TEMPHIGH	0x0	RW	Temperature high Interrupt enable
	Measured temperature a	above thresho	ld Interrupt enal	ple
30	TEMPLOW	0x0	RW	Temperature low Interrupt enable
	Measured temperature b	elow thresho	ld Interrupt enat	ole
29	TEMP	0x0	RW	Temperature Interrupt enable
	Temperature Update Int	errupt enable		
28:25	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
24	EM23WAKEUP	0x0	RW	EM23 Wake up Interrupt enable
	EM23 wake up Interrupt	enable		
23:18	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
17	IOVDD0BOD	0x0	RW	VDDIO0 BOD Interrupt enable
	IOVDD0 BOD Interrupt 6	enable		
16	AVDDBOD	0x0	RW	AVDD BOD Interrupt enable
	AVDD BOD Interrupt en	able		
15:0	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-

12.5.6 EMU_EM4CTRL - EM4 Control

Offset															Bi	t Po	siti	on														
0x06C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset			'	•	'		•						'	'		<u>'</u>									•		5	2			000	
Access																											٥	2			ΑW	
Name																											EN41ODE TANOOLE	FINE			EM4ENTRY	_

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure ventions	e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
5:4	EM4IORETMODE	0x0	RW	EM4 IO retention mode
	Determine when IO re	tention will be	applied and ren	noved
	Value	Mode		Description
	0	DISABLE		No Retention: Pads enter reset state when entering EM4
	1	EM4EXIT	•	Retention through EM4: Pads enter reset state when exiting EM4
	2	SWUNLA	тсн	Retention through EM4 and Wakeup: software sets EM4UN-LATCH in EMU_CMD register to remove retention
3:2	Reserved	To ensure ventions	e compatibility w	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	EM4ENTRY	0x0	RW	EM4 entry request
	This field is used to er Energy Mode 4	iter the Energ	y Mode 4 seque	nce. Writing the sequence 2,3,2,3,2,3,2,3,2 will enter the part into

12.5.7 EMU_CMD - EMU Command register

Offset															Bi	t Po	siti	on														
0x070	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	9	5	4	က	2	1	0
Reset						'	'				'		'	'	0×0			'	•	•	1	'		'		'	•		'		0x0	
Access															>																W	
Name															RSTCAUSECLR																EM4UNLATCH	

Bit	Name	Reset	Access	Description
31:18	Reserved	To ensure ventions	e compatibility w	with future devices, always write bits to 0. More information in 1.2 Con-
17	RSTCAUSECLR	0x0	W	Reset Cause Clear
	Set this bit to clear th	e RMURSTCA	USE register	
16:2	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
1	EM4UNLATCH	0x0	W	EM4 unlatch
	Unlatch EM4 GPIO re	etention. Only n	eeded after EM	l4 wakeup
0	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-

12.5.8 EMU_CTRL - EMU Control register

Offset	Bit Position	
0x074	1 1 <th>0</th>	0
Reset	000	000
Access	NA N	₩ W
Name	FLASHPWRUPONDEMAND	EM2DBGEN

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
16	FLASHPWRUPONDE- MAND	0x0	RW	Enable flash on demand wakeup
	When set, during wake ι issue powerup command	•	•	wn mode until either incoming Flash data fetch or when software ster
15:1	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
0	EM2DBGEN	0x0	RW	Enable debugging in EM2
	Force PD0B to stay on o	n EM2 entry.	This allows del	bugger to remain connected in EM2.

12.5.9 EMU_TEMPLIMITS - EMU Temperature thresholds

Offset															Ві	t Po	siti	on														
0x078	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	t რ	2	_	0
Reset			•									0x1FF						•										2	OX O	•	•	
Access												₽																<u> </u>	2			
Name												TEMPHIGH																TEMPI OW				

Bit	Name	Reset	Access	Description
31:25	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
24:16	TEMPHIGH	0x1FF	RW	Temp High limit
	Temp threshold in equal to or higher t	0	ne TEMPHIGI	H interrupt flag is set when a periodic temperature measurement is
15:9	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
8:0	TEMPLOW	0x0	RW	Temp Low limit

12.5.10 EMU_STATUS - EMU Status register

Offset															Bi	t Po	siti	on														
0x084	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset							'						'					0×0		0x0		000		'					'	0×0	0×0	0x0
Access																		22		2		22								22	22	<u>~</u>
Name																		EM2ENTERED		EM4IORET		RACACTIVE								TEMPACTIVE	FIRSTTEMPDONE	LOCK

Bit	Name	Reset	Access	Description
31:15	Reserved	To ensure ventions	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
14	EM2ENTERED	0x0	R	EM2 entered
	Confirm chip entered E	M2 state. EM	2 Entry request of	can be delayed or denied by peripherals such as Secure Element.
13	Reserved	To ensure ventions	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
12	EM4IORET	0x0	R	EM4 IO retention status
	The status of IO retenti ting EM4UNLATCH in I		t upon EM4 entry	based on EM4IORETMODE in EMU_EM4CTRL. Cleared by set-
11	Reserved	To ensure ventions	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
10	RACACTIVE	0x0	R	RAC active
	This bit indicates the st	atus of the RA	AC state machine	e. System can not enter EM2 or lower if set.
9:3	Reserved	To ensure ventions	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
2	TEMPACTIVE	0x0	R	Temp active
	Temperature Measurer	ment active		
1	FIRSTTEMPDONE	0x0	R	First Temp done
	First Temperatue mesa	urement com	pleted	
0	LOCK	0x0	R	Lock status
	Indicates the current st	atus of EMU I	Lock	
	Value	Mode		Description
	0	UNLOCKE	ΞD	All EMU lockable registers are unlocked.
	1	LOCKED		All EMU lockable registers are locked.

12.5.11 EMU_TEMP - Temperature

Offset															Bi	t Po	siti	on														
0x088	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																										0X0					Š	OXO
Access																										~					٥	צ
Name																										TEMP						EMPLSB

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
10:2	TEMP	0x0	R	Temperature measured
	Temperature in degree l	Kelvin. Value	of last periodic t	emperature measurement.
1:0	TEMPLSB	0x0	R	Temperature measured decimal part
	Temperature fractional p	art.		

12.5.12 EMU_RSTCTRL - Reset Management Control register

Offset															Bi	t Po	siti	on														
0x090	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•	•													0X0)X				0X			0x0	0x0		•	000	0x1	0x1	0x1
Access																	₩.	₩ M				₩			Z.	₩ M			₽	RW	Z.	RW
Name																	SELOCKUPRMODE	SESYSRMODE				DECBODRMODE			IOVDD0B0DRM0DE	AVDDBODRMODE			LOCKUPRMODE	SYSRMODE	WDOG1RMODE	WDOGORMODE

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure ventions	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
15	SELOCKUPRMODE	0x0	RW	Enable SE Lockup reset
	SE LOCKUP Reset Mod	de		
	Value	Mode		Description
	0	DISABLED		Reset request is blocked
	1	ENABLED		The entire device is reset except some EMU registers
14	SESYSRMODE	0x1	RW	Enable SE System reset
	SE Sysreset Reset Mod	е		
	Value	Mode		Description
	0	DISABLED)	Reset request is blocked
	1	ENABLED		The entire device is reset except some EMU registers
13:11	Reserved	To ensure ventions	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
10	DECBODRMODE	0x1	RW	Enable DECBOD reset
	LVBOD Reset Mode. DI	ECOUPLE mo	onitoring. BOD m	nust be trimmed before it is used as a reset source.
	Value	Mode		Description
	0	DISABLED	ı	Reset request is blocked
	1	ENABLED		The entire device is reset
9:8	Reserved	To ensure ventions	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
7	IOVDD0B0DRM0DE	0x0	RW	Enable VDDIO0 BOD reset
	LEBOD2 Reset Mode. In	OVDD0 monit	toring. BOD mus	st be trimmed before it is used as a reset source.
	Value	Mode		Description
	0	DISABLED		Reset request is blocked

Bit	Name	Reset	Access	Description
	1	ENABLE	D	The entire device is reset except some EMU registers
6	AVDDBODRMODE	0x0	RW	Enable AVDD BOD reset
	LEBOD1 Reset Mode.	AVDD monit	oring. BOD mus	t be trimmed before it is used as a reset source.
	Value	Mode		Description
	0	DISABLE	ED .	Reset Request is block
	1	ENABLE	D	The entire device is reset except some EMU registers
5:4	Reserved	To ensur ventions	e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con
3	LOCKUPRMODE	0x0	RW	Enable M33 Lockup reset
	Core LOCKUP Reset I	Mode		
	Value	Mode		Description
	0	DISABLE	ED	Reset Request is Block
	1	ENABLE	D	The entire device is reset except some EMU registers
2	SYSRMODE	0x1	RW	Enable M33 System reset
	Core Sysreset Reset N	/lode		
	Value	Mode		Description
	0	DISABLE	ED .	Reset request is blocked
	1	ENABLE	D	Device is reset except some EMU registers
1	WDOG1RMODE	0x1	RW	Enable WDOG1 reset
	WDOG1 Reset Mode			
	Value	Mode		Description
	0	DISABLE	ED .	Reset request is blocked
	1	ENABLE	D	The entire device is reset except some EMU registers
0	WDOG0RMODE	0x1	RW	Enable WDOG0 reset
	WDOG0 Reset Mode			
	Value	Mode		Description
	0	DISABLE	ED .	Reset request is blocked
	1	ENABLE	D	The entire device is reset except some EMU registers

12.5.13 EMU_RSTCAUSE - Reset cause

Offset															Bi	t Po	siti	on														
0x094	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset		'	1		'								'	'		•	000	000	0x0		0x0	000	0×0	000	0X0	000	000	000	0X0	000	0X0	0x0
Access																	22	22	22		22	22	22	22	22	22	22	22	22	22	22	~
Name																	SELOCKUP	SESYSREQ	SETAMPER		IOVDD0BOD	AVDDBOD	DECBOD	DVDDLEBOD	DVDDBOD	SYSREQ	LOCKUP	WDOG1	WDOG0	EM4	PIN	POR

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
15	SELOCKUP	0x0	R	SE Lockup Reset
	Last reset was a SE I	ockup reset		
14	SESYSREQ	0x0	R	SE System Reset
	Last reset was a SE s	system reset		
13	SETAMPER	0x0	R	SE Tamper event Reset
	Last reset was a SE	Tamper event re	eset	
12	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
11	IOVDD0BOD	0x0	R	LEBOD2 Reset
	Brown Out Detector r	nonitoring IOVE	DD0	
10	AVDDBOD	0x0	R	LEBOD1 Reset
	Brown Out Detector r	nonitoring AVD	D	
9	DECBOD	0x0	R	LVBOD Reset
	Brown Out Detector r	nonitoring DEC	OUPLE	
8	DVDDLEBOD	0x0	R	LEBOD Reset
	Brown Out Detector r	nonitoring DVD	D in EM2/3	
7	DVDDBOD	0x0	R	HVBOD Reset
	Brown Out Detector r	nonitoring DVD	D in EM0/1	
6	SYSREQ	0x0	R	M33 Core Sys Reset
	Last Reset was as M	33 Core Systen	n reset	
5	LOCKUP	0x0	R	M33 Core Lockup Reset
	Last Reset was as M	33 Core Lockup	reset	
4	WDOG1	0x0	R	Watchdog 1 Reset
	Last reset was a Wat	chdog 1 reset		
3	WDOG0	0x0	R	Watchdog 0 Reset
	Last reset was a Wat	chdog 0 reset		

Bit	Name	Reset	Access	Description
2	EM4	0x0	R	EM4 Wakeup Reset
	Last reset was a E	M4 Wakeup		
1	PIN	0x0	R	Pin Reset
	Last reset was a F	in reset		
0	POR	0x0	R	Power On Reset
	Last reset was a F	ower On Reset		

12.5.14 EMU_DGIF - Interrupt Flags Debug

Offset															Bi	t Po	siti	on														
0x0A0	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset	0x0	0x0	0×0		•		•	0×0			•		•	•	'	•		•	'	•		•	•	'	'	•	'	•				
Access	₩	₩ M	S N					Z.																								
Name	TEMPHIGH	TEMPLOW	TEMP					EM23WAKEUP																								

Bit	Name	Reset	Access	Description
31	TEMPHIGH	0x0	RW	Temperature high Interrupt flag
	Measured temperature a	bove thresho	ld	
30	TEMPLOW	0x0	RW	Temperature low Interrupt flag
	Measured temperature b	elow threshol	d	
29	TEMP	0x0	RW	Temperature Interrupt flag
	Temperature Update			
28:25	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
24	EM23WAKEUP	0x0	RW	EM23 Wake up Interrupt flag
	EM23 wake up			
23:0	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-

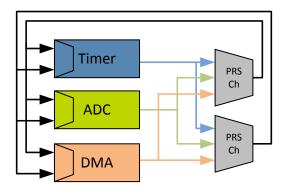
12.5.15 EMU_DGIEN - Interrupt Enables Debug

Offset		Bit Position																														
0x0A4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	-	0
Reset	0x0	000	000		•	•	•	0x0				•					•	•							•		•		•			
Access	₽	₩ M	₽					RW																								
Name	TEMPHIGH	TEMPLOW	TEMP					EM23WAKEUP																								

Bit	Name	Reset	Access	Description
31	TEMPHIGH	0x0	RW	Temperature high Interrupt enable
	Measured temperature a	above thresho	ld	
30	TEMPLOW	0x0	RW	Temperature low Interrupt enable
	Measured temperature t	elow thresho	ld	
29	TEMP	0x0	RW	Temperature Interrupt enable
	Temperature Update			
28:25	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
24	EM23WAKEUP	0x0	RW	EM23 Wake up Interrupt enable
	EM23 wake up			
23:0	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-

12.5.16 EMU_SEIF - Interrupt Flags Secure Element

Offset		Bit Position																														
0x0A8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset	0x0	000	0x0		•		•					•				•		•				•		•			•		•			
Access	₽	₩ M	ZW W																													
Name	TEMPHIGH	TEMPLOW	TEMP																													


Bit	Name	Reset	Access	Description								
31	TEMPHIGH	0x0	RW	Temperature low Interrupt flag								
	Measured temperature	above thresho										
30	TEMPLOW	0x0	RW	Temperature Interrupt flag								
	Measured temperature below threshold											
29	TEMP	0x0	RW	Temperature Interrupt flag								
	Temperature Update											
28:0	Reserved	To ensure ventions	compatibility w	th future devices, always write bits to 0. More information in 1.2 Con-								

12.5.17 EMU_SEIEN - Interrupt Enables Secure Elements

Offset		Bit Position																													
0x0AC	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	3	7	1
Reset	0X0	000	0X0																												
Access	X ≪	₩ N	₩ M																												
Name	TEMPHIGH	TEMPLOW	TEMP																												

Bit	Name	Reset	Access	Description								
31	TEMPHIGH	0x0	RW	Temperature high Interrupt enable								
	Measured temperature	above thresho	ld									
30	TEMPLOW	0x0	RW	Temperature low Interrupt enable								
	Measured temperature below threshold											
29	TEMP	0x0	RW	Temperature Interrupt enable								
	Temperature Update											
28:0	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions										

Quick Facts

What?

The PRS (Peripheral Reflex System) allows configurable, fast, and autonomous communication between peripherals.

Why?

Events and signals from one peripheral can be used as input signals to trigger actions in other peripherals. PRS reduces latency and ensures predictable timing by reducing software overhead and thus current consumption.

How?

Without CPU intervention the peripherals can send reflex signals to each other in single- or chained steps. The peripherals can be set up to perform actions based on the incoming reflex signals. This results in improved system performance and reduced energy consumption.

13.1 Introduction

The Peripheral Reflex System is a signal routing network allowing direct communication between different peripheral modules without involving the CPU. Peripheral modules which send out reflex signals to the PRS are called producers, and modules accepting reflex signals are called consumers. The PRS routes the reflex signals from producer to consumer peripherals, which perform actions depending on the reflex signals received.

13.2 Features

12 configurable asynchronous channels

- · Each channel can be connected to any producer
- · Consumers can be configured to listen to any asynchronous channel
- · Can generate events to the CPU and the DMA
- Software controlled channel output using the SWPULSE and SWLEVEL registers
- Configurable logic to implement combinational functions between channels; multiple channels may be cascaded to produce more complex functions

4 configurable synchronous channels

· Special set of channels for high speed signalling between IADC and TIMER blocks

13.3 Functional Description

The PRS contains 12 asynchronous and 4 synchronous reflex channels. An overview of an asynchronous PRS reflex channel is shown in Figure 13.1 PRS Asynchronous Channel Overview on page 288. Synchronous channels are similar but do not include the configurable logic block or SWLEVEL / SWPULSE features. Asynchronous channels can be connected to any signal offered by the producers while the synchronous channels are restricted to special signals from the TIMER and IADC modules.

Similarly on the consumer side, all the peripherals can listen to asynchronous channels while only the TIMER and IADC modules can listen to synchronous channels. The consumers of a channel (synchronous or asynchronous) can choose which PRS channel to listen to and perform actions based on the reflex signals routed through that channel. Synchronous channels are only available in EM0 and EM1 while asynchronous channels are available in EM0, EM1, EM2 and EM3.

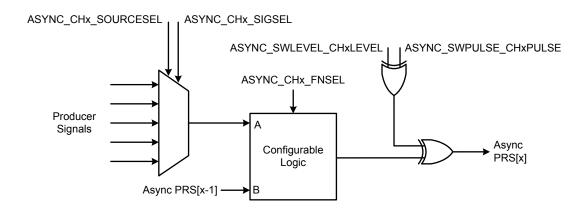


Figure 13.1. PRS Asynchronous Channel Overview

13.3.1 Asynchronous Channel Functions

Different functions can be applied to a reflex signal within the PRS. The asynchronous PRS channels can be manually triggered by writing to PRS_ASYNC_SWPULSE or PRS_ASYNC_SWLEVEL. SWLEVEL[n] is a programmable level for each asynchronous channel and holds the value it is programmed to. Setting SWPULSE[n] will cause the asynchronous channel to output a high pulse that is one EM01GRPACLK clock cycle wide. The SWLEVEL[n] and SWPULSE[n] signals are then XOR'ed with the output from the configurable logic block to form the output signal and is sent to the channel selection logic for every consumer signal. For example, when SWLEVEL[n] is set, if configurable logic produces a signal of 1, this will cause a channel output of 0.

13.3.2 Configurable Logic

The configurable logic feature enables a PRS channel to perform logic operations on the signal coming from the selected producer. Every asynchronous channel has a configurable logic block that can be programmed using the FNSEL field in the asynchronous channel control register. The configurable logic block for each channel has two inputs. Input A is the signal from the selected producer determined by SOURCESEL and SIGSEL of PRS_ASYNCHn_CTRL. Input B is the output of the previous asynchronous PRS channel (channel n-1). Note that the "previous" channel for the first asynchronous channel is the highest numbered asynchronous channel on the device (i.e. on a device with 12 asynchronous PRS channels, the previous channel for PRS channel 0 is PRS channel 11).

Table 13.1. Configurable Logic Look up Table

А	В	FNSEL
0	0	FNSEL[0]
0	1	FNSEL[1]
1	0	FNSEL[2]
1	1	FNSEL[3]

The configurable logic feature is implemented as a 2 input look up table, with each bit of FNSEL representing the outcome for a specific input combination (see Table 13.1 Configurable Logic Look up Table on page 289). For example, if input A is 0 and input B is 1, then the PRS output will assume the value of bit 1 of FNSEL (FNSEL[1]).

To calculate the FNSEL field for an "A NAND B" function, the truth table can be filled out as:

Table 13.2. A NAND B Example

A	В	FNSEL = (A NAND B)
0	0	FNSEL[0] = 1
0	1	FNSEL[1] = 1
1	0	FNSEL[2] = 1
1	1	FNSEL[3] = 0

In this example, the value of FNSEL has been calculated to be 0111 (binary), or 0x7.

Using the FNSEL field, a total of 16 two-input logic functions can be implemented, as shown in Table 13.3 List of Logic Functions on page 289.

Table 13.3. List of Logic Functions

FNSEL value	Implemented Function
0x0	0
0x1	A NOR B
0x2	(NOT A) AND B
0x3	NOT A
0x4	A AND (NOT B)
0x5	(NOT B)
0x6	A XOR B
0x7	A NAND B
0x8	A AND B
0x9	A XNOR B

FNSEL value	Implemented Function
0xA	В
0xB	A OR (NOT B)
0xC	A
0xD	(NOT A) OR B
0xE	A OR B
0xF	1

The default value of FNSEL is 0xC, meaning that the input from the selected producer goes through unchanged. This feature can be used to combine multiple channels to get even more complex functions.

13.3.3 Producers

Through SOURCESEL in PRS_SYNCHx_CTRL or PRS_ASYNCHx_CTRL, each PRS channel (synchronous and asynchronous respectively) selects its signal producers. Each producer outputs one or more signals which can be selected by setting the SIGSEL field. Setting the SOURCESEL bits to 0 (Off) leads to a constant 0 output from the input mux regardless of SIGSEL.

The GPIO producer signals depend on settings in the GPIO module. They are selected using the edge interrupt configuration settings described in 24.3.10.1 Edge Interrupt Generation. PIN0 uses settings for the EXTI0 interrupt, PIN1 uses settings for EXTI1, and so on.

For example, to route PB00 as a producer for PRS channel 2, EXTI0, EXTI1, EXTI2, or EXTI3 should be configured to connect to PB00, and the corresponding GPIO PINx should be selected as the PRS channel 2 producer. If we choose EXTI1 via PRS producer "GPIO PIN1":

- GPIO_EXTIPSELL_EXTIPSEL1 = PORTB, and GPIO_EXTIPINSELL_EXTIPINSEL1 = PIN0 connect PB00 through the EXTI1 signal.
- 2. PRS_ASYNC_CH2_CTRL_SOURCESEL = GPIO, and PRS_ASYNC_CH2_CTRL_SIGSEL = PIN1 connects the PIN1 (EXTI1) signal to asynchornous PRS channel 2 as a producer.

13.3.3.1 Producer Details

Table 13.4. Synchronous PRS Producers

Peripheral	SOURCESEL	Signal	SIGSEL
TIMER0	TIMER0 (0x01)	UF	0x0
		OF	0x1
		CC0	0x2
		CC1	0x3
		CC2	0x4
TIMER1	TIMER1 (0x02)	UF	0x0
		OF	0x1
		CC0	0x2
		CC1	0x3
		CC2	0x4
IADC0	IADC0 (0x03)	SCANENTRYDONE	0x0
		SCANTABLEDONE	0x1
		SINGLEDONE	0x2
TIMER2	TIMER2 (0x04)	CC0	0x0
		CC1	0x1
		CC2	0x2
		UF	0x3
		OF	0x4
TIMER3	TIMER3 (0x05)	CC0	0x0
		CC1	0x1
		CC2	0x2
		UF	0x3
		OF	0x4

Table 13.5. Asynchronous PRS Producers

Peripheral	SOURCESEL	Signal	SIGSEL
IADC0	IADC0 (0x01)	SCANENTRYDONE	0x0
		SCANTABLEDONE	0x1
		SINGLEDONE	0x2
LETIMER0	LETIMER0 (0x02)	СНО	0x0
		CH1	0x1

Peripheral	SOURCESEL	Signal	SIGSEL
RTCC	RTCC (0x03)	CCV0	0x0
		CCV1	0x1
		CCV2	0x2
BURTC	BURTC (0x04)	СОМР	0x0
		OVERFLOW	0x1
GPIO	GPIO (0x05)	PIN0	0x0
		PIN1	0x1
		PIN2	0x2
		PIN3	0x3
		PIN4	0x4
		PIN5	0x5
		PIN6	0x6
		PIN7	0x7
ACMP0	ACMP0 (0x06)	OUT	0x0
ACMP1	ACMP1 (0x07)	OUT	0x0
CMU	CMUL (0x08)	CLKOUT0	0x0
		CLKOUT1	0x1
		CLKOUT2	0x2
LVGD	LVGD (0x0F)	LVGDFALLDETECTED	0x0
		LVGDFALLDETECTEDRAW	0x1
		LVGDRISEDETECTED	0x2
		LVGDRISEDETECTEDRAW	0x3
USART0	USART0 (0x20)	CS	0x0
		IRTX	0x1
		RTS	0x2
		RXDATA	0x3
		TX	0x4
		TXC	0x5
USART1	USART1 (0x21)	CS	0x0
		IRTX	0x1
		RTS	0x2
		RXDATA	0x3
		TX	0x4
		TXC	0x5

Peripheral	SOURCESEL	Signal	SIGSEL
USART2	USART2 (0x22)	CS	0x0
		IRTX	0x1
		RTS	0x2
		RXDATA	0x3
		TX	0x4
		TXC	0x5
TIMER0	TIMER0 (0x23)	UF	0x0
		OF	0x1
		CC0	0x2
		CC1	0x3
		CC2	0x4
TIMER1	TIMER1 (0x24)	UF	0x0
		OF	0x1
		CC0	0x2
		CC1	0x3
		CC2	0x4
TIMER2	TIMER2 (0x25)	UF	0x0
		OF	0x1
		CC0	0x2
		CC1	0x3
		CC2	0x4
TIMER3	TIMER3 (0x26)	UF	0x0
		OF	0x1
		CC0	0x2
		CC1	0x3
		CC2	0x4
CORE	CORE (0x27)	CTIOUT0	0x0
		CTIOUT1	0x1
		CTIOUT2	0x2
		CTIOUT3	0x3
AGC	AGCL (0x28)	CCA	0x0
		CCAREQ	0x1
	AGC (0x29)	RSSIDONE	0x2

Peripheral	SOURCESEL	Signal	SIGSEL
MODEM	MODEML (0x2B)	ADVANCE	0x0
		ANT0	0x1
		ANT1	0x2
		COHDSADET	0x3
		COHDSALIVE	0x4
		DCLK	0x5
		DOUT	0x6
		FRAMEDET	0x7
	MODEM (0x2C)	FRAMESENT	0x0
		LOWCORR	0x1
		LRDSADET	0x2
		LRDSALIVE	0x3
		NEWSYMBOL	0x4
		NEWWND	0x5
		POSTPONE	0x6
		PREDET	0x7
	MODEMH (0x2D)	PRESENT	0x0
		RSSIJUMP	0x1
		SYNCSENT	0x2
		TIMDET	0x3
		WEAK	0x4
		EOF	0x5
FRC	FRC (0x2E)	DCLK	0x0
		DOUT	0x1
PROTIMER	PROTIMERL (0x2F)	LBTF	0x6
		LBTR	0x7
	PROTIMER (0x30)	LBTS	0x0
RAC	RAC (0x31)	ACTIVE	0x0
		LNAEN	0x1
		PAEN	0x2
		RX	0x3
		TX	0x4

13.3.4 Consumers

Consumer peripherals can be set to listen to a PRS channel and perform an action based on the signal received on that channel. This is done by programming the PRSSEL or SPRSSEL in the consumer registers. SPRSSEL is only present for signals with the ability to listen to synchronous channels. The consumer registers follow the naming convention PRS_CONSUMER_cperipheral_name>_<signal_name>. For example, the PRS_CONSUMER_TIMERO_CCO register is used to select which PRS channel output is sent to the TIMERO peripheral's CCO signal. In turn, the target peripheral should be configured to use the associated PRS trigger as desired. This is described in the individual peripheral chapters.

Note: When configuring the synchronous PRS consumer registers, the target peripheral should be disabled or configured to not use the affected PRS signal. This will ensure that no false triggers occur at the consumer.

13.3.4.1 Event on PRS

The PRS can be used to send events to the MCU to wake the system. This is very useful in combination with the Wait For Event (WFE) instruction. Any asynchronous PRS channel can be selected for this using PRSSEL in PRS CONSUMER CORE M33RXEV.

Using this feature, one can e.g. set up a timer to trigger an event to the MCU periodically, every time letting the MCU continue from a WFE instruction in its program. This can help in performance-critical sections where timing is known, and the goal is to wait for an event, execute some code, then wait for another event, execute some code, and so on.

13.3.4.2 DMA Request on PRS

Up to two independent DMA requests can be generated by the PRS. The PRS asynchronous channels triggering the DMA requests are selected with the PRSSEL fields in the PRS_CONSUMER_LDMAXBAR_DMAREQx registers. The requests are set whenever the selected asynchronous PRS outputs are high.

13.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	PRS_IPVERSION	R	IP version ID
0x008	PRS_ASYNC_SWPULSE	w	Software Pulse Register
0x00C	PRS_ASYNC_SWLEVEL	RW	Software Level Register
0x010	PRS_ASYNC_PEEK	RH	Async Channel Values
0x014	PRS_SYNC_PEEK	RH	Sync Channel Values
0x018	PRS_ASYNC_CHx_CTRL	RW	Async Channel Control Register
0x048	PRS_SYNC_CHx_CTRL	RW	Sync Channel Control Register
0x058	PRS_CONSUM- ER_CMU_CALDN	RW	CMU CALDN Consumer Selection
0x05C	PRS_CONSUMER_CMU_CAL-UP	RW	CMU CALUP Consumer Selection
0x064	PRS_CONSUM- ER_IADC0_SCANTRIGGER	RW	IADC0 SCANTRIGGER Consumer Selection
0x068	PRS_CONSUMER_IADC0_SIN-GLETRIGGER	RW	IADC0 SINGLETRIGGER Consumer Selection
0x06C	PRS_CONSUMER_LDMAX- BAR_DMAREQ0	RW	DMAREQ0 Consumer Selection
0x070	PRS_CONSUMER_LDMAX- BAR_DMAREQ1	RW	DMAREQ1 Consumer Selection
0x074	PRS_CONSUMER_LETIM- ER0_CLEAR	RW	LETIMER CLEAR Consumer Selection
0x078	PRS_CONSUMER_LETIM- ER0_START	RW	LETIMER START Consumer Selection
0x07C	PRS_CONSUMER_LETIM- ER0_STOP	RW	LETIMER STOP Consumer Selection
0x080	PRS_CONSUMER_MO- DEM_DIN	RW	MODEM DIN Consumer Selection
0x0B8	PRS_CONSUMER_RAC_CLR	RW	RAC CLR Consumer Selection
0x0BC	PRS_CONSUM- ER_RAC_FORCETX	RW	RAC FORCETX Consumer Selection
0x0C0	PRS_CONSUMER_RAC_RXDIS	RW	RAC RXDIS Consumer Selection
0x0C4	PRS_CONSUMER_RAC_RXEN	RW	RAC RXEN Consumer Selection
0x0C8	PRS_CONSUMER_RAC_SEQ	RW	RAC SEQ Consumer Selection
0x0CC	PRS_CONSUMER_RAC_TXEN	RW	RAC TXEN Consumer Selection
0x0D0	PRS_CONSUMER_RTCC_CC0	RW	RTCC CC0 Consumer Selection
0x0D4	PRS_CONSUMER_RTCC_CC1	RW	RTCC CC1 Consumer Selection
0x0D8	PRS_CONSUMER_RTCC_CC2	RW	RTCC CC2 Consumer Selection
0x0E0	PRS_CONSUMER_SE_TAM- PERSRC0	RW	SE TAMPERSRC0 Consumer Selection

Offset	Name	Туре	Description
0x0E4	PRS_CONSUMER_SE_TAM- PERSRC1	RW	SE TAMPERSRC1 Consumer Selection
0x0E8	PRS_CONSUMER_SE_TAM- PERSRC2	RW	SE TAMPERSRC2 Consumer Selection
0x0EC	PRS_CONSUMER_SE_TAM- PERSRC3	RW	SE TAMPERSRC3 Consumer Selection
0x0F0	PRS_CONSUMER_SE_TAM- PERSRC4	RW	SE TAMPERSRC4 Consumer Selection
0x0F4	PRS_CONSUMER_SE_TAM- PERSRC5	RW	SE TAMPERSRC5 Consumer Selection
0x0F8	PRS_CONSUMER_SE_TAM- PERSRC6	RW	SE TAMPERSRC6 Consumer Selection
0x0FC	PRS_CONSUMER_SE_TAM- PERSRC7	RW	SE TAMPERSRC7 Consumer Selection
0x108	PRS_CONSUM- ER_CORE_CTIIN0	RW	CTI0 Consumer Selection
0x10C	PRS_CONSUM- ER_CORE_CTIIN1	RW	CTI1 Consumer Selection
0x110	PRS_CONSUM- ER_CORE_CTIIN2	RW	CTI2 Consumer Selection
0x114	PRS_CONSUM- ER_CORE_CTIIN3	RW	CTI3 Consumer Selection
0x118	PRS_CONSUM- ER_CORE_M33RXEV	RW	M33 Consumer Selection
0x11C	PRS_CONSUMER_TIM- ER0_CC0	RW	TIMER0 CC0 Consumer Selection
0x120	PRS_CONSUMER_TIM- ER0_CC1	RW	TIMER0 CC1 Consumer Selection
0x124	PRS_CONSUMER_TIM- ER0_CC2	RW	TIMER0 CC2 Consumer Selection
0x128	PRS_CONSUMER_TIMER0_DTI	RW	TIMER0 DTI Consumer Selection
0x12C	PRS_CONSUMER_TIM- ER0_DTIFS1	RW	TIMER0 DTIFS1 Consumer Selection
0x130	PRS_CONSUMER_TIM- ER0_DTIFS2	RW	TIMER0 DTIFS2 Consumer Selection
0x134	PRS_CONSUMER_TIM- ER1_CC0	RW	TIMER1 CC0 Consumer Selection
0x138	PRS_CONSUMER_TIM- ER1_CC1	RW	TIMER1 CC1 Consumer Selection
0x13C	PRS_CONSUMER_TIM- ER1_CC2	RW	TIMER1 CC2 Consumer Selection
0x140	PRS_CONSUMER_TIMER1_DTI	RW	TIMER1 DTI Consumer Selection
0x144	PRS_CONSUMER_TIM- ER1_DTIFS1	RW	TIMER1 DTIFS1 Consumer Selection
0x148	PRS_CONSUMER_TIM- ER1_DTIFS2	RW	TIMER1 DTIFS2 Consumer Selection

Offset	Name	Туре	Description
0x14C	PRS_CONSUMER_TIM- ER2_CC0	RW	TIMER2 CC0 Consumer Selection
0x150	PRS_CONSUMER_TIM- ER2_CC1	RW	TIMER2 CC1 Consumer Selection
0x154	PRS_CONSUMER_TIM- ER2_CC2	RW	TIMER2 CC2 Consumer Selection
0x158	PRS_CONSUMER_TIMER2_DTI	RW	TIMER2 DTI Consumer Selection
0x15C	PRS_CONSUMER_TIM- ER2_DTIFS1	RW	TIMER2 DTIFS1 Consumer Selection
0x160	PRS_CONSUMER_TIM- ER2_DTIFS2	RW	TIMER2 DTIFS2 Consumer Selection
0x164	PRS_CONSUMER_TIM- ER3_CC0	RW	TIMER3 CC0 Consumer Selection
0x168	PRS_CONSUMER_TIM- ER3_CC1	RW	TIMER3 CC1 Consumer Selection
0x16C	PRS_CONSUMER_TIM- ER3_CC2	RW	TIMER3 CC2 Consumer Selection
0x170	PRS_CONSUMER_TIMER3_DTI	RW	TIMER3 DTI Consumer Selection
0x174	PRS_CONSUMER_TIM- ER3_DTIFS1	RW	TIMER3 DTIFS1 Consumer Selection
0x178	PRS_CONSUMER_TIM- ER3_DTIFS2	RW	TIMER3 DTIFS2 Consumer Selection
0x17C	PRS_CONSUM- ER_USART0_CLK	RW	USART0 CLK Consumer Selection
0x180	PRS_CONSUMER_USARTO_IR	RW	USART0 IR Consumer Selection
0x184	PRS_CONSUMER_USARTO_RX	RW	USART0 RX Consumer Selection
0x188	PRS_CONSUM- ER_USART0_TRIGGER	RW	USART0 TRIGGER Consumer Selection
0x18C	PRS_CONSUM- ER_USART1_CLK	RW	USART1 CLK Consumer Selection
0x190	PRS_CONSUMER_USART1_IR	RW	USART1 IR Consumer Selection
0x194	PRS_CONSUMER_USART1_RX	RW	USART1 RX Consumer Selection
0x198	PRS_CONSUM- ER_USART1_TRIGGER	RW	USART1 TRIGGER Consumer Selection
0x19C	PRS_CONSUM- ER_USART2_CLK	RW	USART2 CLK Consumer Selection
0x1A0	PRS_CONSUMER_USART2_IR	RW	USART2 IR Consumer Selection
0x1A4	PRS_CONSUMER_USART2_RX	RW	USART2 RX Consumer Selection
0x1A8	PRS_CONSUM- ER_USART2_TRIGGER	RW	USART2 TRIGGER Consumer Selection
0x1AC	PRS_CONSUM- ER_WDOG0_SRC0	RW	WDOG0 SRC0 Consumer Selection
0x1B0	PRS_CONSUM- ER_WDOG0_SRC1	RW	WDOG0 SRC1 Consumer Selection

Offset	Name	Туре	Description
0x1B4	PRS_CONSUM- ER_WDOG1_SRC0	RW	WDOG1 SRC0 Consumer Selection
0x1B8	PRS_CONSUM- ER_WDOG1_SRC1	RW	WDOG1 SRC1 Consumer Selection
0x1000	PRS_IPVERSION_SET	R	IP version ID
0x1008	PRS_ASYNC_SWPULSE_SET	W	Software Pulse Register
0x100C	PRS_ASYNC_SWLEVEL_SET	RW	Software Level Register
0x1010	PRS_ASYNC_PEEK_SET	RH	Async Channel Values
0x1014	PRS_SYNC_PEEK_SET	RH	Sync Channel Values
0x1018	PRS_ASYNC_CHx_CTRL_SET	RW	Async Channel Control Register
0x1048	PRS_SYNC_CHx_CTRL_SET	RW	Sync Channel Control Register
0x1058	PRS_CONSUM- ER_CMU_CALDN_SET	RW	CMU CALDN Consumer Selection
0x105C	PRS_CONSUMER_CMU_CAL- UP_SET	RW	CMU CALUP Consumer Selection
0x1064	PRS_CONSUM- ER_IADC0_SCANTRIG- GER_SET	RW	IADC0 SCANTRIGGER Consumer Selection
0x1068	PRS_CONSUMER_IADC0_SIN-GLETRIGGER_SET	RW	IADC0 SINGLETRIGGER Consumer Selection
0x106C	PRS_CONSUMER_LDMAX- BAR_DMAREQ0_SET	RW	DMAREQ0 Consumer Selection
0x1070	PRS_CONSUMER_LDMAX- BAR_DMAREQ1_SET	RW	DMAREQ1 Consumer Selection
0x1074	PRS_CONSUMER_LETIM- ER0_CLEAR_SET	RW	LETIMER CLEAR Consumer Selection
0x1078	PRS_CONSUMER_LETIM- ER0_START_SET	RW	LETIMER START Consumer Selection
0x107C	PRS_CONSUMER_LETIM- ER0_STOP_SET	RW	LETIMER STOP Consumer Selection
0x1080	PRS_CONSUMER_MO- DEM_DIN_SET	RW	MODEM DIN Consumer Selection
0x10B8	PRS_CONSUM- ER_RAC_CLR_SET	RW	RAC CLR Consumer Selection
0x10BC	PRS_CONSUM- ER_RAC_FORCETX_SET	RW	RAC FORCETX Consumer Selection
0x10C0	PRS_CONSUM- ER_RAC_RXDIS_SET	RW	RAC RXDIS Consumer Selection
0x10C4	PRS_CONSUM- ER_RAC_RXEN_SET	RW	RAC RXEN Consumer Selection
0x10C8	PRS_CONSUM- ER_RAC_SEQ_SET	RW	RAC SEQ Consumer Selection
0x10CC	PRS_CONSUM- ER_RAC_TXEN_SET	RW	RAC TXEN Consumer Selection

Offset	Name	Туре	Description
0x10D0	PRS_CONSUM- ER_RTCC_CC0_SET	RW	RTCC CC0 Consumer Selection
0x10D4	PRS_CONSUM- ER_RTCC_CC1_SET	RW	RTCC CC1 Consumer Selection
0x10D8	PRS_CONSUM- ER_RTCC_CC2_SET	RW	RTCC CC2 Consumer Selection
0x10E0	PRS_CONSUMER_SE_TAM- PERSRC0_SET	RW	SE TAMPERSRC0 Consumer Selection
0x10E4	PRS_CONSUMER_SE_TAM- PERSRC1_SET	RW	SE TAMPERSRC1 Consumer Selection
0x10E8	PRS_CONSUMER_SE_TAM- PERSRC2_SET	RW	SE TAMPERSRC2 Consumer Selection
0x10EC	PRS_CONSUMER_SE_TAM- PERSRC3_SET	RW	SE TAMPERSRC3 Consumer Selection
0x10F0	PRS_CONSUMER_SE_TAM- PERSRC4_SET	RW	SE TAMPERSRC4 Consumer Selection
0x10F4	PRS_CONSUMER_SE_TAM- PERSRC5_SET	RW	SE TAMPERSRC5 Consumer Selection
0x10F8	PRS_CONSUMER_SE_TAM- PERSRC6_SET	RW	SE TAMPERSRC6 Consumer Selection
0x10FC	PRS_CONSUMER_SE_TAM- PERSRC7_SET	RW	SE TAMPERSRC7 Consumer Selection
0x1108	PRS_CONSUM- ER_CORE_CTIIN0_SET	RW	CTI0 Consumer Selection
0x110C	PRS_CONSUM- ER_CORE_CTIIN1_SET	RW	CTI1 Consumer Selection
0x1110	PRS_CONSUM- ER_CORE_CTIIN2_SET	RW	CTI2 Consumer Selection
0x1114	PRS_CONSUM- ER_CORE_CTIIN3_SET	RW	CTI3 Consumer Selection
0x1118	PRS_CONSUM- ER_CORE_M33RXEV_SET	RW	M33 Consumer Selection
0x111C	PRS_CONSUMER_TIM- ER0_CC0_SET	RW	TIMER0 CC0 Consumer Selection
0x1120	PRS_CONSUMER_TIM- ER0_CC1_SET	RW	TIMER0 CC1 Consumer Selection
0x1124	PRS_CONSUMER_TIM- ER0_CC2_SET	RW	TIMER0 CC2 Consumer Selection
0x1128	PRS_CONSUMER_TIM- ER0_DTI_SET	RW	TIMER0 DTI Consumer Selection
0x112C	PRS_CONSUMER_TIM- ER0_DTIFS1_SET	RW	TIMER0 DTIFS1 Consumer Selection
0x1130	PRS_CONSUMER_TIM- ER0_DTIFS2_SET	RW	TIMER0 DTIFS2 Consumer Selection
0x1134	PRS_CONSUMER_TIM- ER1_CC0_SET	RW	TIMER1 CC0 Consumer Selection

Offset	Name	Туре	Description
0x1138	PRS_CONSUMER_TIM- ER1_CC1_SET	RW	TIMER1 CC1 Consumer Selection
0x113C	PRS_CONSUMER_TIM- ER1_CC2_SET	RW	TIMER1 CC2 Consumer Selection
0x1140	PRS_CONSUMER_TIM- ER1_DTI_SET	RW	TIMER1 DTI Consumer Selection
0x1144	PRS_CONSUMER_TIM- ER1_DTIFS1_SET	RW	TIMER1 DTIFS1 Consumer Selection
0x1148	PRS_CONSUMER_TIM- ER1_DTIFS2_SET	RW	TIMER1 DTIFS2 Consumer Selection
0x114C	PRS_CONSUMER_TIM- ER2_CC0_SET	RW	TIMER2 CC0 Consumer Selection
0x1150	PRS_CONSUMER_TIM- ER2_CC1_SET	RW	TIMER2 CC1 Consumer Selection
0x1154	PRS_CONSUMER_TIM- ER2_CC2_SET	RW	TIMER2 CC2 Consumer Selection
0x1158	PRS_CONSUMER_TIM- ER2_DTI_SET	RW	TIMER2 DTI Consumer Selection
0x115C	PRS_CONSUMER_TIM- ER2_DTIFS1_SET	RW	TIMER2 DTIFS1 Consumer Selection
0x1160	PRS_CONSUMER_TIM- ER2_DTIFS2_SET	RW	TIMER2 DTIFS2 Consumer Selection
0x1164	PRS_CONSUMER_TIM- ER3_CC0_SET	RW	TIMER3 CC0 Consumer Selection
0x1168	PRS_CONSUMER_TIM- ER3_CC1_SET	RW	TIMER3 CC1 Consumer Selection
0x116C	PRS_CONSUMER_TIM- ER3_CC2_SET	RW	TIMER3 CC2 Consumer Selection
0x1170	PRS_CONSUMER_TIM- ER3_DTI_SET	RW	TIMER3 DTI Consumer Selection
0x1174	PRS_CONSUMER_TIM- ER3_DTIFS1_SET	RW	TIMER3 DTIFS1 Consumer Selection
0x1178	PRS_CONSUMER_TIM- ER3_DTIFS2_SET	RW	TIMER3 DTIFS2 Consumer Selection
0x117C	PRS_CONSUM- ER_USART0_CLK_SET	RW	USART0 CLK Consumer Selection
0x1180	PRS_CONSUM- ER_USARTO_IR_SET	RW	USART0 IR Consumer Selection
0x1184	PRS_CONSUM- ER_USART0_RX_SET	RW	USART0 RX Consumer Selection
0x1188	PRS_CONSUM- ER_USART0_TRIGGER_SET	RW	USART0 TRIGGER Consumer Selection
0x118C	PRS_CONSUM- ER_USART1_CLK_SET	RW	USART1 CLK Consumer Selection
0x1190	PRS_CONSUM- ER_USART1_IR_SET	RW	USART1 IR Consumer Selection

Offset	Name	Туре	Description
0x1194	PRS_CONSUM- ER_USART1_RX_SET	RW	USART1 RX Consumer Selection
0x1198	PRS_CONSUM- ER_USART1_TRIGGER_SET	RW	USART1 TRIGGER Consumer Selection
0x119C	PRS_CONSUM- ER_USART2_CLK_SET	RW	USART2 CLK Consumer Selection
0x11A0	PRS_CONSUM- ER_USART2_IR_SET	RW	USART2 IR Consumer Selection
0x11A4	PRS_CONSUM- ER_USART2_RX_SET	RW	USART2 RX Consumer Selection
0x11A8	PRS_CONSUM- ER_USART2_TRIGGER_SET	RW	USART2 TRIGGER Consumer Selection
0x11AC	PRS_CONSUM- ER_WDOG0_SRC0_SET	RW	WDOG0 SRC0 Consumer Selection
0x11B0	PRS_CONSUM- ER_WDOG0_SRC1_SET	RW	WDOG0 SRC1 Consumer Selection
0x11B4	PRS_CONSUM- ER_WDOG1_SRC0_SET	RW	WDOG1 SRC0 Consumer Selection
0x11B8	PRS_CONSUM- ER_WDOG1_SRC1_SET	RW	WDOG1 SRC1 Consumer Selection
0x2000	PRS_IPVERSION_CLR	R	IP version ID
0x2008	PRS_ASYNC_SWPULSE_CLR	w	Software Pulse Register
0x200C	PRS_ASYNC_SWLEVEL_CLR	RW	Software Level Register
0x2010	PRS_ASYNC_PEEK_CLR	RH	Async Channel Values
0x2014	PRS_SYNC_PEEK_CLR	RH	Sync Channel Values
0x2018	PRS_ASYNC_CHx_CTRL_CLR	RW	Async Channel Control Register
0x2048	PRS_SYNC_CHx_CTRL_CLR	RW	Sync Channel Control Register
0x2058	PRS_CONSUM- ER_CMU_CALDN_CLR	RW	CMU CALDN Consumer Selection
0x205C	PRS_CONSUMER_CMU_CAL- UP_CLR	RW	CMU CALUP Consumer Selection
0x2064	PRS_CONSUM- ER_IADC0_SCANTRIG- GER_CLR	RW	IADC0 SCANTRIGGER Consumer Selection
0x2068	PRS_CONSUMER_IADC0_SIN-GLETRIGGER_CLR	RW	IADC0 SINGLETRIGGER Consumer Selection
0x206C	PRS_CONSUMER_LDMAX- BAR_DMAREQ0_CLR	RW	DMAREQ0 Consumer Selection
0x2070	PRS_CONSUMER_LDMAX- BAR_DMAREQ1_CLR	RW	DMAREQ1 Consumer Selection
0x2074	PRS_CONSUMER_LETIM- ER0_CLEAR_CLR	RW	LETIMER CLEAR Consumer Selection
0x2078	PRS_CONSUMER_LETIM- ER0_START_CLR	RW	LETIMER START Consumer Selection

Offset	Name	Туре	Description
0x207C	PRS_CONSUMER_LETIM- ER0_STOP_CLR	RW	LETIMER STOP Consumer Selection
0x2080	PRS_CONSUMER_MO- DEM_DIN_CLR	RW	MODEM DIN Consumer Selection
0x20B8	PRS_CONSUM- ER_RAC_CLR_CLR	RW	RAC CLR Consumer Selection
0x20BC	PRS_CONSUM- ER_RAC_FORCETX_CLR	RW	RAC FORCETX Consumer Selection
0x20C0	PRS_CONSUM- ER_RAC_RXDIS_CLR	RW	RAC RXDIS Consumer Selection
0x20C4	PRS_CONSUM- ER_RAC_RXEN_CLR	RW	RAC RXEN Consumer Selection
0x20C8	PRS_CONSUM- ER_RAC_SEQ_CLR	RW	RAC SEQ Consumer Selection
0x20CC	PRS_CONSUM- ER_RAC_TXEN_CLR	RW	RAC TXEN Consumer Selection
0x20D0	PRS_CONSUM- ER_RTCC_CC0_CLR	RW	RTCC CC0 Consumer Selection
0x20D4	PRS_CONSUM- ER_RTCC_CC1_CLR	RW	RTCC CC1 Consumer Selection
0x20D8	PRS_CONSUM- ER_RTCC_CC2_CLR	RW	RTCC CC2 Consumer Selection
0x20E0	PRS_CONSUMER_SE_TAM- PERSRC0_CLR	RW	SE TAMPERSRC0 Consumer Selection
0x20E4	PRS_CONSUMER_SE_TAM- PERSRC1_CLR	RW	SE TAMPERSRC1 Consumer Selection
0x20E8	PRS_CONSUMER_SE_TAM- PERSRC2_CLR	RW	SE TAMPERSRC2 Consumer Selection
0x20EC	PRS_CONSUMER_SE_TAM- PERSRC3_CLR	RW	SE TAMPERSRC3 Consumer Selection
0x20F0	PRS_CONSUMER_SE_TAM- PERSRC4_CLR	RW	SE TAMPERSRC4 Consumer Selection
0x20F4	PRS_CONSUMER_SE_TAM- PERSRC5_CLR	RW	SE TAMPERSRC5 Consumer Selection
0x20F8	PRS_CONSUMER_SE_TAM- PERSRC6_CLR	RW	SE TAMPERSRC6 Consumer Selection
0x20FC	PRS_CONSUMER_SE_TAM- PERSRC7_CLR	RW	SE TAMPERSRC7 Consumer Selection
0x2108	PRS_CONSUM- ER_CORE_CTIIN0_CLR	RW	CTI0 Consumer Selection
0x210C	PRS_CONSUM- ER_CORE_CTIIN1_CLR	RW	CTI1 Consumer Selection
0x2110	PRS_CONSUM- ER_CORE_CTIIN2_CLR	RW	CTI2 Consumer Selection
0x2114	PRS_CONSUM- ER_CORE_CTIIN3_CLR	RW	CTI3 Consumer Selection

Offset	Name	Туре	Description
0x2118	PRS_CONSUM- ER_CORE_M33RXEV_CLR	RW	M33 Consumer Selection
0x211C	PRS_CONSUMER_TIM- ER0_CC0_CLR	RW	TIMER0 CC0 Consumer Selection
0x2120	PRS_CONSUMER_TIM- ER0_CC1_CLR	RW	TIMER0 CC1 Consumer Selection
0x2124	PRS_CONSUMER_TIM- ER0_CC2_CLR	RW	TIMER0 CC2 Consumer Selection
0x2128	PRS_CONSUMER_TIM- ER0_DTI_CLR	RW	TIMER0 DTI Consumer Selection
0x212C	PRS_CONSUMER_TIM- ER0_DTIFS1_CLR	RW	TIMER0 DTIFS1 Consumer Selection
0x2130	PRS_CONSUMER_TIM- ER0_DTIFS2_CLR	RW	TIMER0 DTIFS2 Consumer Selection
0x2134	PRS_CONSUMER_TIM- ER1_CC0_CLR	RW	TIMER1 CC0 Consumer Selection
0x2138	PRS_CONSUMER_TIM- ER1_CC1_CLR	RW	TIMER1 CC1 Consumer Selection
0x213C	PRS_CONSUMER_TIM- ER1_CC2_CLR	RW	TIMER1 CC2 Consumer Selection
0x2140	PRS_CONSUMER_TIM- ER1_DTI_CLR	RW	TIMER1 DTI Consumer Selection
0x2144	PRS_CONSUMER_TIM- ER1_DTIFS1_CLR	RW	TIMER1 DTIFS1 Consumer Selection
0x2148	PRS_CONSUMER_TIM- ER1_DTIFS2_CLR	RW	TIMER1 DTIFS2 Consumer Selection
0x214C	PRS_CONSUMER_TIM- ER2_CC0_CLR	RW	TIMER2 CC0 Consumer Selection
0x2150	PRS_CONSUMER_TIM- ER2_CC1_CLR	RW	TIMER2 CC1 Consumer Selection
0x2154	PRS_CONSUMER_TIM- ER2_CC2_CLR	RW	TIMER2 CC2 Consumer Selection
0x2158	PRS_CONSUMER_TIM- ER2_DTI_CLR	RW	TIMER2 DTI Consumer Selection
0x215C	PRS_CONSUMER_TIM- ER2_DTIFS1_CLR	RW	TIMER2 DTIFS1 Consumer Selection
0x2160	PRS_CONSUMER_TIM- ER2_DTIFS2_CLR	RW	TIMER2 DTIFS2 Consumer Selection
0x2164	PRS_CONSUMER_TIM- ER3_CC0_CLR	RW	TIMER3 CC0 Consumer Selection
0x2168	PRS_CONSUMER_TIM- ER3_CC1_CLR	RW	TIMER3 CC1 Consumer Selection
0x216C	PRS_CONSUMER_TIM- ER3_CC2_CLR	RW	TIMER3 CC2 Consumer Selection
0x2170	PRS_CONSUMER_TIM- ER3_DTI_CLR	RW	TIMER3 DTI Consumer Selection

Offset	Name	Туре	Description
0x2174	PRS_CONSUMER_TIM- ER3_DTIFS1_CLR	RW	TIMER3 DTIFS1 Consumer Selection
0x2178	PRS_CONSUMER_TIM- ER3_DTIFS2_CLR	RW	TIMER3 DTIFS2 Consumer Selection
0x217C	PRS_CONSUM- ER_USART0_CLK_CLR	RW	USART0 CLK Consumer Selection
0x2180	PRS_CONSUM- ER_USART0_IR_CLR	RW	USART0 IR Consumer Selection
0x2184	PRS_CONSUM- ER_USART0_RX_CLR	RW	USART0 RX Consumer Selection
0x2188	PRS_CONSUM- ER_USART0_TRIGGER_CLR	RW	USART0 TRIGGER Consumer Selection
0x218C	PRS_CONSUM- ER_USART1_CLK_CLR	RW	USART1 CLK Consumer Selection
0x2190	PRS_CONSUM- ER_USART1_IR_CLR	RW	USART1 IR Consumer Selection
0x2194	PRS_CONSUM- ER_USART1_RX_CLR	RW	USART1 RX Consumer Selection
0x2198	PRS_CONSUM- ER_USART1_TRIGGER_CLR	RW	USART1 TRIGGER Consumer Selection
0x219C	PRS_CONSUM- ER_USART2_CLK_CLR	RW	USART2 CLK Consumer Selection
0x21A0	PRS_CONSUM- ER_USART2_IR_CLR	RW	USART2 IR Consumer Selection
0x21A4	PRS_CONSUM- ER_USART2_RX_CLR	RW	USART2 RX Consumer Selection
0x21A8	PRS_CONSUM- ER_USART2_TRIGGER_CLR	RW	USART2 TRIGGER Consumer Selection
0x21AC	PRS_CONSUM- ER_WDOG0_SRC0_CLR	RW	WDOG0 SRC0 Consumer Selection
0x21B0	PRS_CONSUM- ER_WDOG0_SRC1_CLR	RW	WDOG0 SRC1 Consumer Selection
0x21B4	PRS_CONSUM- ER_WDOG1_SRC0_CLR	RW	WDOG1 SRC0 Consumer Selection
0x21B8	PRS_CONSUM- ER_WDOG1_SRC1_CLR	RW	WDOG1 SRC1 Consumer Selection
0x3000	PRS_IPVERSION_TGL	R	IP version ID
0x3008	PRS_ASYNC_SWPULSE_TGL	W	Software Pulse Register
0x300C	PRS_ASYNC_SWLEVEL_TGL	RW	Software Level Register
0x3010	PRS_ASYNC_PEEK_TGL	RH	Async Channel Values
0x3014	PRS_SYNC_PEEK_TGL	RH	Sync Channel Values
0x3018	PRS_ASYNC_CHx_CTRL_TGL	RW	Async Channel Control Register
0x3048	PRS_SYNC_CHx_CTRL_TGL	RW	Sync Channel Control Register
0x3058	PRS_CONSUM- ER_CMU_CALDN_TGL	RW	CMU CALDN Consumer Selection

Offset	Name	Туре	Description
0x305C	PRS_CONSUMER_CMU_CAL- UP_TGL	RW	CMU CALUP Consumer Selection
0x3064	PRS_CONSUM- ER_IADC0_SCANTRIG- GER_TGL	RW	IADC0 SCANTRIGGER Consumer Selection
0x3068	PRS_CONSUMER_IADC0_SIN-GLETRIGGER_TGL	RW	IADC0 SINGLETRIGGER Consumer Selection
0x306C	PRS_CONSUMER_LDMAX- BAR_DMAREQ0_TGL	RW	DMAREQ0 Consumer Selection
0x3070	PRS_CONSUMER_LDMAX- BAR_DMAREQ1_TGL	RW	DMAREQ1 Consumer Selection
0x3074	PRS_CONSUMER_LETIM- ER0_CLEAR_TGL	RW	LETIMER CLEAR Consumer Selection
0x3078	PRS_CONSUMER_LETIM- ER0_START_TGL	RW	LETIMER START Consumer Selection
0x307C	PRS_CONSUMER_LETIM- ER0_STOP_TGL	RW	LETIMER STOP Consumer Selection
0x3080	PRS_CONSUMER_MO- DEM_DIN_TGL	RW	MODEM DIN Consumer Selection
0x30B8	PRS_CONSUM- ER_RAC_CLR_TGL	RW	RAC CLR Consumer Selection
0x30BC	PRS_CONSUM- ER_RAC_FORCETX_TGL	RW	RAC FORCETX Consumer Selection
0x30C0	PRS_CONSUM- ER_RAC_RXDIS_TGL	RW	RAC RXDIS Consumer Selection
0x30C4	PRS_CONSUM- ER_RAC_RXEN_TGL	RW	RAC RXEN Consumer Selection
0x30C8	PRS_CONSUM- ER_RAC_SEQ_TGL	RW	RAC SEQ Consumer Selection
0x30CC	PRS_CONSUM- ER_RAC_TXEN_TGL	RW	RAC TXEN Consumer Selection
0x30D0	PRS_CONSUM- ER_RTCC_CC0_TGL	RW	RTCC CC0 Consumer Selection
0x30D4	PRS_CONSUM- ER_RTCC_CC1_TGL	RW	RTCC CC1 Consumer Selection
0x30D8	PRS_CONSUM- ER_RTCC_CC2_TGL	RW	RTCC CC2 Consumer Selection
0x30E0	PRS_CONSUMER_SE_TAM- PERSRC0_TGL	RW	SE TAMPERSRC0 Consumer Selection
0x30E4	PRS_CONSUMER_SE_TAM- PERSRC1_TGL	RW	SE TAMPERSRC1 Consumer Selection
0x30E8	PRS_CONSUMER_SE_TAM- PERSRC2_TGL	RW	SE TAMPERSRC2 Consumer Selection
0x30EC	PRS_CONSUMER_SE_TAM- PERSRC3_TGL	RW	SE TAMPERSRC3 Consumer Selection
0x30F0	PRS_CONSUMER_SE_TAM- PERSRC4_TGL	RW	SE TAMPERSRC4 Consumer Selection

Offset	Name	Туре	Description
0x30F4	PRS_CONSUMER_SE_TAM- PERSRC5_TGL	RW	SE TAMPERSRC5 Consumer Selection
0x30F8	PRS_CONSUMER_SE_TAM- PERSRC6_TGL	RW	SE TAMPERSRC6 Consumer Selection
0x30FC	PRS_CONSUMER_SE_TAM- PERSRC7_TGL	RW	SE TAMPERSRC7 Consumer Selection
0x3108	PRS_CONSUM- ER_CORE_CTIIN0_TGL	RW	CTI0 Consumer Selection
0x310C	PRS_CONSUM- ER_CORE_CTIIN1_TGL	RW	CTI1 Consumer Selection
0x3110	PRS_CONSUM- ER_CORE_CTIIN2_TGL	RW	CTI2 Consumer Selection
0x3114	PRS_CONSUM- ER_CORE_CTIIN3_TGL	RW	CTI3 Consumer Selection
0x3118	PRS_CONSUM- ER_CORE_M33RXEV_TGL	RW	M33 Consumer Selection
0x311C	PRS_CONSUMER_TIM- ER0_CC0_TGL	RW	TIMER0 CC0 Consumer Selection
0x3120	PRS_CONSUMER_TIM- ER0_CC1_TGL	RW	TIMER0 CC1 Consumer Selection
0x3124	PRS_CONSUMER_TIM- ER0_CC2_TGL	RW	TIMER0 CC2 Consumer Selection
0x3128	PRS_CONSUMER_TIM- ER0_DTI_TGL	RW	TIMER0 DTI Consumer Selection
0x312C	PRS_CONSUMER_TIM- ER0_DTIFS1_TGL	RW	TIMER0 DTIFS1 Consumer Selection
0x3130	PRS_CONSUMER_TIM- ER0_DTIFS2_TGL	RW	TIMER0 DTIFS2 Consumer Selection
0x3134	PRS_CONSUMER_TIM- ER1_CC0_TGL	RW	TIMER1 CC0 Consumer Selection
0x3138	PRS_CONSUMER_TIM- ER1_CC1_TGL	RW	TIMER1 CC1 Consumer Selection
0x313C	PRS_CONSUMER_TIM- ER1_CC2_TGL	RW	TIMER1 CC2 Consumer Selection
0x3140	PRS_CONSUMER_TIM- ER1_DTI_TGL	RW	TIMER1 DTI Consumer Selection
0x3144	PRS_CONSUMER_TIM- ER1_DTIFS1_TGL	RW	TIMER1 DTIFS1 Consumer Selection
0x3148	PRS_CONSUMER_TIM- ER1_DTIFS2_TGL	RW	TIMER1 DTIFS2 Consumer Selection
0x314C	PRS_CONSUMER_TIM- ER2_CC0_TGL	RW	TIMER2 CC0 Consumer Selection
0x3150	PRS_CONSUMER_TIM- ER2_CC1_TGL	RW	TIMER2 CC1 Consumer Selection
0x3154	PRS_CONSUMER_TIM- ER2_CC2_TGL	RW	TIMER2 CC2 Consumer Selection

Offset	Name	Туре	Description
0x3158	PRS_CONSUMER_TIM- ER2_DTI_TGL	RW	TIMER2 DTI Consumer Selection
0x315C	PRS_CONSUMER_TIM- ER2_DTIFS1_TGL	RW	TIMER2 DTIFS1 Consumer Selection
0x3160	PRS_CONSUMER_TIM- ER2_DTIFS2_TGL	RW	TIMER2 DTIFS2 Consumer Selection
0x3164	PRS_CONSUMER_TIM- ER3_CC0_TGL	RW	TIMER3 CC0 Consumer Selection
0x3168	PRS_CONSUMER_TIM- ER3_CC1_TGL	RW	TIMER3 CC1 Consumer Selection
0x316C	PRS_CONSUMER_TIM- ER3_CC2_TGL	RW	TIMER3 CC2 Consumer Selection
0x3170	PRS_CONSUMER_TIM- ER3_DTI_TGL	RW	TIMER3 DTI Consumer Selection
0x3174	PRS_CONSUMER_TIM- ER3_DTIFS1_TGL	RW	TIMER3 DTIFS1 Consumer Selection
0x3178	PRS_CONSUMER_TIM- ER3_DTIFS2_TGL	RW	TIMER3 DTIFS2 Consumer Selection
0x317C	PRS_CONSUM- ER_USART0_CLK_TGL	RW	USART0 CLK Consumer Selection
0x3180	PRS_CONSUM- ER_USART0_IR_TGL	RW	USART0 IR Consumer Selection
0x3184	PRS_CONSUM- ER_USART0_RX_TGL	RW	USART0 RX Consumer Selection
0x3188	PRS_CONSUM- ER_USART0_TRIGGER_TGL	RW	USART0 TRIGGER Consumer Selection
0x318C	PRS_CONSUM- ER_USART1_CLK_TGL	RW	USART1 CLK Consumer Selection
0x3190	PRS_CONSUM- ER_USART1_IR_TGL	RW	USART1 IR Consumer Selection
0x3194	PRS_CONSUM- ER_USART1_RX_TGL	RW	USART1 RX Consumer Selection
0x3198	PRS_CONSUM- ER_USART1_TRIGGER_TGL	RW	USART1 TRIGGER Consumer Selection
0x319C	PRS_CONSUM- ER_USART2_CLK_TGL	RW	USART2 CLK Consumer Selection
0x31A0	PRS_CONSUM- ER_USART2_IR_TGL	RW	USART2 IR Consumer Selection
0x31A4	PRS_CONSUM- ER_USART2_RX_TGL	RW	USART2 RX Consumer Selection
0x31A8	PRS_CONSUM- ER_USART2_TRIGGER_TGL	RW	USART2 TRIGGER Consumer Selection
0x31AC	PRS_CONSUM- ER_WDOG0_SRC0_TGL	RW	WDOG0 SRC0 Consumer Selection
0x31B0	PRS_CONSUM- ER_WDOG0_SRC1_TGL	RW	WDOG0 SRC1 Consumer Selection

Offset	Name	Туре	Description
0x31B4	PRS_CONSUM- ER_WDOG1_SRC0_TGL	RW	WDOG1 SRC0 Consumer Selection
0x31B8	PRS_CONSUM- ER_WDOG1_SRC1_TGL	RW	WDOG1 SRC1 Consumer Selection

13.5 Register Description

13.5.1 PRS_IPVERSION - IP version ID

Offset	Bit Position
0x000	33
Reset	0×0
Access	α
Name	IPVERSION

Bit	Name	Reset	Access	Description
31:0	IPVERSION	0x0	R	IP version ID
	The read only IPVERSION modules with different values	•		this module. There may be minor software changes required for

13.5.2 PRS_ASYNC_SWPULSE - Software Pulse Register

Offset		Bit Position																														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	7	_	0
Reset		'		•	'									•						•	0x0	000	000	000	0X0	0X0	000	0x0	000	0x0	0x0	0x0
Access																					>	>	>	>	>	>	>	>	>	>	>	>
Name																					CH11PULSE	CH10PULSE	CH9PULSE	CH8PULSE	CH7PULSE	CH6PULSE	CH5PULSE	CH4PULSE	CH3PULSE	CH2PULSE	CH1PULSE	CH0PULSE

Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
11	CH11PULSE	0x0	W	Channel pulse
	Writing this bit to 1 gene	rates a short ¡	oulse on channe	l 11.
10	CH10PULSE	0x0	W	Channel pulse
	Writing this bit to 1 gene	rates a short ¡	oulse on channe	I 10.
9	CH9PULSE	0x0	W	Channel pulse
	Writing this bit to 1 gene	rates a short ¡	oulse on channe	19.
8	CH8PULSE	0x0	W	Channel pulse
	Writing this bit to 1 gene	rates a short ¡	oulse on channe	18.
7	CH7PULSE	0x0	W	Channel pulse
	Writing this bit to 1 gene	rates a short ¡	oulse on channe	17.
6	CH6PULSE	0x0	W	Channel pulse
	Writing this bit to 1 gene	rates a short p	oulse on channe	16.
5	CH5PULSE	0x0	W	Channel pulse
	Writing this bit to 1 gene	rates a short ¡	oulse on channe	15.
4	CH4PULSE	0x0	W	Channel pulse
	Writing this bit to 1 gene	rates a short ¡	oulse on channe	14.
3	CH3PULSE	0x0	W	Channel pulse
	Writing this bit to 1 gene	rates a short ¡	oulse on channe	13.
2	CH2PULSE	0x0	W	Channel pulse
	Writing this bit to 1 gene	rates a short p	oulse on channe	12.
1	CH1PULSE	0x0	W	Channel pulse
	Writing this bit to 1 gene	rates a short p	oulse on channe	l 1.
0	CH0PULSE	0x0	W	Channel pulse
	Writing this bit to 1 gene	rates a short p	oulse on channe	10.

13.5.3 PRS_ASYNC_SWLEVEL - Software Level Register

Offset	Bit Position										
0x00C		0 0 8 7 9 4 8 7 0									
Reset		000 000									
Access											
Name	į į	CH11LEVEL CH30LEVEL CH31LEVEL CH31LEVEL CH61LEVEL CH61LEVEL CH41LEVEL CH31LEVEL CH31LEVEL CH31LEVEL CH11LEVEL CH11LEVEL									

Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
11	CH11LEVEL	0x0	RW	Channel Level
	This bit changes the pol	arity of the ou	itput signal on cl	hannel 11.
10	CH10LEVEL	0x0	RW	Channel Level
	This bit changes the pol	arity of the ou	itput signal on cl	hannel 10.
9	CH9LEVEL	0x0	RW	Channel Level
	This bit changes the pol	larity of the ou	itput signal on cl	hannel 9.
8	CH8LEVEL	0x0	RW	Channel Level
	This bit changes the pol	larity of the ou	itput signal on cl	hannel 8.
7	CH7LEVEL	0x0	RW	Channel Level
	This bit changes the pol	larity of the ou	itput signal on cl	hannel 7.
6	CH6LEVEL	0x0	RW	Channel Level
	This bit changes the pol	larity of the ou	itput signal on cl	hannel 6.
5	CH5LEVEL	0x0	RW	Channel Level
	This bit changes the pol	arity of the ou	itput signal on cl	hannel 5.
4	CH4LEVEL	0x0	RW	Channel Level
	This bit changes the pol	arity of the ou	itput signal on cl	hannel 4.
3	CH3LEVEL	0x0	RW	Channel Level
	This bit changes the pol	larity of the ou	itput signal on cl	hannel 3.
2	CH2LEVEL	0x0	RW	Channel Level
	This bit changes the pol	larity of the ou	itput signal on cl	hannel 2.
1	CH1LEVEL	0x0	RW	Channel Level
	This bit changes the pol	larity of the ou	itput signal on cl	hannel 1.
0	CH0LEVEL	0x0	RW	Channel Level
	This bit changes the pol	arity of the ou	itput signal on cl	hannel 0.

13.5.4 PRS_ASYNC_PEEK - Async Channel Values

Offset	Bit Position											
0x010	33 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39	= 3	9	8	7	9	2	4	3	2	_	0
Reset		000	000	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0
Access		<u>م</u> ر	צ מ	R	2	~	<u>م</u>	2	R	R	22	2
Name		H11V	CH10VAL CH9VAL	CH8VAL	CH7VAL	CH6VAL	CH5VAL	CH4VAL	CH3VAL	CH2VAL	CH1VAL	CH0VAL

Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
11	CH11VAL	0x0	R	Channel 11 Current Value
	Sample the current outpo	ut value of ch	annel 11. This v	alue may be one or two clock cycles delayed.
10	CH10VAL	0x0	R	Channel 10 Current Value
	Sample the current outpo	ut value of ch	annel 10. This v	alue may be one or two clock cycles delayed.
9	CH9VAL	0x0	R	Channel 9 Current Value
	Sample the current outpo	ut value of ch	annel 9. This val	lue may be one or two clock cycles delayed.
8	CH8VAL	0x0	R	Channel 8 Current Value
	Sample the current outpo	ut value of ch	annel 8. This val	lue may be one or two clock cycles delayed.
7	CH7VAL	0x0	R	Channel 7 Current Value
	Sample the current outpo	ut value of ch	annel 7. This val	lue may be one or two clock cycles delayed.
6	CH6VAL	0x0	R	Channel 6 Current Value
	Sample the current outpo	ut value of ch	annel 6. This val	lue may be one or two clock cycles delayed.
5	CH5VAL	0x0	R	Channel 5 Current Value
	Sample the current outpo	ut value of ch	annel 5. This val	lue may be one or two clock cycles delayed.
4	CH4VAL	0x0	R	Channel 4 Current Value
	Sample the current outpo	ut value of ch	annel 4. This val	lue may be one or two clock cycles delayed.
3	CH3VAL	0x0	R	Channel 3 Current Value
	Sample the current outpo	ut value of ch	annel 3. This val	lue may be one or two clock cycles delayed.
2	CH2VAL	0x0	R	Channel 2 Current Value
	Sample the current outpo	ut value of ch	annel 2. This val	lue may be one or two clock cycles delayed.
1	CH1VAL	0x0	R	Channel 1 Current Value
	Sample the current outpo	ut value of ch	annel 1. This val	lue may be one or two clock cycles delayed.
0	CH0VAL	0x0	R	Channel 0 Current Value
	Sample the current outpo	ut value of ch	annel 0. This val	lue may be one or two clock cycles delayed.

13.5.5 PRS_SYNC_PEEK - Sync Channel Values

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	∞	7	9	5	4	က	2	_	0
Reset		•	•		•			•				•		•				•						•			•		000	0x0	000	0x0
Access																													œ	œ	œ	~
Name																													CH3VAL	CH2VAL	CH1VAL	CHOVAL

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensur	e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
3	CH3VAL	0x0	R	Channel 3 Current Value
	Channel 3 current value	Э		
2	CH2VAL	0x0	R	Channel 2 Current Value
	Channel 2 current value	е		
1	CH1VAL	0x0	R	Channel 1 Current Value
	Channel 1 current value	Э		
0	CH0VAL	0x0	R	Channel 0 Current Value
	Channel 0 current value	е		

13.5.6 PRS_ASYNC_CHx_CTRL - Async Channel Control Register

Offset	Bit Position											
0x018	31 30 30 29 28 27 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	19 19 16 17	6 9 9 8	r 8 4 8 2 1 0								
Reset		0xC	0×0	0×0								
Access		RW W	RW	RW								
Name		FNSEL	SOURCESEL	SIGSEL								

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	FNSEL	0xC	RW	Function Select
	Look up table functi	on select. Signa	A is the select	ted producer input. Signal B is the output of the previous PRS channel.
	Value	Mode		Description
	0	LOGICAL	_ZERO	Logical 0
	1	A_NOR_I	В	A NOR B
	2	NOT_A_A	AND_B	(!A) AND B
	3	NOT_A		!A
	4	A_AND_I	NOT_B	A AND (!B)
	5	NOT_B		!B
	6	A_XOR_I	3	A XOR B
	7	A_NAND	_B	A NAND B
	8	A_AND_E	3	A AND B
	9	A_XNOR	_B	A XNOR B
	10	В		В
	11	NOT_A_0	OR_B	(!A) OR B
	12	Α		Α
	13	A_OR_N	ОТ_В	A OR (!B)
	14	A_OR_B		A OR B
	15	LOGICAL	_ONE	Logical 1
15	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
14:8	SOURCESEL	0x0	RW	Source Select
	Select input source	for asynchronou	ıs PRS channe	I. See Asynchronous Producers table for details.
7:3	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
2:0	SIGSEL	0x0	RW	Signal Select

Bit	Name	Reset /	Access Description	
	Select signal inp	out for asynchronous PR	S channel. See Asynchronous Pro	ducers table for details.
	Value	Mode	Description	
	0	NONE		

13.5.7 PRS_SYNC_CHx_CTRL - Sync Channel Control Register

Offset															Bi	t Pc	siti	on														
0x048	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•	•	•	•											•					000						•		•		0x0	
Access																					Z N										Z W	
Name																					SOURCESEL										SIGSEL	

Bit	Name	Reset	Access	Description
31:15	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
14:8	SOURCESEL	0x0	RW	Source Select
	Select input source to sy	nchronous Pl	RS channel. See	e Synchronous Producers table for details.
7:3	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
2:0	SIGSEL	0x0	RW	Signal Select
	Select signal input for sy	nchronous Pf	RS channel. See	e Synchronous Producers table for details.
	Value	Mode		Description
	0	NONE		

13.5.8 PRS_CONSUMER_CMU_CALDN - CMU CALDN Consumer Selection

Offset															Bi	t Po	siti	on														
0x058	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		>	2	
Access																														<u> </u>	}	
Name																														DDOOD	T NOOF	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.9 PRS_CONSUMER_CMU_CALUP - CMU CALUP Consumer Selection

Offset															Bi	t Po	siti	on														
0x05C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset		•							•		•	•	•		•		•			•		•		•	•	•	•	•		OXO	2	
Access																														8		
Name																														T C C C C C C C C C C C C C C C C C C C		

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS char	nel routes to the	is consumer.

13.5.10 PRS_CONSUMER_IADC0_SCANTRIGGER - IADC0 SCANTRIGGER Consumer Selection

Offset															Bi	t Po	siti	on														
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	3	2	-	0
Reset					•		•								•	•		•					Š	e X						000		
Access																							2	<u>}</u>						Z N		
Name																							ר ר	n						PRSSEL		

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
9:8	SPRSSEL	0x0	RW	Synchronous Channel Selection
	Select which synchrono	us PRS chani	nel routes to this	s consumer.
7:4	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchron	ous PRS chai	nnel routes to th	is consumer.

13.5.11 PRS_CONSUMER_IADC0_SINGLETRIGGER - IADC0 SINGLETRIGGER Consumer Selection

Offset															Bi	t Po	siti	on														
0x068	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset																							2	Š						OXO	3	
Access																							7	<u>}</u>						×		
Name																							CDDCCEI	00Y L						E C C C C C C C C C C C C C C C C C C C		

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
9:8	SPRSSEL	0x0	RW	Synchronous Channel Selection
	Select which synchrono	ous PRS char	nnel routes to th	is consumer.
7:4	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchron	nous PRS cha	annel routes to t	his consumer.

13.5.12 PRS_CONSUMER_LDMAXBAR_DMAREQ0 - DMAREQ0 Consumer Selection

Offset															Bi	t Po	siti	on														
0x06C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	∞	7	9	5	4	က	2	_	0
Reset			•		•		•	•		•		•	•		•	•		•	•		•		•		•		•			>	2	
Access																														2	2	
Name																															TROOF	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.13 PRS_CONSUMER_LDMAXBAR_DMAREQ1 - DMAREQ1 Consumer Selection

Offset															Bi	t Po	siti	on														
0x070	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	စ	∞	7	9	2	4	က	2	1	0
Reset					•											•														2	3	
Access																														Š.		
Name																														H C C C C C C	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrone	ous PRS char	nnel routes to th	is consumer.

13.5.14 PRS_CONSUMER_LETIMER0_CLEAR - LETIMER CLEAR Consumer Selection

Offset															Bi	t Po	siti	on														
0x074	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset		•	'											•		'						'								>	3	
Access																														<u> </u>	}	
Name																															TASSEL	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.15 PRS_CONSUMER_LETIMER0_START - LETIMER START Consumer Selection

Offset															Bi	t Po	siti	on														
0x078	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	စ	∞	7	9	2	4	က	2	_	0
Reset			•	•	•	•	•	•	•	•		•		•	•	•		•	•		•		•	•	•	•	•			OXO	2	
Access																														Z N	2	
Name																														PRSSE		

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrone	ous PRS char	nnel routes to th	is consumer.

13.5.16 PRS_CONSUMER_LETIMER0_STOP - LETIMER STOP Consumer Selection

Offset															Bi	t Po	siti	on														
0x07C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset		'	'						'					'			•			'		'								>	3	
Access																														<u> </u>	2	
Name																																

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.17 PRS_CONSUMER_MODEM_DIN - MODEM DIN Consumer Selection

Offset															Bi	t Po	siti	on														
0x080	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	စ	∞	7	9	5	4	က	2	1	0
Reset					•																									2	3	
Access																														Š		
Name																														THE CONTRACT OF THE CONTRACT O	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS char	nel routes to the	is consumer.

13.5.18 PRS_CONSUMER_RAC_CLR - RAC CLR Consumer Selection

Offset															Bi	t Po	siti	on														
0x0B8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset		•			•	•	•			•		•			•	•	•			•		•					•			OXO	3	
Access																														Š	2	
Name																														THE CONTRACT OF THE CONTRACT O	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.19 PRS_CONSUMER_RAC_FORCETX - RAC FORCETX Consumer Selection

Offset															Bi	t Po	siti	on														
0x0BC	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset																														2	8	
Access																														<u> </u>	2	
Name																														II O O O O	1	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrone	ous PRS char	nnel routes to th	is consumer.

13.5.20 PRS_CONSUMER_RAC_RXDIS - RAC RXDIS Consumer Selection

Offset															Bi	t Po	siti	on														
0x0C0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•			•	•	•	•							•	•	•			•		•								OXO	3	
Access																														N N	2	
Name																														D C C C C C C C C C C C C C C C C C C C	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.21 PRS_CONSUMER_RAC_RXEN - RAC RXEN Consumer Selection

Offset															Bi	t Po	siti	on														
0x0C4	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	စ	∞	7	9	5	4	က	2	1	0
Reset														•																2	3	
Access																														<u> </u>		
Name																														II O O O O	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS char	nnel routes to th	is consumer.

13.5.22 PRS_CONSUMER_RAC_SEQ - RAC SEQ Consumer Selection

Offset															Bi	t Po	siti	on														
0x0C8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset		•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		>	2	
Access																														<u> </u>	}	
Name																														DDOOD	T NOOF	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.23 PRS_CONSUMER_RAC_TXEN - RAC TXEN Consumer Selection

Offset															Bi	t Po	sitio	on														
0x0CC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																														Ö	2	
Access																														Z N		
Name																														PRSSPI		

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrone	ous PRS char	nnel routes to th	is consumer.

13.5.24 PRS_CONSUMER_RTCC_CC0 - RTCC CC0 Consumer Selection

Offset	Bit Position	
0x0D0	30 30 30 30 30 30 30 30 30 4 4 4 4 4 4 4	0 7 7 3
Reset		0×0
Access		RW
Name		PRSSEL

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS char	inel routes to thi	is consumer.

13.5.25 PRS_CONSUMER_RTCC_CC1 - RTCC CC1 Consumer Selection

Offset	Bit Position																															
0x0D4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	9	8	7	9	5	4	က	2	_	0
Reset																														Č	2	
Access																														Z N		
Name																														PRSSE]]) ,	

Bit	Name	Reset	Access	Description								
31:4	Reserved	To ensure o	compatibility wit	n future devices, always write bits to 0. More information in 1.2 C								
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection								
	Select which asynchronous PRS channel routes to this consumer.											

13.5.26 PRS_CONSUMER_RTCC_CC2 - RTCC CC2 Consumer Selection

Offset															Bi	t Po	siti	on														
0x0D8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset		•			•	•	•			•		•			•	•	•			•		•					•			OXO	3	
Access																														NA NA	2	
Name																														THE CONTRACT OF THE CONTRACT O	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.27 PRS_CONSUMER_SE_TAMPERSRC0 - SE TAMPERSRC0 Consumer Selection

Offset															Bi	t Po	siti	on														
0x0E0	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	စ	∞	7	9	5	4	က	2	1	0
Reset														•																2	3	
Access																														<u> </u>		
Name																														H C C C C C C	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS char	nel routes to the	is consumer.

13.5.28 PRS_CONSUMER_SE_TAMPERSRC1 - SE TAMPERSRC1 Consumer Selection

Offset															Bi	t Po	siti	on														
0x0E4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset		•			•	•	•	•	•	•			•	•	•	•	•			•	•	•	•				•	•		QX O	3	
Access																														×	2	
Name																														D C C C C C C C C C C C C C C C C C C C	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.29 PRS_CONSUMER_SE_TAMPERSRC2 - SE TAMPERSRC2 Consumer Selection

Offset															Bi	t Po	siti	on														
0x0E8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	စ	8	7	9	2	4	က	2	_	0
Reset		•		•					•		•	•	•	•			•		•	•	•	•	•		•					2	2	
Access																														Š		
Name																														H C C C C C C	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS char	nnel routes to th	is consumer.

13.5.30 PRS_CONSUMER_SE_TAMPERSRC3 - SE TAMPERSRC3 Consumer Selection

Offset															Bi	t Po	siti	on														
0x0EC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset		•			•	•	•	•	•	•		•		•	•	•	•			•	•	•	•	•	•			•		2	2	
Access																														\ 0	2	
Name																															TASSEL	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.31 PRS_CONSUMER_SE_TAMPERSRC4 - SE TAMPERSRC4 Consumer Selection

Offset															Bi	t Po	siti	on														
0x0F0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	စ	8	7	9	2	4	က	2	_	0
Reset		•		•							•	•	•	•			•		•	•	•	•	•		•					2	2	
Access																														Š.		
Name																														H C C C C C C	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS char	nel routes to the	is consumer.

13.5.32 PRS_CONSUMER_SE_TAMPERSRC5 - SE TAMPERSRC5 Consumer Selection

Offset															Bi	t Po	siti	on														
0x0F4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		>	2	
Access																														<u> </u>	}	
Name																														DDOOD	T NOOF	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.33 PRS_CONSUMER_SE_TAMPERSRC6 - SE TAMPERSRC6 Consumer Selection

Offset															Bi	t Po	siti	on														
0x0F8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	စ	8	7	9	2	4	က	2	_	0
Reset		•		•					•		•	•	•	•			•		•	•	•	•	•		•					2	2	
Access																														Š.		
Name																														H C C C C C C	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrone	ous PRS char	nnel routes to th	is consumer.

13.5.34 PRS_CONSUMER_SE_TAMPERSRC7 - SE TAMPERSRC7 Consumer Selection

Offset															Bi	t Po	siti	on														
0x0FC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																						•								Š	3	
Access																														×	2	
Name																														D C C C C C C C C C C C C C C C C C C C	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS char	inel routes to thi	is consumer.

13.5.35 PRS_CONSUMER_CORE_CTIIN0 - CTI0 Consumer Selection

Offset															Bi	t Po	siti	on														
0x108	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	စ	∞	7	9	5	4	က	2	1	0
Reset			•											•																2	3	
Access																														Š.		
Name																														H C C C C C C	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrone	ous PRS char	nnel routes to th	is consumer.

13.5.36 PRS_CONSUMER_CORE_CTIIN1 - CTI1 Consumer Selection

Offset	Bit Position	
0x10C	33 37 38 38 38 38 38 38 38 38 38 38 38 38 38	0 7 7 3
Reset		0×0
Access		A W
Name		PRSSEL

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.37 PRS_CONSUMER_CORE_CTIIN2 - CTI2 Consumer Selection

Offset															Bi	t Po	siti	on														
0x110	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	စ	∞	7	9	5	4	က	2	1	0
Reset			•		•							•				•														2	3	
Access																														Š		
Name																														THE CONTRACT OF THE CONTRACT O	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrone	ous PRS char	nnel routes to th	is consumer.

13.5.38 PRS_CONSUMER_CORE_CTIIN3 - CTI3 Consumer Selection

Offset															Bi	t Po	siti	on														
0x114	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	တ	∞	7	9	5	4	က	2	1	0
Reset			•														•													OX OX	3	
Access																														Z N	2	
Name																														PRSSE	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.39 PRS_CONSUMER_CORE_M33RXEV - M33 Consumer Selection

Offset															Bi	t Pc	siti	on														
0x118	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	1	0
Reset			•		•											•														2	3	
Access																														Š		
Name																														THE CONTRACT OF THE CONTRACT O	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrone	ous PRS char	nnel routes to th	is consumer.

13.5.40 PRS_CONSUMER_TIMER0_CC0 - TIMER0 CC0 Consumer Selection

Offset															Bi	t Po	siti	on													
0x11C	31	99	59	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	- 0
Reset		•														•							Ç	S S			•	•		0×0	·
Access																							2	<u>}</u>						RW	
Name																							0	SPRSSEL						PRSSEL	

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
9:8	SPRSSEL	0x0	RW	Synchronous Channel Selection
	Select which synchrono	us PRS chanr	nel routes to this	s consumer.
7:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchron	ous PRS char	nnel routes to th	is consumer.

13.5.41 PRS_CONSUMER_TIMER0_CC1 - TIMER0 CC1 Consumer Selection

Offset															Bi	t Po	siti	on														
0x120	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	2	4	3	2	1	0
Reset																							Š) X						0×0	2	
Access																							2	<u>}</u>						Z N		
Name																							100000	SPRSSEL						PRSSE		

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
9:8	SPRSSEL	0x0	RW	Synchronous Channel Selection
	Select which synch	nronous PRS char	nnel routes to	this consumer.
7:4	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which async	chronous PRS cha	annel routes to	o this consumer.

13.5.42 PRS_CONSUMER_TIMER0_CC2 - TIMER0 CC2 Consumer Selection

Offset															Bi	t Po	siti	on													
0x124	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	- 0
Reset				•		•			•							•							Ç	S S				•		0×0	·
Access																							2	<u>}</u>						RW	
Name																							0	SPRSSEL						PRSSEL	

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
9:8	SPRSSEL	0x0	RW	Synchronous Channel Selection
	Select which synchrono	us PRS chanr	nel routes to this	s consumer.
7:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchron	ous PRS char	nnel routes to th	is consumer.

13.5.43 PRS_CONSUMER_TIMER0_DTI - TIMER0 DTI Consumer Selection

Offset															Bi	t Po	siti	on														
0x128	31	30	29	28	27	26	25	24	23	22	21	20	19	48	17	16	15	14	13	12	7	10	6	œ	7	9	2	4	က	2	_	0
Reset																														OXO	2	
Access																														Z N		
Name																														PRSSE		

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which async	chronous PRS cha	annel routes to	o this consumer.

13.5.44 PRS_CONSUMER_TIMER0_DTIFS1 - TIMER0 DTIFS1 Consumer Selection

Offset															Bi	t Po	siti	on														
0x12C	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	9	6	∞	7	9	5	4	က	2	_	0
Reset									•							•										•	•	•		OXO	?	
Access																														Z N		
Name																														PRSSE		

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS char	inel routes to thi	is consumer.

13.5.45 PRS_CONSUMER_TIMER0_DTIFS2 - TIMER0 DTIFS2 Consumer Selection

Offset															Bi	t Po	siti	on														
0x130	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	စ	∞	7	9	5	4	က	2	_	0
Reset			•		•	•	•	•	•	•		•		•	•	•		•	•		•		•	•	•	•	•	•		OXO	2	
Access																														8		
Name																														T C C C C C C C C C C C C C C C C C C C		

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrone	ous PRS char	nnel routes to th	is consumer.

13.5.46 PRS_CONSUMER_TIMER1_CC0 - TIMER1 CC0 Consumer Selection

Offset	Bit Position		
0x134	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 7 9	το 4 κ α τ ο
Reset		0x0	0x0
Access		RW	RW W
Name		SPRSSEL	PRSSEL

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
9:8	SPRSSEL	0x0	RW	Synchronous Channel Selection
	Select which synchrono	us PRS chani	nel routes to this	s consumer.
7:4	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchron	ous PRS chai	nnel routes to th	is consumer.

13.5.47 PRS_CONSUMER_TIMER1_CC1 - TIMER1 CC1 Consumer Selection

Offset															Bi	t Po	siti	on														
0x138	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	19	6	8	7	9	2	4	က	2	1	0
Reset																		'					Š) X						0XO	?	
Access																							2	<u>}</u>						Z N		
Name																							100000	SPRSSEL						PRSSE		

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
9:8	SPRSSEL	0x0	RW	Synchronous Channel Selection
	Select which sync	hronous PRS char	nnel routes to	this consumer.
7:4	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asyn	chronous PRS cha	annel routes t	o this consumer.

13.5.48 PRS_CONSUMER_TIMER1_CC2 - TIMER1 CC2 Consumer Selection

Offset															Ві	t Po	siti	on													
0x13C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	7	- 0
Reset					•			•	•					•	•	•		•					Š	e X			•			000	·
Access																							Š	≥ Y						RW	
Name																							0	SPRSSEL						PRSSEL	

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
9:8	SPRSSEL	0x0	RW	Synchronous Channel Selection
	Select which synchron	ous PRS char	nnel routes to th	is consumer.
7:4	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchro	nous PRS cha	annel routes to t	his consumer.

13.5.49 PRS_CONSUMER_TIMER1_DTI - TIMER1 DTI Consumer Selection

Offset															Bi	t Po	siti	on														
0x140	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	1	0
Reset																														OXO	8	
Access																														Z N		
Name																														PRSSE)	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchror	nous PRS cha	nnel routes to th	nis consumer.

13.5.50 PRS_CONSUMER_TIMER1_DTIFS1 - TIMER1 DTIFS1 Consumer Selection

Offset															Bi	t Po	siti	on														
0x144	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																•												•		0×0		
Access																														Z N		
Name																														PRSSEL		

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.51 PRS_CONSUMER_TIMER1_DTIFS2 - TIMER1 DTIFS2 Consumer Selection

Offset															Bi	t Po	siti	on														
0x148	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	စ	∞	7	9	5	4	က	2	1	0
Reset					•							•																		2	3	
Access																														<u> </u>		
Name																														II O O O O	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrone	ous PRS char	nnel routes to th	is consumer.

13.5.52 PRS_CONSUMER_TIMER2_CC0 - TIMER2 CC0 Consumer Selection

Offset	Bit Position			
0x14C	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8 ~	0 0 4	0 1 2 3
Reset		0x0		0x0
Access		RW		RW
Name		SPRSSEL		PRSSEL

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
9:8	SPRSSEL	0x0	RW	Synchronous Channel Selection
	Select which synchron	ous PRS char	nnel routes to th	is consumer.
7:4	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchro	nous PRS cha	annel routes to t	his consumer.

13.5.53 PRS_CONSUMER_TIMER2_CC1 - TIMER2 CC1 Consumer Selection

Offset															Bi	t Po	siti	on														
0x150	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	1	0
Reset																		'					Š) X						0×0	?	
Access																							2	<u>}</u>						Z N		
Name																							100000	SPRSSEL						PRSSE		

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
9:8	SPRSSEL	0x0	RW	Synchronous Channel Selection
	Select which sync	hronous PRS char	nnel routes to	this consumer.
7:4	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asyn	chronous PRS cha	annel routes t	o this consumer.

13.5.54 PRS_CONSUMER_TIMER2_CC2 - TIMER2 CC2 Consumer Selection

Offset															Bi	t Po	siti	on													
0x154	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	e .	7 -	- 0
Reset				•		•												•					Ç	Š			•			0×0	· ·
Access																							2	<u>}</u>						W.	
Name																							0	SPRSSEL						PRSSEL	

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
9:8	SPRSSEL	0x0	RW	Synchronous Channel Selection
	Select which synchrono	us PRS chani	nel routes to this	s consumer.
7:4	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchron	ous PRS chai	nnel routes to th	is consumer.

13.5.55 PRS_CONSUMER_TIMER2_DTI - TIMER2 DTI Consumer Selection

Offset															Bi	t Po	siti	on														
0x158	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	1	0
Reset																														ÖXO	8	
Access																														× ×		
Name																														T C C C C C C C C C C C C C C C C C C C]] -	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which async	chronous PRS cha	annel routes to	o this consumer.

13.5.56 PRS_CONSUMER_TIMER2_DTIFS1 - TIMER2 DTIFS1 Consumer Selection

Offset															Bi	t Po	siti	on														
0x15C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	∞	7	9	5	4	က	2	_	0
Reset																														OXO	2	
Access																														X X		
Name																														PRSSE		

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS char	inel routes to thi	is consumer.

13.5.57 PRS_CONSUMER_TIMER2_DTIFS2 - TIMER2 DTIFS2 Consumer Selection

Offset															Bi	t Po	siti	on														
0x160	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	7	_	0
Reset		•				•			•			•			•		•			•		•		•	•	•	•			OXO	2	
Access																														8		
Name																														T C C C C C C C C C C C C C C C C C C C		

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS char	nel routes to the	is consumer.

13.5.58 PRS_CONSUMER_TIMER3_CC0 - TIMER3 CC0 Consumer Selection

Offset															Bi	t Po	siti	on													
0x164	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	7	- 0
Reset				•		•																	Ç	S S				•		0x0	·
Access																							2	<u>}</u>						RW	
Name																							0	SPRSSEL						PRSSEL	

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
9:8	SPRSSEL	0x0	RW	Synchronous Channel Selection
	Select which synchrono	us PRS chanr	nel routes to this	s consumer.
7:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchron	ous PRS char	nnel routes to th	is consumer.

13.5.59 PRS_CONSUMER_TIMER3_CC1 - TIMER3 CC1 Consumer Selection

Offset															Bi	t Po	siti	on														
0x168	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	ω	7	9	2	4	က	2	_	0
Reset																		'					2	2						0×0	?	
Access																							<u> </u>	<u> </u>						S N		
Name																							CDDCCEI	SFRSSEL						PRSSE		

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
9:8	SPRSSEL	0x0	RW	Synchronous Channel Selection
	Select which sync	hronous PRS char	nnel routes to	this consumer.
7:4	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asyn	chronous PRS cha	annel routes t	o this consumer.

13.5.60 PRS_CONSUMER_TIMER3_CC2 - TIMER3 CC2 Consumer Selection

Offset															Bi	t Po	siti	on													
0x16C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	3	7	- 0
Reset				•												•							Ç	Š				•		0X0	·
Access																							2	≥ Y						Z N	
Name																							0	SPRSSEL						PRSSEL	

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
9:8	SPRSSEL	0x0	RW	Synchronous Channel Selection
	Select which synchrono	us PRS chani	nel routes to this	s consumer.
7:4	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchron	ous PRS chai	nnel routes to th	is consumer.

13.5.61 PRS_CONSUMER_TIMER3_DTI - TIMER3 DTI Consumer Selection

Offset															Bi	t Po	siti	on														
0x170	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset																														OXO	2	
Access																														Z N		
Name																														PRSSE		

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchror	nous PRS cha	nnel routes to th	nis consumer.

13.5.62 PRS_CONSUMER_TIMER3_DTIFS1 - TIMER3 DTIFS1 Consumer Selection

Offset															Bi	t Po	siti	on														
0x174	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	9	6	8	7	9	5	4	က	2	-	0
Reset							•		•							•		•				•				•	•	•		OX O	}	
Access																														X N		
Name																														PRSSEL		

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.63 PRS_CONSUMER_TIMER3_DTIFS2 - TIMER3 DTIFS2 Consumer Selection

Offset															Bi	t Po	siti	on														
0x178	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset			•		•							•				•							•				•			2	3	
Access																														<u> </u>	2	
Name																														II O O O O	1	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrone	ous PRS char	nnel routes to th	is consumer.

13.5.64 PRS_CONSUMER_USART0_CLK - USART0 CLK Consumer Selection

Offset															Bi	t Po	siti	on														
0x17C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset		•	•		•		•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		>	3	
Access																														\\ \\	2	
Name																															1100	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.65 PRS_CONSUMER_USART0_IR - USART0 IR Consumer Selection

Offset															Bi	t Po	siti	on														
0x180	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	9	2	4	က	7	_	0
Reset																			OXO	3												
Access																														8		
Name																														T C C C C C C C C C C C C C C C C C C C		

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS char	nel routes to the	is consumer.

13.5.66 PRS_CONSUMER_USART0_RX - USART0 RX Consumer Selection

Offset															Bi	t Po	siti	on														
0x184	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		>	2	
Access																														<u> </u>	}	
Name																														DDOOD	T NOOF	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.67 PRS_CONSUMER_USART0_TRIGGER - USART0 TRIGGER Consumer Selection

Offset															Bi	t Po	siti	on														
0x188	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	9	2	4	က	7	_	0
Reset																			OXO	3												
Access																														8		
Name																														T C C C C C C C C C C C C C C C C C C C		

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS char	nel routes to the	is consumer.

13.5.68 PRS_CONSUMER_USART1_CLK - USART1 CLK Consumer Selection

Offset															Bi	t Po	siti	on														
0x18C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		>	2	
Access																														\ 0	2	
Name																															TASSEL	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.69 PRS_CONSUMER_USART1_IR - USART1 IR Consumer Selection

Offset															Bi	t Po	siti	on														
0x190	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset					•											•							•				•			2	3	
Access																														<u> </u>	2	
Name																														II O O O O	1	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS char	nnel routes to th	is consumer.

13.5.70 PRS_CONSUMER_USART1_RX - USART1 RX Consumer Selection

Offset															Bi	t Po	siti	on														
0x194	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	∞	7	9	2	4	က	2	_	0
Reset			•	•	•	•			•			•		•		•		•	•	•	•	•	•	•	•		•	•		>	2	
Access																														<u> </u>	2	
Name																														110000 110000	7 733EF	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.71 PRS_CONSUMER_USART1_TRIGGER - USART1 TRIGGER Consumer Selection

Offset															Bi	t Po	siti	on														
0x198	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	စ	∞	7	9	2	4	က	2	_	0
Reset		•	•		•	•	•	•	•	•		•		•	•	•		•	•		•		•	•	•	•	•			OXO	2	
Access																														Z N		
Name																														PRSSE		

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS char	nel routes to the	is consumer.

13.5.72 PRS_CONSUMER_USART2_CLK - USART2 CLK Consumer Selection

Offset															Bi	t Po	siti	on														
0x19C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	∞	7	9	2	4	က	2	_	0
Reset		•	•		•		•	•	-	•		•							•	•	•	-	•	•	•					2	2	
Access																														<u> </u>	2	
Name																														110000 110000	7 733EF	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.73 PRS_CONSUMER_USART2_IR - USART2 IR Consumer Selection

Offset															Bi	t Po	siti	on														
0x1A0	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	=	10	6	∞	7	9	2	4	က	2	_	0
Reset					•																		•				•			2	3	
Access																														<u> </u>	<u>}</u>	
Name																														II O O O O	11001	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrone	ous PRS char	nnel routes to th	is consumer.

13.5.74 PRS_CONSUMER_USART2_RX - USART2 RX Consumer Selection

Offset															Bi	t Po	siti	on														
0x1A4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset		•			•		•			•		•			•		•			•		•					•			OXO	3	
Access																														Š	2	
Name																														THE CONTRACT OF THE CONTRACT O	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.75 PRS_CONSUMER_USART2_TRIGGER - USART2 TRIGGER Consumer Selection

Offset															Bi	t Po	siti	on														
0x1A8	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	1	0
Reset																														2	3	
Access																														Š		
Name																														H C C C C C C	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrone	ous PRS char	nnel routes to th	is consumer.

13.5.76 PRS_CONSUMER_WDOG0_SRC0 - WDOG0 SRC0 Consumer Selection

Offset	Bit Position	
0x1AC	33 4 5 6 6 7 8 8 8 10	0 7 7 3
Reset		0x0
Access		R W
Name		PRSSEL

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.77 PRS_CONSUMER_WDOG0_SRC1 - WDOG0 SRC1 Consumer Selection

Offset															Bi	t Po	siti	on														
0x1B0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	စ	8	7	9	2	4	က	2	_	0
Reset		•	•	•	•	•	•	•	•	•		•							•		•	•	•		•					OXO	2	
Access																														8		
Name																														T C C C C C C C C C C C C C C C C C C C	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS char	nel routes to the	is consumer.

13.5.78 PRS_CONSUMER_WDOG1_SRC0 - WDOG1 SRC0 Consumer Selection

Offset															Bi	t Po	siti	on														
0x1B4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset		•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		>	2	
Access																														<u> </u>	}	
Name																														DDOOD	T NOOF	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrono	ous PRS chan	nel routes to thi	s consumer.

13.5.79 PRS_CONSUMER_WDOG1_SRC1 - WDOG1 SRC1 Consumer Selection

Offset															Bi	t Po	siti	on														
0x1B8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	စ	8	7	9	2	4	ဗ	2	_	0
Reset		•	•	•					•		•	•	•	•			•	•	•	•	•	•	•		•					2	2	
Access																														Š		
Name																														H C C C C C C	-	

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
3:0	PRSSEL	0x0	RW	Asynchronous Channel Selection
	Select which asynchrone	ous PRS char	nnel routes to th	is consumer.

14. GPCRC - General Purpose Cyclic Redundancy Check

Quick Facts

What?

The GPCRC is an error-detecting module commonly used in digital networks and storage systems to detect accidental changes to data.

Why?

The GPCRC module can detect errors in data, giving a higher system reliability and robustness.

How?

Blocks of data entering GPCRC module can have a short checksum, based on the remainder of a polynomial division of their contents; on retrieval the calculation is repeated, and corrective action can be taken against presumed data corruption if the check values do not match.

14.1 Introduction

The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7(IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application. Common 16-bit polynomials are 0x1021 (CCITT-16), 0x3D65 (IEC16-MBus), and 0x8005 (zigbee, 802.15.4, and USB).

14.2 Features

- Programmable 16-bit polynomial, fixed 32-bit polynomial
- · Byte-level bit reversal for the CRC input
- · Byte-order reorientation for the CRC input
- · Word or half-word bit reversal of the CRC result
- · Ability to configure and seed an operation in a single register write
- Single-cycle CRC computation for 32-, 16-, or 8-bit blocks
- · DMA operation

14.3 Functional Description

An overview of the GPCRC module is shown in Figure 14.1 GPCRC Overview on page 353.

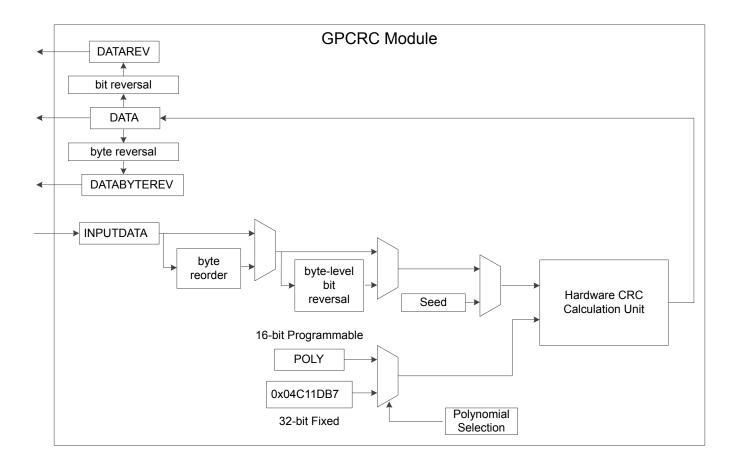
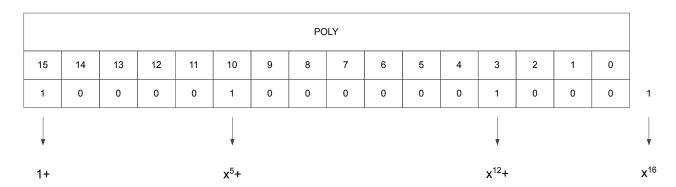



Figure 14.1. GPCRC Overview

14.3.1 Polynomial Specification

POLYSEL in GPCRC_CTRL selects between 32-bit and 16-bit polynomial functions. When a 32-bit polynomial is selected, the fixed IEEE 802.3 polynomial(0x04C11DB7) is used. When a 16-bit polynomial is selected, any valid polynomial can be defined by the user in GPCRC_POLY.

A valid 16-bit CRC polynomial must have an x^0 16 term and an x^0 0 term. Theoretically, a 16-bit polynomial has 17 terms total. The convention used is to omit the x^1 6 term. The polynomial should be written in **reversed** (little endian) bit order. The most significant bit corresponds to the lowest order term. Thus, the most significant bit in CRC_POLY represents the x^0 0 term, and the least significant bit in CRC_POLY represents the x^1 15 term. The highest significant bit of CRC_POLY should always set to 1. The polynomial representation for the CRC-16-CCIT polynomial x^1 6 + x^1 7 + x^1 7 + x^1 7 + x^2 7 + x^2 8 + 1, or 0x8408 in reversed order, is shown in Figure 14.2 Polynomial Representation on page 354.

CRC-16-CCITT Normal: 0x1021 Reversed: 0x8408

Figure 14.2. Polynomial Representation

14.3.2 Input and Output Specification

The CRC input data can be written to the GPCRC_INPUTDATA, GPCRC_INPUTDATAHWORD or GPCRC_INPUTDATABYTE register via the APB bus based on different data size. If BYTEMODE in GPCRC_CTRL is set, only the least significant byte of the data word will be used for the CRC calculation no matter which input register is written. There are also three output registers for different ordering. Reading from GPCRC_DATA will get the result based on the polynomial in reversed order, while reading from GPCRC_DATAREV will get the result based on the polynomial in normal order. The CRC calculation completes in one clock cycle. Reads from the GPCRC_DATA, GPCRC_DATAREV or GPCRC_DATABYTEREV registers and writes to the GPCRC_CMD register are halted while the calculation is in progress.

14.3.3 Initialization

The CRC can be pre-loaded or re-initialized by first writing a 32-bit programmable init value to INIT in GPCRC_INIT and then setting INIT in GPCRC_CMD. It can also be re-initialized automatically when read from DATA, DATAREV or DATABYTEREV provided that AUTOINIT in GPCRC_CTRL is set, the CRC would be re-initialized with the stored init value.

14.3.4 DMA Usage

A DMA channel may be used to transfer data into the CRC engine. All bytes and half-word writes must be word-aligned. The recommended DMA usage model is to use the DMA to transfer all available words of data and use software writes to capture any remaining bytes.

14.3.5 Byte-Level Bit Reversal and Byte Reordering

The byte-level bit reversal and byte reordering operations occur before the data is used in the CRC calculation. Byte reordering can occur on words or half words. The hardware ignores the BYTEREVERSE field with any byte writes or operations with byte mode enabled (BYTEMODE = 1), but the bit reversal settings (BITREVERSE) are still applied to the byte. 32-bit little endian MSB-first data can be treated like 32-bit little endian LSB-first data, as shown in Figure 14.3 Data Ordering Example - 32-bit MSB -first to LSB-first on page 355. In this example, 32-bit data is written to GPCRC_INPUTDATA, BYTEREVERSE is set for byte ordering, and BITREVERSE is set for byte-level bit reversal.

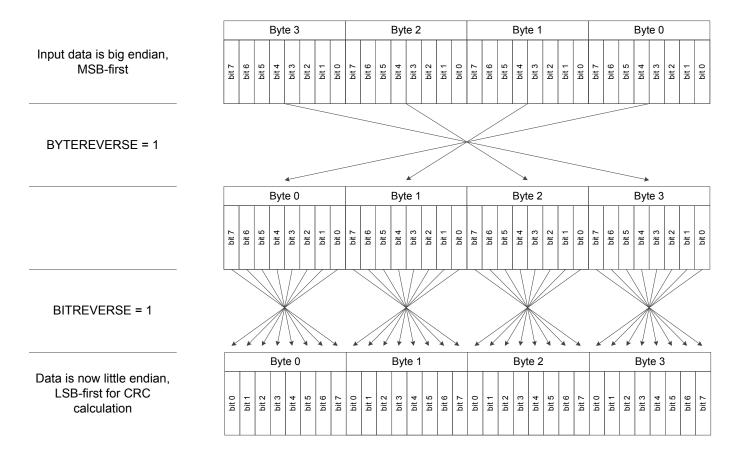


Figure 14.3. Data Ordering Example - 32-bit MSB -first to LSB-first

When handling 16-bit data, the byte reordering function only swap the two lowest bytes and clear the two highest bytes, as shown in Figure 14.4 Data Ordering Example - 16-bit MSB -first to LSB-first on page 356. In this example, 16-bit data is written to GPCRC_IN-PUTDATAHWORD, BYTEREVERSE is set for byte ordering, and BITREVERSE is set for byte-level bit reversal.

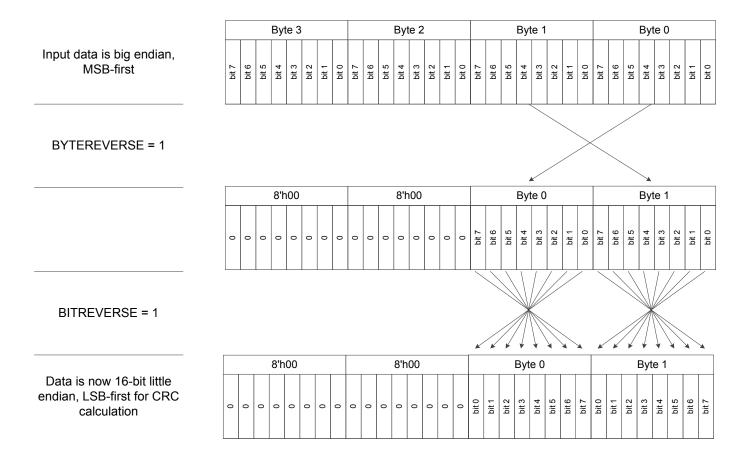


Figure 14.4. Data Ordering Example - 16-bit MSB -first to LSB-first

Assuming a word input byte order of B3 B2 B1 B0, the values used in the CRC calculation for the various settings of the byte-level bit reversal and byte reordering are shown in Table 14.1 Byte-Level Bit Reversal and Byte Reordering Results (B3 B2 B1 B0 Input Order) on page 356.

Table 14.1. Byte-Level Bit Reversal and Byte Reordering Results (B3 B2 B1 B0 Input Order)

Input Width(bits)	BYTEREVERSE Setting	BITREVERSE Setting	Input to CRC Calculation
32	0	0	B3 B2 B1 B0
32	1	1	'B0 'B1 'B2 'B3
32	1	0	B0 B1 B2 B3
32	0	1	'B3 'B2 'B1 'B0
16	0	0	XX XX B1 B0
16	1	1	XX XX 'B0 'B1
16	1	0	XX XX B0 B1
16	0	1	XX XX 'B1 'B0
8	-	0	XX XX XX XX B0
8	-	1	XX XX XX XX 'B0

Input Width(bits)	BYTEREVERSE Setting	BITREVERSE Setting	Input to CRC Calculation
Notes:			
1. X indicates a "don't	care".		
2. Bn is the byte field	within the word.		

3. 'Bn is the bit-reversed byte field within the word.

14.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	GPCRC_IPVERSION	R	IP Version ID
0x004	GPCRC_EN	RW	CRC Enable
0x008	GPCRC_CTRL	RW	Control Register
0x00C	GPCRC_CMD	W	Command Register
0x010	GPCRC_INIT	RWH	CRC Init Value
0x014	GPCRC_POLY	RW	CRC Polynomial Value
0x018	GPCRC_INPUTDATA	W	Input 32-bit Data Register
0x01C	GPCRC_INPUTDATAHWORD	W	Input 16-bit Data Register
0x020	GPCRC_INPUTDATABYTE	W	Input 8-bit Data Register
0x024	GPCRC_DATA	R(r)H	CRC Data Register
0x028	GPCRC_DATAREV	R(r)H	CRC Data Reverse Register
0x02C	GPCRC_DATABYTEREV	R(r)H	CRC Data Byte Reverse Register
0x1000	GPCRC_IPVERSION_SET	R	IP Version ID
0x1004	GPCRC_EN_SET	RW	CRC Enable
0x1008	GPCRC_CTRL_SET	RW	Control Register
0x100C	GPCRC_CMD_SET	W	Command Register
0x1010	GPCRC_INIT_SET	RWH	CRC Init Value
0x1014	GPCRC_POLY_SET	RW	CRC Polynomial Value
0x1018	GPCRC_INPUTDATA_SET	W	Input 32-bit Data Register
0x101C	GPCRC_INPUTDATAH- WORD_SET	W	Input 16-bit Data Register
0x1020	GPCRC_INPUTDATA- BYTE_SET	W	Input 8-bit Data Register
0x1024	GPCRC_DATA_SET	R(r)H	CRC Data Register
0x1028	GPCRC_DATAREV_SET	R(r)H	CRC Data Reverse Register
0x102C	GPCRC_DATABYTEREV_SET	R(r)H	CRC Data Byte Reverse Register
0x2000	GPCRC_IPVERSION_CLR	R	IP Version ID
0x2004	GPCRC_EN_CLR	RW	CRC Enable
0x2008	GPCRC_CTRL_CLR	RW	Control Register
0x200C	GPCRC_CMD_CLR	W	Command Register
0x2010	GPCRC_INIT_CLR	RWH	CRC Init Value
0x2014	GPCRC_POLY_CLR	RW	CRC Polynomial Value
0x2018	GPCRC_INPUTDATA_CLR	W	Input 32-bit Data Register
0x201C	GPCRC_INPUTDATAH- WORD_CLR	W	Input 16-bit Data Register
0x2020	GPCRC_INPUTDATA- BYTE_CLR	W	Input 8-bit Data Register

Offset	Name	Туре	Description
0x2024	GPCRC_DATA_CLR	R(r)H	CRC Data Register
0x2028	GPCRC_DATAREV_CLR	R(r)H	CRC Data Reverse Register
0x202C	GPCRC_DATABYTEREV_CLR	R(r)H	CRC Data Byte Reverse Register
0x3000	GPCRC_IPVERSION_TGL	R	IP Version ID
0x3004	GPCRC_EN_TGL	RW	CRC Enable
0x3008	GPCRC_CTRL_TGL	RW	Control Register
0x300C	GPCRC_CMD_TGL	W	Command Register
0x3010	GPCRC_INIT_TGL	RWH	CRC Init Value
0x3014	GPCRC_POLY_TGL	RW	CRC Polynomial Value
0x3018	GPCRC_INPUTDATA_TGL	W	Input 32-bit Data Register
0x301C	GPCRC_INPUTDATAH- WORD_TGL	W	Input 16-bit Data Register
0x3020	GPCRC_INPUTDATA- BYTE_TGL	W	Input 8-bit Data Register
0x3024	GPCRC_DATA_TGL	R(r)H	CRC Data Register
0x3028	GPCRC_DATAREV_TGL	R(r)H	CRC Data Reverse Register
0x302C	GPCRC_DATABYTEREV_TGL	R(r)H	CRC Data Byte Reverse Register

14.5 Register Description

14.5.1 GPCRC_IPVERSION - IP Version ID

Offset															Bi	t Po	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	ဗ	2	_	0
Reset			•		•	•	•	•					•		•	2	0.00			•	•		•			•	•	•				
Access																۵	۷															
Name																ואטוטמטו/מו																

Bit	Name	Reset	Access	Description
31:0	IPVERSION	0x0	R	IP Version ID
	The read only IPVERSIOn modules with different values	•		this module. There may be minor software changes required for

14.5.2 GPCRC_EN - CRC Enable

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	1	0
Reset																																0x0
Access																																RW
Name																																EN

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility w	rith future devices, always write bits to 0. More information in 1.2 Con
0	EN	0x0	RW	CRC Enable
	The ENADLE bit	anables the module	Software choi	uld write to CONFIG type registers before setting the ENABLE bit.
				ifter setting the ENABLE bit.
				71 0
	Software should	write to SYNC type re		fter setting the ENABLE bit.

14.5.3 GPCRC_CTRL - Control Register

Offset															Bi	t Pc	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•		•	•	•	•					•	•		•	•		0x0			0×0	0x0	0×0		•		0×0				
Access																			₩ M			W.	RW	W.				W.				
Name																			AUTOINIT			BYTEREVERSE	BITREVERSE	BYTEMODE				POLYSEL				

Bit	Name	Reset	Access	Description
31:14	Reserved	To ensure c ventions	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con
13	AUTOINIT	0x0	RW	Auto Init Enable
	Enables auto init by re-se TEREV.	eeding the CR	C result based	on the value in INIT after reading of DATA, DATAREV or DATABY
12:11	Reserved	To ensure c	ompatibility with	future devices, always write bits to 0. More information in 1.2 Con-
10	BYTEREVERSE	0x0	RW	Byte Reverse Mode
	Allows byte level reverse	of bytes B3,	B2, B1, B0 withi	n the 32-bit data word
	Value	Mode		Description
	0	NORMAL		No reverse: B3, B2, B1, B0
	1	REVERSED)	Reverse byte order. For 32-bit: B0, B1, B2, B3; For 16-bit: 0, 0, B0, B1
9	BITREVERSE	0x0	RW	Byte-level Bit Reverse Enable
	Reverses bits within each	n byte of the 3	2-bit data word	
	Value	Mode		Description
	0	NORMAL		No reverse
	1	REVERSED)	Reverse bit order in each byte
8	BYTEMODE	0x0	RW	Byte Mode Enable
	Treats all writes as bytes	. Only the lea	st significant by	te of the data-word will be used for CRC calculation for all writes
7:5	Reserved	To ensure c	ompatibility with	future devices, always write bits to 0. More information in 1.2 Con-
4	POLYSEL	0x0	RW	Polynomial Select
	Selects 16-bit CRC progr	ammable pol	ynomial or 32-bi	it CRC fixed polynomial
	Value	Mode		Description
	0	CRC32		CRC-32 (0x04C11DB7) polynomial selected

Bit	Name	Reset	Access	Description
3:0	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-

14.5.4 GPCRC_CMD - Command Register

Offset	Bit Position	
0x00C	3 4 5 9 6 7 8 8 8 7 9 7 9 7 7 8 9 8 9 9 9 9 9 9 9	0 7 7
Reset		0x0
Access		>
Name		F

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
0	INIT	0x0	W	Initialization Enable
	Writing 1 to this bit initial	ize the CRC t	y writing the IN	IT value in CRC_INIT to CRC_DATA.

14.5.5 GPCRC_INIT - CRC Init Value

Offset	Bit Position											
0x010	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -											
Reset	0×0											
Access	N N N N N N N N N N N N N N N N N N N											
Name	는 Z											

Bit	Name	Reset	Access	Description
31:0	INIT	0x0	RW	CRC Initialization Value
	This value is loaded in	to CRC_DATA	A upon issuing t	he INIT command in CRC_CMD

14.5.6 GPCRC_POLY - CRC Polynomial Value

Offset															Bi	t Pc	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	တ	8	7	9	5	4	က	2	_	0
Reset			•		•					•		•		•	•	•								2	2		•	•				
Access																								2	2							
Name																								>]							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
15:0	POLY	0x0	RW	CRC Polynomial Value

This value defines 16-bit POLY, which is used as the polynomial during the 16-bit CRC calculation. The polynomial is defined in reversed representation, meaning that the lowest degree term is in the highest bit position of POLY. Additionally, the highest degree term in the polynomial is implicit. Further examples of the CRC configuration can be found in the documentation.

14.5.7 GPCRC_INPUTDATA - Input 32-bit Data Register

Offset	Bit Position													
0x018	1 1 <t< th=""></t<>													
Reset	0×0													
Access	>													
Name	INPUTDATA													

Bit	Name	Reset	Access	Description
31:0	INPUTDATA	0x0	W	Input Data for 32-bit
	CRC Input 32-bit Data ca	an be written t	to this register. I	Each time this register is written, the CRC value is updated.

14.5.8 GPCRC_INPUTDATAHWORD - Input 16-bit Data Register

Offset															Bi	t Pc	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset		•			•														•		•			(S S			•			•	
Access																								;	≥							
Name																								! !	INPUIDALAHWORD							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure ventions	compatibility wit	th future devices, always write bits to 0. More information in 1.2 Con-
15:0	INPUTDATAHWORD	0x0	W	Input Data for 16-bit
	CRC Input 16-bit Data c	an be written	to this register.	Each time this register is written, the CRC value is updated.

14.5.9 GPCRC_INPUTDATABYTE - Input 8-bit Data Register

Offset															Bi	it Po	siti	on														
0x020	31	30	29	78	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	ω	7	9	5	4	က	2	_	0
Reset																												0×0				
Access																												>				
Name																												INPUTDATABYTE				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
7:0	INPUTDATABYTE	0x0	W	Input Data for 8-bit
	CRC Input 8-bit Data car	n be written to	this register. Ea	ach time this register is written, the CRC value is updated.

14.5.10 GPCRC_DATA - CRC Data Register

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	_∞	7	9	2	4	က	2	_	0
Reset										l						2	2						l									
Access																7																
Name		DATA R																														

Bit	Name	Reset	Access	Description
31:0	DATA	0x0	R(r)	CRC Data Register
	CRC Data Register, rear register and then issue a	•	•	r may still be indirectly written from software, by writing the INIT

14.5.11 GPCRC_DATAREV - CRC Data Reverse Register

Offset	Bit Position
0x028	33 34 35 36 37 38 38 39 30 31 32 33 34 35 36 37 38 48 40
Reset	0×0
Access	R(r)
Name	DATAREV

Bit	Name	Reset	Access	Description
31:0	DATAREV	0x0	R(r)	Data Reverse Value
		•		2-bit CRC polynomial is selected, the reversal occurs on the entire ed, the bits [15:0] are reversed.

14.5.12 GPCRC_DATABYTEREV - CRC Data Byte Reverse Register

Offset															Ві	it Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset										•	•				•	Š	S S		•			•	•			•			•			
Access																Š	E)															
Name																7	ABI															

Bit	Name	Reset	Access	Description								
31:0	DATABYTEREV	0x0	R(r)	Data Byte Reverse Value								
	Byte reversed version of CRC Data register. When a 32-bit CRC polynomial is selected, the bytes are swizzled to {B0, B1, B2, B3}. When a 16-bit CRC polynomial is selected, the bytes are swizzled to {0, 0, B0, B1}.											

15. RTCC - Real Time Clock with Capture

Quick Facts

What?

The Real Time Clock with Capture (RTCC)) is a 32-bit Real Time Clock ensuring timekeeping in low energy modes.

Why?

Timekeeping over long time periods while using as little power as possible is required in many low power applications.

How?

A low frequency oscillator is used as clock signal and the RTCC has three different Capture/Compare channels which can trigger wake-up, generate PRS signalling, or capture system events. 32-bit resolution and selectable prescaling allow the system to stay in low energy modes for long periods of time and still maintain reliable timekeeping.

15.1 Introduction

The Real Time Clock with Capture (RTCC), with three capture/compare channels, is a 32-bit counter kept running down to energy mode EM3. It can be used as an EM2/3 wakeup source as well as a timekeeping counter during low energy mode. Time keeping over long time periods while using as little power as possible is required in many low-power applications. The 32-bit counter is in combination with a 15-bit pre-counter to allow flexible pre-scaling of the main counter.

Three individually configurable Capture/Compare channels can be used to trigger interrupts, generate PRS signals, capture system events, and to wake the device up from EM2, or EM3 when using the ULFRCO as a clock source.

15.2 Features

A low frequency oscillator is used as clock signal and the RTCC has three different Capture/Compare channels which can trigger wakeup, generate PRS signalling, or capture system events. 32-bit resolution and selectable pre-scaling allows the system to stay in low energy modes for long periods of time and still maintain reliable timekeeping.

- · 32-bit Real Time Counter
- 15-bit pre-counter, for flexible frequency scaling or for use as an independent counter
- EM2/EM3 operation and wakeup (EM3 when using ULFRCO as clock source)
- · Can survive system reset, only POR and EM4 wakeup will reset RTCC
- · Three Capture/Compare channels
 - · Capture of PRS events from other parts of the system, value stored in ICVALUE
 - · Compare match or input capture can trigger interrupts
 - Compare channel 1, RTCC_CC1_OCVALUE can be used as a top value for the main counter
 - · Compare channel 0, RTCC CC0 OCVALUE can be used as a top value for the pre-counter
 - · Compare match events are available to other peripherals through the Peripheral Reflex System (PRS)

15.3 Functional Description

An overview of the RTCC is shown in Figure 15.1 RTCC Overview on page 368.

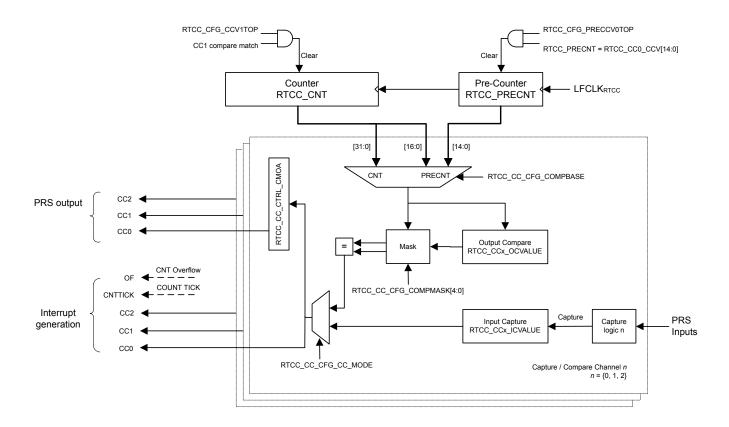


Figure 15.1. RTCC Overview

15.3.1 RTCC Counter

The RTCC consists of two counters; the 32-bit main counter, RTCC_CNT, and a 15-bit pre-counter, RTCC_PRECNT. The pre-counter can be used as an independent counter, or to generate a specific frequency for the main counter. In both configurations, the pre-counter can be used to generate compare match events or be captured in the Capture/Compare channels as a result of an external PRS event. Refer to Capture/Compare Channels for details on how to configure the Capture/Compare channels for use with the pre-counter.

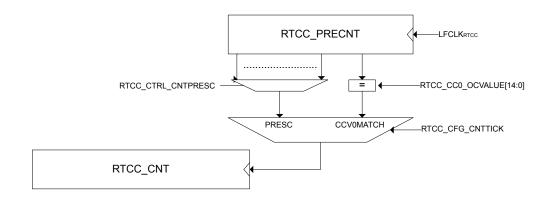


Figure 15.2. RTCC counter Block Diagram

The RTCC peripheral clock is requested by setting the EN bit in RTCC_EN. Then RTCC can be enabled by setting the command register START in RTCC_CMD. When the RTCC is enabled, the pre-counter (RTCC_PRECNT) increments upon each positive clock edge of low frequency clock. If CNTTICK in RTCC_CFG is set to PRESC, the pre-counter will continue to count up, wrapping around to zero when it overflows. If CNTTICK in RTCC_CFG is set to CCV0MATCH, the pre-counter will wrap around when it hits the value configured in RTCC_CC0_OCVALUE.

The main counter is available in RTCC_CNT and increments upon each tick given from the pre-counter. Refer to Normal Mode for a description on how to configure the frequency of these ticks. The main counter can receive a tick based on different dividers from the pre-counter, allowing the ticks to be power of 2 divisions of the LF clock. For more accurate configuration of the tick frequency, RTCC CC0 OCVALUE[14:0] can be used as a top value for

RTCC_PRECNT. When reaching the top value, the main counter receives a tick, and the pre-counter wraps around. Table below shows RTCC Resolution vs Overflow, FLFCLK = 32768 Hz, which summarizes the resolutions available when using a 32768 Hz oscillator as source for LF clock of RTCC.

Table 15.1. RTCC Resolution vs Overflow, F_{LFCLK} = 32768 Hz

RTCC_CTRL_CNTTICK	RTCC_CTRL_CNTPRESC	Main counter period, T _{CNT}	Overflow
CCV0MATCH	Don't care	(RTCC_CC0_OCVALUE + 1)/F _{LFCLK} s	2 ³² *T _{CNT} seconds

RTCC_CTRL_CNTTICK	RTCC_CTRL_CNTPRESC	Main counter period, T _{CNT}	Overflow				
	DIV1	30.5 µs	36.4 hours				
	DIV2	61 µs	72.8 hours				
	DIV4	122 µs	145.6 hours				
	DIV8	244 µs	12 days				
	DIV16	488 µs	24 days				
	DIV32	977 µs	48 days				
	DIV64	1.95 ms	97 days				
PRESC	DIV128	3.91 ms	194 days				
PRESU	DIV256	7.81 ms	388 days				
	DIV512	15.6 ms	776 days				
	DIV1024	31.25 ms	4.2 years				
	DIV2048	62.5 ms	8.5 years				
	DIV4096	0.125 s	17 years				
	DIV8192	0.25 s	34 years				
	DIV16384	0.5 s	68 years				
	DIV32768	1s	136 years				

By default, the counter will keep counting until it reaches the top value, 0xFFFFFFF, before it wraps around and continues counting from zero. By setting CCV1TOP in RTCC_CFG, a Capture/Compare channel 1 compare match will result in the main counter wrapping to 0. The timer will then wrap around on a channel 1 compare match (RTCC_CNT = RTCC_CC1_OCVALUE). If using the CCV1TOP setting, make sure to set this bit prior to or at the same time the RTCC is enabled. Setting CCV1TOP after enabling the RTCC may cause unintended operation (e.g. if RTCC_CNT > RTCC_CC1_OCVALUE, RTCC_CNT will wrap when reaching 0xFFFFFFF rather than RTCC_CC1_OCVALUE).

The counters of the RTCC, RTCC_CNT and RTCC_PRECNT, can at any time be written by software, as long as the registers are not locked using RTCC LOCKKEY. All RTCC registers use the new immediate synchronization scheme.

Note: Writing to the RTCC PRECNT register may alter the frequency of the ticks for the RTCC CNT register.

15.3.2 Capture/Compare Channels

Three capture/compare channels are available in the RTCC. Each channel can be configured as input capture or output compare, by setting the corresponding MODE in the RTCC_CCx_CTRL register.

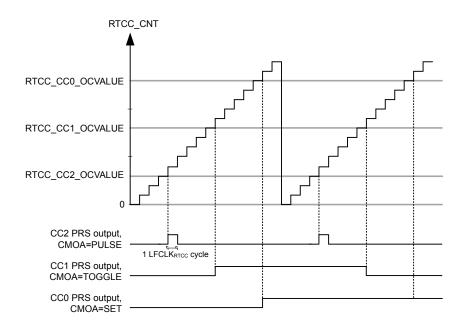
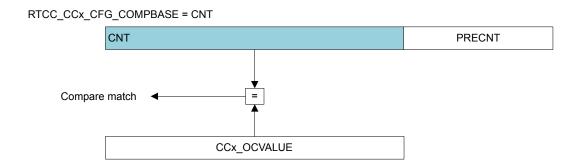



Figure 15.3. RTCC Compare Match and PRS Output Illustration

In input capture mode the RTCC_CNT register is captured into the RTCC_CCx_ICVALUE register when an edge is detected on the selected PRS input channel. The active capture edge is configured in the ICEDGE control bits.

In output compare mode the compare values are set by writing to the RTCC compare channel registers RTCC_CCx_OCVALUE. These values will be compared to the main counter, RTCC_CNT or a mixture of the main counter and the pre-counter, as illustrated in Figure 15.4 RTCC Compare Base Illustration on page 372. Compare base for the capture compare channels is set by configuring COMP-BASE in RTCC_CCx_CTRL.

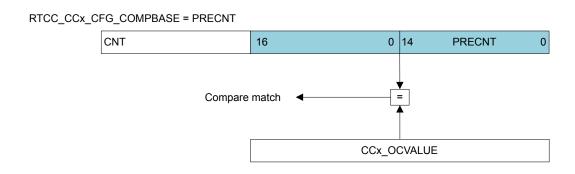


Figure 15.4. RTCC Compare Base Illustration

Table RTCC Capture/Compare subjects summarizes which registers being subject to comparison for different configurations of RTCC_CTRL_CNTMODE and RTCC_CCx_CTRL_COMPBASE.

Table 15.2. RTCC Capture/Compare subjects

RTCC_CTRL_CNTMODE	NORMAL
RTCC_CCx_CTRL_COMPBASE = CNT	RTCC_CNT vs. RTCC_CCx_OCVALUE
RTCC_CCx_CTRL_COMPBASE = PRECNT	{RTCC_CNT[16:0],RTCC_PRECNT[14:0]} vs. RTCC_CCx_OCVALUE

15.3.3 Interrupts and PRS Output

The RTCC has interrupts for each of its 3 Capture/Compare channels (CC0, CC1, and CC2), as well as a counter tick interrupt (CNTTICK) and an overflow interrupt (OF). The counter tick interrupt is set each time the main counter receives a tick, while the overflow interrupt occurs when the main counter overflows.

Each Capture/Compare channel has a PRS output with configurable actions upon compare match. The output action is determined by the CMOA field in register RTCC_CCx_CTRL. See 13.3.3 Producers for more details on how to connect PRS channels to these outputs.

15.3.4 Register Lock

To prevent accidental writes to the RTCC registers, the RTCC_LOCK register can be written to any other value than the unlock value. To unlock the register, write the unlock value to RTCC_LOCKKEY. Registers affected by this lock are:

- · RTCC CFG
- RTCC EN
- RTCC_CMD
- RTCC PRECNT
- RTCC_CNT
- RTCC_CCx_CTRL
- RTCC_CCx_OCVALUE
- RTCC CCx ICVALUE

15.3.5 Programmer's Model

The registers of RTCC can be divided into a few groups as below,

CFG: config registers

EN: enable register to make the peripheral clock available to RTCC CTRL: control or other registers can be programmed during run

CMD: command registers to start/stop RTCC running

STATUS: read only status registers

Generally speaking, in order to use and program RTCC properly, it should follow the sequence below,

Set CFG->Set EN->Set CTRL->START CMD->adjust CTRL->STOP CMD

All the registers have been separated into different synchronization types. The CFG register is WSTATIC, which means only when EN=0, it will allow the programming of CFG, otherwise there will be a bus fault for the CFG register write. Here is an example of programming CFG prior to setting EN to 1.

```
RTCC->CC[0].OCVALUE = 2;
RTCC->CC[0].CTRL = RTCC_CC_CTRL_CC_MODE_OUTPUTCOMPARE;
RTCC->CC[0].OCVALUE = 5;
RTCC->EN = RTCC_EN_EN;
```

All the other registers with low frequency synchronization types need to be programmed after setting EN to 1. Counter will only start to count once START command is issued. For LFRWSYNC registers, user needs to keep polling sync busy, e.g. START, before programming the same register once again.

```
// Bang on start till it's running
do {
   RTCC->CMD = RTCC_CMD_START;
   while(RTCC->SYNCBUSY & _RTCC_SYNCBUSY_MASK);
} while ( (RTCC->STATUS & _RTCC_STATUS_RUNNING_MASK) != RTCC_STATUS_RUNNING );
```

For QUICKLFWSYNC registers, when writing to it, the write will stall the bus until the write action is completed, so there is no sync busy bit for those registers, RTCC_CCn_CTRL is an example for that.

15.3.6 Debug Features and Description

By default, the RTCC is halted when code execution is halted from the debugger. By setting the DEBUGRUN bit in the RTCC_CTRL register, the RTCC will continue to run even when the debugger has halted the system.

15.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	RTCC_IPVERSION	R	IP VERSION
0x004	RTCC_EN	RW ENABLE	Module Enable Register
0x008	RTCC_CFG	RW CONFIG	Configuration Register
0x00C	RTCC_CMD	W LFSYNC	Command Register
0x010	RTCC_STATUS	RH	Status register
0x014	RTCC_IF	RWH INTFLAG	RTCC Interrupt Flags
0x018	RTCC_IEN	RW	Interrupt Enable Register
0x01C	RTCC_PRECNT	RWH LFSYNC	Pre-Counter Value Register
0x020	RTCC_CNT	RWH LFSYNC	Counter Value Register
0x024	RTCC_COMBCNT	RH	Combined Pre-Counter and Counter Valu
0x028	RTCC_SYNCBUSY	RH	Synchronization Busy Register
0x02C	RTCC_LOCK	W	Configuration Lock Register
0x030	RTCC_CCx_CTRL	RW	CC Channel Control Register
0x034	RTCC_CCx_OCVALUE	RW	Output Compare Value Register
0x038	RTCC_CCx_ICVALUE	RH	Input Capture Value Register
0x1000	RTCC_IPVERSION_SET	R	IP VERSION
0x1004	RTCC_EN_SET	RW ENABLE	Module Enable Register
0x1008	RTCC_CFG_SET	RW CONFIG	Configuration Register
0x100C	RTCC_CMD_SET	W LFSYNC	Command Register
0x1010	RTCC_STATUS_SET	RH	Status register
0x1014	RTCC_IF_SET	RWH INTFLAG	RTCC Interrupt Flags
0x1018	RTCC_IEN_SET	RW	Interrupt Enable Register
0x101C	RTCC_PRECNT_SET	RWH LFSYNC	Pre-Counter Value Register
0x1020	RTCC_CNT_SET	RWH LFSYNC	Counter Value Register
0x1024	RTCC_COMBCNT_SET	RH	Combined Pre-Counter and Counter Valu
0x1028	RTCC_SYNCBUSY_SET	RH	Synchronization Busy Register
0x102C	RTCC_LOCK_SET	W	Configuration Lock Register
0x1030	RTCC_CCx_CTRL_SET	RW	CC Channel Control Register
0x1034	RTCC_CCx_OCVALUE_SET	RW	Output Compare Value Register
0x1038	RTCC_CCx_ICVALUE_SET	RH	Input Capture Value Register
0x2000	RTCC_IPVERSION_CLR	R	IP VERSION
0x2004	RTCC_EN_CLR	RW ENABLE	Module Enable Register
0x2008	RTCC_CFG_CLR	RW CONFIG	Configuration Register
0x200C	RTCC_CMD_CLR	W LFSYNC	Command Register
0x2010	RTCC_STATUS_CLR	RH	Status register

Offset	Name	Туре	Description
0x2014	RTCC_IF_CLR	RWH INTFLAG	RTCC Interrupt Flags
0x2018	RTCC_IEN_CLR	RW	Interrupt Enable Register
0x201C	RTCC_PRECNT_CLR	RWH LFSYNC	Pre-Counter Value Register
0x2020	RTCC_CNT_CLR	RWH LFSYNC	Counter Value Register
0x2024	RTCC_COMBCNT_CLR	RH	Combined Pre-Counter and Counter Valu
0x2028	RTCC_SYNCBUSY_CLR	RH	Synchronization Busy Register
0x202C	RTCC_LOCK_CLR	W	Configuration Lock Register
0x2030	RTCC_CCx_CTRL_CLR	RW	CC Channel Control Register
0x2034	RTCC_CCx_OCVALUE_CLR	RW	Output Compare Value Register
0x2038	RTCC_CCx_ICVALUE_CLR	RH	Input Capture Value Register
0x3000	RTCC_IPVERSION_TGL	R	IP VERSION
0x3004	RTCC_EN_TGL	RW ENABLE	Module Enable Register
0x3008	RTCC_CFG_TGL	RW CONFIG	Configuration Register
0x300C	RTCC_CMD_TGL	W LFSYNC	Command Register
0x3010	RTCC_STATUS_TGL	RH	Status register
0x3014	RTCC_IF_TGL	RWH INTFLAG	RTCC Interrupt Flags
0x3018	RTCC_IEN_TGL	RW	Interrupt Enable Register
0x301C	RTCC_PRECNT_TGL	RWH LFSYNC	Pre-Counter Value Register
0x3020	RTCC_CNT_TGL	RWH LFSYNC	Counter Value Register
0x3024	RTCC_COMBCNT_TGL	RH	Combined Pre-Counter and Counter Valu
0x3028	RTCC_SYNCBUSY_TGL	RH	Synchronization Busy Register
0x302C	RTCC_LOCK_TGL	W	Configuration Lock Register
0x3030	RTCC_CCx_CTRL_TGL	RW	CC Channel Control Register
0x3034	RTCC_CCx_OCVALUE_TGL	RW	Output Compare Value Register
0x3038	RTCC_CCx_ICVALUE_TGL	RH	Input Capture Value Register

15.5 Register Description

15.5.1 RTCC_IPVERSION - IP VERSION

Offset	Bit Position									
0x000	33 34 35 36 37 38 38 38 48 48 49 40									
Reset	0×0									
Access	<u>α</u>									
Name	IPVERSION									

Bit	Name	Reset	Access	Description
31:0	IPVERSION	0x0	R	IP VERSION
	The read only IPVERSIO modules with different va	•		this module. There may be minor software changes required for

15.5.2 RTCC_EN - Module Enable Register

Offset		Bit Position																														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																																0x0
Access																																W M
Name																																EN

Bit	Name	Reset	Access	Description							
31:1	Reserved	To ensure o	compatibility witl	vith future devices, always write bits to 0. More information in 1.2 (
0	EN	0x0	0x0 RW RTCC Enable								
	The ENABLE bit enables the module. Software should write to CONFIG type registers before setting the ENABLE bit. Software should write to SYNC type registers only after setting the ENABLE bit.										

15.5.3 RTCC_CFG - Configuration Register

Offset	Bit Position				
0x008	1 1 <th>7 6 7 6 4</th> <th>3</th> <th>2</th> <th>- 0</th>	7 6 7 6 4	3	2	- 0
Reset		0×0	0x0	0x0	000
Access		RW	W.	₩ N	R W W
Name		CNTPRESC	CNTTICK	TCCV1TOP	PRECNTCCV0TOP DEBUGRUN

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
7:4	CNTPRESC	0x0	RW	Counter prescaler value.
	Configure counting	frequency of the	CNT register.	
	Value	Mode		Description
	0	DIV1		CLK_CNT = (RTCC LF CLK)/1
	1	DIV2		CLK_CNT = (RTCC LF CLK)/2
	2	DIV4		CLK_CNT = (RTCC LF CLK)/4
	3	DIV8		CLK_CNT = (RTCC LF CLK)/8
	4	DIV16		CLK_CNT = (RTCC LF CLK)/16
	5	DIV32		CLK_CNT = (RTCC LF CLK)/32
	6	DIV64		CLK_CNT = (RTCC LF CLK)/64
	7	DIV128		CLK_CNT = (RTCC LF CLK)/128
	8	DIV256		CLK_CNT = (RTCC LF CLK)/256
	9	DIV512		CLK_CNT = (RTCC LF CLK)/512
	10	DIV1024		CLK_CNT = (RTCC LF CLK)/1024
	11	DIV2048		CLK_CNT = (RTCC LF CLK)/2048
	12	DIV4096		CLK_CNT = (RTCC LF CLK)/4096
	13	DIV8192		CLK_CNT = (RTCC LF CLK)/8192
	14	DIV16384		CLK_CNT = (RTCC LF CLK)/16384
	15	DIV32768		CLK_CNT = (RTCC LF CLK)/32768
3	CNTTICK	0x0	RW	Counter prescaler mode.
				CC_CC0_OCVALUE[14:0] compare match with the pre-counter or tick in the RTCC_CTRL register.

on a pre-counter tap selected in CNTPRESC bitfield in the RTCC_CTRL register.

Value	Mode	Description
0	PRESC	CNT register ticks according to configuration in CNTPRESC.

Bit	Name	Reset	Access	Description							
	1	CCV0MAT	ГСН	CNT register ticks when PRECNT matches RTCC_CC0_CCV[14:0]							
2	CNTCCV1TOP	0x0	RW	CCV1 top value enable							
	When set, the counter	wraps around	on a CC1 event	t							
1	PRECNTCCV0TOP	0x0	RW	Pre-counter CCV0 top value enable.							
	When set, the pre-cour	iter wraps aro	und when PRE	NT equals RTCC_CC0_OCVALUE[14:0].							
0	DEBUGRUN	0x0	RW	Debug Mode Run Enable							
	Set this bit to keep the	RTCC running	g during a debu	g halt.							
	Value	Mode		Description							
	0	X0		RTCC is frozen in debug mode							
	1	X1		RTCC is running in debug mode							

15.5.4 RTCC_CMD - Command Register

Offset		Bit Position																														
0x00C	31	30	53	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	1	0
Reset			•		•	•										•		•			•				•		•		•		0x0	0x0
Access																															×	>
Name																															STOP	START

Bit	Name	Reset	Access	Description								
31:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-								
1	STOP	0x0	W	Stop RTCC main counter								
	Write a 1 to stop the RT0	CC										
0	START	0x0	W	Start RTCC main counter								
	Write a 1 to start the RTCC											

15.5.5 RTCC_STATUS - Status register

Offset	Bit Position	
0x010	33	- 0
Reset		000
Access		м М
Name		RTCCLOCKSTATUS RUNNING

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure ventions	compatibility wit	th future devices, always write bits to 0. More information in 1.2 Con-
1	RTCCLOCKSTATUS	0x0	R	Lock Status
	Indicates the current sta	atus of RTCC	Lock	
	Value	Mode		Description
	0	UNLOCKE	D	RTCC registers are unlocked
	1	LOCKED		RTCC registers are locked
0	RUNNING	0x0	R	RTCC running status
	Indicates the current sta	atus of RTCC	running	

15.5.6 RTCC_IF - RTCC Interrupt Flags

Offset															Ві	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset													•			'												000	000	0x0	000	0x0
Access																												₩ W	₩ M	₩.	Z.	RW W
Name																												CC2	CC1	000	CNTTICK	OF

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
4	CC2	0x0	RW	CC Channel n Interrupt Flag
	This bit indicates that th	ere has been	an interrupt eve	nt on Compare/Capture channel
3	CC1	0x0	RW	CC Channel n Interrupt Flag
	This bit indicates that th	ere has been	an interrupt eve	nt on Compare/Capture channel
2	CC0	0x0	RW	CC Channel n Interrupt Flag
	This bit indicates that th	ere has been	an interrupt eve	nt on Compare/Capture channel
1	CNTTICK	0x0	RW	Main counter tick
	Set each time the main	counter is upo	lated.	
0	OF	0x0	RW	Overflow Interrupt Flag
	Set when a RTCC overf	low has occur	red.	

15.5.7 RTCC_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•		•	•		•					•				•				•				•		•	•	0x0	0x0	0x0	0x0	0x0
Access																												RW	ZW W	₽	W.	Z N
Name																												CC2	CC1	000	CNTTICK	OF

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
4	CC2	0x0	RW	CC Channel n Interrupt Enable
	Enable CC channel inte	rrupts		
3	CC1	0x0	RW	CC Channel n Interrupt Enable
	Enable CC channel inte	rrupts		
2	CC0	0x0	RW	CC Channel n Interrupt Enable
	Enable CC channel inte	rrupts		
1	CNTTICK	0x0	RW	CNTTICK Interrupt Enable
	Enable cnttick interrupt			
0	OF	0x0	RW	OF Interrupt Enable
	Enable overflow interrup	ot		

15.5.8 RTCC_PRECNT - Pre-Counter Value Register

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset		•							•				•	•	•	•	•				•				0x0							
Access																									RW							
Name																									PRECNT							

Bit	Name	Reset	Access	Description
31:15	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
14:0	PRECNT	0x0	RW	Pre-Counter Value
	Gives access to the Pre	-counter value	e of the RTCC.	

15.5.9 RTCC_CNT - Counter Value Register

Offset	Bit Position
0x020	33 34 35 36 37 38 38 39 30 31 32 33 34 35 36 37 38 47 48 40
Reset	0×0
Access	R
Name	NO

Bit	Name	Reset	Access	Description
31:0	CNT	0x0	RW	Counter Value
	Gives access to the mai	n counter valu	ue of the RTCC.	

15.5.10 RTCC_COMBCNT - Combined Pre-Counter and Counter Valu...

Offset	Bit Position	n								
0x024	31 30 30 29 29 29 29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	4 1 1 1 1 1 1 1 1 1 2 1 2 4 2 4 5 6 6 7 8 8 9 9 4 8 7 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10<								
Reset	0×0	0000								
Access	<u>~</u>	α								
Name	CNTLSB	PRECNT								

Bit	Name	Reset	Access	Description								
31:15	CNTLSB	0x0	R	Counter Value								
	Gives access to the 17 l	SBs of the m	ain counter, CN	т.								
14:0	PRECNT	0x0	R	Pre-Counter Value								
	Gives access to the pre-counter, PRECNT.											

15.5.11 RTCC_SYNCBUSY - Synchronization Busy Register

Offset															Bi	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	5	4	က	2	_	0
Reset						•				•					•	•	•	•		•								•	0x0	0×0	0X0	0x0
Access																													22	R	~	ď
Name																													CNT	PRECNT	STOP	START

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
3	CNT	0x0	R	Sync busy for CNT
	Last writing of CNT is sy	nchronizing to	LF clock	
2	PRECNT	0x0	R	Sync busy for PRECNT
	Last writing of PRECNT	is synchronizi	ng to LF clock	
1	STOP	0x0	R	Sync busy for STOP
	Last writing of STOP is s	ynchronizing	to LF clock	
0	START	0x0	R	Sync busy for START
	Last writing of START is	synchronizing	g to LF clock	

15.5.12 RTCC_LOCK - Configuration Lock Register

Offset															Bi	t Pc	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset																								ć	Š							
Access																								3	>							
																								Ž	, Ļ							
Name																									<u>Z</u>							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
15:0	LOCKKEY	0x0	W	Configuration Lock Key
				k RTCC_CFG, RTCC_EN, RTCC_CMD, RTCC_PRECNT, RTCC_CNT e the unlock code to unlock.
	Value	Mode		Description
	44776	UNLOCK		Write to unlock RTCC lockable registers

15.5.13 RTCC_CCx_CTRL - CC Channel Control Register

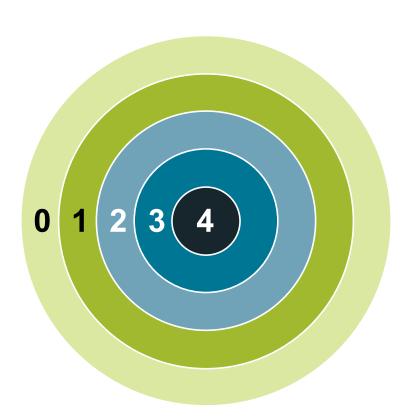
Offset															Bi	t Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	တ	ω	7	9	2	4	3	2	_	0
Reset		•	•		'		'				•			•	1					'		•		•	•	2	Š	0x0	>	2	0x0	2
Access																										2	<u>}</u>	RW	<u> </u>	<u> </u>	RW	
Name																										L C	וכבטפב	COMPBASE	VON C		MODE	I N O

Bit	Name	Reset	Access	Description
31:7	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
6:5	ICEDGE	0x0	RW	Input Capture Edge Select
	These bits control w	which edges the F	PRS edge detec	ctor triggers on.
	Value	Mode		Description
	0	RISING		Rising edges detected
	1	FALLING		Falling edges detected
	2	вотн		Both edges detected
	3	NONE		No edge detection, signal is left as it is
4	COMPBASE	0x0	RW	Capture compare channel comparison base.
	Configure comparis	on base for comp	pare channel.	
	Value	Mode		Description
	0	CNT		RTCC_CCx_ICVALUE/OCVALUE is compared with CNT register.
	1	PRECNT		Least significant bits of RTCC_CCx_ICVALUE/OCVALUE are compared with COMBCNT.
3:2	CMOA	0x0	RW	Compare Match Output Action
	Select output action	on compare ma	tch.	
	Value	Mode		Description
	0	PULSE		A single clock cycle pulse is generated on output
	1	TOGGLE		Toggle output on compare match
	2	CLEAR		Clear output on compare match
	3	SET		Set output on compare match
1:0	MODE	0x0	RW	CC Channel Mode
	These bits select th	e mode for Comp	oare/Capture ch	nannel.
	Value	Mode		Description
	0	OFF		Compare/Capture channel turned off

Bit	Name	Reset Acce	Description	
	1	INPUTCAPTURE	Input capture	
	2	OUTPUTCOMPAR	Output compare	

15.5.14 RTCC_CCx_OCVALUE - Output Compare Value Register

Offset															Bi	t Pos	itic	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	80	7	9	5	4	က	2	_	0
Reset																0X0																
Access																R ≪																
Name																00																


Bit	Name	Reset	Access	Description
31:0	OC	0x0	RW	Output Compare Value
	Shows the Compare Val	ue for the cha	innel	

15.5.15 RTCC_CCx_ICVALUE - Input Capture Value Register

Offset															Bi	t Po	siti	on														
0x038	31	30	59	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	∞	7	9	2	4	က	2	_	0
Reset		•				•							•			,	2															
Access																ב	צ															
Name																<u>c</u>	٥															

Bit	Name	Reset	Access	Description
31:0	IC	0x0	R	Input Capture Value
	Shows the Capture Valu	e for the char	nnel	

16. BURTC - Back-Up Real Time Counter

Quick Facts

What?

The BURTC is a 32 bit counter which operates on a low frequency oscillator, and is capable of running in all Energy Modes.

Why?

It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode.

The availability of the BURTC in EM4, where most of the device is powered down, makes it ideal for keeping track of time in EM4.

How?

The BURTC provides a very wide range of periods for the interrupts facilitating flexible ultra-low energy operation.

16.1 Introduction

The Back-Up Real Time Counter (BURTC) is a 32-bit counter which operates on a low frequency oscillator, and is capable of running in all Energy Modes. It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The BURTC provides a very wide range of periods for the interrupts facilitating flexible ultra-low energy operation. The availability of the BURTC in EM4, where most of the device is powered down, makes it ideal for keeping track of time in EM4. A single compare channel is available which can be used to trigger an interrupt and/or wake the device up from a low energy mode.

16.2 Features

A low frequency oscillator is used as clock signal and the BURTC with one compare channel which can trigger wake-up, generate PRS signalling, or capture system events. 32-bit resolution and selectable prescaling allows the system to stay in low energy modes for long periods of time and still maintain reliable timekeeping.

- 32-bit Real Time Counter
- · 15-bit pre-counter for flexible frequency scaling of main counter
- EM2/3/4 operation and wakeup
- · Reset only by External Pin and Power-On Resets
- · Interrupt/wake up event after deterministic intervals
- PRS Outputs
- · Debug mode
 - Configurable to either run or stop when processor is stopped (break)

16.3 Functional Description

An overview of the BURTC module is shown in Figure 16.1 BURTC Overview on page 387.

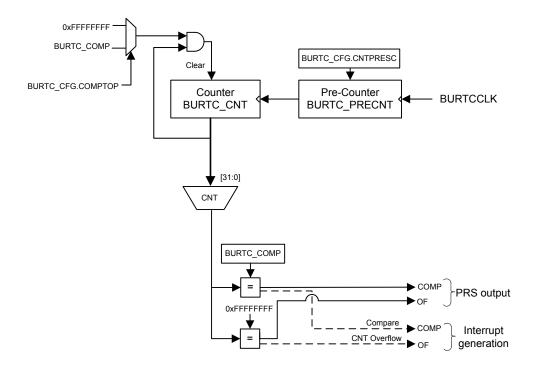


Figure 16.1. BURTC Overview

16.3.1 Clock Selection

The BURTC source clock (BURTCCLK) can be selected to be the LFXO, LFRCO, or ULFRCO by configuring the CMU EM4GRPACLKCTRL.CLKSEL bitfield. Note that in EM3, only ULFRCO is a valid source clock.

16.3.2 Configuration

To configure and use the BURTC properly, the following programming sequence must be followed:

- 1. Configure any desired options in the BURTC_CFG register. Note that the BURTC_CFG register can only be written when BURTC EN.EN = 0 a bus fault will occur if writing BURTC CFG register while BURTC EN.EN = 1.
- 2. Set BURTC_EN.EN = 1.
- 3. Set BURTC_CMD.START = 1 to start the BURTC counter.

Note: All low frequency synchronization registers can only be programmed after EN is set to 1. The BURTC counter will only start to count once START command is issued. For HV Sync registers (e.g., BURTC_CMD), the first bitfield write will occur without issue. However, on subsequent bitfield writes to HV Sync registers, the firmware needs to poll the corresponding bit in BURTC_SYNCBUSY before programming the same bitfield once again.

To stop the BURTC, set BURTC_CMD.STOP = 1

16.3.3 Debug Features and Description

By default, the BURTC is halted when code execution is halted from the debugger. By setting the DEBUGRUN bit in the BURTC_CFG register, the BURTC will continue to run even when the debugger has halted the system.

16.3.4 Counter

The BURTC consists of two counters: the 32-bit main counter, BURTC_CNT, and a 15-bit pre-counter, BURTC_PRECNT. The pre-counter is a free running counter clocked by low frequency clock, used to generate a specific frequency for the main counter. The pre-counter will be counting only when the BURTC_CFG.CNTPRESC value is set greater than 0.

The BURTC peripheral clock is requested by setting the EN bit in BURTC_EN. Then BURTC can be enabled by setting the command register START in BURTC_CMD. When the BURTC is enabled and BURTC_CFG.CNTPRESC > 0, the pre-counter (BURTC_PRECNT) increments upon each positive clock edge of the BURTCCLK, wrapping around to zero when it overflows.

The main counter can be accessed in BURTC_CNT register, and counts at frequency determined by the CNTPRESC bitfiled in BURTC_CFG. Setting CNTPRESC to 0 gives the maximum resolution, with the main counter clocked at the same frequency as the BURTCCLK. When CNTPRESC > 0, the main counter increments upon each tick given from the pre-counter, allowing the main counter ticks to be power-of-2 divisions of the BURTCCLK.

The Table 16.1 BURTC Resolution vs Overflow, F_{BURTCCLK} = 32768 Hz on page 388 table below shows the BURTC Resolution vs Overflow Time when using a 32768 Hz oscillator as the source clock of BURTC.

Table 16.1. BURTC Resolution vs Overflow, F_{BURTCCLK} = 32768 Hz

BURTC_CFG.CNTPRESC	Main counter period, T _{CNT}	Overflow Time
DIV1	30.5 μs	36.4 hours
DIV2	61 µs	72.8 hours
DIV4	122 µs	145.6 hours
DIV8	244 µs	12 days
DIV16	488 µs	24 days
DIV32	977 µs	48 days
DIV64	1.95 ms	97 days
DIV128	3.91 ms	194 days
DIV256	7.81 ms	388 days
DIV512	15.6 ms	776 days
DIV1024	31.25 ms	4.2 years
DIV2048	62.5 ms	8.5 years
DIV4096	0.125 s	17 years
DIV8192	0.25 s	34 years
DIV16384	0.5 s	68 years
DIV32768	1 s	136 years

By default, the counter will keep counting until it reaches the top value, 0xFFFFFFFF, and then it wrap around and continue counting from zero. If COMPTOP in BURTC_CFG is set, the main counter will wrap to 0 on a Compare value match (i.e., BURTC_CNT = BURTC_COMP). If using the Compare value match, make sure to set COMPTOP prior to or at the same time the BURTC is enabled. Setting COMPTOP after enabling the BURTC will result in a bus fault error.

The counters of the BURTC, BURTC_CNT and BURTC_PRECNT, can at any time be written by software, as long as the registers are not locked using BURTC LOCKKEY. All BURTC control registers with Sync Type HV uses the 2 FF synchronization scheme.

Note: Writing to the BURTC_PRECNT register may alter the frequency of the ticks for the BURTC_CNT register.

16.3.5 Compare Channel

A single compare channel is available in the BURTC. The compare value is set in BURTC_COMP register. If BURTC_CFG.COMPTOP is set, the main counter will clear to 0 when it matches the value set in BURTC_COMP.

16.3.6 Interrupts

The BURTC has 2 interrupts: one for Overflow and another for Compare match event. Individual interrupts are enabled by BURTC_IEN register bits, and the respective bits can be used as EM2 wakeup. BURTC_EM4WUEN enables the wakeup enable from EM4 for those events.

16.3.7 Register Lock

To prevent accidental writes to the BURTC registers, the BURTC_LOCK register can be written to any other value than the unlock value. To unlock the register, write the unlock value to BURTC_LOCKKEY. Registers affected by this lock are:

- BURTC_CFG
- BURTC_EN
- BURTC_CMD
- BURTC_PRECNT
- BURTC_CNT
- BURTC_COMP
- BURTC_IEN

16.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	BURTC_IPVERSION	R	IP version ID
0x004	BURTC_EN	RW ENABLE	Module Enable Register
0x008	BURTC_CFG	RW CONFIG	Configuration Register
0x00C	BURTC_CMD	W LFSYNC	Command Register
0x010	BURTC_STATUS	RH	Status Register
0x014	BURTC_IF	RWH INTFLAG	Interrupt Flag Register
0x018	BURTC_IEN	RW	Interrupt Enable Register
0x01C	BURTC_PRECNT	RW LFSYNC	Pre-Counter Value Register
0x020	BURTC_CNT	RW LFSYNC	Counter Value Register
0x024	BURTC_EM4WUEN	RW	EM4 wakeup request Enable Register
0x028	BURTC_SYNCBUSY	RH	Synchronization Busy Register
0x02C	BURTC_LOCK	W	Configuration Lock Register
0x030	BURTC_COMP	RW LFSYNC	Compare Value Register
0x1000	BURTC_IPVERSION_SET	R	IP version ID
0x1004	BURTC_EN_SET	RW ENABLE	Module Enable Register
0x1008	BURTC_CFG_SET	RW CONFIG	Configuration Register
0x100C	BURTC_CMD_SET	W LFSYNC	Command Register
0x1010	BURTC_STATUS_SET	RH	Status Register
0x1014	BURTC_IF_SET	RWH INTFLAG	Interrupt Flag Register
0x1018	BURTC_IEN_SET	RW	Interrupt Enable Register
0x101C	BURTC_PRECNT_SET	RW LFSYNC	Pre-Counter Value Register
0x1020	BURTC_CNT_SET	RW LFSYNC	Counter Value Register
0x1024	BURTC_EM4WUEN_SET	RW	EM4 wakeup request Enable Register
0x1028	BURTC_SYNCBUSY_SET	RH	Synchronization Busy Register
0x102C	BURTC_LOCK_SET	W	Configuration Lock Register
0x1030	BURTC_COMP_SET	RW LFSYNC	Compare Value Register
0x2000	BURTC_IPVERSION_CLR	R	IP version ID
0x2004	BURTC_EN_CLR	RW ENABLE	Module Enable Register
0x2008	BURTC_CFG_CLR	RW CONFIG	Configuration Register
0x200C	BURTC_CMD_CLR	W LFSYNC	Command Register
0x2010	BURTC_STATUS_CLR	RH	Status Register
0x2014	BURTC_IF_CLR	RWH INTFLAG	Interrupt Flag Register
0x2018	BURTC_IEN_CLR	RW	Interrupt Enable Register
0x201C	BURTC_PRECNT_CLR	RW LFSYNC	Pre-Counter Value Register
0x2020	BURTC_CNT_CLR	RW LFSYNC	Counter Value Register

Offset	Name	Туре	Description
0x2024	BURTC_EM4WUEN_CLR	RW	EM4 wakeup request Enable Register
0x2028	BURTC_SYNCBUSY_CLR	RH	Synchronization Busy Register
0x202C	BURTC_LOCK_CLR	W	Configuration Lock Register
0x2030	BURTC_COMP_CLR	RW LFSYNC	Compare Value Register
0x3000	BURTC_IPVERSION_TGL	R	IP version ID
0x3004	BURTC_EN_TGL	RW ENABLE	Module Enable Register
0x3008	BURTC_CFG_TGL	RW CONFIG	Configuration Register
0x300C	BURTC_CMD_TGL	W LFSYNC	Command Register
0x3010	BURTC_STATUS_TGL	RH	Status Register
0x3014	BURTC_IF_TGL	RWH INTFLAG	Interrupt Flag Register
0x3018	BURTC_IEN_TGL	RW	Interrupt Enable Register
0x301C	BURTC_PRECNT_TGL	RW LFSYNC	Pre-Counter Value Register
0x3020	BURTC_CNT_TGL	RW LFSYNC	Counter Value Register
0x3024	BURTC_EM4WUEN_TGL	RW	EM4 wakeup request Enable Register
0x3028	BURTC_SYNCBUSY_TGL	RH	Synchronization Busy Register
0x302C	BURTC_LOCK_TGL	W	Configuration Lock Register
0x3030	BURTC_COMP_TGL	RW LFSYNC	Compare Value Register

16.5 Register Description

16.5.1 BURTC_IPVERSION - IP version ID

Offset	Bit Position																															
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	3	2	_	0
Reset																2	2															
Access		α																														
Name	PVERSION R																															

Bit	Name	Reset	Access	Description
31:0	IPVERSION	0x0	R	IP Version ID
	The read only IPVERSIOn modules with different v	•		this module. There may be minor software changes required for

16.5.2 BURTC_EN - Module Enable Register

Offset	Bit Position	
0x004	33 4 4 5 6 6 6 7 7 8 8 8 9 9 10	0
Reset		0x0
Access		RW
Name		EN

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
0	EN	0x0	RW	BURTC Enable
				d write to CONFIG type registers before setting the ENABLE bit. er setting the ENABLE bit.

16.5.3 BURTC_CFG - Configuration Register

Offset	Bit Position		
0x008	8 8 8 7 2 8 8 7 2 8 8 8 8 8 8 8 8 8 8 8	r 6 8	0 7 2 3
Reset		0x0	0x0
Access		RW	RW RW
Name		CNTPRESC	COMPTOP

Bit	Name	Reset	Access	Description									
31:8	Reserved	To ensur ventions	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-									
7:4	CNTPRESC	0x0	RW	Counter prescaler value.									
	Configure counting	frequency of the	CNT register										
	Value	Mode		Description									
	0	DIV1		CLK_CNT = (BURTC LF CLK)/1									
	1	DIV2		CLK_CNT = (BURTC LF CLK)/2									
	2	DIV4		CLK_CNT = (BURTC LF CLK)/4									
	3	DIV8		CLK_CNT = (BURTC LF CLK)/8									
	4	DIV16		CLK_CNT = (BURTC LF CLK)/16									
	5	DIV32		CLK_CNT = (BURTC LF CLK)/32									
	6	DIV64		CLK_CNT = (BURTC LF CLK)/64									
	7	DIV128		CLK_CNT = (BURTC LF CLK)/128									
	8	DIV256		CLK_CNT = (BURTC LF CLK)/256									
	9	DIV512		CLK_CNT = (BURTC LF CLK)/512									
	10	DIV1024		CLK_CNT = (BURTC LF CLK)/1024									
	11	DIV2048		CLK_CNT = (BURTC LF CLK)/2048									
	12	DIV4096		CLK_CNT = (BURTC LF CLK)/4096									
	13	DIV8192		CLK_CNT = (BURTC LF CLK)/8192									
	14	DIV16384	4	CLK_CNT = (BURTC LF CLK)/16384									
	15	DIV32768	3	CLK_CNT = (BURTC LF CLK)/32768									
3:2	Reserved	To ensur	e compatibility v	with future devices, always write bits to 0. More information in 1.2 C									
1	COMPTOP	0x0	RW	Compare Channel is Top Value									
	When set, the cour	nter is cleared in	the clock cycle	after a compare match with compare channel									
	Value	Mode		Description									
	0	DISABLE		The top value of the BURTC is 4294967295 (0xFFFFFFF)									

Bit	Name	Reset	Access	Description
	1	ENABLE		The top value of the BURTC is given by COMP
0	DEBUGRUN	0x0	RW	Debug Mode Run Enable
	Set this bit to enabl	e the BURTC to k	keep running in	debug
	Value	Mode		Description
	0	DISABLE		BURTC is frozen in debug mode
	1	ENABLE		BURTC is running in debug mode

16.5.4 BURTC_CMD - Command Register

Offset	Bit Position																															
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	1	0
Reset		•	•		•	•	•	•		•		•	•	•	•	•		•	•	•	•			•	•	•	•		•	•	0x0	0x0
Access																															×	>
Name																															STOP	START

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
1	STOP	0x0	W	Stop BURTC counter
	Write a 1 to stop the BU to same register while E		. Differs from SI	LOWLFWSYNC behavior in that multiple writes cannot be queued up
0	START	0x0	W	Start BURTC counter
	Write a 1 to start the BU	JRTC counter	. Differs from S	LOWLFWSYNC behavior in that multiple writes cannot be queued

16.5.5 BURTC_STATUS - Status Register

Offset	Bit Position																															
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset			'	•	'		'				•			•			•	•			•	•		•	•			•	•		0X0	0x0
Access																															~	2
Name																															LOCK	RUNNING

Bit	Name	Reset	Access	Description							
31:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-							
1	LOCK	0x0	R	Configuration Lock Status							
	Indicates the current star										
	Value	Mode		Description							
	0	UNLOCKE)	All BURTC lockable registers are unlocked.							
	1	LOCKED		All BURTC lockable registers are locked.							
0	RUNNING	0x0	R	BURTC running status							
	Indicates the current status of BURTC running										

16.5.6 BURTC_IF - Interrupt Flag Register

Offset		Bit Position																														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset															0X0	0x0																
Access														R M	RW																	
Name																															COMP	OF

Bit	Name	Reset	Access	Description									
31:2	Reserved	To ensure o	ompatibility with	th future devices, always write bits to 0. More information in 1.2 Co									
1	COMP	0x0	RW	Compare Match Interrupt Flag									
	Set on a compare match	between CN	Γ and COMP.										
0	OF	0x0	RW	Overflow Interrupt Flag									
	Set on a CNT value overflow.												

16.5.7 BURTC_IEN - Interrupt Enable Register

Offset		Bit Position																														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset				•	•											•															0x0	0x0
Access													Z.	RW																		
Name																															COMP	OF

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1	COMP	0x0	RW	Compare Match Interrupt Flag
	Set to enable the COMP	IF Interrupt		
0	OF	0x0	RW	Overflow Interrupt Flag
	Set to enable the OFIF In	nterrupt		

16.5.8 BURTC_PRECNT - Pre-Counter Value Register

Offset	Bit Position												
0x01C	31 30 30 30 30 30 30 30 30 4 4 5 5 2 2 2 2 3 3 3 3 3 3 1 3 1 3 1 3 1 3 1 3	4 E C C C C O O O C C A C C C C C C C C C C											
Reset		0×0											
Access		R Š											
Name		PRECNT											

Bit	Name	Reset	Access	Description							
31:15	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 C ventions									
14:0	PRECNT	0x0	RW	Pre-Counter Value							
	Gives access to the Pre-counter value of the BURTC. Differs from SLOWLFRWSYNC behavior in that multiple writes cannot be queued up to same register while EN=0										

16.5.9 BURTC_CNT - Counter Value Register

Offset	Bit Position
0x020	1 1
Reset	0×0
Access	R&
Name	CN

Bit	Name	Reset	Access	Description
31:0	CNT	0x0	RW	Counter Value
	Gives access to the could be queued up to same re			ers from SLOWLFRWSYNC behavior in that multiple writes cannot

16.5.10 BURTC_EM4WUEN - EM4 wakeup request Enable Register

Offset															Ві	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset		•			•	•					•	•		•	•				•			•		•	•	'	•	•			000	0x0
Access																															₩ M	A W
Name																															COMPEM4WUEN	OFEM4WUEN

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure c	ompatibility with	future devices, always write bits to 0. More information in 1.2 Con-
1	COMPEM4WUEN	0x0	RW	Compare Match EM4 Wakeup Enable
	Compare Match EM4 wa	keup requests	s. No Synchroni	zation done into peripheral clock domain.
0	OFEM4WUEN	0x0	RW	Overflow EM4 Wakeup Enable
	Overflow EM4 Wakeup re	equest. No Sy	nchronization d	one into peripheral clock domain.

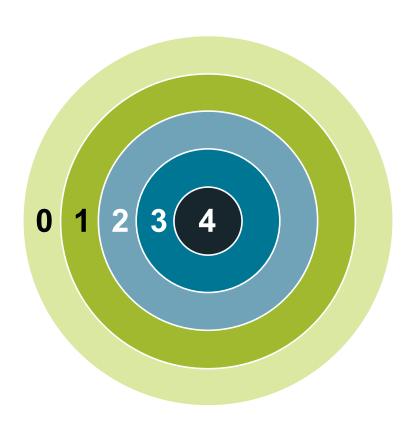
16.5.11 BURTC_SYNCBUSY - Synchronization Busy Register

Offset															Ві	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•		•							•		•	•		•	•									0×0	0x0	000	0x0	0x0	0x0
Access																											~	~	22	~	2	<u>~</u>
Name																											EN	COMP	CNT	PRECNT	STOP	START

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
5	EN	0x0	R	Sync busy for EN
	Last writing of EN is synd	chronizing to	BURTC clock	
4	COMP	0x0	R	Sync busy for COMP
	Last writing of COMP is	synchronizing	to BURTC cloc	k
3	CNT	0x0	R	Sync busy for CNT
	Last writing of CNT is sy	nchronizing to	BURTC clock	
2	PRECNT	0x0	R	Sync busy for PRECNT
	Last writing of PRECNT	is synchroniz	ing to BURTC cl	ock
1	STOP	0x0	R	Sync busy for STOP
	Last writing of STOP is s	ynchronizing	to BURTC clock	S.
0	START	0x0	R	Sync busy for START
	Last writing of START is	synchronizin	g to BURTC cloc	ck

16.5.12 BURTC_LOCK - Configuration Lock Register

Offset	Bit Pos	sition
0x02C	31 30 30 30 30 30 30 30 30 30 30 30 31 30 30 30 30 30 30 30 30 30 30 30 30 30	6 7 7 7 7 7 7 7 7 7 7 7 7 0
Reset		0xAEE8
Access		 ≽
Name		LOCKKEY


Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure o	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
15:0	LOCKKEY	0xAEE8	Configuration Lock Key	
				BURTC_EN, BURTC_CFG, BURTC_CMD, BURTC_PRECNT, diting. Write the unlock code to unlock.
	Value	Mode		Description
	44776	UNLOCK		Write to unlock all BURTC lockable registers

16.5.13 BURTC_COMP - Compare Value Register

Offset															Bi	t Pc	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	တ	8	7	9	5	4	က	2	_	0
Reset			•	•									•		•	Š	OXO															
Access		NA 0x0																														
Name																	F 0															

Bit	Name	Reset	Access	Description
31:0	COMP	0x0	RW	Compare Value
	•		•	to this value. This event sets the COMP interrupt flag. It is also avail- IC behavior in that multiple writes cannot be queued up to same reg-

17. BURAM - Backup RAM

Quick Facts

What?

The BURAM is a dedicated 128-byte low-power RAM that is retained in EM4.

Why?

Most of the system, including the RAM, is powered off at EM4 entry to minimize current draw. The purpose of the BURAM is to retain critical data for use when the system wakes up.

How?

Because it is separate from the main system RAM, the BURAM has a dedicated power supply that is not shutdown when the system enters EM4.

17.1 Introduction

The Back-Up RAM (BURAM) is a dedicated 128-byte RAM that remains powered when the system enters EM4. Upon exit from EM4, the data retained in the BURAM can be accessed by the application software.

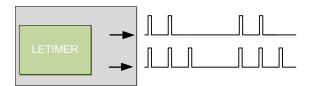
17.2 Functional Description

The BURAM consists of 32 x 32-bit registers, which are retained in all energy modes, including EM4. Each word in the BURAM is accessible through the corresponding 32 RETx_REG register. Note that each RETx_REG register has an undefined state out of reset.

17.3 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	BURAM_RETx_REG	RW	Retention Register
0x1000	BURAM_RETx_REG_SET	RW	Retention Register
0x2000	BURAM_RETx_REG_CLR	RW	Retention Register
0x3000	BURAM_RETx_REG_TGL	RW	Retention Register


17.4 Register Description

17.4.1 BURAM_RETx_REG - Retention Register

Offset															Bi	t Po	sitio	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Reset						•		•		•		•	•	•	•	2	2		•						•							<u> </u>
Access																20	2															
Name) 															

Bit	Name	Reset	Access	Description
31:0	RETREG	0x0	RW	Latch based Retention register
	The RETREG registers a than a brownout or power		out of reset. An	y written RETREG values will be retained through any event other

18. LETIMER - Low Energy Timer

Quick Facts

What?

The LETIMER is a down-counter that can keep track of time and output configurable waveforms. Running on a 32768 Hz clock, the LETIMER is available in EM0 Active, EM1 Sleep, EM2 DeepSleep, and EM3 Stop.

Why?

The LETIMER can be used to provide repeatable waveforms to external components while remaining in EM2 DeepSleep. It is well suited for applications such as metering systems or to provide more compare values than available in the RTCC.

How?

With buffered repeat and top value registers, the LE-TIMER can provide glitch-free waveforms at frequencies up to 16 kHz. It can be coupled with RTCC using PRS, allowing advanced time-keeping and wake-up functions in EM2 DeepSleep and EM3 Stop

18.1 Introduction

The LETIMER is a down-counter that can keep track of time and output configurable waveforms with minimal software intervention. Running on a Low Frequency clock, the LETIMER is available in Energy Mode0, Energy Mode 1 and optionally available in Energy Mode 2 and Energy Mode 3. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. It is well suited for applications such as metering systems or to provide more compare values than available in the RTCC. With buffered repeat and top value registers, the LETIMER can provide glitch-free waveforms at frequencies up to 16 kHz. It can be coupled with other peripherals using PRS, allowing advanced time-keeping and wake-up functions

18.2 Features

High-level features

- · 24-bit Down counter
- · 8-bit prescalar
- · 2 Compare match registers
- · TOP register can be Timer top value
- · TOP register can be double buffered using TOPBUFF register
- · Double buffered 8-bit Repeat Register
- Timer Start/Stop/Clear trigger can be from PRS or Software
- · Configurable 2 Output pins Toggle/Pulse/PWM
- · Interrupt Compare match/Timer underflow/Repeat done
- · Optionally runs during debug
- · 2 output pins can optionally be configured to provide different waveforms on timer underflow:
 - · Toggle output pin
 - · Pulse output with width of One Prescaled clock period
 - PWM
- · 2 PRS Output

18.3 Functional Description

An overview of the LETIMER module is shown in Figure 18.1 LETIMER Overview on page 403. The LETIMER is a 24-bit down-counter with two compare registers, LETIMERn_COMP0 and LETIMERn_COMP1. The LETIMERn_TOP register can optionally act as a top value for the counter. The repeat counter LETIMERn_REP0 allows the timer to count a specified number of times before it stops. Both the LETIMERn_TOP and LETIMERn_REP0 registers can be double buffered by the LETIMERn_TOPBUFF and LETIMERn_REP1 registers to allow continuous operation. The timer can generate a single pin output, or two linked outputs.

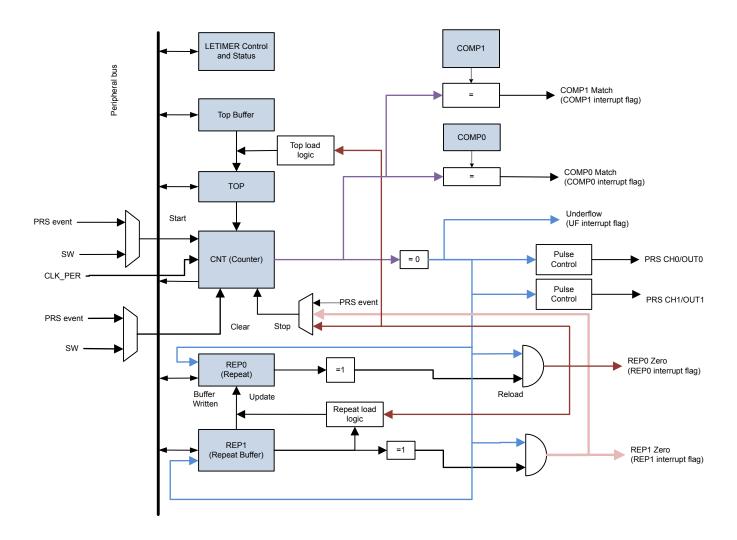


Figure 18.1. LETIMER Overview

18.3.1 Internal Overview

Timer

The timer value can be read using the LETIMERn_CNT register. The value can be written, and it can also be cleared by setting the CLEAR command bit in LETIMERn_CMD. If the CLEAR and START commands are issued at the same time, the timer will be cleared, then start counting at the top value.

Compare Registers

• The LETIMER has two compare match registers, LETIMERn_COMP0 and LETIMERn_COMP1. Each of these compare registers are capable of generating an interrupt when the counter value LETIMERn_CNT is equal to their value. When LETIMERn_CNT is equal to the value of LETIMERn_COMP0, the interrupt flag COMP0 in LETIMERn_IF is set, and when LETIMERn_CNT is equal to the value of LETIMERn_COMP1, the interrupt flag COMP1 in LETIMERn_IF is set.

· Top Value

If CNTTOPEN in LETIMERn_CTRL is set, the value of LETIMERn_TOP acts as the top value of the timer, and LETIMERn_TOP is loaded into LETIMERn_CNT on timer underflow. If CNTTOPEN is cleared to 0, the timer wraps around to 0xFFFFFF. The underflow interrupt flag UF in LETIMERn_IF is set when the timer reaches zero.

· Repeat Modes

By default, the timer wraps around to the top value or 0xFFFFFF on each underflow, and continues counting. The repeat counters can be used to get more control of the operation of the timer, including defining the number of times the counter should wrap around. Four different repeat modes are available, see Table 18.1 LETIMER Repeat Modes on page 404.

Table 18.1. LETIMER Repeat Modes

REPMODE	Mode	Description
0b00	Free-running	The timer runs until it is stopped.
0b01	One-shot	The timer runs as long as LETI-MERn_REP0 != 0. LETIMERn_REP0 is decremented at each timer underflow.
0b10	Buffered	The timer runs as long as LETI-MERn_REP0 != 0. LETIMERn_REP0 is decremented on each timer underflow. If LETIMERn_REP1 has been written with Non zero value, then it is loaded into LETIMERn_REP0 when LETIMERn_REP0 is about to be decremented to 0 and Timer countinue counting with new LETI-MERn_REP0.
0b11	Double	The timer runs as long as LETI-MERn_REP0 != 0 or LETIMERn_REP1 != 0. Both LETIMERn_REP0 and LETI-MERn_REP1 are decremented at each timer underflow.

The interrupt flags REP0 and REP1 in LETIMERn_IF are set whenever LETIMERn_REP0 or LETIMERn_REP1 are decremented to 0 respectively. REP0 is also set when the value of LETIMERn_REP1 is loaded into LETIMERn_REP0 in buffered mode.

Write operations to LETIMERn REP0 have priority over buffer loads from LETIMERn REP1.

· Buffered Top Value

In Buffered Mode, If BUFTOP in LETIMERn_CTRL is set, the value of LETIMERn_TOP is buffered by LETIMERn_TOPBUFF. In this mode, the value of LETIMERn_TOPBUFF is loaded into LETIMERn_TOP every time LETIMERn_REP0 is about to decrement to 0. This can be used to generate continually changing output waveforms.

Write operations to LETIMERn_TOP have priority over buffer loads from LETIMERn__TOPBUFF.

18.3.2 Free Running Mode

In free-running mode, the LETIMER acts as a regular timer and the repeat operation is disabled. When started, the timer runs until it is stopped using the STOP command bit in LETIMERn_CMD/PRS. A state machine for this mode is shown in Figure 18.2 LETIMER State Machine for Free-running Mode on page 405.

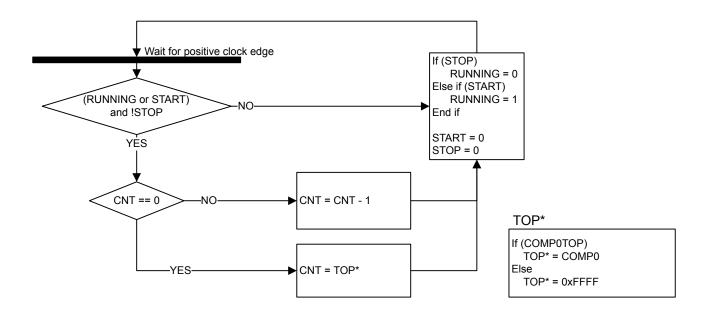


Figure 18.2. LETIMER State Machine for Free-running Mode

Note that the CLEAR command bit in LETIMERn_CMD always has priority over Decrement and Load TOP to LETIMERn_CNT. When the clear command is used, LETIMERn_CNT is set to 0 and an underflow event will not be generated when LETIMERn_CNT wraps around to the top value or 0xFFFFFF. Since no underflow event is generated, no output action is performed. LETIMERn_REP0, LETIMERn_REP1, LETIMERn_COMP0 and LETIMERn_COMP1 are also left untouched.

18.3.3 One-shot Mode

The one-shot repeat mode is the most basic repeat mode. In this mode, the repeat register LETIMERn_REP0 is decremented every time the timer underflows, and the timer stops when LETIMERn_REP0 goes from 1 to 0. In this mode, the timer counts down LETIMERn REP0 times, i.e. the timer underflows LETIMERn REP0 times.

Note: Note that write operations to LETIMERn_REP0 have priority over the timer decrement event. If LETIMERn_REP0 is assigned a new value in the same cycle as a timer decrement event occurs, the timer decrement will not occur and the new value is assigned.

LETIMERn_REP0 can be written while the timer is running to allow the timer to run for longer periods at a time without stopping. Write to LETIMERn_REP0 should be done after checking SYNC busy statusFigure 18.3 LETIMER One-shot Repeat State Machine on page 406.

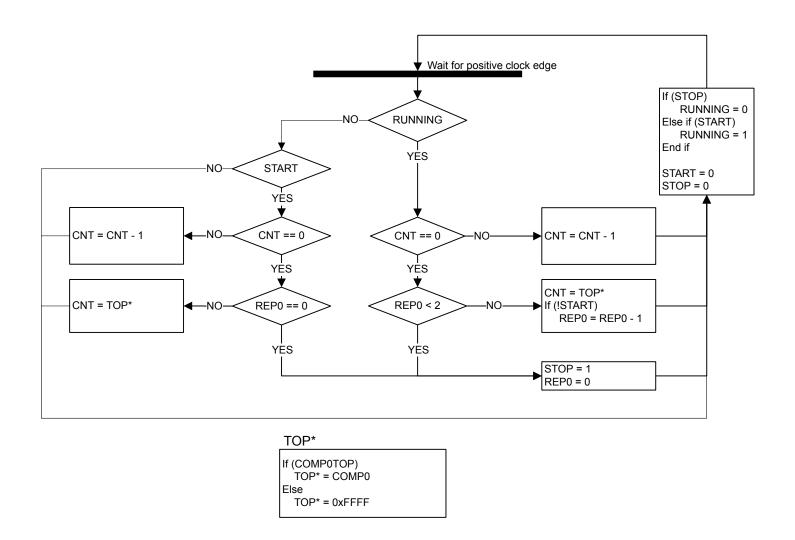


Figure 18.3. LETIMER One-shot Repeat State Machine

18.3.4 Buffered Mode

The Buffered repeat mode allows buffered timer operation. When started, the timer runs LETIMERn_REP0 number of times. If LETI-MERn_REP1 has been written since the last time it was used and if it is nonzero, LETIMERn_REP1 is then loaded into LETI-MERn_REP0, and counting continues the new number of times. The timer keeps going as long as LETIMERn_REP1 is updated with a nonzero value before LETIMERn_REP0 is finished counting down. The timer top value (LETIMERn_TOP) may also optionally be buffered using Top buff value (LETIMERn_TOPBUFF) by setting BUFTOP in LETIMERn_CTRL.

If the timer is started when both LETIMERn_CNT and LETIMERn_REP0 are zero but LETIMERn_REP1 is non-zero, LETIMERn_REP1 is loaded into LETIMERn REP0, and the counter counts the loaded number of times.

Used in conjunction with a buffered top value, both the top and repeat values of the timer may be buffered, and the timer can for instance be set to run 4 times with period 7 (top value 6), 6 times with period 200, then 3 times with period 50.

A state machine for the buffered repeat mode is shown in Figure 18.4 LETIMER Buffered Repeat State Machine on page 407. REP1_{USED} shown in the state machine is an internal variable that keeps track of whether the value in LETIMERn_REP1 has been loaded into LETIMERn_REP0 or not. The purpose of this is that a value written to LETIMERn_REP1 should only be counted once. REP1_{USED} is cleared whenever LETIMERn_REP1 is used.

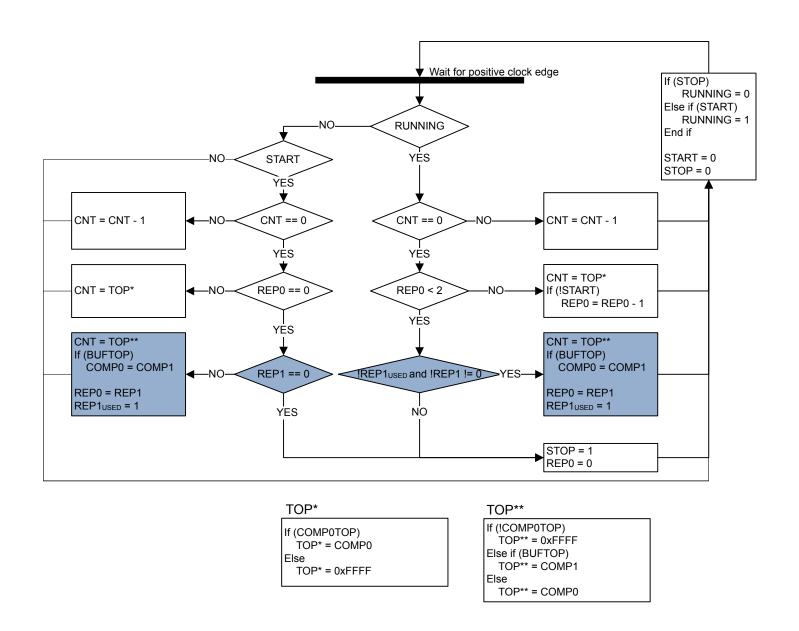


Figure 18.4. LETIMER Buffered Repeat State Machine

18.3.5 Double Mode

The Double repeat mode works much like the one-shot repeat mode. The difference is that, where the one-shot mode counts as long as LETIMERn_REP0 is larger than 0, the double mode counts as long as either LETIMERn_REP0 or LETIMERn_REP1 is larger than 0. As an example, say LETIMERn_REP0 is 3 and LETIMERn_REP1 is 10 when the timer is started. If no further interaction is done with the timer, LETIMERn_REP0 will now be decremented 3 times, and LETIMERn_REP1 will be decremented 10 times. The timer counts a total of 10 times, and LETIMERn_REP0 is 0 after the first three timer underflows and stays at 0. LETIMERn_REP0 and LETIMERn_REP1 can be written at any time. After a write to either of these, the timer is guaranteed to underflow at least the written number of times if the timer is running. Use the Double repeat mode to generate output on both the LETIMER outputs at the same time. The state machine for this repeat mode can be seen in Figure 18.5 LETIMER Double Repeat State Machine on page 408.

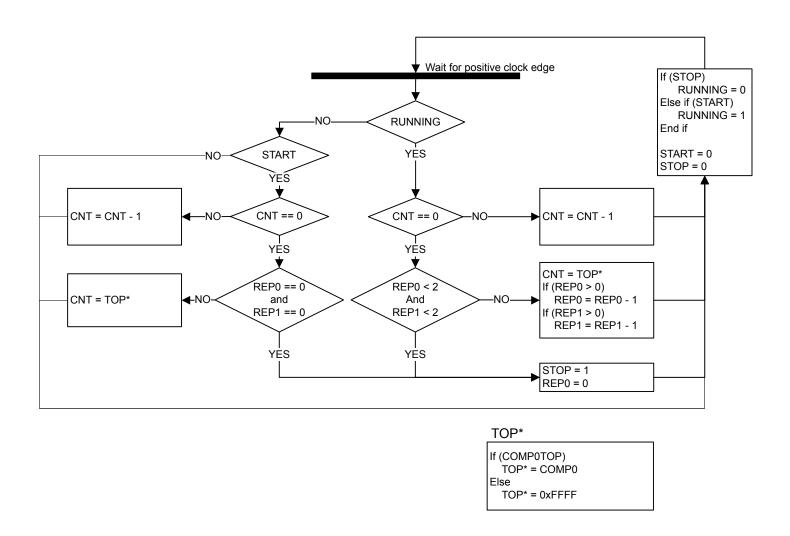


Figure 18.5. LETIMER Double Repeat State Machine

18.4 Clock Frequency

The LETIMER clock source (EM23GRPACLK) is selected in the Clock Management Unit (CMU), and is typically configured to have a frequency of 32 kHz in EM0/1/2 and 1 kHz in EM3. The LETIMER clock prescaler is defined by LETIMERn_CTRL->CNTPRESC.

The LETIMER Prescaled clock frequency is given by Figure 18.6 LETIMER Clock Frequency on page 409.

EM0/1/2 - Clocked by LFRCO $f_{LETIMERn_CLK} = 32768/2^{CNTPRESC}$ EM3 - Clocked by ULFRCO $f_{LETIMERn_CLK} = 1024/2^{CNTPRESC}$

Figure 18.6. LETIMER Clock Frequency

The exponent CNTPRESC is a 4 bit value in the LETIMERn_CTRL->CNTPRESC register bits.

To use this module, the LETIMERn_CLK must be enabled by writing 1 to LETIMERn_EN->EN.

18.5 PRS Input Triggers

The LETIMER can be configured to start, stop, and/or clear based on PRS inputs. The diagram showing the functions of the PRS input triggers is shown in Figure 18.7 LETIMER PRS input triggers. on page 410.

There are 3 PRS inputs to the LETIMER, allowing the LETIMER to be started, stopped, or cleared based on the PRS inputs. The PRSSTARTMODE, PRSSTOPMODE, and PRSCLEARMODE bitfields in LETIMERn->PRSMODE select which edge or edge(s) will trigger the start, stop, and/or clear action.

The PRS channel inputs can be configured in the PRS_LETIMER_CLEAR, PRS_LETIMER_START, and PRS_LETIMER_STOP registers in the PRS module.

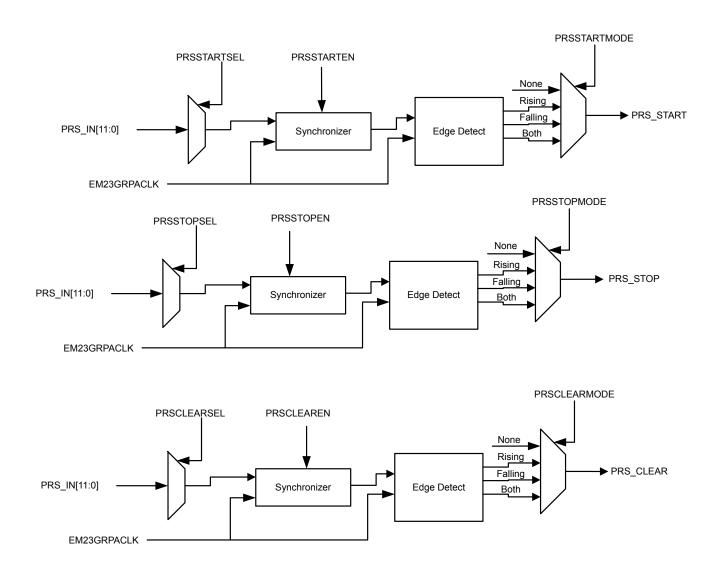


Figure 18.7. LETIMER PRS input triggers.

18.6 Debug

If DEBUGRUN in LETIMERn_CTRL is cleared, the LETIMER automatically stops counting when the CPU is halted during a debug session, and resumes operation when the CPU continues. Because of synchronization, the LETIMER is halted two clock cycles after the CPU is halted, and continues running two clock cycles after the CPU continues. RUNNING in LETIMERn_STATUS is not cleared when the LETIMER stops because of a debug-session.

Set DEBUGRUN in LETIMERn CTRL to allow the LETIMER to continue counting even when the CPU is halted in debug mode.

18.7 Output Action

For each of the Outputs, an output action can be set.

The output actions can be set by configuring UFOA0 and UFOA1 in LETIMERn_CTRL. UFOA0 defines the action on output 0, while UFOA1 defines the action on output 1. The possible actions are defined in Table 18.2 LETIMER Underflow Output Actions on page 411.

Table 18.2. LETIMER Underflow Output Actions

UF0A0/UF0A1	Mode	Description						
0600	Idle	The output is held at its idle value						
0b01	Toggle	The output is toggled on LETIMERn_CNT underflow						
0b10	Pulse	The output is held active for one LF clock cycle on LETIMERn_CNT underflow It then returns to its idle value						
0b11	PWM	The output is set idle on LETIMERn_CNT underflow and active on compare match with LETIMERn_COMP0/1.						

Note: For the Pulse output Disabling LETIMER, Clearing Output while pulse output is generated can affect the pulse width.

Note: For Double mode, OUT0/1 generation is enabled when LETIMERn REP0/1 != 0 respectively.

The polarity of the outputs can be set individually by configuring OPOL0 and OPOL1 in LETIMERn_CTRL. When these are cleared, their respective outputs have a low idle value and a high active value. When they are set, the idle value is high, and the active value is low. It is recommended to Clear outputs after changing polarity to makesure outputs take their default value.

When using the toggle action, the outputs can be driven to their idle values by setting their respective CTO0/CTO1 command bits in LETIMERn_CTRL. This can be used to put the output in a well-defined state before beginning to generate toggle output, which may be important in some applications. The command bit can also be used while the timer is running.

18.8 PRS Output

The LETIMER outputs can be routed out onto the PRS system. LETn_O0 can be routed to PRS channel 0, and LETn_O1 can be routed to PRS channel 1. Enabling the PRS connection can be done by setting SOURCESEL to LETIMERx and SIGSEL to LETIMERxCHn in PRS_CHx_CTRL.

18.9 Interrupts

The interrupts generated by the LETIMER are combined into one interrupt vector. If the interrupt for the LETIMER is enabled, an interrupt will be made if one or more of the interrupt flags in LETIMER IF and their corresponding bits in LETIMER IEN are set.

18.10 Using the LETIMER in EM3

The LETIMER can be enabled all the way down to EM3 by using the ULFRCO as clock source. This is done by clearing CMU_LFCLKSEL_LFA and setting CMU_LFCLKSEL_LFAE to 1. This will make the RTCC use the internal 1 kHz ultra low frequency RC oscillator (ULFRCO), consuming very little energy. Please note that the ULFRCO is not accurate over temperature and voltage, and it should be verified that the ULFRCO fulfills the timekeeping needs of the application before using this in the design.

18.11 Register access

This module is a Low Energy Peripheral, and supports immediate synchronization. For description regarding immediate synchronization, the reader is referred to the ../../EFR32XG21-RM/EFR32XG21_xrefkeys.dita#xrefs/peripheral_access section.

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to the HFCORECLK, special considerations must be taken when accessing registers.

18.12 Programmer's Model

Important Note: Before writing any LFSYNC register, the module must be enabled (LETIMER_EN->EN) and the LETIMER_SYNCBUSY register should be polled to ensure the SYNC busy of that particular register field is not high.

Write LETIMER Configuration into LETIMER_CTRL Register

Enable clock to LETIMER module by setting LETIMER_EN->EN = 1

If used, write compare values into LETIMER_COMP0 and LETIMER_COMP1

If used, write repeat values into LETIMER_REP0 and LETIMER_REP1

If used, write LETIMER_TOP and LETIMER_TOPBUFF

If PRS is used as a trigger, configure LETIMER_PRSMODE accordingly

Enable Interrupts in LETIMER_IEN

Write LETIMER_CMD register to START Timer

18.12.1 FREE Running Mode

LETIMER operation in Free running Mode with different output modes are shown in Figure 18.8 LETIMER - Free Running Mode Waveform on page 413. In this example, REPMODE in LETIMERn_CTRL is set to FREE, CNTTOPEN also in LETIMERn_CTRL has been set and LETIMERn_TOP has been written to 3. As seen in the figure, LETIMERn_TOP now decides the length of the signal periods. For the toggle mode, the period of the output signal is 2(LETIMERn_TOP + 1), and for the pulse modes, the periods of the output signals are LETIMERn_TOP+1. Note that the pulse outputs are delayed by one period relative to the toggle output. The pulses come at the end of their periods.

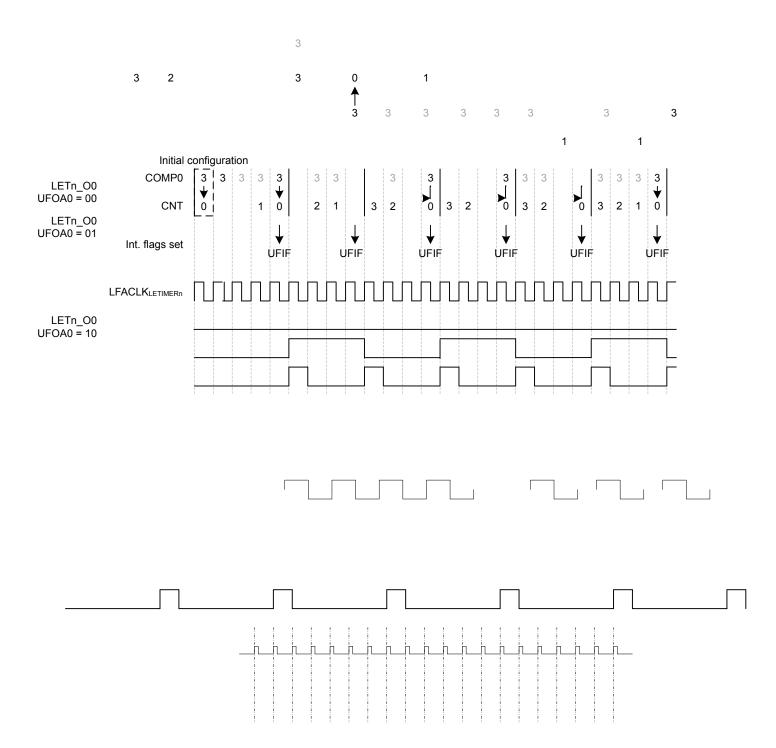


Figure 18.8. LETIMER - Free Running Mode Waveform

18.12.2 One Shot Mode

LETIMER operation in ONESHOT Mode with different output modes are shown in Figure 18.9 LETIMER - One Shot Mode Waveform on page 414. In this example, REPMODE in LETIMERn_CTRL is set to ONESHOT, CNTTOPEN also in LETIMERn_CTRL has been set and LETIMERn_TOP has been written to 3 and LETIMERn_REP0 has been written to 3. The resulting behavior is pretty similar to that shown in Figure 6, but in this case, the timer stops after counting to zero LETIMERn_REP0 times. By using LETIMERn_REP0 the user has full control of the number of pulses/toggles generated on the output.

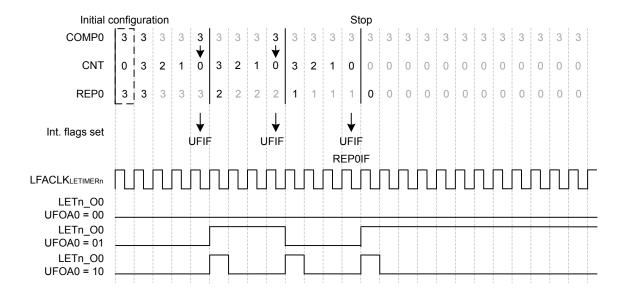


Figure 18.9. LETIMER - One Shot Mode Waveform

18.12.3 DOUBLE Mode

LETIMER operation in DOUBLE Mode with both outputs is shown in Figure 18.10 LETIMER - Double Mode Waveform on page 414. UFOA0 and UFOA1 in LETIMERn_CTRL are configured for pulse output and the outputs are configured for low idle polarity. As seen in the figure, the number written to the repeat registers determine the number of pulses generated on each of the outputs.

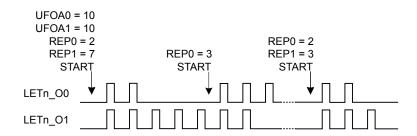


Figure 18.10. LETIMER - Double Mode Waveform

18.12.4 BUFFERED Mode

In BUFFERED Mode LETIMERn_TOPBUFF and LETIMERn_REP1 registers are used as Buffers for LETIMERn_TOP and LETIMERn_REP0 respectiverly. If both LETIMERn_TOP and LETIMERn_REP0 are 0 in buffered mode, and CNTTOPEN and BUFTOP in LETIMERn_CTRL are set, the values of LETIMERn_TOPBUFF and LETIMERn_REP1 are loaded into LETIMERn_TOP and LETIMERn_REP0 respectively when the timer is started. If no additional writes to LETIMERn_REP1 are done before the timer stops, LETIMERn_REP1 determines the number of pulses/toggles generated on the output, and LETIMERn_TOPBUFF determines the period lengths.

As the RTCC can also be used via PRS to start the LETIMER, the RTCC and LETIMER can thus be combined to generate specific pulse-trains at given intervals. Software can update LETIMERn_TOPBUFF and LETIMERn_REP1 to change the number of pulses and pulse-period in each train, but if changes are not required, software does not have to update the registers between each pulse train.

For the example in Figure 18.11 LETIMER - Buffered Mode Waveform on page 415, the initial values cause the LETIMER to generate two pulses with 3 cycle periods, or a single pulse 3 cycles wide every time the LETIMER is started. After the output has been generated, the LETIMER stops, and is ready to be triggered again.

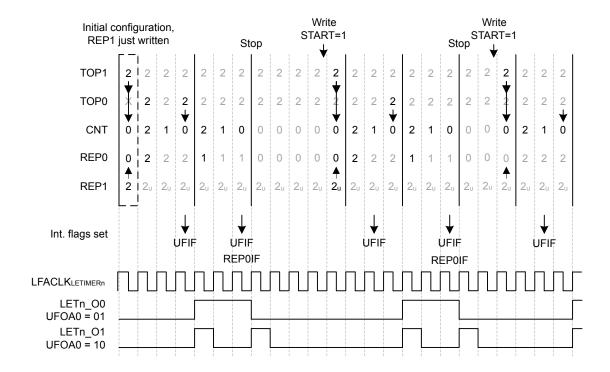


Figure 18.11. LETIMER - Buffered Mode Waveform

18.12.5 Continuous Output Generation

In some scenarios, it might be desired to make LETIMER generate a continuous waveform. Very simple constant waveforms can be generated without the repeat counter as shown in Figure 18.8 LETIMER - Free Running Mode Waveform on page 413, but to generate changing waveforms, using the repeat counter and buffer registers can prove advantageous.

For the example in Figure 18.12 LETIMER - Continuous Operation on page 416, the goal is to produce a pulse train consisting of 3 sequences with the following properties:

- · 3 pulses with periods of 3 cycles
- · 4 pulses with periods of 2 cycles
- · 2 pulses with periods of 3 cycles

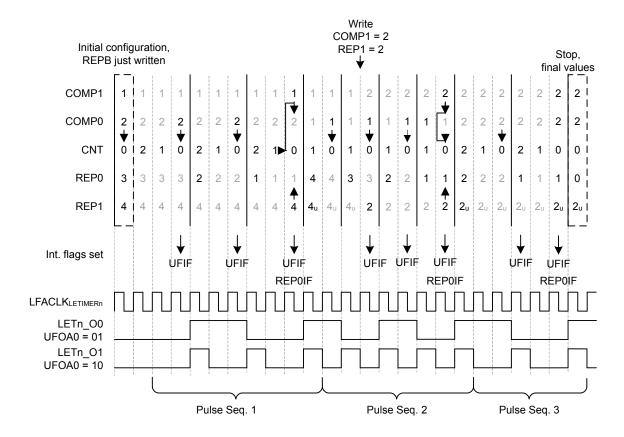


Figure 18.12. LETIMER - Continuous Operation

The first two sequences are loaded into the LETIMER before the timer is started.

LETIMERn_TOP is set to 2 (cycles – 1), and LETIMERn_REP0 is set to 3 for the first sequence, and the second sequence is loaded into the buffer registers, i.e. TOPBUFF is set to 1 and LETIMERn_REP1 is set to 4.

The LETIMER is set to trigger an interrupt when LETIMERn_REP0 is done by setting REP0 in LETIMERn_IEN. This interrupt is a good place to update the values of the buffers. Last but not least REPMODE in LETIMERn_CTRL is set to buffered mode, and the timer is started.

In the interrupt routine the buffers are updated with the values for the third sequence. If this had not been done, the timer would have stopped after the second sequence.

The final result is shown in Figure 18.12 LETIMER - Continuous Operation on page 416. The pulse output is grouped to show which sequence generated which output. Toggle output is also shown in the figure. Note that the toggle output is not aligned with the pulse outputs.

Note: Multiple LETIMER cycles are required to write a value to the LETIMER registers. The example in Figure 18.12 LETIMER - Continuous Operation on page 416 assumes that writes are done in advance so they arrive in the LETIMER as described in the figure.

Figure 18.13 LETIMERn_CNT Not Initialized to 0 on page 417shows an example where the LETIMER is started while LETIMERn CNT is nonzero. In this case the length of the first repetition is given by the value in LETIMERn CNT.

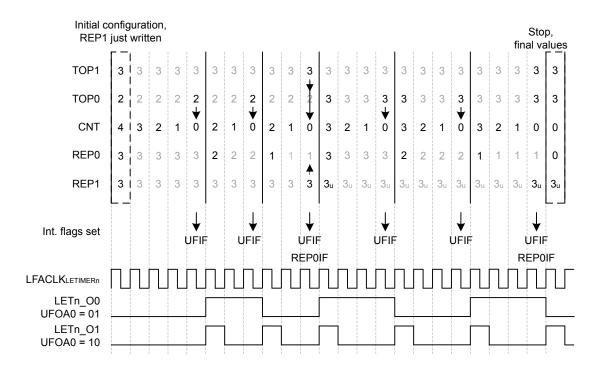


Figure 18.13. LETIMERn_CNT Not Initialized to 0

18.12.6 PWM Output

There are several ways of generating PWM output with the LETIMER, but the most straight-forward way is to use the PWM output mode. This mode is enabled by setting UFOA0 or UFOA1 in LETIMERn_CTRL to 3. In PWM mode, the output is set to idle on timer underflow, and active on LETIMERn_COMP0/1 match, so if for instance CNTTOPEN = 1 and OPOL0 = 0 in LETIMERn_CTRL, LETIMERn_TOP determines the PWM period, and LETIMERn_COMP0/1 determines the active period.

The PWM period in PWM mode is LETIMERn_TOP + 1. There is no special handling of the case where LETIMERn_COMP0/1 > LETIMERn_TOP, so if LETIMERn_COMP0/1 > LETIMERn_TOP, the PWM output is given by the idle output value. This means that for OPOLx = 0 in LETIMERn_CTRL, the PWM output will always be 0 for at least one clock cycle, and for OPOLx = 1 LETIMERn_CTRL, the PWM output will always be 1 for at least one clock cycle.

To generate a PWM signal using the full PWM range, invert OPOLx when LETIMERn_COMP0/1 is set to a value larger than LETI-MERn_TOP.

18.13 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	LETIMER_IPVERSION	R	IP version
0x004	LETIMER_EN	RW ENABLE	module en
0x008	LETIMER_CTRL	RW	Control Register
0x00C	LETIMER_CMD	W LFSYNC	Command Register
0x010	LETIMER_STATUS	RH	Status Register
0x018	LETIMER_CNT	RWH LFSYNC	Counter Value Register
0x01C	LETIMER_COMP0	RW	Compare Value Register 0
0x020	LETIMER_COMP1	RW	Compare Value Register 1
0x024	LETIMER_TOP	RWH LFSYNC	Counter TOP Value Register
0x028	LETIMER_TOPBUFF	RW	Buffered Counter TOP Value
0x02C	LETIMER_REP0	RWH LFSYNC	Repeat Counter Register 0
0x030	LETIMER_REP1	RWH LFSYNC	Repeat Counter Register 1
0x034	LETIMER_IF	RWH INTFLAG	Interrupt Flag Register
0x038	LETIMER_IEN	RW	Interrupt Enable Register
0x040	LETIMER_SYNCBUSY	RH	Synchronization Busy Register
0x050	LETIMER_PRSMODE	RW	PRS Input mode select Register
0x1000	LETIMER_IPVERSION_SET	R	IP version
0x1004	LETIMER_EN_SET	RW ENABLE	module en
0x1008	LETIMER_CTRL_SET	RW	Control Register
0x100C	LETIMER_CMD_SET	W LFSYNC	Command Register
0x1010	LETIMER_STATUS_SET	RH	Status Register
0x1018	LETIMER_CNT_SET	RWH LFSYNC	Counter Value Register
0x101C	LETIMER_COMP0_SET	RW	Compare Value Register 0
0x1020	LETIMER_COMP1_SET	RW	Compare Value Register 1
0x1024	LETIMER_TOP_SET	RWH LFSYNC	Counter TOP Value Register
0x1028	LETIMER_TOPBUFF_SET	RW	Buffered Counter TOP Value
0x102C	LETIMER_REP0_SET	RWH LFSYNC	Repeat Counter Register 0
0x1030	LETIMER_REP1_SET	RWH LFSYNC	Repeat Counter Register 1
0x1034	LETIMER_IF_SET	RWH INTFLAG	Interrupt Flag Register
0x1038	LETIMER_IEN_SET	RW	Interrupt Enable Register
0x1040	LETIMER_SYNCBUSY_SET	RH	Synchronization Busy Register
0x1050	LETIMER_PRSMODE_SET	RW	PRS Input mode select Register
0x2000	LETIMER_IPVERSION_CLR	R	IP version
0x2004	LETIMER_EN_CLR	RW ENABLE	module en
0x2008	LETIMER_CTRL_CLR	RW	Control Register

Offset	Name	Туре	Description
0x200C	LETIMER_CMD_CLR	W LFSYNC	Command Register
0x2010	LETIMER_STATUS_CLR	RH	Status Register
0x2018	LETIMER_CNT_CLR	RWH LFSYNC	Counter Value Register
0x201C	LETIMER_COMP0_CLR	RW	Compare Value Register 0
0x2020	LETIMER_COMP1_CLR	RW	Compare Value Register 1
0x2024	LETIMER_TOP_CLR	RWH LFSYNC	Counter TOP Value Register
0x2028	LETIMER_TOPBUFF_CLR	RW	Buffered Counter TOP Value
0x202C	LETIMER_REP0_CLR	RWH LFSYNC	Repeat Counter Register 0
0x2030	LETIMER_REP1_CLR	RWH LFSYNC	Repeat Counter Register 1
0x2034	LETIMER_IF_CLR	RWH INTFLAG	Interrupt Flag Register
0x2038	LETIMER_IEN_CLR	RW	Interrupt Enable Register
0x2040	LETIMER_SYNCBUSY_CLR	RH	Synchronization Busy Register
0x2050	LETIMER_PRSMODE_CLR	RW	PRS Input mode select Register
0x3000	LETIMER_IPVERSION_TGL	R	IP version
0x3004	LETIMER_EN_TGL	RW ENABLE	module en
0x3008	LETIMER_CTRL_TGL	RW	Control Register
0x300C	LETIMER_CMD_TGL	W LFSYNC	Command Register
0x3010	LETIMER_STATUS_TGL	RH	Status Register
0x3018	LETIMER_CNT_TGL	RWH LFSYNC	Counter Value Register
0x301C	LETIMER_COMP0_TGL	RW	Compare Value Register 0
0x3020	LETIMER_COMP1_TGL	RW	Compare Value Register 1
0x3024	LETIMER_TOP_TGL	RWH LFSYNC	Counter TOP Value Register
0x3028	LETIMER_TOPBUFF_TGL	RW	Buffered Counter TOP Value
0x302C	LETIMER_REP0_TGL	RWH LFSYNC	Repeat Counter Register 0
0x3030	LETIMER_REP1_TGL	RWH LFSYNC	Repeat Counter Register 1
0x3034	LETIMER_IF_TGL	RWH INTFLAG	Interrupt Flag Register
0x3038	LETIMER_IEN_TGL	RW	Interrupt Enable Register
0x3040	LETIMER_SYNCBUSY_TGL	RH	Synchronization Busy Register
0x3050	LETIMER_PRSMODE_TGL	RW	PRS Input mode select Register

18.14 Register Description

18.14.1 LETIMER_IPVERSION - IP version

Offset	Bit Position
0x000	31
Reset	0×0
Access	α
Name	IPVERSION

Bit	Name	Reset	Access	Description							
31:0	IPVERSION	0x0	R	IP Version							
	-	ed only IPVERSION field gives the version for this module. There may be minor software changes required for this with different values of IPVERSION.									

18.14.2 LETIMER_EN - module en

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset								•										•									•		•			0x0
Access																																S.
Name																																Z Z

Bit	Name	Reset	Access	Description							
31:1	Reserved	To ensure c	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-							
0	EN	0x0	0x0 RW module en								
		es the module. Software should write to CONFIG type registers before setting the ENABLE bit. o SYNC type registers only after setting the ENABLE bit.									

18.14.3 LETIMER_CTRL - Control Register

Offset													Bit Position																		
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	3	2	- 0
Reset									•	0x0										000	000	0x0	000	Ş	2	2	040	0x0			
Access										2	<u>}</u>					S.			₩ M	₩ M	S N	₩ M	2	2	<u> </u>	2	RW				
Name) 1 1 1 1 1 1					DEBUGRUN			CNTTOPEN	BUFTOP	OPOL1	OPOL0	7	1	IEOAO	5	REPMODE					

Bit	Name	Reset	Access	Description						
31:20	Reserved	To ensure ventions	e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-						
19:16	CNTPRESC	0x0	RW	Counter prescaler value						
	Configure counting	frequency of the	CNT register	Note - its not recommended to change this setting on the fly.						
	Value	Mode		Description						
	0	DIV1		CLK_CNT = (LETIMER LF CLK)/1						
	1	DIV2		CLK_CNT = (LETIMER LF CLK)/2						
	2	DIV4		CLK_CNT = (LETIMER LF CLK)/4						
	3	DIV8		CLK_CNT = (LETIMER LF CLK)/8						
	4	DIV16		CLK_CNT = (LETIMER LF CLK)/16						
	5	DIV32		CLK_CNT = (LETIMER LF CLK)/32						
	6	DIV64		CLK_CNT = (LETIMER LF CLK)/64						
	7	DIV128		CLK_CNT = (LETIMER LF CLK)/128						
	8	DIV256		CLK_CNT = (LETIMER LF CLK)/256						
15:13	Reserved	To ensure	e compatibility w	ith future devices, always write bits to 0. More information in 1.2 Cor						
12	DEBUGRUN	0x0	RW	Debug Mode Run Enable						
	Set to keep the LET	TIMER running in	debug mode.							
	Value	Mode		Description						
	0	DISABLE		LETIMER is frozen in debug mode						
	1	ENABLE		LETIMER is running in debug mode						
11:10	Reserved	To ensure ventions	e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-						
9	CNTTOPEN	0x0	RW	Compare Value 0 Is Top Value						
	When set, TOP value	ue will be used a	s Counter Top \	/alue						
	V-l	Mode		Description						
	Value	Mode		Beschpien						

Bit	Name	Reset	Access	Description							
	1	ENABLE		The top value of the LETIMER is given by COMP0							
8	BUFTOP	0x0	RW	Buffered Top							
	Set to load TOPBU	IFF into TOP wher	n REP0 reache	s 0 in BUFFERED mode, allowing a buffered top value.							
	Value	Mode		Description							
	0	DISABLE		COMP0 is only written by software							
	1	ENABLE		COMP0 is set to COMP1 when REP0 reaches 0							
7	OPOL1	0x0	RW	Output 1 Polarity							
	Defines the idle va	lue of output 1.									
6	OPOL0	0x0	RW	Output 0 Polarity							
	Defines the idle va	lue of output 0.									
5:4	UFOA1	0x0	RW	Underflow Output Action 1							
	Defines the action	on OUT1 on a LET	TIMER underflo	ow - IDLE/TOGGLE/PULSE/PWM							
	Value	Mode		Description							
	0	NONE		LETIMERn_OUT1 is held at its idle value as defined by OPOL1							
	1	TOGGLE		LETIMERn_OUT1 is toggled on CNT underflow							
	2	PULSE		LETIMERn_OUT1 is held active for one LETIMER0 clock cycle on CNT underflow. The output then returns to its idle value as defined by OPOL1							
	3	PWM		LETIMERn_OUT1 is set idle on CNT underflow, and active on compare match with COMP1							
3:2	UFOA0	0x0	RW	Underflow Output Action 0							
	Defines the action	on OUT0 on a LET	TIMER underflo	ow - IDLE/TOGGLE/PULSE/PWM							
	Value	Mode		Description							
	0	NONE		LETIMERn_OUT0 is held at its idle value as defined by OPOL0							
	1	TOGGLE		LETIMERn_OUT0 is toggled on CNT underflow							
	2	PULSE		LETIMERn_OUT0 is held active for one LETIMER0 clock cycle on CNT underflow. The output then returns to its idle value as defined by OPOL0							
	3	PWM		LETIMERn_OUT0 is set idle on CNT underflow, and active on compare match with COMP1							
1:0	REPMODE	0x0	RW	Repeat Mode							
	Repeat Mode - FR	EE/ONESHOT/BU	FFERED/DOU	BLE							
	Value	Mode		Description							
	0	FREE		When started, the LETIMER counts down until it is stopped by software							
	1 ONESHOT			The counter counts REP0 times. When REP0 reaches zero, the counter stops							

Bit	Name	Reset Access	Description
	2	BUFFERED	The counter counts REP0 times. If REP1 has been written, it is loaded into REP0 when REP0 reaches zero, otherwise the counter stops
	3	DOUBLE	Both REP0 and REP1 are decremented when the LETIMER wraps around. The LETIMER counts until both REP0 and REP1 are zero

18.14.4 LETIMER_CMD - Command Register

Offset															Ві	t Pc	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	ဝ	œ	7	9	2	4	က	2	_	0
Reset		•			'			•									•		•	•	•	'	'	'	'	•	'	000	000	0×0	000	0x0
Access																												>	>	>	>	>
Name																												СТО1	СТОО	CLEAR	STOP	START

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
4	CTO1	0x0	W	Clear Toggle Output 1
	Set to drive toggle output	t 1 to its idle v	/alue	
3	CTO0	0x0	W	Clear Toggle Output 0
	Set to drive toggle output	t 0 to its idle v	/alue	
2	CLEAR	0x0	W	Clear LETIMER
	Set to clear LETIMER			
1	STOP	0x0	W	Stop LETIMER
	Set to stop LETIMER			
0	START	0x0	W	Start LETIMER
	Set to start LETIMER			

18.14.5 LETIMER_STATUS - Status Register

Offset															Ві	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																																0x0
Access																																2
Name																																RUNNING

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
0	RUNNING	0x0	R	LETIMER Running
	Set when LETIMER is ru	ınning.		

18.14.6 LETIMER_CNT - Counter Value Register

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset																				2	Š											
Access																				2	<u>}</u>											
Name																				Ę	5											

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure o	compatibility witi	n future devices, always write bits to 0. More information in 1.2 Con-
23:0	CNT	0x0	RW	Counter Value
	Use to read the current v	alue of the Ll	ETIMER.	

18.14.7 LETIMER_COMP0 - Compare Value Register 0

Offset	Bit Position														
0x01C	31 31 32 32 33 34 35 36 36 36 36 36 36 36 36 36 36 36 36 36														
Reset	80														
Access	R Marian Marian Marian Marian Marian Manda Marian Marian Marian Marian Marian Marian Marian Marian Maria														
Name	COMPO														

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
23:0	COMP0	0x0	RW	Compare Value 0
	Compare value for LETI	MER.		

18.14.8 LETIMER_COMP1 - Compare Value Register 1

Offset															Bi	t Po	sitio	on														
0x020	31	30	29	78	27	26	25	24	23	22	21	20	9	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																				0	040											
Access																				<u> </u>	2											
Name																				LOMO C	- - - - - - - - - - - - - - - - - - -											

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
23:0	COMP1	0x0	RW	Compare Value 1
	Compare and optionally	buffered top	value for LETIM	ER.

18.14.9 LETIMER_TOP - Counter TOP Value Register

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	-	0
Reset		000																														
Access						₩ XO																										
Name																				C	5											

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure o	compatibility witi	n future devices, always write bits to 0. More information in 1.2 Con-
23:0	TOP	0x0	RW	Counter TOP Value
	TOP will be used as Cou	ınter TOP Val	ue if CNTTOPE	N is set to 1

18.14.10 LETIMER_TOPBUFF - Buffered Counter TOP Value

Offset	Bit Position
0x028	31 31 32 33 33 34 34 35 36 36 36 36 36 36 36 36 36 36 36 36 36
Reset	0×0
Access	RW W
Name	TOPBUFF

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
23:0	TOPBUFF	0x0	RW	Buffered Counter TOP Value
	TOPBUFF will be used a	as Counter TO	OP Value in BUF	FFERED Mode if CNTTOPEN and BUFFTOP is set set to 1

18.14.11 LETIMER_REP0 - Repeat Counter Register 0

Offset															Bi	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	တ	8	7	9	5	4	က	2	_	0
Reset		•	•			•			•			•		•		•	•	•										ç	S S			
Access																												Ž	≩			
Name																												C L C	Х П Г			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
7:0	REP0	0x0	RW	Repeat Counter 0
	Optional repeat counter.			

18.14.12 LETIMER_REP1 - Repeat Counter Register 1

Offset															Bi	t Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	0	8	7	6	5	4	က	2	_	0
Reset		•		•	•	•				•		•	•			•		•			•							ć	S S			
Access																												Ž	<u>}</u>			
Name																												, ,	Д П Г			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility witi	n future devices, always write bits to 0. More information in 1.2 Con-
7:0	REP1	0x0	RW	Repeat Counter 1
	Optional repeat counter	or buffer for R	REP0.	

18.14.13 LETIMER_IF - Interrupt Flag Register

Offset															Ві	t Po	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					•	0x0	0x0	0x0	0x0	0x0
Access																												RW	₩ M	₽	₩ M	S.
Name																												REP1	REP0	UF	COMP1	COMPO

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure o	compatibility witl	n future devices, always write bits to 0. More information in 1.2 Con-
4	REP1	0x0	RW	Repeat Counter 1 Interrupt Flag
	Set when repeat counter	1 reaches ze	ero.	
3	REP0	0x0	RW	Repeat Counter 0 Interrupt Flag
	Set when repeat counter	0 reaches ze	ero or when the	REP1 interrupt flag is loaded into the REP0 interrupt flag.
2	UF	0x0	RW	Underflow Interrupt Flag
	Set on LETIMER underf	ow.		
1	COMP1	0x0	RW	Compare Match 1 Interrupt Flag
	Set when LETIMER read	ches the value	e of COMP1.	
0	COMP0	0x0	RW	Compare Match 0 Interrupt Flag
	Set when LETIMER read	ches the value	e of COMP0.	

18.14.14 LETIMER_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Reset					•		•							•		•	•	•			•				•	•	•	0×0	000	0x0	0x0	0x0
Access																												RW	₩ M	₽	₽	RW
Name																												REP1	REP0	UF	COMP1	COMPO

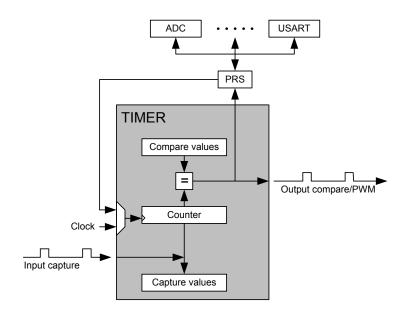
Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
4	REP1	0x0	RW	Repeat Counter 1 Interrupt Enable
	Repeat Counter 1 Interru	ıpt Enable		
3	REP0	0x0	RW	Repeat Counter 0 Interrupt Enable
	Repeat Counter 0 Interru	ıpt Enable		
2	UF	0x0	RW	Underflow Interrupt Enable
	Underflow Interrupt Enab	ole		
1	COMP1	0x0	RW	Compare Match 1 Interrupt Enable
	Compare Match 1 Interru	upt Enable		
0	COMP0	0x0	RW	Compare Match 0 Interrupt Enable
	Compare Match 0 Interru	upt Enable		

18.14.15 LETIMER_SYNCBUSY - Synchronization Busy Register

Offset															Ві	t Po	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	∞	7	9	5	4	က	2	_	0
Reset					'								'	•				'	•	'			0x0	000	0x0	0×0	0×0	000	0x0	0x0		0x0
Access																							<u>~</u>	œ	œ	œ	œ	œ	22	<u>~</u>		2
Name																							СТО1	СТОО	CLEAR	STOP	START	REP1	REP0	TOP		CNT

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure ventions	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
9	CTO1	0x0	R	Sync busy for CTO1
	Sync busy for CTO1			
8	CTO0	0x0	R	Sync busy for CTO0
	Sync busy for CTO0			
7	CLEAR	0x0	R	Sync busy for CLEAR
	Sync busy for CLEAR			
6	STOP	0x0	R	Sync busy for STOP
	Sync busy for STOP			
5	START	0x0	R	Sync busy for START
	Sync busy for START			
4	REP1	0x0	R	Sync busy for REP1
	Sync busy for REP1			
3	REP0	0x0	R	Sync busy for REP0
	Sync busy for REP0			
2	TOP	0x0	R	Sync busy for TOP
	Sync busy for TOP			
1	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions		
0	CNT	0x0	R	Sync busy for CNT
	Sync busy for CNT			

18.14.16 LETIMER_PRSMODE - PRS Input mode select Register


Offset	Bit Position		
0x050	33 34 5 5 6 7 7 8 8 8 7 7 1 7 1 7 1 7 1 7 1 7 1 8 8 8 7 7 8 8 8 7 9 9 9 9 9 9 9 9 9 9 9		
Reset	0 0 0 0		
Access	N N N N N N N N N N N N N N N N N N N		
Name	PRSSTARTIMODE PRSSTARTIMODE		

Bit	Name	Reset	Access	Description		
31:28	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions				
27:26	PRSCLEARMODE	0x0	RW	PRS Clear Mode		
	Mode-NONE/RISING/FALLING/BOTH					
	Value	Mode		Description		
	0	NONE		PRS cannot clear the LETIMER		
	1	RISING		Rising edge of selected PRS input can clear the LETIMER		
	2	FALLING		Falling edge of selected PRS input can clear the LETIMER		
	3	вотн		Both the rising or falling edge of the selected PRS input can clear the LETIMER		
25:24	Reserved	To ensure ventions	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Coventions			
23:22	PRSSTOPMODE	0x0	RW	PRS Stop Mode		
	Mode-NONE/RISING/FALLING/BOTH					
	Value	Mode		Description		
	0	NONE		PRS cannot stop the LETIMER		
	1	RISING		Rising edge of selected PRS input can stop the LETIMER		
	2	FALLING		Falling edge of selected PRS input can stop the LETIMER		
	3	вотн		Both the rising or falling edge of the selected PRS input can stop the LETIMER		
21:20	Reserved	To ensure ventions	compatibility wi	ith future devices, always write bits to 0. More information in 1.2 Con-		
19:18	PRSSTARTMODE	0x0	RW	PRS Start Mode		
	Mode-NONE/RISING/FALLING/BOTH					
	Value	Mode		Description		
	0	NONE		PRS cannot start the LETIMER		
	1	RISING		Rising edge of selected PRS input can start the LETIMER		

Bit	Name	Reset Access	Description		
	2	FALLING	Falling edge of selected PRS input can start the LETIMER		
	3	вотн	Both the rising or falling edge of the selected PRS input can start the LETIMER		
17:0	Reserved	To ensure compatibil ventions	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions		

19. TIMER - Timer/Counter

Quick Facts

What?

The TIMER (Timer/Counter) keeps track of timing and counts events, generates output waveforms, and triggers timed actions in other peripherals.

Why?

Most applications have activities that need to be timed accurately with as little CPU intervention and energy consumption as possible.

How?

The flexible 16/32-bit timer can be configured to provide PWM waveforms with optional dead-time insertion (e.g. motor control) or work as a frequency generator. The timer can also count events and control other peripherals through the PRS, which offloads the CPU and reduces energy consumption.

19.1 Introduction

The general purpose timer has 3 or 4 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output.

The TIMER module may be 16 or 32 bits wide. Some timers also include a Dead-Time Insertion module suitable for motor control applications.

Refer to the device data sheet to determine the capabilities (capture/compare channel count, width, and DTI) of each timer instance.

19.2 Features

- · 16/32-bit auto reload up/down counter
 - Dedicated 16/32-bit reload register which serves as counter maximum
- · 3 or 4 Compare/Capture channels
 - · Individually configurable as either input capture or output compare/PWM
- · Multiple Counter modes
 - · Count up
 - · Count down
 - · Count up/down
 - · Quadrature Decoder
 - · Direction and count from external pins
- · 2x Count Mode
- · Counter control from PRS or external pin
 - Start
 - Stop
 - · Reload and start
- · Inter-Timer connection
 - · Allows 32-bit counter mode
 - · Start/stop synchronization between several timers
- · Input Capture
 - · Period measurement
 - · Pulse width measurement
 - · Two capture registers for each capture channel
 - · Capture on either positive or negative edge
 - · Capture on both edges
 - · Optional digital noise filtering on capture inputs
- · Output Compare
 - · Compare output toggle/pulse on compare match
 - · Immediate update of compare registers
- PWM
 - · Up-count PWM
 - · Up/down-count PWM
 - Predictable initial PWM output state (configured by SW)
 - Buffered compare register to ensure glitch-free update of compare values
 - · Output re-timing to mitigate RF interference
- · Clock sources
 - HFPERCLKTIMERn
 - · 10-bit Prescaler
 - · External pin
 - · Peripheral Reflex System
- · Debug mode
 - · Configurable to either run or stop when processor is stopped (halt/breakpoint)
- · Interrupts, PRS output and/or DMA request on:
 - · Underflow
 - Overflow
 - · Compare/Capture event

- · Dead-Time Insertion Unit
 - · Complementary PWM outputs with programmable dead-time
 - · Dead-time is specified independently for rising and falling edge
 - · 10-bit prescaler
 - · 6-bit time value
 - · Outputs have configurable polarity
 - · Outputs can be set inactive individually by software.
 - · Configurable action on fault
 - · Set outputs inactive
 - · Clear output
 - · Tristate output
 - · Individual fault sources
 - · One or two PRS signals
 - Debugger
 - · Support for automatic restart
 - · Core lockup
 - EM2/EM3 entry
 - · Configuration lock

19.3 Functional Description

An overview of the TIMER module is shown in Figure 19.1 TIMER Block Overview on page 435 and it consists of a 16/32 bit up/down counter with 3 compare/capture channels connected to pins TIMn CC0, TIMn CC1, and TIMn CC2.

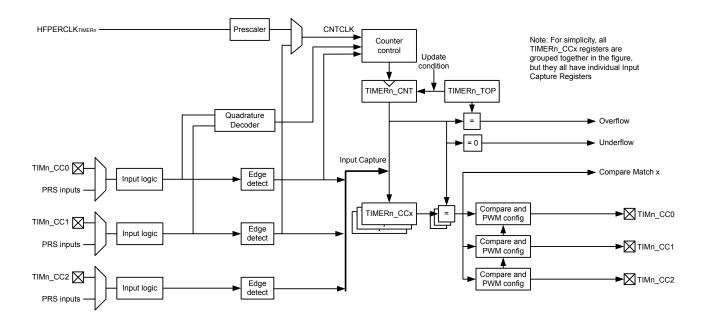


Figure 19.1. TIMER Block Overview

19.3.1 Register Access

The timer module interface consists of multiple register types. Registers of type "RW CONFIG" should only be written when the module is disabled (TIMERn_EN_EN = 0). Registers of type "W SYNC", "R SYNC" or "RW SYNC" should only be read or written when the module is enabled (TIMERn_EN_EN = 1). A typical setup sequence for a TIMER module is as follows:

- 1. With the TIMER disabled (TIMERn_EN_EN = 0), program any CONFIG registers required for the application.
- 2. Enable the TIMER by setting EN in TIMERn EN to 1.
- 3. Program any non-CONFIG registers required for the application.
- 4. The TIMER is then ready for use.

19.3.2 Counter Modes

The timer consists of a counter that can be configured to the following modes, using the MODE field in TIMERn CFG:

- Up-count: Counter counts up until it reaches the value in TIMERn TOP, where it is reset to 0 before counting up again.
- Down-count: The counter starts at the value in TIMERn_TOP and counts down. When it reaches 0, it is reloaded with the value in TIMERn TOP.
- Up/Down-count: The counter starts at 0 and counts up. When it reaches the value in TIMERn_TOP, it counts down until it reaches 0 and starts counting up again.
- Quadrature Decoder: Two input channels where one determines the count direction, while the other pin triggers a clock event.

In addition to the TIMER modes listed above, the TIMER also supports a 2x count mode. In this mode the counter increments/decrements by 2 on each clock edge. The 2x count mode can be used to double the PWM frequency when the compare/capture channel is put into PWM mode. The 2x count mode is enabled by setting the X2CNT bitfield in the TIMERn_CTRL register.

The counter value can be read or written by software any time the module is enabled by accessing the CNT field in TIMERn_CNT.

19.3.2.1 Events

The main counter can generate overflow and underflow events during operation.

Overflow (TIMERn_IF_OF) is set when the counter value shifts from TIMERn_TOP to the next value when counting up. In up-count mode and quadrature decoder mode the next value is 0. In up/down-count mode, the next value is TIMERn_TOP-1.

Underflow (TIMERn_IF_UF) is set when the counter value shifts from 0 to the next value when counting down. In down-count mode and quadrature decoder mode, the next value is TIMERn_TOP. In up/down-count mode the next value is 1.

An update event occurs on overflow in up-count mode and on underflow in down-count or up/down count mode. Additionally, an update event also occurs on overflow and underflow in quadrature decoder. This event is used to time updates of buffered values.

19.3.2.2 Operation

Figure 19.2 TIMER Hardware Timer/Counter Control on page 437 shows the hardware timer/counter control. Software can start or stop the counter by setting the START or STOP bits in TIMERn_CMD. The counter value (CNT in TIMERn_CNT) can always be written by software to any 16/32-bit value.

It is also possible to control the counter through either an external pin or PRS input. This is done through the input logic for the compare/capture Channel 0. The timer/counter allows individual actions (start, stop, reload) to be taken for rising and falling input edges. This is configured in the RISEA and FALLA fields in TIMERn_CTRL. The reload value is 0 in up-count and up/down-count mode and TOP in down-count mode.

The RUNNING bit in TIMERn_STATUS indicates if the timer is running or not. If the SYNC bit in TIMERn_CFG is set, the timer is started/stopped/reloaded (external pin or PRS) when any of the other timers are started/stopped/reloaded.

The DIR bit in TIMERn_STATUS indicates the counting direction of the timer at any given time. The counter value can be read or written by software through the CNT field in TIMERn_CNT. In Up/Down-Count mode the count direction will be set to up if the CNT value is written by software.

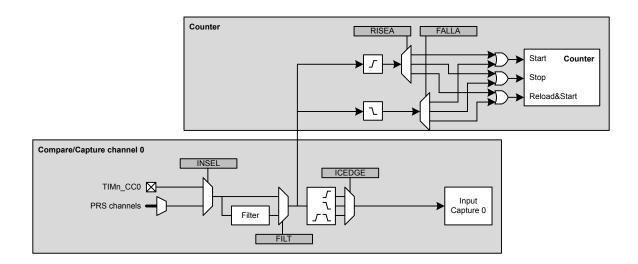


Figure 19.2. TIMER Hardware Timer/Counter Control

19.3.2.3 Clock Source

The counter can be clocked from several sources, which are all synchronized with the incoming peripheral clock for the timer. See Figure 19.3 TIMER Clock Selection on page 437.

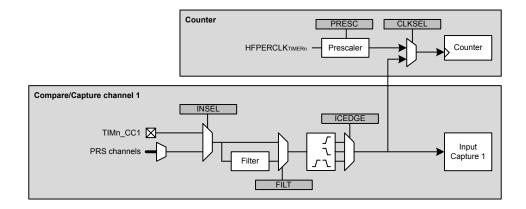


Figure 19.3. TIMER Clock Selection

19.3.2.4 Peripheral Clock

The peripheral clock for the timer (HFPERCLK_{TIMERn}) clocks the logic for the timer block, even when it is not the selected clock source.

All TIMER instances in this device family use EM01GRPACLK selected in CMU_EM01GRPACLKCTRL_CLKSEL as their peripheral clock source (HFPERCLK_{TIMERn}).

The peripheral clock to each timer can be used as a source with a configurable 10-bit prescaler. The PRESC bitfield in TIMERn_CFG sets the prescaler value, and the incoming peripheral clock will be divided by a factor of (PRESC+1). However, if 2x count mode is enabled and the compare/capture channels are configured for PWM mode, the CC output is updated on both clock edges, so prescaling the peripheral clock will produce an incorrect result. The internal prescale counter is stopped and reset when the timer is stopped.

19.3.2.5 Compare/Capture Channel 1 Input

The timer can also be clocked by positive and/or negative edges on the compare/capture channel 1 input. This input can either come from the TIMn_CC1 pin or one of the PRS channels. The input signal must not have a higher frequency than f_{HFPERCLK_TIMERn}/3 when running from a pin input or a PRS input with FILT enabled in TIMERn_CCx_CFG. When running from PRS without FILT, the frequency can be as high as f_{HFPERCLK_TIMERn}. Note that when clocking the timer from the same pulse that triggers a start (through RISEA/FALLA in TIMERn_CTRL), the starting pulse will not update the counter value.

19.3.2.6 Underflow/Overflow From Neighboring Timer

All timers are linked together (see Figure 19.4 TIMER Connections on page 438), allowing timers to count on overflow/underflow from the lower numbered neighbouring timers to form a larger timer. Note that all timers must be set to count the same direction and less significant timer(s) can only be set to count up or down.

Figure 19.4. TIMER Connections

19.3.2.7 One-Shot Mode

By default, the counter counts continuously until it is stopped. If the OSMEN bit is set in the TIMERn_CFG register, however, the counter is disabled by hardware on the first *update event* (see 19.3.2.1 Events). Note that when the counter is running with CC1 as clock source and OSMEN is set, a CC1 capture event will not take place on the *update event* (CC1 rising edge) that stops the timer.

19.3.2.8 Top Value Buffer

The TIMERn_TOP register can be altered either by writing it directly or by writing to the TIMER_TOPB (buffer) register. When writing to the buffer register the TIMERn_TOPB register will be written to TIMERn_TOP on the next *update event*. Buffering ensures that the TOP value is not set below the actual count value. The TOPBV flag in TIMERn_STATUS indicates whether the TIMERn_TOPB register contains data that has not yet been written to the TIMERn_TOP register (see Figure 19.5 TIMER TOP Value Update Functionality on page 439).

Note: When writing to TIMERn_TOP register directly, the TIMERn_TOPB register value will be invalidated and the TOPBV flag will be cleared. This prevents TIMERn_TOP register from being immediately updated by an existing valid TIMERn_TOPB value during the next *update event*.

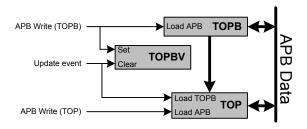


Figure 19.5. TIMER TOP Value Update Functionality

19.3.2.9 Quadrature Decoder

Quadrature decoding mode is used to track motion and determine both rotation direction and position. The quadrature decoder uses two input channels that are 90 degrees out of phase (see Figure 19.6 TIMER Quadrature Encoded Inputs on page 440).

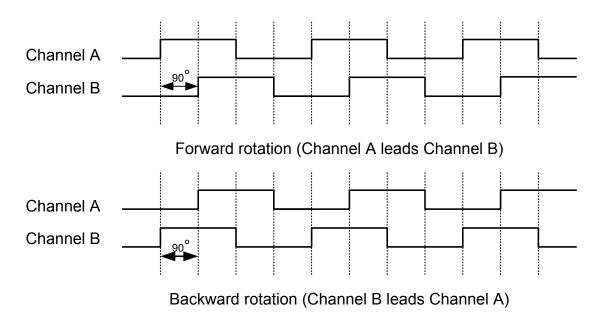


Figure 19.6. TIMER Quadrature Encoded Inputs

In the timer these inputs are tapped from the compare/capture channel 0 (Channel A) and 1 (Channel B) inputs before edge detection. The timer/counter then increments or decrements the counter, based on the phase relation between the two inputs. The DIRCHG flag in TIMERn_IF is set if the count direction changes in quadrature decoder mode. The quadrature decoder supports two channels, but if a third channel (Z-terminal) is available, this can be connected to an external interrupt and trigger a counter reset from the interrupt service routine. By connecting a periodic signal from another timer as input capture on compare/capture Channel 2, it is also possible to calculate speed and acceleration.

Note: In quadrature decoder mode, overflow and underflow triggers an update event.

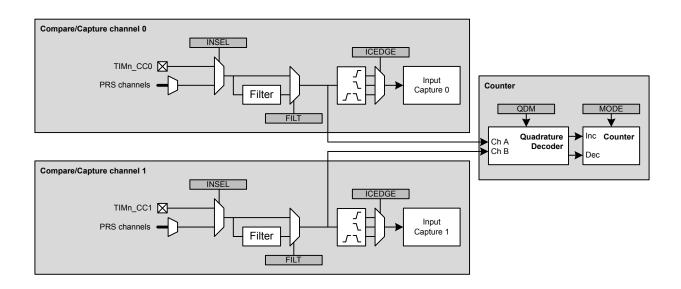


Figure 19.7. TIMER Quadrature Decoder Configuration

The quadrature decoder can be set in either X2 or X4 mode, which is configured in the QDM bit in TIMERn_CFG. See Figure 19.7 TIMER Quadrature Decoder Configuration on page 440

19.3.2.10 X2 Decoding Mode

In X2 Decoding mode, the counter increments or decrements on every edge of Channel A, see Table 19.1 TIMER Counter Response in X2 Decoding Mode on page 441 and Figure 19.8 TIMER X2 Decoding Mode on page 441.

Table 19.1. TIMER Counter Response in X2 Decoding Mode

Channel B	Chan	nel A
Cildillei D	Rising	Falling
0	Increment	Decrement
1	Decrement	Increment

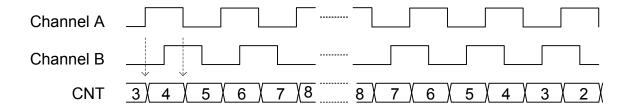


Figure 19.8. TIMER X2 Decoding Mode

19.3.2.11 X4 Decoding Mode

In X4 Decoding mode, the counter increments or decrements on every edge of Channel A and Channel B, see Figure 19.9 TIMER X4 Decoding Mode on page 441 and Table 19.2 TIMER Counter Response in X4 Decoding Mode on page 441.

Table 19.2. TIMER Counter Response in X4 Decoding Mode

Opposite Channel	Chan	nel A	Channel B						
	Rising	Falling	Rising	Falling					
Channel A = 0			Decrement	Increment					
Channel A = 1			Increment	Decrement					
Channel B = 0	Increment	Decrement							
Channel B = 1	Decrement	Increment							

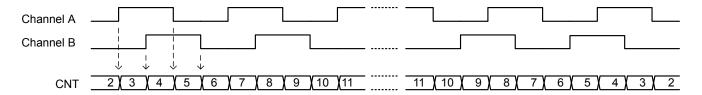


Figure 19.9. TIMER X4 Decoding Mode

19.3.2.12 Rotational Position

To calculate a position Figure 19.10 TIMER Rotational Position Equation on page 442 can be used.

$$pos^{\circ} = (CNT/X \times N) \times 360^{\circ}$$

Figure 19.10. TIMER Rotational Position Equation

where X = Encoding type and N = Number of pulses per revolution.

19.3.3 Compare/Capture Channels

The timer contains compare/capture channels, which can be independently configured in the following modes:

- 1. Input Capture
- 2. Output Compare
- 3. PWM

19.3.3.1 Input Pin Logic

Each compare/capture channel can be configured as an input source for the Capture Unit or as external clock source for the timer (see Figure 19.11 TIMER Input Pin Logic on page 442). Compare/capture channels 0 and 1 are the inputs for the quadrature decoder. The input channel can be filtered before it is used, which requires the input to remain stable for up to 5 cycles in a row before the input is propagated to the output.

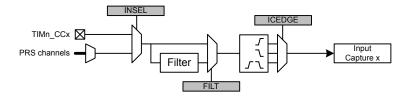


Figure 19.11. TIMER Input Pin Logic

The capture input to the timer may be selected from the dedicated CCx signal for the channel, or a PRS signal. INSEL in TIMERn_CCx_CFG determines the input to the channel. When set to PIN, the selected CCx pin will be used. When INSEL is set to PRSSYNC, a synchronous PRS channel is selected as the source. The synchronous PRS channel is determined by the SPRSSEL field in the PRS_TIMERn_CCx register. Setting INSEL to PRSASYNCLEVEL or PRSASYNCPULSE selects an asynchronous PRS channel as the source. The aynchronous PRS channel is determined by the PRSSEL field in the PRS_TIMERn_CCx register.

The PIN and PRSASYNCLEVEL selections are qualified by a 2-clock input sampler. To recognize and capture the incoming signal, it must be at the new level for at least 2 HFPERCLK_{TIMERn} clock cycles. An additional 5 HFPERCLK_{TIMERn} cycles of filtering can be applied to the signal by enabling the FILT bit in TIMERn CCx CFG.

The PRSASYNCPULSE selection can be used to capture higher-speed pulses on an asynchronous PRS input. The input logic for this selection does not qualify the level of the incoming signal. Instead, it will recognize positive or negative edges directly. While the pulse time can be shorter than 1 HFPERCLK_{TIMERn}, this mode requires at least 3 HFPERCLK_{TIMERn} clocks between adjacent events. The FILT option is not used in this mode.

Synchronous PRS signals are inherently synchronized to the module clock, and the 2-clock input sampler is not used. However, it is possible to use FILT to enable the 5 HFPERCLK_{TIMERn} filter when using the PRSSYNC option.

19.3.3.2 Compare/Capture Registers

The compare/capture channel registers are prefixed with TIMERn_CCx_, where the x stands for the channel number. Since the compare/capture channels serve three functions (input capture, compare, PWM), different registers are used, depending on the mode the channel is set in.

19.3.3.3 Input Capture

In input capture, the counter value (TIMERn_CNT) can be captured in the Input Capture Register (TIMERn_CCx_ICF) (see Figure 19.12 TIMER Input Capture on page 443). The CCPOL bits in TIMERn_STATUS indicate the polarity of the edge that triggered the capture in TIMERn CCx ICF.

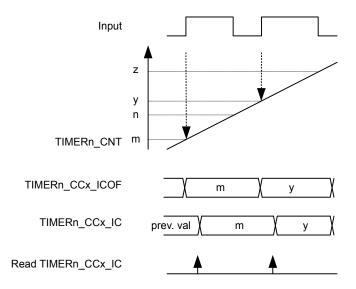


Figure 19.12. TIMER Input Capture

Input captures are buffered into a 2-entry FIFO, allowing 2 subsequent capture events to take place before a read-out is required. Reading TIMERn_CCx_ICF from software or DMA pops the oldest unread value from the FIFO. If TIMERn_CCx_ICF is read when the FIFO is empty (ICFEMPTY in TIMERn_STATUS = 1), the FIFO underflow flag for the channel (ICFUF in TIMERn_IF) will be set. The Input Capture Overflow Register (TIMERn_CCx_ICOF) always contains the newest value in the FIFO. If a new capture is triggered while the FIFO is full, the value in TIMERn_CCx_ICOF will be over-written with the latest value and the FIFO overflow flag (ICFOF in TIMERn_IF) for the channel will be set. Reading TIMERn_CCx_ICOF does not alter the FIFO contents.

The input capture FIFO also has a programmable watermark level that can be configured to generate interrupts or trigger DMA requests when a certain number of empty spots are left in the FIFO. The ICFWLFULL flag inTIMERn_IF will be set when the number of empty spots left in the FIFO is less than or equal to the watermark level programmed in TIMERn_CCx_CFG_ICFWL. At a minimum, a TIMER module will have two FIFO entries, but may have more on future devices.

The ICFEMPTY flag in TIMERn_STATUS indicates when the capture buffer is empty. When this bit reads '0', there is a valid unread capture in the FIFO.

Note: In input capture mode, the timer will only trigger interrupts when it is running.

19.3.3.4 Period/Pulse-Width Capture

Period and/or pulse-width capture can only be possible with Channel 0 (CC0), because this is the only channel that can start and stop the timer. This can be done by setting the RISEA field in TIMERn_CTRL to Clear&Start, and selecting the desired input from either external pin or PRS, see Figure 19.13 TIMER Period and/or Pulse width Capture on page 444. For period capture, the compare/capture channel should then be set to input capture on a rising edge of the same input signal. To capture the width of a high pulse, the compare/capture channel should be set to capture on a falling edge of the input signal. To measure the low pulse-width of a signal, opposite polarities should be chosen.

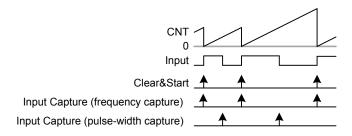


Figure 19.13. TIMER Period and/or Pulse width Capture

19.3.3.5 Compare

Each compare/capture channel contains a comparator which outputs a compare match if the contents of TIMERn_CCx_OC matches the counter value, see Figure 19.14 TIMER Block Diagram Showing Comparison Functionality on page 445. In compare mode, each compare channel can be configured to either set, clear or toggle the output on an event (compare match, overflow or underflow). The output from each channel is represented as an alternative function on the port it is connected to, which needs to be enabled for the CC outputs to propagate to the pins.

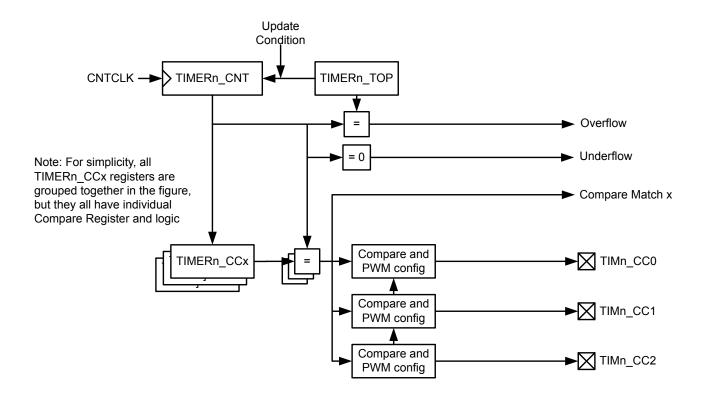


Figure 19.14. TIMER Block Diagram Showing Comparison Functionality

The compare output is delayed by one cycle to allow for full 0% to 100% PWM generation. If occurring in the same cycle, match action will have priority over overflow or underflow action.

The input selected (through PRSSEL in PRS_CONSUMER_TIMERn_CCx, INSEL and FILT in TIMERn_CCx_CFG) for the CC channel will also be sampled on compare match and the result is found in the CCPOL bits in TIMERn_STATUS. It is also possible to configure the CCPOL to always track the inputs by setting ATI in TIMERn_CFG.

Note: When using synchronous PRS sources, it is recommended to configure the PRS consumer registers prior to selecting PRS triggering to avoid any false triggers.

The COIST bit in TIMERn_CCx_CFG is the initial state of the compare/PWM output. The COIST bit can also be used as an initial value to the compare outputs on a reload-start when RSSCOIST is set in TIMERn_CFG. Also the resulting output can be inverted by setting OUTINV in TIMERn_CCx_CTRL. It is recommended to turn off the CC channel before configuring the output state to avoid any unwanted pulses on the output. The CC channel can be turned off by setting MODE to OFF in TIMER_CCx_CFG. The following figure shows the output logic for the TIMER module.

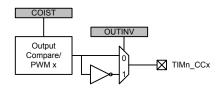


Figure 19.15. TIMER Output Logic

19.3.3.6 Compare Mode Registers

When running in output compare or PWM mode, the value in TIMERn_CCx_OC will be compared against the count value. In Compare mode the output can be configured to toggle, clear or set on compare match, overflow, and underflow through the CMOA, COFOA and CUFOA fields in TIMERn_CCx_CTRL. TIMERn_CCx_OC can be accessed directly or through the buffer register TIMERn_CCx_OCB, see Figure 19.16 TIMER Output Compare/PWM Buffer Functionality Detail on page 446. When writing to the buffer register, the value in TIMERn_CCx_OCB will be written to TIMERn_CCx_OC on the next *update event*. This functionality ensures glitch free PWM outputs. The OCBV flag in TIMERn_STATUS indicates whether the TIMERn_CCx_OCB register contains data that has not yet been written to the TIMERn_CCx_OC register. Note that when writing 0 to TIMERn_CCx_OCB in up-down count mode the OC value is updated when the timer counts from 0 to 1. Thus, the compare match for the next period will not happen until the timer reaches 0 again on the way down.



Figure 19.16. TIMER Output Compare/PWM Buffer Functionality Detail

19.3.3.7 Frequency Generation (FRG)

Frequency generation (see Figure 19.17 TIMER Up-count Frequency Generation on page 447) can be achieved in compare mode by:

- · Setting the counter in up-count mode
- · Enabling buffering of the TOP value.
- · Setting the CC channels overflow action to toggle

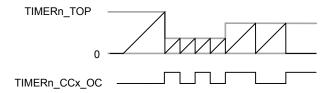


Figure 19.17. TIMER Up-count Frequency Generation

The output frequency is given by Figure 19.18 TIMER Up-count Frequency Generation Equation on page 447

$$f_{FRG} = f_{HFPERCLK_TIMERn} / [2 x (PRESC + 1) x (TOP + 1)]$$

Figure 19.18. TIMER Up-count Frequency Generation Equation

The figure below provides cycle accurate timing and event generation information for frequency generation.

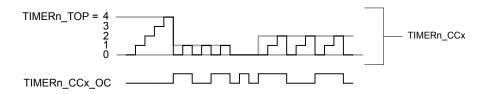


Figure 19.19. TIMER Up-count Frequency Generation Detail

19.3.3.8 Pulse-Width Modulation (PWM)

In PWM mode, TIMERn_CCx_OC is buffered to avoid glitches in the output. The settings in the Compare Output Action configuration bits are ignored in PWM mode and PWM generation is only supported for up-count and up/down-count mode.

19.3.3.9 Up-count (Single-slope) PWM

If the counter is set to up-count and the compare/capture channel is put in PWM mode, single slope PWM output will be generated (see Figure 19.20 TIMER Up-count PWM Generation on page 448). In up-count mode the PWM period is TOP+1 cycles and the PWM output will be high for a number of cycles equal to TIMERn_CCx_OC. This means that a constant high output is achieved by setting TIMERn_CCx_OC to TOP+1 or higher. The PWM resolution (in bits) is then given by Figure 19.21 TIMER Up-count PWM Resolution Equation on page 448.

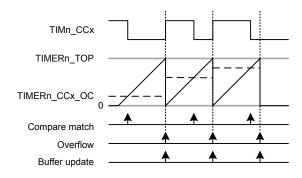


Figure 19.20. TIMER Up-count PWM Generation

$$R_{PWM_{UD}} = log(TOP+1)/log(2)$$

Figure 19.21. TIMER Up-count PWM Resolution Equation

The PWM frequency is given by Figure 19.22 TIMER Up-count PWM Frequency Equation on page 448:

$$f_{PWM_{IID}} = f_{HFPERCLK\ TIMERn} / [(PRESC + 1) x (TOP + 1)]$$

Figure 19.22. TIMER Up-count PWM Frequency Equation

The high duty cycle is given by Figure 19.23 TIMER Up-count Duty Cycle Equation on page 448

$$DS_{up} = OCx/(TOP+1)$$

Figure 19.23. TIMER Up-count Duty Cycle Equation

The figure below provides cycle accurate timing and event generation information for up-count mode.

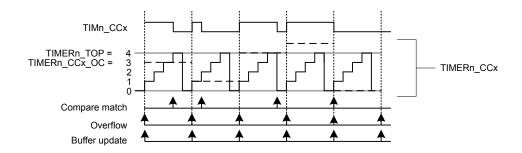


Figure 19.24. TIMER Up-count PWM Generation Detail

19.3.3.10 2x Count Mode (Up-count)

When the timer is set in 2x mode, the TIMER will count up by two for every (prescaled) clock. This will in effect make any odd Top value be rounded down to the closest even number. Similarly, any odd OC value will generate a match on the closest lower even value as shown in Figure 19.25 TIMER CC out in 2x mode on page 449

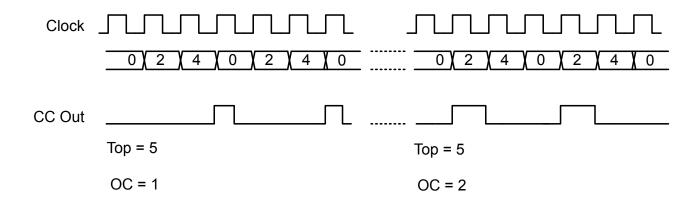


Figure 19.25. TIMER CC out in 2x mode

The PWM resolution is given by Figure 19.26 TIMER 2x PWM Resolution Equation on page 449.

 $R_{PWM_{2xmode}} = log(TOP/2+1)/log(2)$

Figure 19.26. TIMER 2x PWM Resolution Equation

The PWM frequency is given by Figure 19.27 TIMER 2x Mode PWM Frequency Equation (Up-count) on page 449:

 $f_{PWM_{2xmode}} = f_{HFPERCLK TIMERn} / [(PRESC + 1) x (floor(TOP/2) + 1)]$

Figure 19.27. TIMER 2x Mode PWM Frequency Equation(Up-count)

The high duty cycle is given by Figure 19.28 TIMER 2x Mode Duty Cycle Equation on page 449

 $DS_{2xmode} = OCx/((floor(TOP/2)+1)*2)$

Figure 19.28. TIMER 2x Mode Duty Cycle Equation

19.3.3.11 Up/Down-count (Dual-slope) PWM

If the counter is set to up-down count and the compare/capture channel is put in PWM mode, dual slope PWM output will be generated by Figure 19.29 TIMER Up/Down-count PWM Generation on page 450. The resolution (in bits) is given by Figure 19.30 TIMER Up/Down-count PWM Resolution Equation on page 450.

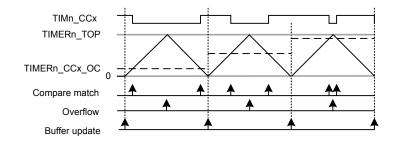


Figure 19.29. TIMER Up/Down-count PWM Generation

$$R_{PWM_{up/down}} = log(TOP+1)/log(2)$$

Figure 19.30. TIMER Up/Down-count PWM Resolution Equation

The PWM frequency is given by Figure 19.31 TIMER Up/Down-count PWM Frequency Equation on page 450:

Figure 19.31. TIMER Up/Down-count PWM Frequency Equation

The high duty cycle is given by Figure 19.32 TIMER Up/Down-count Duty Cycle Equation on page 450

$$DS_{up/down} = OCx/TOP$$

Figure 19.32. TIMER Up/Down-count Duty Cycle Equation

The figure below provides cycle accurate timing and event generation information for up-count mode.

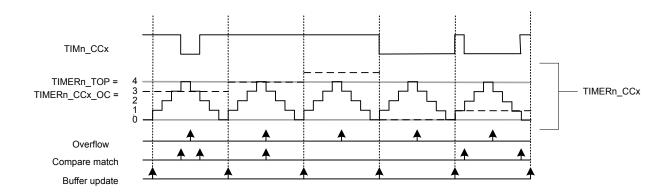


Figure 19.33. TIMER Up/Down-count PWM Generation

19.3.3.12 2x Count Mode (Up/Down-count)

When the timer is set in 2x mode, the TIMER will count up/down by two. This will in effect make any odd Top value be rounded down to the closest even number. Similarly, any odd OC value will generate a match on the closest lower even value as shown in Figure 19.34 TIMER CC out in 2x mode on page 451

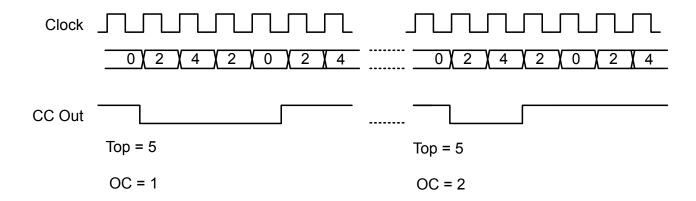


Figure 19.34. TIMER CC out in 2x mode

Figure 19.35 TIMER 2x PWM Resolution Equation on page 451.

 $R_{PWM_{2xmode}} = log(TOP/2+1)/log(2)$

Figure 19.35. TIMER 2x PWM Resolution Equation

The PWM frequency is given by Figure 19.36 TIMER 2x Mode PWM Frequency Equation(Up/Down-count) on page 451:

 $f_{PWM_{2xmode}} = f_{HFPERCLK\ TIMERn}/(2 x (PRESC + 1) x (floor(TOP/2)))$

Figure 19.36. TIMER 2x Mode PWM Frequency Equation(Up/Down-count)

The high duty cycle is given by two equations based on the OCx values. Figure 19.37 TIMER 2x Mode Duty Cycle Equation for OCx = 1 or OCx = even on page 451 and Figure 19.38 TIMER 2x Mode Duty Cycle Equation for all other OCx = odd values on page 451

 $DS_{2xmode} = (OCx*2)/(floor(TOP/2)*4)$

Figure 19.37. TIMER 2x Mode Duty Cycle Equation for OCx = 1 or OCx = even

 $DS_{2xmode} = (OCx*2 - OCx)/(floor(TOP/2)*4)$

Figure 19.38. TIMER 2x Mode Duty Cycle Equation for all other OCx = odd values

19.3.3.13 Re-Timing PWM Outputs

PWM outputs are normally synchrous to the TIMER peripheral clock. However for radio applications, it can be desirable to synchronize PWM edges to radio clocks to reduce the interference with RF signalling.

Re-timing is enabled by setting the RETIMEEN bit in TIMERn_CFG to 1. When RETIMEEN is enabled, PWM X2CNT mode should not be enabled. Doing so may result in unpredictable PWM behavior.

Direct re-timing is supported at peripheral clock frequencies up to 50 MHz. For higher peripheral clock frequencies, set the RETIMESEL bit in TIMERn_CFG to 1. This allows PWM outputs to be re-timed at frequencies up to 80 MHz, but will introduce up to 1 HFPERCLK_{TIMERn} cycle of jitter between the PWM outputs.

19.3.3.14 Timer Configuration Lock

To prevent software errors from making changes to the timer configuration, a configuration lock is available. Writing any value but 0xCE80 to LOCKKEY in TIMERn_LOCK will lock writes to TIMERn_CTRL, TIMERn_CFG, TIMERn_CMD, TIMERn_TOP, TIMERn_TOPB, TIMERn_CNT, TIMERn_CCx_CTRL, TIMERn_CCx_CFG, TIMERn_CCx_OC, and TIMERn_CCx_OCB. To unlock the registers, write 0xCE80 to LOCKKEY in TIMERn_LOCK. The value of TIMERLOCKSTATUS in TIMERn_STATUS is 1 when the lock is active, and 0 when the registers are unlocked.

19.3.4 Dead-Time Insertion Unit

Some timer modules include a Dead-Time Insertion unit suitable for motor control applications. Refer to the device data sheet to check which timer instances have this feature. The example settings in this section are for TIMER0, but identical settings can be used for other timers with DTI as well. The Dead-Time Insertion Unit aims to make control of brushless DC (BLDC) motors safer and more efficient by introducing complementary PWM outputs with dead-time insertion and fault handling, see Figure 19.39 TIMER Dead-Time Insertion Unit Overview on page 453.

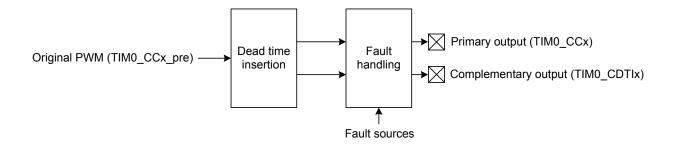


Figure 19.39. TIMER Dead-Time Insertion Unit Overview

When used for motor control, the PWM outputs TIM0_CC0, TIM0_CC1 and TIM0_CC2 are often connected to the high-side transistors of a triple half-bridge setup (UH, VH and WH), and the complementary outputs connected to the respective low-side transistors (UL, VL, WL shown in Figure 19.40 TIMER Triple Half-Bridge on page 453). Transistors used in such a bridge often do not open/close instantaneously, and using the exact complementary inputs for the high and low side of a half-bridge may result in situations where both gates are open. This can give unnecessary current-draw and short circuit the power supply. The DTI unit provides dead-time insertion to deal with this problem.

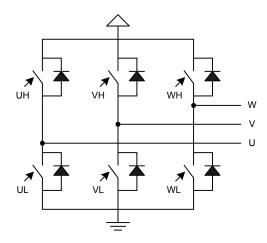


Figure 19.40. TIMER Triple Half-Bridge

For each of the 3 compare-match outputs of TIMER0, an additional complementary output is provided by the DTI unit. These outputs, named TIM0_CDTI0, TIM0_CDTI1 and TIM0_CDTI2 are provided to make control of e.g. 3-channel BLDC or permanent magnet AC (PMAC) motors possible using only a single timer, see Figure 19.41 TIMER Overview of Dead-Time Insertion Block for a Single PWM channel on page 454.

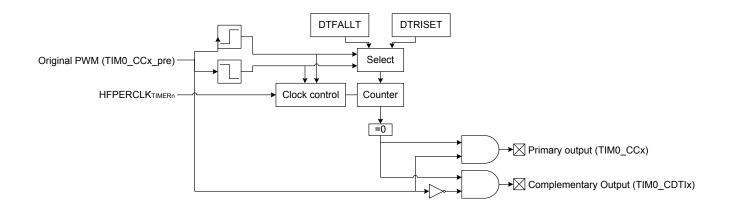


Figure 19.41. TIMER Overview of Dead-Time Insertion Block for a Single PWM channel

The DTI unit is enabled by setting DTEN in TIMERO_DTCFG. In addition to providing the complementary outputs, the DTI unit then also overrides the compare match outputs from the timer.

The DTI unit gives the rising edges of the PWM outputs and the rising edges of the complementary PWM outputs a configurable time delay. By doing this, the DTI unit introduces a dead-time where both the primary and complementary outputs in a pair are inactive as seen in Figure 19.42 TIMER Polarity of Both Signals are Set as Active-High on page 454.

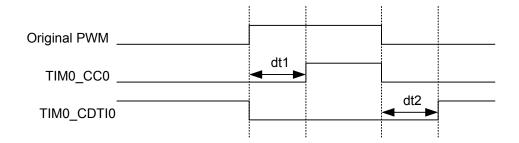


Figure 19.42. TIMER Polarity of Both Signals are Set as Active-High

Dead-time is specified individually for the rising and falling edge of the original PWM. These values are shared across all the three PWM channels of the DTI unit. A single prescaler value is provided for the DTI unit, meaning that both the rising and falling edge dead-times share prescaler value. The prescaler divides the HFPERCLK_{TIMER0} by a configurable factor between 1 and 1024, which is set in the DTPRESC field in TIMER0_DTTIMECFG. The rising and falling edge dead-times are configured in DTRISET and DTFALLT in TIMER0_DTTIMECFG to any number between 1-64 HFPERCLK_{TIMER0} cycles.

The DTAR and DTFATS bits in TIMER0_DTCFG control the DTI output behavior when the timer stops. By default the DTI block stops when the timer is stopped. Setting the DTAR bit will cause the DTI output on channel 0 to continue when the timer is stopped. DTAR effects only channel 0. See 19.3.4.2 PRS Channel as a Source for an example of when this can be used. While in this mode the undivided HFPERCLK_{TIMER0} (DTPRESC=0) is always used regardless of the programmed DTPRESC value in TIMER0_DTTIMECFG. This means that rise and fall dead times are calculated assuming DTPRESC = 0.

When the timer stops, DTI outputs are frozen by default, preserving their last state. To allow the outputs to go to a safe state, program the DTFA field of the TIMERO_DTFCFG register to the safe values and set the DTFATS bitfield in the TIMERO_DTCFG register. Note that when DTAR is also set, DTAR has priority over DTFATS for DTI channel 0 output.

The following table shows the DTI output when the timer is halted.

Table 19.3. DTI Output When Timer Halted

DTAR	DTFATS	State
0	0	frozen
0	1	safe
1	0	running
1	1	running

19.3.4.1 Output Polarity

The value of the primary and complementary outputs in a pair will never be set active at the same time by the DTI unit. The polarity of the outputs can be changed if this is required by the application. The active values of the primary and complementary outputs are set by the DTIPOL and DTCINV bits in the TIMERO_DTCTRL register. The DTIPOL bit of this register specifies the base polarity. If DTIPOL = 0, then the outputs are active-high, and if DTIPOL = 1 they are active-low. The relative phase of the primary and complementary outputs is not changed by DTIPOL, as the polarity of both outputs is changed, see Figure 19.43 TIMER Output Polarities on page 455.

In some applications, it may be required that the primary outputs are active-high, while the complementary outputs are active-low. This can be accomplished by manipulating the DTCINV bit of the TIMERO_DTCTRL register, which inverts the polarity of the complementary outputs relative to the primary outputs. As an example, DTIPOL = 0 and DTCINV = 0 results in outputs with opposite phase and active-high states. Similarly, DTIPOL = 1 and DTCINV = 1 results in outputs with equal phase and the primary output will be active-high while the complementary will be active-low.

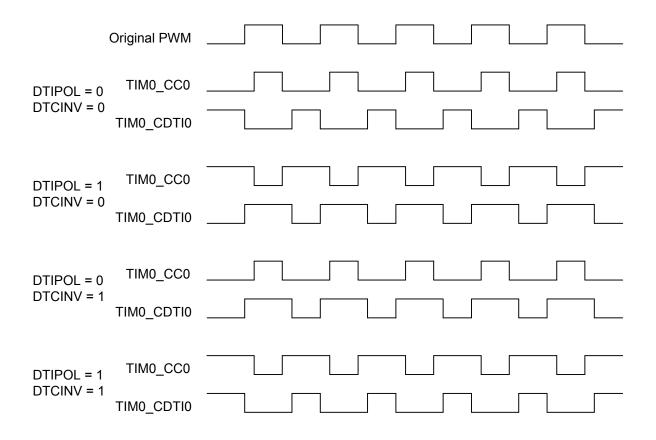


Figure 19.43. TIMER Output Polarities

Output generation on the individual DTI outputs can be disabled by configuring TIMER0_DTOGEN. When output generation on an output is disabled that output will go to and stay in its inactive state.

19.3.4.2 PRS Channel as a Source

A PRS channel can be used as input to the DTI module instead of the PWM output from the timer for DTI channel 0. Setting DTPRSEN in TIMERO_DTCFG will override the source of the first DTI channel, driving TIMO_CC0 and TIMO_CDTI0, with the value on the PRS channel. The rest of the DTI channels will continue to be driven by the PWM output from the timer. The input PRS channel is chosen within the PRS module with PRSSEL in the PRS_CONSUMER_TIMERn_DTI register. Note that the timer must be running even when PRS is used as the DTI source. However, if it is required to keep the DTI channel 0 running even when the timer is stopped, set DTAR in TIMERO_DTCFG. When this bit is set, it uses DTPRESC=0 regardless of the value programmed in DTPRESC in TIMERO_DTTI-MECFG.

Note: When using synchronous PRS sources, it is recommended to configure the PRS consumer registers prior to selecting PRS triggering to avoid any false triggers.

The DTI prescaler, set by DTPRESC in TIMER0_DTTIMECFG determines the accuracy with which the DTI can insert dead-time into a PRS signal. The maximum dead-time error equals DTIPRESC+1 clock cycles. With DTIPRESC = 0, the inserted dead-times are therefore accurate, but they may be inaccurate for larger prescaler settings.

19.3.4.3 Fault Handling

The fault handling system of the DTI unit allows the outputs of the DTI unit to be put in a well-defined state in case of a fault. This hardware fault handling system enables a fast reaction to faults, reducing the possibility of damage to the system.

The fault sources which trigger a fault in the DTI module are determined by the bitfields of TIMER0_DTFCFG register. Any combination of the available error sources can be selected:

- PRS source 1, determined by PRSSEL in PRS CONSUMER TIMERn DTIFS1
- PRS source 2, determined by PRSSEL in PRS_CONSUMER_TIMERn_DTIFS2
- Debugger
- · Core Lockup
- · EM2 or EM3 Entry

One or two PRS channels can be used as an error source. When PRS source 1 is selected as an error source, PRSSEL in PRS_CON-SUMER_TIMERn_DTIFS1 determines which PRS channel is used for this source. PRSSEL in PRS_CONSUMER_TIMERn_DTIFS2 determines which PRS channel is selected as PRS source 2. Note that for Core Lockup, the LOCKUPRDIS in RMU_CTRL must be set. Otherwise this will generate a full reset of the chip.

Note: When using synchronous PRS sources, it is recommended to configure the PRS consumer registers prior to selecting PRS triggering to avoid any false triggers.

19.3.4.4 Action on Fault

When a fault occurs, the bit representing the fault source is set in TIMER0_DTFAULT register, and the outputs from the DTI unit are set to a well-defined state. The following options are available, and can be enabled by configuring DTFA in TIMER0_DTFCFG:

- · Set outputs to inactive level
- · Clear outputs
- · Tristate outputs

With the first option enabled, the output state in case of a fault depends on the polarity settings for the individual outputs. An output set to be active high will be set low if a fault is detected, while an output set to be active low will be driven high.

When a fault occurs, the fault source(s) can be read out from TIMER0_DTFAULT register.

Additionally a fault action can also be triggered when the timer stops if DTFATS in TIMER0_DTCFG is set. This allows the DTI output to go to safe state specified by DTFA in TIMER0_DTCFG when the timer stops. When DTAR and DTFATS in TIMER0_DTCFG are both set, DTI channel 0 keeps running even when the timer stops. This is useful when DTI channel 0 has an input coming from PRS.

19.3.4.5 Exiting Fault State

When a fault is triggered by the PRS system, software intervention is required to re-enable the outputs of the DTI unit. This is done by manually clearing bits in the TIMER0_DTFAULT register. If the fault source as determined by checking TIMER0_DTFAULT is the debugger alone, the outputs can be automatically restarted when the debugger exits. To enable automatic restart set DTDAS in TIMER0_DCTFG. When an automatic restart occurs the DTDBGF bit in TIMER0_DTFAULT will be automatically cleared by hardware. If any other bits in the TIMER0_DTFAULT register are set when the hardware clears DTDBGF the DTI module will not exit the fault state.

19.3.4.6 DTI Configuration Lock

To prevent software errors from making changes to the DTI configuration, a configuration lock is available. Writing any value but 0xCE80 to LOCKKEY in TIMER0_DTLOCK locks writes to registers TIMER0_DTCFG, TIMER0_DTFCFG, TIMER0_DTCTRL, and TIMER0_DTTIMECFG. To unlock the registers, write 0xCE80 to LOCKKEY in TIMER0_DTLOCK. The value of DTILOCKSTATUS in TIMERn STATUS is 1 when the lock is active, and 0 when the registers are unlocked.

19.3.5 Debug Mode

When the CPU is halted in debug mode, the timer can be configured to either continue to run or to be frozen. This is configured in DEBUGRUN in TIMERn_CFG.

19.3.6 Interrupts, DMA and PRS Output

The timer can generate several type of output events:

- · Counter Underflow
- · Counter Overflow
- · Quadrature Decoder Direction Change
- Compare match or input capture (one per compare/capture channel)

Each of the events has its own interrupt flag. Also, there are interrupt flags for each compare/capture channel which are set on FIFO overflow or underflow in capture mode. FIFO overflow happens when a new capture over-writes an old unread capture in TIMERn_CCx_ICF. FIFO underflow happens when software reads TIMERn_CCx_ICF while the FIFO is empty.

If the interrupt flags are set and the corresponding interrupt enable bits in TIMERn_IEN are set high, the timer will send out an interrupt request. Each of the events may optionally trigger signals to PRS channels. The PRSCONF field in TIMERn_CCx_CFG determines how PRS events are generated. When PRSCONF is set to PULSE, and event will lead to a one HFPERCLK_{TIMERn} cycle high pulse on individual PRS outputs. Setting PRSCONF to LEVEL will make the PRS output follow the compare match output. Interrupts are cleared by setting the corresponding bit in the TIMERn_IFC register.

Each of the events will also set a DMA request when they occur. The different DMA requests are cleared when certain acknowledge conditions are met, see Table 19.4 TIMER DMA Events on page 457. Events which clear the DMA requests do not clear interrupt flags. Software must still manually clear the interrupt flag if interrupts are in use.

If DMACLRACT is set in TIMERn_CFG, the DMA request is cleared when the triggered DMA channel is active, without having to access any timer registers. This is useful in cases where a timer event is used to trigger a DMA transfer in output compare or PWM mode that does not target the OC or OCB registers. DMACLRACT is not applicable in input capture mode.

Table 19.4. TIMER DMA Events

Event	Acknowledge/Clear
Underflow/Overflow	Read or write to TIMERn_CNT or TIMERn_TOPB
CC0 Input Capture - ICFWLFULL0 flag set	ICFEMPTY0 flag set (read FIFO via TIMERn_CC0_ICF)
CC1 Input Capture - ICFWLFULL1 flag set	ICFEMPTY1 flag set (read FIFO via TIMERn_CC1_ICF)
CC2 Input Capture - ICFWLFULL2 flag set	ICFEMPTY2 flag set (read FIFO via TIMERn_CC2_ICF)
CC3 Input Capture - ICFWLFULL3 flag set	ICFEMPTY3 flag set (read FIFO via TIMERn_CC3_ICF)
CC0 Output Compare / PWM - Match event	Write TIMERn_CC0_OC or TIMERn_CC0_OCB
CC1 Output Compare / PWM - Match event	Write TIMERn_CC1_OC or TIMERn_CC1_OCB
CC2 Output Compare / PWM - Match event	Write TIMERn_CC2_OC or TIMERn_CC2_OCB
CC3 Output Compare / PWM - Match event	Write TIMERn_CC3_OC or TIMERn_CC3_OCB

19.3.7 GPIO Input/Output

The TIMn_CCx inputs/outputs and TIMn_CDTIx outputs are accessible as alternate functions through GPIO. Each pin connection can be enabled/disabled separately using the GPIO module control registers. See the device data sheet for the available locations for each signal.

19.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	TIMER_IPVERSION	R	IP version ID
0x004	TIMER_CFG	RW CONFIG	Configuration Register
0x008	TIMER_CTRL	RW SYNC	Control Register
0x00C	TIMER_CMD	W SYNC	Command Register
0x010	TIMER_STATUS	RH	Status Register
0x014	TIMER_IF	RWH INTFLAG	Interrupt Flag Register
0x018	TIMER_IEN	RW	Interrupt Enable Register
0x01C	TIMER_TOP	RWH SYNC	Counter Top Value Register
0x020	TIMER_TOPB	RW SYNC	Counter Top Value Buffer Register
0x024	TIMER_CNT	RWH SYNC	Counter Value Register
0x02C	TIMER_LOCK	W	TIMER Configuration Lock Register
0x030	TIMER_EN	RW ENABLE	module en
0x060	TIMER_CCx_CFG	RW CONFIG	CC Channel Configuration Register
0x064	TIMER_CCx_CTRL	RW SYNC	CC Channel Control Register
0x068	TIMER_CCx_OC	RWH SYNC	OC Channel Value Register
0x070	TIMER_CCx_OCB	RW SYNC	OC Channel Value Buffer Register
0x074	TIMER_CCx_ICF	R(r)H	IC Channel Value Register
0x078	TIMER_CCx_ICOF	RH SYNC	IC Channel Value Overflow Register
0x0E0	TIMER_DTCFG	RW CONFIG	DTI Configuration Register
0x0E4	TIMER_DTTIMECFG	RW CONFIG	DTI Time Configuration Register
0x0E8	TIMER_DTFCFG	RW CONFIG	DTI Fault Configuration Register
0x0EC	TIMER_DTCTRL	RW SYNC	DTI Control Register
0x0F0	TIMER_DTOGEN	RW SYNC	DTI Output Generation Enable Register
0x0F4	TIMER_DTFAULT	RH	DTI Fault Register
0x0F8	TIMER_DTFAULTC	W SYNC	DTI Fault Clear Register
0x0FC	TIMER_DTLOCK	W	DTI Configuration Lock Register
0x1000	TIMER_IPVERSION_SET	R	IP version ID
0x1004	TIMER_CFG_SET	RW CONFIG	Configuration Register
0x1008	TIMER_CTRL_SET	RW SYNC	Control Register
0x100C	TIMER_CMD_SET	W SYNC	Command Register
0x1010	TIMER_STATUS_SET	RH	Status Register
0x1014	TIMER_IF_SET	RWH INTFLAG	Interrupt Flag Register
0x1018	TIMER_IEN_SET	RW	Interrupt Enable Register
0x101C	TIMER_TOP_SET	RWH SYNC	Counter Top Value Register
0x1020	TIMER_TOPB_SET	RW SYNC	Counter Top Value Buffer Register

Offset	Name	Туре	Description
0x1024	TIMER_CNT_SET	RWH SYNC	Counter Value Register
0x102C	TIMER_LOCK_SET	W	TIMER Configuration Lock Register
0x1030	TIMER_EN_SET	RW ENABLE	module en
0x1060	TIMER_CCx_CFG_SET	RW CONFIG	CC Channel Configuration Register
0x1064	TIMER_CCx_CTRL_SET	RW SYNC	CC Channel Control Register
0x1068	TIMER_CCx_OC_SET	RWH SYNC	OC Channel Value Register
0x1070	TIMER_CCx_OCB_SET	RW SYNC	OC Channel Value Buffer Register
0x1074	TIMER_CCx_ICF_SET	R(r)H	IC Channel Value Register
0x1078	TIMER_CCx_ICOF_SET	RH SYNC	IC Channel Value Overflow Register
0x10E0	TIMER_DTCFG_SET	RW CONFIG	DTI Configuration Register
0x10E4	TIMER_DTTIMECFG_SET	RW CONFIG	DTI Time Configuration Register
0x10E8	TIMER_DTFCFG_SET	RW CONFIG	DTI Fault Configuration Register
0x10EC	TIMER_DTCTRL_SET	RW SYNC	DTI Control Register
0x10F0	TIMER_DTOGEN_SET	RW SYNC	DTI Output Generation Enable Register
0x10F4	TIMER_DTFAULT_SET	RH	DTI Fault Register
0x10F8	TIMER_DTFAULTC_SET	W SYNC	DTI Fault Clear Register
0x10FC	TIMER_DTLOCK_SET	W	DTI Configuration Lock Register
0x2000	TIMER_IPVERSION_CLR	R	IP version ID
0x2004	TIMER_CFG_CLR	RW CONFIG	Configuration Register
0x2008	TIMER_CTRL_CLR	RW SYNC	Control Register
0x200C	TIMER_CMD_CLR	W SYNC	Command Register
0x2010	TIMER_STATUS_CLR	RH	Status Register
0x2014	TIMER_IF_CLR	RWH INTFLAG	Interrupt Flag Register
0x2018	TIMER_IEN_CLR	RW	Interrupt Enable Register
0x201C	TIMER_TOP_CLR	RWH SYNC	Counter Top Value Register
0x2020	TIMER_TOPB_CLR	RW SYNC	Counter Top Value Buffer Register
0x2024	TIMER_CNT_CLR	RWH SYNC	Counter Value Register
0x202C	TIMER_LOCK_CLR	w	TIMER Configuration Lock Register
0x2030	TIMER_EN_CLR	RW ENABLE	module en
0x2060	TIMER_CCx_CFG_CLR	RW CONFIG	CC Channel Configuration Register
0x2064	TIMER_CCx_CTRL_CLR	RW SYNC	CC Channel Control Register
0x2068	TIMER_CCx_OC_CLR	RWH SYNC	OC Channel Value Register
0x2070	TIMER_CCx_OCB_CLR	RW SYNC	OC Channel Value Buffer Register
0x2074	TIMER_CCx_ICF_CLR	R(r)H	IC Channel Value Register
0x2078	TIMER_CCx_ICOF_CLR	RH SYNC	IC Channel Value Overflow Register
0x20E0	TIMER_DTCFG_CLR	RW CONFIG	DTI Configuration Register
0x20E4	TIMER_DTTIMECFG_CLR	RW CONFIG	DTI Time Configuration Register

Offset	Name	Туре	Description
0x20E8	TIMER_DTFCFG_CLR	RW CONFIG	DTI Fault Configuration Register
0x20EC	TIMER_DTCTRL_CLR	RW SYNC	DTI Control Register
0x20F0	TIMER_DTOGEN_CLR	RW SYNC	DTI Output Generation Enable Register
0x20F4	TIMER_DTFAULT_CLR	RH	DTI Fault Register
0x20F8	TIMER_DTFAULTC_CLR	W SYNC	DTI Fault Clear Register
0x20FC	TIMER_DTLOCK_CLR	W	DTI Configuration Lock Register
0x3000	TIMER_IPVERSION_TGL	R	IP version ID
0x3004	TIMER_CFG_TGL	RW CONFIG	Configuration Register
0x3008	TIMER_CTRL_TGL	RW SYNC	Control Register
0x300C	TIMER_CMD_TGL	W SYNC	Command Register
0x3010	TIMER_STATUS_TGL	RH	Status Register
0x3014	TIMER_IF_TGL	RWH INTFLAG	Interrupt Flag Register
0x3018	TIMER_IEN_TGL	RW	Interrupt Enable Register
0x301C	TIMER_TOP_TGL	RWH SYNC	Counter Top Value Register
0x3020	TIMER_TOPB_TGL	RW SYNC	Counter Top Value Buffer Register
0x3024	TIMER_CNT_TGL	RWH SYNC	Counter Value Register
0x302C	TIMER_LOCK_TGL	W	TIMER Configuration Lock Register
0x3030	TIMER_EN_TGL	RW ENABLE	module en
0x3060	TIMER_CCx_CFG_TGL	RW CONFIG	CC Channel Configuration Register
0x3064	TIMER_CCx_CTRL_TGL	RW SYNC	CC Channel Control Register
0x3068	TIMER_CCx_OC_TGL	RWH SYNC	OC Channel Value Register
0x3070	TIMER_CCx_OCB_TGL	RW SYNC	OC Channel Value Buffer Register
0x3074	TIMER_CCx_ICF_TGL	R(r)H	IC Channel Value Register
0x3078	TIMER_CCx_ICOF_TGL	RH SYNC	IC Channel Value Overflow Register
0x30E0	TIMER_DTCFG_TGL	RW CONFIG	DTI Configuration Register
0x30E4	TIMER_DTTIMECFG_TGL	RW CONFIG	DTI Time Configuration Register
0x30E8	TIMER_DTFCFG_TGL	RW CONFIG	DTI Fault Configuration Register
0x30EC	TIMER_DTCTRL_TGL	RW SYNC	DTI Control Register
0x30F0	TIMER_DTOGEN_TGL	RW SYNC	DTI Output Generation Enable Register
0x30F4	TIMER_DTFAULT_TGL	RH	DTI Fault Register
0x30F8	TIMER_DTFAULTC_TGL	W SYNC	DTI Fault Clear Register
0x30FC	TIMER_DTLOCK_TGL	W	DTI Configuration Lock Register

19.5 Register Description

19.5.1 TIMER_IPVERSION - IP version ID

Offset	Bit Position														
0x000	0 - 1 - 2 - 3 - 4 - 5 - 6 - 1 - 2 - 3 - 4 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6														
Reset	OX OX														
Access	~														
Name	IPVERSION														

Bit	Name	Reset	Access	Description
31:0	IPVERSION	0x0	R	IP Version ID
	The read only IPVERSION modules with different v			this module. There may be minor software changes required for

19.5.2 TIMER_CFG - Configuration Register

Offset		Bit Position																													
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	- 0
Reset		'	•	•		0×0									0x0	0×0		'		0X0	0x0	000	Š	Š	0X0	000	0×0	000	000		0x0
Access									<u> </u>	<u>}</u>					W.	W.				Z.	RW	₩ M	Š	<u>}</u>	W.	₩ M	W.	W.	W M		A.W.
Name						ESC							RSSCOIST	ATI				RETIMESEL	DISSYNCOUT	RETIMEEN	I G	CLNSEL	DMACLRACT	DEBUGRUN	QDM	OSMEN	SYNC		MODE		

Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
27:18	PRESC	0x0	RW	Prescaler Setting

These bits select the prescaling factor for the counter clock. The selected timer clock will be divided by PRESC+1 before clocking the counter. The following modes are provided for easier software porting from Series 0 or Series 1 devices. However, the prescaler is not limited to these options.

	Value	Mode		Description
	0	DIV1		No prescaling
	1	DIV2		Prescale by 2
	3	DIV4		Prescale by 4
	7	DIV8		Prescale by 8
	15	DIV16		Prescale by 16
	31	DIV32		Prescale by 32
	63	DIV64		Prescale by 64
	127	DIV128		Prescale by 128
	255	DIV256		Prescale by 256
	511	DIV512		Prescale by 512
	1023	DIV1024		Prescale by 1024
17	RSSCOIST	0x0	RW	Reload-Start Sets COIST
	When enabled, com	pare output is s	et to COIST v	alue on a Reload-Start event.
16	ATI	0x0	RW	Always Track Inputs
	Enabling ATI makes	CCPOL always	s track the pol	arity of the inputs.
15:13	Reserved	To ensur ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
12	RETIMESEL	0x0	RW	PWM output retime select
				vill be re-timed to synchronize edges with radio clocks and reduce RF ock jutter between PWM outputs.
11	DISSYNCOUT	0x0	RW	Disable Timer Start/Stop/Reload output
	When this bit is set,	the Timer does	not start/stop/	reload other timers with SYNC bit set.

Bit	Name	Reset	Access	Description
	Value	Mode		Description
	0	EN		Timer can start/stop/reload other timers with SYNC bit set
	1	DIS		Timer cannot start/stop/reload other timers with SYNC bit set
0	RETIMEEN	0x0	RW	PWM output retimed enable
	Enable retiming of P	WM output.		
	Value	Mode		Description
	0	DISABLE		PWM outputs are not re-timed.
	1	ENABLE		PWM outputs are re-timed.
0:8	CLKSEL	0x0	RW	Clock Source Select
	These bits select the	e clock source fo	r the timer.	
	Value	Mode		Description
	0	PRESCEN	M01GRPACLK	Prescaled EM01GRPACLK
	1	CC1		Compare/Capture Channel 1 Input
	2	TIMEROU	F	Timer is clocked by underflow(down-count) or overflow(up-count) in the lower numbered neighbor Timer
,	DMACLRACT	0x0	RW	DMA Request Clear on Active
	When this bit is set, timer DMA requests			nen the corresponding DMA channel is active. This enables the the timer.
6	DEBUGRUN	0x0	RW	Debug Mode Run Enable
	Set this bit to enable	timer to run in d	lebug mode.	
	Value	Mode		Description
	0	HALT		Timer is halted in debug mode
	0	HALT RUN		Timer is halted in debug mode Timer is running in debug mode
5			RW	
5	1	RUN 0x0		Timer is running in debug mode
5	1 QDM	RUN 0x0		Timer is running in debug mode
5	QDM This bit sets the mod	RUN 0x0 de for the quadra		Timer is running in debug mode Quadrature Decoder Mode Selection
;	QDM This bit sets the mod	RUN 0x0 de for the quadra Mode		Timer is running in debug mode Quadrature Decoder Mode Selection Description
	QDM This bit sets the mod Value 0	RUN 0x0 de for the quadra Mode X2		Timer is running in debug mode Quadrature Decoder Mode Selection Description X2 mode selected
	QDM This bit sets the mod Value 0 1	RUN 0x0 de for the quadra Mode X2 X4 0x0	ature decoder.	Timer is running in debug mode Quadrature Decoder Mode Selection Description X2 mode selected X4 mode selected
1	QDM This bit sets the mod Value 0 1 OSMEN	RUN 0x0 de for the quadra Mode X2 X4 0x0	ature decoder.	Timer is running in debug mode Quadrature Decoder Mode Selection Description X2 mode selected X4 mode selected
5 4	QDM This bit sets the mod Value 0 1 OSMEN Enable/disable one s	RUN 0x0 de for the quadra Mode X2 X4 0x0 shot mode. 0x0	RW	Timer is running in debug mode Quadrature Decoder Mode Selection Description X2 mode selected X4 mode selected One-shot Mode Enable
1	QDM This bit sets the mod Value 0 1 OSMEN Enable/disable one s	RUN 0x0 de for the quadra Mode X2 X4 0x0 shot mode. 0x0	RW	Timer is running in debug mode Quadrature Decoder Mode Selection Description X2 mode selected X4 mode selected One-shot Mode Enable Timer Start/Stop/Reload Synchronization

Bit	Name	Reset	Access	Description
	1	ENABLE	710000	Timer may be started, stopped and re-loaded from other timer instances.
2	Reserved	To ensure ventions	compatibility (with future devices, always write bits to 0. More information in 1.2 Con-
1:0	MODE	0x0	RW	Timer Mode
				te, when Quadrature Decoder Mode is selected (MODE = 'b11), the Decoder Mode clock output.
	Value	Mode		Description
	0	UP		Up-count mode
	1	DOWN		Down-count mode
	2	UPDOWN		Up/down-count mode
	3	QDEC		Quadrature decoder mode

19.5.3 TIMER_CTRL - Control Register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	3	2	_	0
Reset			•	•	•		•	•				•		•	•	•		•					•				•	0x0	2	2	Ö	8
Access																												RW	<u> </u>	^	Z N	
Name																												X2CNT	Δ I I Δ I	7	RISFA	

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
4	X2CNT	0x0	RW	2x Count Mode
	Enable 2x count mode			
3:2	FALLA	0x0	RW	Timer Falling Input Edge Action
	These bits select the act	tion taken in th	ne counter when	a falling edge occurs on the input.
	Value	Mode		Description
	0	NONE		No action
	1	START		Start counter without reload
	2	STOP		Stop counter without reload
	3	RELOADS ⁻	TART	Reload and start counter
1:0	RISEA	0x0	RW	Timer Rising Input Edge Action
	These bits select the act	tion taken in th	ne counter when	a rising edge occurs on the input.
	Value	Mode		Description
	0	NONE		No action
	1	START		Start counter without reload
	2	STOP		Stop counter without reload
	3	RELOADS ⁻	TART	Reload and start counter

19.5.4 TIMER_CMD - Command Register

Offset															Ві	t Pc	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	8	7	9	5	4	က	2	1	0
Reset																•					•	•			•	•	•			•	0x0	0x0
Access																															W	>
Name																															STOP	START

Bit	Name	Reset	Access	Description							
31:2	Reserved	To ensure o	ompatibility with	n future devices, always write bits to 0. More information in 1.2 Con-							
1	STOP	0x0	W	Stop Timer							
	Write a 1 to this bit to sto	p timer									
0	START	0x0	W	Start Timer							
	Write a 1 to this bit to sta	rt timer									

19.5.5 TIMER_STATUS - Status Register

Offset		Bit Position	
0x010	31 30 29 28 27	2 5 5 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 7 0
Reset		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 000
Access			x x x
Name		CCPOL2 CCPOL1 CCPOL0 ICFEMPTY2 ICFEMPTY1 ICFEMPTY1 ICFEMPTY2 ICFEMPTY2 ICFEMPTY2 ICFEMPTY2 ICFEMPTY2 ICFEMPTY2 ICFEMPTY2 ICFEMPTY2 ICFEMPTY3 ICFEMPTY3 ICFEMPTY3 ICFEMPTY4 ICFEMPTY4 ICFEMPTY2 ICFEMPTY4 ICFEMPTY4 ICFEMPTY6 ICFEMPTY6 ICFEMPTY6 ICFEMPTY6 ICFEMPTY7 ICFEMPTY7 ICFEMPTY7 ICFEMPTY6 ICFEMPTY7 ICFEM	TOPBV DIR RUNNING

Bit	Name	Reset	Access	Description
31:27	Reserved			with future devices, always write bits to 0. More information in 1.2 Con-
26	CCPOL2	0x0	R	CCn Polarity
		nis bit indicates th		rity of the edge that triggered capture in TIMERn_CC0_CCV. In Comthe selected input to CC channel 0. These bits are cleared when
	Value	Mode		Description
	0	LOWRISE		CC0 polarity low level/rising edge
	1	HIGHFAL	L,	CC0 polarity high level/falling edge
25	CCPOL1	0x0	R	CCn Polarity
				rity of the edge that triggered capture in TIMERn_CCO_CCV. In Com-
		nis bit indicates th		the selected input to CC channel 0. These bits are cleared when
	pare/PWM mode, the CCMODE is written	nis bit indicates the to 0b00 (Off).	ne polarity of	the selected input to CC channel 0. These bits are cleared when Description
	pare/PWM mode, the CCMODE is written	nis bit indicates the to 0b00 (Off). Mode	ne polarity of	the selected input to CC channel 0. These bits are cleared when
24	pare/PWM mode, the CCMODE is written Value	nis bit indicates the to 0b00 (Off). Mode LOWRISE	ne polarity of	the selected input to CC channel 0. These bits are cleared when Description CC0 polarity low level/rising edge
24	pare/PWM mode, the CCMODE is written Value 0 1 CCPOL0 In Input Capture mode.	nis bit indicates the to 0b00 (Off). Mode LOWRISE HIGHFAL 0x0 ode, this bit indicates the bit indicates the control of th	E R ates the polar	the selected input to CC channel 0. These bits are cleared when Description CC0 polarity low level/rising edge CC0 polarity high level/falling edge
24	pare/PWM mode, the CCMODE is written Value 0 1 CCPOL0 In Input Capture managere/PWM mode, the	nis bit indicates the to 0b00 (Off). Mode LOWRISE HIGHFAL 0x0 ode, this bit indicates the bit indicates the control of th	E R ates the polar	Description CC0 polarity low level/rising edge CC0 polarity high level/falling edge CCn Polarity ity of the edge that triggered capture in TIMERn_CC0_CCV. In Com-
24	pare/PWM mode, the CCMODE is written Value 0 1 CCPOL0 In Input Capture mode, the CCMODE is written Mode.	mis bit indicates the to 0b00 (Off). Mode LOWRISE HIGHFAL 0x0 ode, this bit indicates the to 0b00 (Off).	R ates the polarity of the pol	Description CC0 polarity low level/rising edge CC0 polarity high level/falling edge CCn Polarity rity of the edge that triggered capture in TIMERn_CC0_CCV. In Comthe selected input to CC channel 0. These bits are cleared when
24	pare/PWM mode, the CCMODE is written Value 0 1 CCPOL0 In Input Capture mode, the CCMODE is written Value Value	nis bit indicates the to 0b00 (Off). Mode LOWRISE HIGHFAL 0x0 ode, this bit indicates the to 0b00 (Off). Mode	R Rates the polar ne polarity of	Description CC0 polarity low level/rising edge CC0 polarity high level/falling edge CCn Polarity rity of the edge that triggered capture in TIMERn_CC0_CCV. In Comthe selected input to CC channel 0. These bits are cleared when
24 23:19	pare/PWM mode, the CCMODE is written Value 0 1 CCPOL0 In Input Capture mode, the CCMODE is written Value Value 0	nis bit indicates the to 0b00 (Off). Mode LOWRISE HIGHFAL 0x0 ode, this bit indicates the to 0b00 (Off). Mode LOWRISE HIGHFAL	R ates the polarity of the pol	Description CC0 polarity low level/rising edge CCn Polarity Tity of the edge that triggered capture in TIMERn_CC0_CCV. In Comthe selected input to CC channel 0. These bits are cleared when Description CC0 polarity low level/rising edge
	pare/PWM mode, the CCMODE is written Value 0 1 CCPOL0 In Input Capture mode, the CCMODE is written Value Value 0 1 1	nis bit indicates the to 0b00 (Off). Mode LOWRISE HIGHFAL 0x0 ode, this bit indicates the to 0b00 (Off). Mode LOWRISE HIGHFAL To ensure	R ates the polarity of the pol	Description CC0 polarity low level/rising edge CCn Polarity Tity of the edge that triggered capture in TIMERn_CC0_CCV. In Comthe selected input to CC channel 0. These bits are cleared when Description CC0 polarity low level/rising edge CCn Polarity CCn Polarity low level/rising edge CCn Polarity low level/rising edge

Bit	Name	Reset	Access	Description
17	ICFEMPTY1	0x0	R	Input capture fifo empty
	Set when input capture	e FIFO is emp	oty	
16	ICFEMPTY0	0x0	R	Input capture fifo empty
	Set when input capture	e FIFO is emp	oty	
15:11	Reserved	To ensure ventions	e compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
10	OCBV2	0x0	R	Output Compare Buffer Valid
				gisters contain data which have not been written to TPUTCOMPARE or PWM mode and are cleared when CCMODE is
9	OCBV1	0x0	R	Output Compare Buffer Valid
				gisters contain data which have not been written to TPUTCOMPARE or PWM mode and are cleared when CCMODE is
8	OCBV0	0x0	R	Output Compare Buffer Valid
				gisters contain data which have not been written to TPUTCOMPARE or PWM mode and are cleared when CCMODE is
7	Reserved	To ensure ventions	e compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
6	SYNCBUSY	0x0	R	Sync Busy
	Indicates synchronizati	ion ongoing		
5	DTILOCKSTATUS	0x0	R	DTI lock status
	Indicates current status	s of DTI lock		
	Value	Mode		Description
	0	UNLOCK	ED	DTI registers are unlocked
	1	LOCKED		DTI registers are locked
4	TIMERLOCKSTATUS	0x0	R	Timer lock status
	Indicates current status	s of Timer loc	k	
	Value	Mode		Description
	0	UNLOCK	ED	TIMER registers are unlocked
	1	LOCKED		TIMER registers are locked
3	Reserved	To ensure	e compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
2	TOPBV	0x0	R	TOP Buffer Valid
_	This indicates that TIM when TIMERn_TOP is		contains valid da	ta that has not been written to TIMERn_TOP. This bit is also cleared
1	DIR	0x0	R	Direction
	Indicates count direction	on.		
	Value	Mode		Description

Bit	Name	Reset	Access	Description
	0	UP		Counting up
	1	DOWN		Counting down
0	RUNNING	0x0	R	Running
	Indicates if timer is	running or not.		

19.5.6 TIMER_IF - Interrupt Flag Register

Offset		Bit Position																														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	ဖ	2	4	က	7	_	0
Reset		'		•	1	000	0X0	0×0		0x0	0X0	0x0		0X0	0X0	0x0									•	0X0	0X0	0X0		000	000	0x0
Access						₩ M	% ≷	S.		₩ M	S.	₩ M		₩	% M	Z.										₹	₩	% M		₽	S S	₩ M
Name						ICFUF2	ICFUF1	ICFUF0		ICFOF2	ICFOF1	ICFOF0		ICFWLFULL2	ICFWLFULL1	ICFWLFULL0										CC2	CC1	000		DIRCHG	UF	OF

Bit	Name	Reset	Access	Description
31:27	Reserved	To ensure ventions	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
26	ICFUF2	0x0	RW	Input capture FIFO underflow
	Indicates that softwa	re tried to read	an empty FIFO	on channel 2.
25	ICFUF1	0x0	RW	Input capture FIFO underflow
	Indicates that softwa	re tried to read	an empty FIFO	on channel 1.
24	ICFUF0	0x0	RW	Input capture FIFO underflow
	Indicates that softwa	re tried to read	an empty FIFO	on channel 0.
23	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
22	ICFOF2	0x0	RW	Input Capture FIFO overflow
	Indicates that input of value can be read from			overflown, and a prior captured value was lost. The latest captured
21	ICFOF1	0x0	RW	Input Capture FIFO overflow
	Indicates that input of value can be read from	•		overflown, and a prior captured value was lost. The latest captured
20	ICFOF0	0x0	RW	Input Capture FIFO overflow
	Indicates that input of value can be read from			overflown, and a prior captured value was lost. The latest captured
19	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
18	ICFWLFULL2	0x0	RW	Input Capture Watermark Level Full
	This bit indicates tha	it the Input capti	ure FIFO water	mark for channel 2 has been exceeded.
17	ICFWLFULL1	0x0	RW	Input Capture Watermark Level Full
	This bit indicates that	it the Input captu	ure FIFO water	mark for channel 1 has been exceeded.
16	ICFWLFULL0	0x0	RW	Input Capture Watermark Level Full
	This bit indicates that	it the Input capti	ure FIFO water	mark for channel 0 has been exceeded.
15:7	Reserved	To ensure ventions	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
6	CC2	0x0	RW	Capture Compare Channel 2 Interrupt Flag

Bit	Name	Reset	Access	Description								
		JRE mode this bit in icates that a match		new Capture event has taken place. In OUTPUTCOMPARE or PWM en place								
5	CC1	0x0 RW Capture Compare Channel 1 Interrupt Flag										
		JRE mode this bit in icates that a match		new Capture event has taken place. In OUTPUTCOMPARE or PWM en place								
4	CC0	0x0	RW	Capture Compare Channel 0 Interrupt Flag								
		JRE mode this bit in icates that a match		new Capture event has taken place. In OUTPUTCOMPARE or PWM en place								
3	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-								
2	DIRCHG	0x0	RW	Direction Change Detect Interrupt Flag								
	This bit is set wh	en count direction of	changes. Set o	only in Quadrature Decoder mode								
1	UF	0x0	RW	Underflow Interrupt Flag								
	This bit indicates	that there has bee	n an underflow	<i>i</i> .								
0	OF	0x0	RW	Overflow Interrupt Flag								
	This bit indicates	that there has bee	n an overflow.									

19.5.7 TIMER_IEN - Interrupt Enable Register

Offset			Bit Position	
0x018	31 30 29 28 27	26 22 24 25 27 20 19 19 19 19 19 19 19 19 19 19 19 19 19	7	9 4 6 7 - 0
Reset		000 000 000 000 000	0 0 0	000 000 000 000
Access		W W W W W W W W W	MA WA	R RW
Name			ICFWLFULLO	CC1 CC0 CC0 DIRCHG UF

Bit	Name	Reset	Access	Description
31:27	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
26	ICFUF2	0x0	RW	ICFUF2 Interrupt Enable
	Enable/Disable the	CFUF2 interrupt		
25	ICFUF1	0x0	RW	ICFUF1 Interrupt Enable
	Enable/Disable the	CFUF1 interrupt		
24	ICFUF0	0x0	RW	ICFUF0 Interrupt Enable
	Enable/Disable the	CFUF0 interrupt		
23	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
22	ICFOF2	0x0	RW	ICFOF2 Interrupt Enable
	Enable/Disable the	CFOF2 interrupt		
21	ICFOF1	0x0	RW	ICFOF1 Interrupt Enable
	Enable/Disable the	CFOF1 interrupt		
20	ICFOF0	0x0	RW	ICFOF0 Interrupt Enable
	Enable/Disable the	CFOF0 interrupt		
19	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
18	ICFWLFULL2	0x0	RW	ICFWLFULL2 Interrupt Enable
	Enable/Disable the	CFWLFULL2 inte	errupt	
17	ICFWLFULL1	0x0	RW	ICFWLFULL1 Interrupt Enable
	Enable/Disable the	CFWLFULL1 inte	errupt	
16	ICFWLFULL0	0x0	RW	ICFWLFULL0 Interrupt Enable
	Enable/Disable the	CFWLFULL0 inte	errupt	
15:7	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
6	CC2	0x0	RW	CC2 Interrupt Enable
	Enable/Disable the	CC2 interrupt		
5	CC1	0x0	RW	CC1 Interrupt Enable

Bit	Name	Reset	Access	Description								
	Enable/Disable the CC	interrupt										
4	CC0	0x0	RW	CC0 Interrupt Enable								
	Enable/Disable the CC0) interrupt										
3	Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions											
2	DIRCHG	0x0	RW	Direction Change Detect Interrupt Enable								
	Enable/Disable the DIR	CHG interrupt	t									
1	UF	0x0	RW	Underflow Interrupt Enable								
	Enable/Disable the UF	nterrupt										
0	OF	0x0	RW	Overflow Interrupt Enable								
	Enable/Disable the OF	interrupt										

19.5.8 TIMER_TOP - Counter Top Value Register

Offset		Bit Position																					
0x01C	31	0 1 2 3 4 5 2 6 7 8 8 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																					
Reset		0 4 4 4 4 4 4 7 8 8 8 8 8 8 8 8 8 8 8 8 8																					
Access														<u> </u>	2								
Name														TO D	5								

Bit	Name	Reset	Access	Description							
31:0	TOP	0xFFFF	RW	Counter Top Value							
	These bits hold the TOP value for the counter										

19.5.9 TIMER_TOPB - Counter Top Value Buffer Register

Offset	Bit Position									
0x020	33 34 37 38 39 30 30 30 30 31 32 33 34 35 36 37 47 41 41 41 41 41 42 43 44 45 46 47 47 48 40									
Reset	0×0									
Access										
Name	TOPB									

Bit	Name	Reset	Access	Description						
31:0	TOPB	0x0 RW		Counter Top Buffer Register						
	These bits hold the TOP buffer value.									

19.5.10 TIMER_CNT - Counter Value Register

Offset	Bit Position								
0x024	33 10								
Reset	0×0								
Access	RW.								
Name	NO CN								

Bit	Name	Reset	Access	Description
31:0	CNT	0x0	RW	Counter Value
	These bits hold the cour	nter value.		

19.5.11 TIMER_LOCK - TIMER Configuration Lock Register

Offset															Bi	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset				•		•												•	•					2	Š	•					•	
Access																								}	>							
Name																								\L\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	LOCANE							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
15:0	LOCKKEY	0x0	W	Timer Lock Key
		MERn_CCx_CTRL,		TIMERn_CTRL, TIMERn_CFG, TIMERn_CMD, TIMERn_TOP, cx_CFG, and TIMERn_CCx_OC from editing. Write the unlock code to
	Value	Mode		Description
	52864	UNLOCK		Write to unlock TIMER registers

19.5.12 TIMER_EN - module en

Offset	Bit Position	
0x030	33 34 4 5 6 6 7 7 8 8 10	0
Reset		0×0
Access		RW
Name		EN

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
0	EN	0x0	RW	Timer Module Enable
				d write to CONFIG type registers before setting the ENABLE bit. er setting the ENABLE bit.

19.5.13 TIMER_CCx_CFG - CC Channel Configuration Register

Offset															Bi	t Po	siti	on													
0x060	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	- 0
Reset			<u>'</u>	'	•						000	0x0	0×0	Š	SX SX			'		'		'		'	•	'		000			0x0
Access											₽	R M	M	Š	<u>}</u>													₩ M			RW
Name											ICFWL	FILT	PRSCONF	Ī.	INSEL													COIST			MODE

Bit	Name	Reset	Access	Description
31:22	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
21	ICFWL	0x0	RW	Input Capture FIFO watermark level
				/LFULL interrupt and DMA requests. ICFWLFULL will be set and see FIFO entries is less than or equal to ICFWL.
20	FILT	0x0	RW	Digital Filter
	Enable digital filter			
	Value	Mode		Description
	0	DISABLE		Digital Filter Disabled
	1	ENABLE		Digital Filter Enabled
19	PRSCONF	0x0	RW	PRS Configuration
	Select PRS pulse	or level for PRS ou	tput.	
	Value	Mode		Description
	0	PULSE		Each CC event will generate a one EM01GRPACLK cycle high pulse
	1	LEVEL		The PRS channel will follow CC out
18:17	INSEL	0x0	RW	Input Selection
	Select Compare/C	apture channel inp	ut.	
	Value	Mode		Description
	0	PIN		TIMERnCCx pin is selected
	1	PRSSYNC		Synchornous PRS selected
	2	PRSASYN	CLEVEL	Asynchronous Level PRS selected
	3	PRSASYN	CPULSE	Asynchronous Pulse PRS selected
16:5	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
4	COIST	0x0	RW	Compare Output Initial State

Bit	Name	Reset	Access	Description
	high when the co	unter is disabled. V	Vhen counting	I mode. When this bit is set in Compare or PWM mode, the output is set presumes, this value will represent the initial value for the output. If the counter is disabled.
3:2	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	MODE	0x0	RW	CC Channel Mode
	These bits select	the mode for Com	pare/Capture	channel.
	Value	Mode	,	Description
	0	OFF		Compare/Capture channel turned off
	1	INPUTCA	APTURE	Input Capture
	2	OUTPUT	COMPARE	Output Compare
	3	PWM		Pulse-Width Modulation

19.5.14 TIMER_CCx_CTRL - CC Channel Control Register

Offset															Bi	t Po	siti	on														
0x064	31	30	59	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset			·		2	2	Ş	e X											2	<u> </u>	Š	e S	Š	e X				•	•	0x0		
Access					<u> </u>	2	٤	<u>}</u>											2	≩	2	<u>}</u>	2	<u>}</u>						₩ M		
Name					ICEVICTE	- >		ICEDGE E											- C	COLOA		£		CMOA						OUTINV		

Bit	Name	Reset Access	Description
31:28	Reserved		with future devices, always write bits to 0. More information in 1.2 Con
27:26	ICEVCTRL	0x0 RW	Input Capture Event Control
	These bits control w every capture.	when a Compare/Capture PRS o	output pulse and interrupt flag is set. DMA request however is set on
	Value	Mode	Description
	0	EVERYEDGE	PRS output pulse and interrupt flag set on every capture
	1	EVERYSECONDEDGE	PRS output pulse and interrupt flag set on every second capture
	2	RISING	PRS output pulse and interrupt flag set on rising edge only (if ICEDGE = BOTH)
	3	FALLING	PRS output pulse and interrupt flag set on falling edge only (if ICEDGE = BOTH)
25:24	ICEDGE	0x0 RW	Input Capture Edge Select
25:24	These bits control winput.	which edges the edge detector to	Input Capture Edge Select riggers on. The output is used for input capture and external clock
25:24	These bits control winput.	which edges the edge detector to	Input Capture Edge Select riggers on. The output is used for input capture and external clock Description
25:24	These bits control winput.	which edges the edge detector to	Input Capture Edge Select riggers on. The output is used for input capture and external clock
25:24	These bits control winput.	which edges the edge detector to	Input Capture Edge Select riggers on. The output is used for input capture and external clock Description
25:24	These bits control winput. Value	which edges the edge detector to Mode RISING	Input Capture Edge Select riggers on. The output is used for input capture and external clock Description Rising edges detected
25:24	These bits control winput. Value 0	which edges the edge detector to Mode RISING FALLING	Input Capture Edge Select riggers on. The output is used for input capture and external clock Description Rising edges detected Falling edges detected
25:24	These bits control winput. Value 0 1	which edges the edge detector to Mode RISING FALLING BOTH NONE	Input Capture Edge Select riggers on. The output is used for input capture and external clock Description Rising edges detected Falling edges detected Both edges detected No edge detection, signal is left as it is
	These bits control winput. Value 0 1 2 3	which edges the edge detector to Mode RISING FALLING BOTH NONE To ensure compatibility was a second compatibility of the compatib	Input Capture Edge Select riggers on. The output is used for input capture and external clock Description Rising edges detected Falling edges detected Both edges detected
23:14	These bits control winput. Value 0 1 2 3 Reserved CUFOA	which edges the edge detector to Mode RISING FALLING BOTH NONE To ensure compatibility was ventions	Input Capture Edge Select riggers on. The output is used for input capture and external clock Description Rising edges detected Falling edges detected Both edges detected No edge detection, signal is left as it is with future devices, always write bits to 0. More information in 1.2 Con
23:14	These bits control winput. Value 0 1 2 3 Reserved CUFOA	which edges the edge detector to Mode RISING FALLING BOTH NONE To ensure compatibility was ventions 0x0 RW	Input Capture Edge Select riggers on. The output is used for input capture and external clock Description Rising edges detected Falling edges detected Both edges detected No edge detection, signal is left as it is with future devices, always write bits to 0. More information in 1.2 Con
23:14	These bits control winput. Value 0 1 2 3 Reserved CUFOA Select output action	Mode RISING FALLING BOTH NONE To ensure compatibility ventions 0x0 RW n on counter underflow.	Input Capture Edge Select riggers on. The output is used for input capture and external clock Description Rising edges detected Falling edges detected Both edges detected No edge detection, signal is left as it is with future devices, always write bits to 0. More information in 1.2 Col
23:14	These bits control winput. Value 0 1 2 3 Reserved CUFOA Select output action Value	which edges the edge detector to Mode RISING FALLING BOTH NONE To ensure compatibility was ventions 0x0 RW on on counter underflow. Mode	Input Capture Edge Select riggers on. The output is used for input capture and external clock Description Rising edges detected Falling edges detected Both edges detected No edge detection, signal is left as it is with future devices, always write bits to 0. More information in 1.2 Col Counter Underflow Output Action Description
23:14	These bits control winput. Value 0 1 2 3 Reserved CUFOA Select output action Value 0	Mode RISING FALLING BOTH NONE To ensure compatibility ventions 0x0 RW n on counter underflow. Mode NONE	Input Capture Edge Select riggers on. The output is used for input capture and external clock Description Rising edges detected Falling edges detected Both edges detected No edge detection, signal is left as it is with future devices, always write bits to 0. More information in 1.2 Col Counter Underflow Output Action Description No action on counter underflow

Bit	Name	Reset	Access	Description
11:10	COFOA	0x0	RW	Counter Overflow Output Action
	Select output action	on on counter over	flow.	
	Value	Mode		Description
	0	NONE		No action on counter overflow
	1	TOGGLE		Toggle output on counter overflow
	2	CLEAR		Clear output on counter overflow
	3	SET		Set output on counter overflow
9:8	CMOA	0x0	RW	Compare Match Output Action
	Select output action	on on compare mat	tch.	
	Value	Mode		Description
	0	NONE		No action on compare match
	1	TOGGLE		Toggle output on compare match
	2	CLEAR		Clear output on compare match
	3	SET		Set output on compare match
7:3	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
2	OUTINV	0x0	RW	Output Invert
	Setting this bit inv	erts the output fron	n the CC chan	nel (Output compare or PWM mode).
1:0	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-

19.5.15 TIMER_CCx_OC - OC Channel Value Register

Offset															Bi	t Po	siti	on														
0x068	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset		8																														
Access																2	2															
Name																Ç	3															

Bit	Name	Reset	Access	Description
31:0	OC	0x0	RW	Output Compare Value
	This fields holds the outp	out compare v	alue	

19.5.16 TIMER_CCx_OCB - OC Channel Value Buffer Register

Offset	Bit Position
0x070	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Reset	000
Access	R&
Name	OCB

Bit	Name	Reset	Access	Description
31:0	OCB	0x0	RW	Output Compare Value Buffer
	This field holds the Outp TIMERn_CCx_OCB con			h will be written to TIMERn_CCx_OC on an update event if

19.5.17 TIMER_CCx_ICF - IC Channel Value Register

Offset															Bi	t Pc	siti	on														
0x074	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	1	10	6	∞	7	9	2	4	က	2	_	0
Reset																2	2															
Access																3	È															
Name																Ç	2															

Bit	Name	Reset	Access	Description
31:0	ICF	0x0	R(r)	Input Capture FIFO
	This FIFO holds capture FIFO.	d values in in	put capture mod	de. Reading this register will pop the oldest unread value from the

19.5.18 TIMER_CCx_ICOF - IC Channel Value Overflow Register

Offset															Bi	t Po	siti	on														
0x078	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	8	7	9	2	4	က	2	_	0
Reset		8																														
Access																۵	۲															
Name																וטט	5															

Bit	Name	Reset	Access	Description
31:0	ICOF	0x0	R	Input Capture FIFO Overflow
				apture value. If the input capture FIFO is full and a new capture caputre value is over-written.

19.5.19 TIMER_DTCFG - DTI Configuration Register

Offset														Bi	t Po	siti	on														
0x0E0	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset	'	'	'																	0x0	0×0	0x0								000	0x0
Access																				₽	₽	R								₩ M	RW
Name																				DTPRSEN	DTFATS	DTAR								DTDAS	DTEN

Bit	Name	Reset	Access	Description
				· · · · · · · · · · · · · · · · · · ·
31:12	Reserved	To ensui ventions		with future devices, always write bits to 0. More information in 1.2 Con-
11	DTPRSEN	0x0	RW	DTI PRS Source Enable
	Enable/disable PRS	S as DTI input.		
10	DTFATS	0x0	RW	DTI Fault Action on Timer Stop
		lso set,DTAR h		state as programmed in DTFA field of TIMERn_DTFC register. Howev- riority allows channel0 to output the incoming PRS input while the other
9	DTAR	0x0	RW	DTI Always Run
		it source is PRS		channel 0 to keep running even when the timer is stopped. This is the undivided peripheral clock is always used regardless of the pro-
8:2	useful when its inpu	it source is PRS OTPRESC.	S. However, he	ere the undivided peripheral clock is always used regardless of the pro-
8:2	useful when its inpugrammed value in [it source is PRS DTPRESC. To ensui	S. However, he	ere the undivided peripheral clock is always used regardless of the pro-
8:2	useful when its inpugrammed value in [ot source is PRSDTPRESC. To ensure ventions 0x0	S. However, he re compatibility RW	re the undivided peripheral clock is always used regardless of the pro- with future devices, always write bits to 0. More information in 1.2 Con-
8:2	useful when its inpugrammed value in I Reserved DTDAS	ot source is PRSDTPRESC. To ensure ventions 0x0	S. However, he re compatibility RW	re the undivided peripheral clock is always used regardless of the pro- with future devices, always write bits to 0. More information in 1.2 Con-
8:2	useful when its inpugrammed value in I Reserved DTDAS Configure DTI resta	ort source is PRSDTPRESC. To ensure ventions 0x0 art on debugger	S. However, he re compatibility RW exit.	with future devices, always write bits to 0. More information in 1.2 Con-
8:2	useful when its inpugrammed value in I Reserved DTDAS Configure DTI resta	ort source is PRSDTPRESC. To ensure ventions 0x0 ort on debugger Mode	S. However, he re compatibility RW exit.	with future devices, always write bits to 0. More information in 1.2 Con- DTI Automatic Start-up Functionality Description
8:2	useful when its inpugrammed value in I Reserved DTDAS Configure DTI resta Value 0	ort source is PRSDTPRESC. To ensure ventions 0x0 ort on debugger Mode NORES	S. However, he re compatibility RW exit.	re the undivided peripheral clock is always used regardless of the pro- with future devices, always write bits to 0. More information in 1.2 Con- DTI Automatic Start-up Functionality Description No DTI restart on debugger exit

19.5.20 TIMER_DTTIMECFG - DTI Time Configuration Register

Offset		Bit Po	sition	
0x0E4	31 30 29 29 27 26 26 27 27 27 28 28 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	20 20 19 18 17 16	15 14 17 11 10 10 10 10 10 10 10 10 10 10 10 10	0 8 1 0 1 4 8 7 1 0
Reset		0×0	0х0	0×0
Access		RW	RW	RW
Name		DTFALLT	DTRISET	DTPRESC

Bit	Name	Reset	Access	Description
31:22	Reserved	To ensure ventions	compatibility wit	th future devices, always write bits to 0. More information in 1.2 Con-
21:16	DTFALLT	0x0	RW	DTI Fall-time
	Set time span for the fa	lling edge. The	e fall time is DT	FALLT+1 prescaled peripheral clock cycles
15:10	DTRISET	0x0	RW	DTI Rise-time
	Set time span for the ris	ing edge. The	rise time is DT	RISET+1 prescaled peripheral clock cycles
9:0	DTPRESC	0x0	RW	DTI Prescaler Setting
	These bits select the protect the DTI logic.	escaling facto	r for DTI. The se	elected timer clock will be divided by DTPRESC+1 before clocking

19.5.21 TIMER_DTFCFG - DTI Fault Configuration Register

Offset															Bi	it Po	siti	on														
0x0E8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	7	_	0
Reset			•	000	0×0	0x0	000	0x0						•	5	<u> </u>								•	•		•		•			
Access				₩ M	Z.	W.	₽	Z.							2	≩																
Name				DTEM23FEN	DTLOCKUPFEN	DTDBGFEN	DTPRS1FEN	DTPRS0FEN							Š L H	A A																

Bit	Name	Reset	Access	Description
31:29	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
28	DTEM23FEN	0x0	RW	DTI EM23 Fault Enable
	Set this bit to 1 to enable	e EM2 or EM3	entry as a fault	source
27	DTLOCKUPFEN	0x0	RW	DTI Lockup Fault Enable
	Set this bit to 1 to enable	core lockup	as a fault source	
26	DTDBGFEN	0x0	RW	DTI Debugger Fault Enable
	Set this bit to 1 to enable	e debugger as	a fault source	
25	DTPRS1FEN	0x0	RW	DTI PRS 1 Fault Enable
	Set this bit to 1 to enable	e PRS source	1 as a fault sour	rce
24	DTPRS0FEN	0x0	RW	DTI PRS 0 Fault Enable
	Set this bit to 1 to enable	PRS source	0 as a fault sour	rce
23:18	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
17:16	DTFA	0x0	RW	DTI Fault Action
	Select fault action.			
	Value	Mode		Description
	0	NONE		No action on fault
	1	INACTIVE		Set outputs inactive
	2	CLEAR		Clear outputs
	3	TRISTATE		Tristate outputs
15:0	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-

19.5.22 TIMER_DTCTRL - DTI Control Register

Offset	Bit Position		
0x0EC	33 34 35 36 37 38 38 39 40 <td>_</td> <td>0</td>	_	0
Reset		0x0	0×0
Access		RW	RW
Name		DTIPOL	DTCINV

Bit	Name	Reset	Access	Description				
31:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-				
1	DTIPOL	0x0	RW	DTI Inactive Polarity				
	Set inactive polarity of ou	ıtputs						
0	DTCINV	0x0	RW	DTI Complementary Output Invert.				
	DTI Complementary Out	put Invert.						

19.5.23 TIMER_DTOGEN - DTI Output Generation Enable Register

Offset		Bit Position																														
0x0F0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	2	4	က	2	_	0
Reset		'	•				'						'			<u>'</u>				'				'		'	0×0	000	000	0x0	0x0	0×0
Access																											W.	W.	W M	R	RW	RW
Name																											DTOGCDTI2EN	DTOGCDT11EN	DTOGCDT10EN	DTOGCC2EN	DTOGCC1EN	DTOGCC0EN

Bit	Name	Reset	Access	Description						
31:6	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-						
5	DTOGCDTI2EN	0x0	RW	DTI CDTIn Output Generation Enable						
	This bit enables/disables	output gener	ation for the CD	TI output from the DTI.						
4	DTOGCDTI1EN	0x0	RW	DTI CDTIn Output Generation Enable						
	This bit enables/disables output generation for the CDTI output from the DTI.									
3	DTOGCDTI0EN	0x0	RW	DTI CDTIn Output Generation Enable						
	This bit enables/disables	output gener	ation for the CD	TI output from the DTI.						
2	DTOGCC2EN	0x0	RW	DTI CCn Output Generation Enable						
	This bit enables/disables	output gener	ation for the CC	output from the DTI.						
1	DTOGCC1EN	0x0	RW	DTI CCn Output Generation Enable						
	This bit enables/disables	output gener	ation for the CC	output from the DTI.						
0	DTOGCC0EN	0x0	RW	DTI CCn Output Generation Enable						
	This bit enables/disables	output gener	ation for the CC	output from the DTI.						

19.5.24 TIMER_DTFAULT - DTI Fault Register

Offset	Bit Position				
0x0F4	33 30 30 30 30 30 30 30 30 30 30 30 30 3	4 (₂ م	- 0	
Reset		000	000	000	
Access		<u>د</u> ر	<u>س</u> س	<u>د</u> د	
Name		TEM23F	DTLOCKUPF	DTPRS1F DTPRS0F	

Bit	Name	Reset	Access	Description						
31:5	Reserved	To ensure o	compatibility witl	n future devices, always write bits to 0. More information in 1.2 Con-						
4	DTEM23F	0x0	R	DTI EM23 Entry Fault						
		This bit is set to 1 if EM2 or EM3 entry has occurred and DTEM23FEN is set to 1. The TIMER0_DTFAULTC register can be used to clear fault bits.								
3	DTLOCKUPF	0x0	R	DTI Lockup Fault						
	This bit is set to 1 if a core lockup fault has occurred and DTLOCKUPFEN is set to 1. The TIMER0_DTFAULTC register can be used to clear fault bits.									
2	DTDBGF	0x0	R	DTI Debugger Fault						
	This bit is set to 1 if a deused to clear fault bits.	bugger fault h	nas occurred and	d DTDBGFEN is set to 1. The TIMER0_DTFAULTC register can be						
1	DTPRS1F	0x0	R	DTI PRS 1 Fault						
	This bit is set to 1 if a PRS 1 fault has occurred and DTPRS1FEN is set to 1. The TIMER0_DTFAULTC register can be used to clear fault bits.									
0	DTPRS0F	0x0	R	DTI PRS 0 Fault						
	This bit is set to 1 if a PF used to clear fault bits.	RS 0 fault has	occurred and D	TPRS0FEN is set to 1. The TIMER0_DTFAULTC register can be						

19.5.25 TIMER_DTFAULTC - DTI Fault Clear Register

Offset	Bit Position				
0x0F8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4	8 Z	_	0
Reset		000	0% 0%	0x0	0x0
Access		>	> >	>	>
Name		TEM23FC	DTLOCKUPFC	DTPRS1FC	DTPRS0FC

Bit	Name	Reset	Access	Description							
31:5	Reserved	To ensure ventions	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-							
4	DTEM23FC	0x0	W	DTI EM23 Fault Clear							
	Write 1 to this bit to c	lear EM23 entr	y fault.								
3	DTLOCKUPFC	0x0	W	DTI Lockup Fault Clear							
	Write 1 to this bit to c	te 1 to this bit to clear core lockup fault.									
2	DTDBGFC	0x0	W	DTI Debugger Fault Clear							
	Write 1 to this bit to c	lear debugger	fault.								
1	DTPRS1FC	0x0	W	DTI PRS1 Fault Clear							
	Write 1 to this bit to c	lear PRS 1 fau	lt.								
0	DTPRS0FC	0x0	W	DTI PRS0 Fault Clear							
	Write 1 to this bit to c	lear PRS 0 fau	lt.								

19.5.26 TIMER_DTLOCK - DTI Configuration Lock Register

Offset	Bit Position
0x0FC	1 1
Reset	OXO
Access	>
Name	DTILOCKKEY

Bit	Name	Reset	Access	Description						
31:16	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-						
15:0	DTILOCKKEY	0x0	W	DTI Lock Key						
				TIMER_ROUTE, TIMER_DTCTRL, TIMER_DTCFG, TIMER_DTTI-he unlock code to unlock the DTI registers.						
	Value	Mode	,	Description						
	52864	UNLOCK		Write to unlock TIMER DTI registers						

20. USART - Universal Synchronous Asynchronous Receiver/Transmitter

Quick Facts

What?

The USART handles high-speed UART, SPI-bus, SmartCards, and IrDA communication.

Why?

Serial communication is frequently used in embedded systems and the USART allows efficient communication with a wide range of external devices.

How?

The USART has a wide selection of operating modes, frame formats and baud rates. The multi-processor mode allows the USART to remain idle when not addressed. Triple buffering and DMA support makes high data-rates possible with minimal CPU intervention and it is possible to transmit and receive large frames while the MCU remains in EM1 Sleep.

20.1 Introduction

The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 Smart-Cards, and IrDA devices.

20.2 Features

- · Asynchronous and synchronous (SPI) communication
- · Full duplex and half duplex
- Separate TX/RX enable
- · Separate receive / transmit multiple entry buffers, with additional separate shift registers
- Programmable baud rate, generated as an fractional division from the peripheral clock (PCLK_{USARTn})
- · Max bit-rate
 - SPI master mode, peripheral clock rate/2
 - SPI slave mode, peripheral clock rate/8
 - UART mode, peripheral clock rate/16, 8, 6, or 4
- · Asynchronous mode supports
 - · Majority vote baud-reception
 - · False start-bit detection
 - · Break generation/detection
 - · Multi-processor mode
- · Synchronous mode supports
 - · All 4 SPI clock polarity/phase configurations
 - · Master and slave mode
- · Data can be transmitted LSB first or MSB first
- · Configurable number of data bits, 4-16 (plus the parity bit, if enabled)
 - · HW parity bit generation and check
- Configurable number of stop bits in asynchronous mode: 0.5, 1, 1.5, 2
- · HW collision detection
- · Multi-processor mode
- IrDA modulator
- · SmartCard (ISO7816) mode
- · I2S mode
- Separate interrupt vectors for receive and transmit interrupts
- · Loopback mode
 - · Half duplex communication
 - · Communication debugging
- · PRS RX input
- · 8 bit Timer
- · Hardware Flow Control
- · Automatic Baud Rate Detection

20.3 Functional Description

An overview of the USART module is shown in Figure 20.1 USART Overview on page 491.

This section describes all posible USART features. Please refer to the Device Datasheet to see what features a specific USART instance supports.

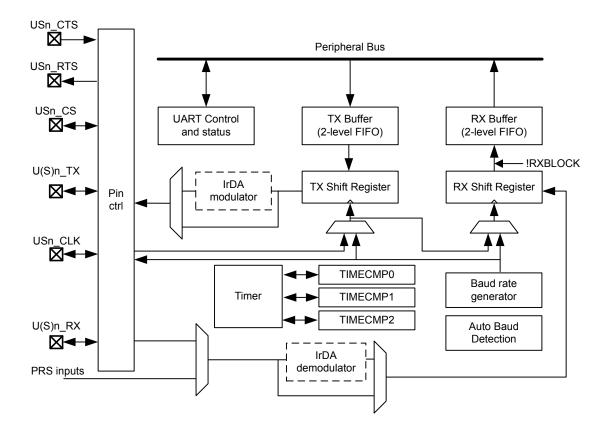


Figure 20.1. USART Overview

20.3.1 Modes of Operation

The USART operates in either asynchronous or synchronous mode.

In synchronous mode, a separate clock signal is transmitted with the data. This clock signal is generated by the bus master, and both the master and slave sample and transmit data according to this clock. Both master and slave modes are supported by the USART. The synchronous communication mode is compatible with the Serial Peripheral Interface Bus (SPI) standard.

In asynchronous mode, no separate clock signal is transmitted with the data on the bus. The USART receiver thus has to determine where to sample the data on the bus from the actual data. To make this possible, additional synchronization bits are added to the data when operating in asynchronous mode, resulting in a slight overhead.

Asynchronous or synchronous mode can be selected by configuring SYNC in USARTn_CTRL. The options are listed with supported protocols in Table 20.1 USART Asynchronous vs. Synchronous Mode on page 492. Full duplex and half duplex communication is supported in both asynchronous and synchronous mode.

Table 20.1. USART Asynchronous vs. Synchronous Mode

SYNC	Communication Mode	Supported Protocols
0	Asynchronous	RS-232, RS-485 (w/external driver), IrDA, ISO 7816
1	Synchronous	SPI, MicroWire, 3-wire

Table 20.2 USART Pin Usage on page 492 explains the functionality of the different USART pins when the USART operates in different modes. Pin functionality enclosed in square brackets is optional, and depends on additional configuration parameters. LOOPBK and MASTER are discussed in 20.3.2.14 Local Loopback and 20.3.3.3 Master Mode respectively.

Table 20.2. USART Pin Usage

SYNC	LOOPBK	MASTER	Pin functionality				
			U(S)n_TX (MOSI)	U(S)n_RX (MISO)	USn_CLK	USn_CS	
0	0	x	Data out	Data in	-	[Driver enable]	
0	1	х	Data out/in	-	-	[Driver enable]	
1	0	0	Data in	Data out	Clock in	Slave select	
1	0	1	Data out	Data in	Clock out	[Auto slave select]	
1	1	0	Data out/in	-	Clock in	Slave select	
1	1	1	Data out/in	-	Clock out	[Auto slave select]	

20.3.2 Asynchronous Operation

20.3.2.1 Frame Format

The frame format used in asynchronous mode consists of a set of data bits in addition to bits for synchronization and optionally a parity bit for error checking. A frame starts with one start-bit (S), where the line is driven low for one bit-period. This signals the start of a frame, and is used for synchronization. Following the start bit are 4 to 16 data bits and an optional parity bit. Finally, a number of stop-bits, where the line is driven high, end the frame. An example frame is shown in Figure 20.2 USART Asynchronous Frame Format on page 493.

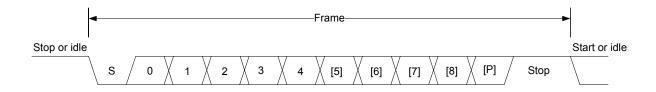


Figure 20.2. USART Asynchronous Frame Format

The number of data bits in a frame is set by DATABITS in USARTn_FRAME, see Table 20.3 USART Data Bits on page 493, and the number of stop-bits is set by STOPBITS in USARTn_FRAME, see Table 20.4 USART Stop Bits on page 493. Whether or not a parity bit should be included, and whether it should be even or odd is defined by PARITY, also in USARTn_FRAME. For communication to be possible, all parties of an asynchronous transfer must agree on the frame format being used.

Table 20.3. USART Data Bits

DATA BITS [3:0]	Number of Data bits
0001	4
0010	5
0011	6
0100	7
0101	8 (Default)
0110	9
0111	10
1000	11
1001	12
1010	13
1011	14
1100	15
1101	16

Table 20.4. USART Stop Bits

STOP BITS [1:0]	Number of Stop bits
00	0.5
01	1 (Default)
10	1.5
11	2

The order in which the data bits are transmitted and received is defined by MSBF in USARTn_CTRL. When MSBF is cleared, data in a frame is sent and received with the least significant bit first. When it is set, the most significant bit comes first.

The frame format used by the transmitter can be inverted by setting TXINV in USARTn_CTRL, and the format expected by the receiver can be inverted by setting RXINV in USARTn_CTRL. These bits affect the entire frame, not only the data bits. An inverted frame has a low idle state, a high start-bit, inverted data and parity bits, and low stop-bits.

20.3.2.2 Parity bit Calculation and Handling

When parity bits are enabled, hardware automatically calculates and inserts any parity bits into outgoing frames, and verifies the received parity bits in incoming frames. This is true for both asynchronous and synchronous modes, even though it is mostly used in asynchronous communication. The possible parity modes are defined in Table 20.5 USART Parity Bits on page 494. When even parity is chosen, a parity bit is inserted to make the number of high bits (data + parity) even. If odd parity is chosen, the parity bit makes the total number of high bits odd.

Table 20.5. USART Parity Bits

PARITY BITS [1:0]	Description
00	No parity bit (Default)
01	Reserved
10	Even parity
11	Odd parity

20.3.2.3 Clock Generation

The USART clock defines the transmission and reception data rate. When operating in asynchronous mode, the baud rate (bit-rate) is given by Figure 20.3 USART Baud Rate on page 495.

br = f_{PCLK}/(oversample x (1 + USARTn_CLKDIV/256))

Figure 20.3. USART Baud Rate

where f_{PCLK} is the peripheral clock (PCLK_{USARTn}) frequency and oversample is the oversampling rate as defined by OVS in USARTn_CTRL, see Table 20.6 USART Oversampling on page 495.

Table 20.6. USART Oversampling

OVS [1:0]	oversample
00	16
01	8
10	6
11	4

The USART has a fractional clock divider to allow the USART clock to be controlled more accurately than what is possible with a standard integral divider.

The clock divider used in the USART is a 20-bit value, with a 15-bit integral part and an 5-bit fractional part. The fractional part is configured in the lower 5 bits of DIV in USART_CLKDIV. The lowest achievable baud rate at 32 MHz is about 61 bauds/sec.

Fractional clock division is implemented by distributing the selected fraction over four baud periods. The fractional part of the divider tells how many of these periods should be extended by one peripheral clock cycle.

Given a desired baud rate brdesired, the clock divider USARTn_CLKDIV can be calculated by using Figure 20.4 USART Desired Baud Rate on page 495:

USARTn CLKDIV = 256 x (f_{PCLK}/(oversample x brdesired) - 1)

Figure 20.4. USART Desired Baud Rate

Table 20.7 USART Baud Rates @ 4MHz Peripheral Clock with 20 bit CLKDIV on page 495 shows a set of desired baud rates and how accurately the USART is able to generate these baud rates when running at a 4 MHz peripheral clock, using 16x or 8x oversampling.

Table 20.7. USART Baud Rates @ 4MHz Peripheral Clock with 20 bit CLKDIV

Desired baud rate [baud/s]	USARTn_OVS =00			USARTn_OVS =01		
	USARTn_CLKDIV/256 (to 32nd position)	Actual baud rate [baud/s]	Error %	USARTn_CLKDIV/256 (to 32nd position)	Actual baud rate [baud/s]	Error %
600	415,6563	600,015	0,003	832,3438	599,9925	-0,001
1200	207,3438	1199,94	-0,005	415,6563	1200,03	0,003
2400	103,1563	2400,24	0,010	207,3438	2399,88	-0,005
4800	51,09375	4799,04	-0,020	103,1563	4800,48	0,010
9600	25,03125	9603,842	0,040	51,09375	9598,08	-0,020
14400	16,375	14388,49	-0,080	33,71875	14401,44	0,010
19200	12,03125	19184,65	-0,080	25,03125	19207,68	0,040
28800	7,6875	28776,98	-0,080	16,375	28776,98	-0,080
38400	5,5	38461,54	0,160	12,03125	38369,3	-0,080

Desired baud rate [baud/s]	USARTn_OVS =00			USARTn_OVS =01		
	USARTn_CLKDIV/256 (to 32nd position)	Actual baud rate [baud/s]	Error %	USARTn_CLKDIV/256 (to 32nd position)	Actual baud rate [baud/s]	Error %
57600	3,34375	57553,96	-0,080	7,6875	57553,96	-0,080
76800	2,25	76923,08	0,160	5,5	76923,08	0,160
115200	1,15625	115942	0,644	3,34375	115107,9	-0,080
230400	0,09375	228571,4	-0,794	1,15625	231884,1	0,644

20.3.2.4 Auto Baud Detection

Setting AUTOBAUDEN in USARTn_CLKDIV uses the first frame received to automatically set the baud rate provided that it contains 0x55 (IrDA uses 0x00). AUTOBAUDEN can be used in a simple LIN configuration to auto detect the SYNC byte. The receiver will measure the number of local clock cycles between the beginning of the START bit and the beginning of the 8th data bit. The DIV field in USARTn_CLKDIV will be overwritten with the new value. The OVS in USARTn_CTRL and the +1 count of the Baud Rate equation are already factored into the result that gets written into the DIV field. To restart autobaud detection, clear AUTOBAUDEN and set it high again. Since the auto baud detection is done over 8 baud times, only the upper 3 bits of the fractional part of the clock divider are populated.

20.3.2.5 Data Transmission

Asynchronous data transmission is initiated by writing data to the transmit buffer using one of the methods described in 20.3.2.6 Transmit Buffer Operation. When the transmission shift register is empty and ready for new data, a frame from the transmit buffer is loaded into the shift register, and if the transmitter is enabled, transmission begins. When the frame has been transmitted, a new frame is loaded into the shift register if available, and transmission continues. If the transmit buffer is empty, the transmitter goes to an idle state, waiting for a new frame to become available.

Transmission is enabled through the command register USARTn_CMD by setting TXEN, and disabled by setting TXDIS in the same command register. When the transmitter is disabled using TXDIS, any ongoing transmission is aborted, and any frame currently being transmitted is discarded. When disabled, the TX output goes to an idle state, which by default is a high value. Whether or not the transmitter is enabled at a given time can be read from TXENS in USARTn_STATUS.

When the USART transmitter is enabled and there is no data in the transmit shift register or transmit buffer, the TXC flag in USARTn_STATUS and the TXC interrupt flag in USARTn_IF are set, signaling that the transmission is complete. The TXC status flag is cleared when a new frame becomes available for transmission, but the TXC interrupt flag must be cleared by software.

20.3.2.6 Transmit Buffer Operation

The transmit-buffer is a multiple entry FIFO buffer. A frame can be loaded into the buffer by writing to USARTn_TXDATA, USARTn_TXDATAX, USARTn_TXDOUBLE or USARTn_TXDOUBLEX. Using USARTn_TXDATA allows 8 bits to be written to the buffer, while using USARTn_TXDOUBLE will write 2 frames of 8 bits to the buffer. If 9-bit frames are used, the 9th bit of the frames will in these cases be set to the value of BIT8DV in USARTn_CTRL.

To set the 9th bit directly and/or use transmission control, USARTn_TXDATAX and USARTn_TXDOUBLEX must be used. USARTn_TXDATAX allows 9 data bits to be written, as well as a set of control bits regarding the transmission of the written frame. Every frame in the buffer is stored with 9 data bits and additional transmission control bits. USARTn_TXDOUBLEX allows two frames, complete with control bits to be written at once. When data is written to the transmit buffer using USARTn_TXDATAX and USARTn_TXDOUBLEX, the 9th bit(s) written to these registers override the value in BIT8DV in USARTn_CTRL, and alone define the 9th bits that are transmitted if 9-bit frames are used. Figure 20.5 USART Transmit Buffer Operation on page 497 shows the basics of the transmit buffer when DATABITS in USARTn_FRAME is configured to less than 10 bits.

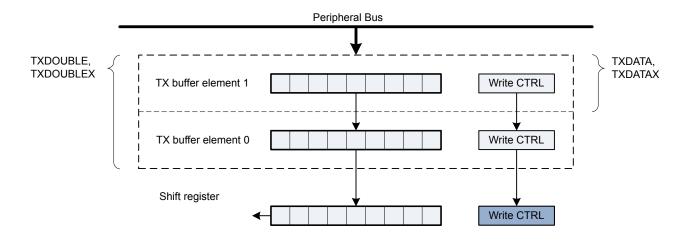


Figure 20.5. USART Transmit Buffer Operation

When writing more frames to the transmit buffer than there is free space for, the TXOF interrupt flag in USARTn_IF will be set, indicating the overflow. The data already in the transmit buffer is preserved in this case, and no data is written.

In addition to the interrupt flag TXC in USARTn_IF and status flag TXC in USARTn_STATUS which are set when the transmission is complete, TXBL in USARTn_STATUS and the TXBL interrupt flag in USARTn_IF are used to indicate the level of the transmit buffer. TXBIL in USARTn_CTRL controls the level at which these bits are set. If TXBIL is cleared, they are set whenever the transmit buffer becomes empty, and if TXBIL is set, they are set whenever the transmit buffer goes from full to half-full or empty. Both the TXBL status flag and the TXBL interrupt flag are cleared automatically when their condition becomes false.

The transmit buffer, including the transmit shift register can be cleared by setting CLEARTX in USARTn_CMD. This will prevent the USART from transmitting the data in the buffer and shift register, and will make them available for new data. Any frame currently being transmitted will not be aborted. Transmission of this frame will be completed.

20.3.2.7 Frame Transmission Control

The transmission control bits, which can be written using USARTn_TXDATAX and USARTn_TXDOUBLEX, affect the transmission of the written frame. The following options are available:

- Generate break: By setting TXBREAK, the output will be held low during the stop-bit period to generate a framing error. A receiver that supports break detection detects this state, allowing it to be used e.g. for framing of larger data packets. The line is driven high before the next frame is transmitted so the next start condition can be identified correctly by the recipient. Continuous breaks lasting longer than a USART frame are thus not supported by the USART. GPIO can be used for this.
- Disable transmitter after transmission: If TXDISAT is set, the transmitter is disabled after the frame has been fully transmitted.
- Enable receiver after transmission: If RXENAT is set, the receiver is enabled after the frame has been fully transmitted. It is enabled in time to detect a start-bit directly after the last stop-bit has been transmitted.
- Unblock receiver after transmission: If UBRXAT is set, the receiver is unblocked and RXBLOCK is cleared after the frame has been fully transmitted.
- Tristate transmitter after transmission: If TXTRIAT is set, TXTRI is set after the frame has been fully transmitted, tristating the transmitter output. Tristating of the output can also be performed automatically by setting AUTOTRI. If AUTOTRI is set TXTRI is always read as 0.

Note: When in SmartCard mode with repeat enabled, none of the actions, except generate break, will be performed until the frame is transmitted without failure. Generation of a break in SmartCard mode with repeat enabled will cause the USART to detect a NACK on every frame.

20.3.2.8 Data Reception

Data reception is enabled by setting RXEN in USARTn_CMD. When the receiver is enabled, it actively samples the input looking for a transition from high to low indicating the start baud of a new frame. When a start baud is found, reception of the new frame begins if the receive shift register is empty and ready for new data. When the frame has been received, it is pushed into the receive buffer, making the shift register ready for another frame of data, and the receiver starts looking for another start baud. If the receive buffer is full, the received frame remains in the shift register until more space in the receive buffer is available. If an incoming frame is detected while both the receive buffer and the receive shift register are full, the data in the shift register is overwritten, and the RXOF interrupt flag in USARTn_IF is set to indicate the buffer overflow.

The receiver can be disabled by setting the command bit RXDIS in USARTn_CMD. Any frame currently being received when the receiver is disabled is discarded. Whether or not the receiver is enabled at a given time can be read out from RXENS in USARTn_STATUS.

20.3.2.9 Receive Buffer Operation

When data becomes available in the receive buffer, the RXDATAV flag in USARTn_STATUS, and the RXDATAV interrupt flag in USARTn_IF are set, and when the buffer becomes full, RXFULL in USARTn_STATUS and the RXFULL interrupt flag in USARTn_IF are set. The status flags RXDATAV and RXFULL are automatically cleared by hardware when their condition is no longer true. This also goes for the RXDATAV interrupt flag, but the RXFULL interrupt flag must be cleared by software. When the RXFULL flag is set, notifying that the buffer is full, space is still available in the receive shift register for one more frame.

Data can be read from the receive buffer in a number of ways. USARTn_RXDATA gives access to the 8 least significant bits of the received frame, and USARTn_RXDOUBLE makes it possible to read the 8 least significant bits of two frames at once, pulling two frames from the buffer. To get access to the 9th, most significant bit, USARTn_RXDATAX must be used. This register also contains status information regarding the frame. USARTn_RXDOUBLEX can be used to get two frames complete with the 9th bits and status bits.

When a frame is read from the receive buffer using USARTn_RXDATA or USARTn_RXDATAX, the frame is pulled out of the buffer, making room for a new frame. USARTn_RXDOUBLE and USARTn_RXDOUBLEX pull two frames out of the buffer. If an attempt is done to read more frames from the buffer than what is available, the RXUF interrupt flag in USARTn_IF is set to signal the underflow, and the data read from the buffer is undefined.

Frames can be read from the receive buffer without removing the data by using USARTn_RXDATAXP and USARTn_RXDOUBLEXP. USARTn_RXDATAXP gives access the first frame in the buffer with status bits, while USARTn_RXDOUBLEXP gives access to both frames with status bits. The data read from these registers when the receive buffer is empty is undefined. If the receive buffer contains one valid frame, the first frame in USARTn_RXDOUBLEXP will be valid. No underflow interrupt is generated by a read using these registers, i.e. RXUF in USARTn_IF is never set as a result of reading from USARTn_RXDATAXP or USARTn_RXDOUBLEXP.

The basic operation of the receive buffer when DATABITS in USARTn_FRAME is configured to less than 10 bits is shown in Figure 20.6 USART Receive Buffer Operation on page 499.

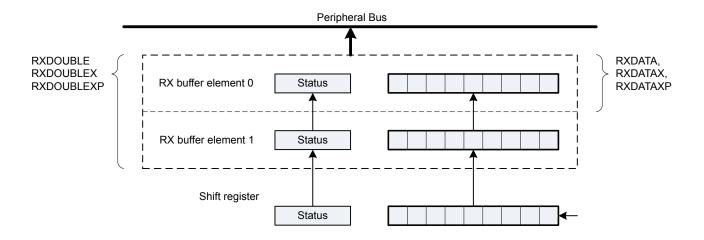


Figure 20.6. USART Receive Buffer Operation

The receive buffer, including the receive shift register can be cleared by setting CLEARRX in USARTn_CMD. Any frame currently being received will not be discarded.

20.3.2.10 Blocking Incoming Data

When using hardware frame recognition, as detailed in 20.3.2.20 Multi-Processor Mode and 20.3.2.21 Collision Detection, it is necessary to be able to let the receiver sample incoming frames without passing the frames to software by loading them into the receive buffer. This is accomplished by blocking incoming data.

Incoming data is blocked as long as RXBLOCK in USARTn_STATUS is set. When blocked, frames received by the receiver will not be loaded into the receive buffer, and software is not notified by the RXDATAV flag in USARTn_STATUS or the RXDATAV interrupt flag in USARTn_IF at their arrival. For data to be loaded into the receive buffer, RXBLOCK must be cleared in the instant a frame is fully received by the receiver. RXBLOCK is set by setting RXBLOCKEN in USARTn_CMD and disabled by setting RXBLOCKDIS also in USARTn_CMD. There is one exception where data is loaded into the receive buffer even when RXBLOCK is set. This is when an address frame is received when operating in multi-processor mode. See 20.3.2.20 Multi-Processor Mode for more information.

Frames received containing framing or parity errors will not result in the FERR and PERR interrupt flags in USARTn_IF being set while RXBLOCK in USARTn_STATUS is set. Hardware recognition is not applied to these erroneous frames, and they are silently discarded.

Note: If a frame is received while RXBLOCK in USARTn_STATUS is cleared, but stays in the receive shift register because the receive buffer is full, the received frame will be loaded into the receive buffer when space becomes available even if RXBLOCK is set at that time. The overflow interrupt flag RXOF in USARTn_IF will be set if a frame in the receive shift register, waiting to be loaded into the receive buffer is overwritten by an incoming frame even though RXBLOCK in USARTn_STATUS is set.

20.3.2.11 Clock Recovery and Filtering

The receiver samples the incoming signal at a rate 16, 8, 6 or 4 times higher than the given baud rate, depending on the oversampling mode given by OVS in USARTn CTRL. Lower oversampling rates make higher baud rates possible, but give less room for errors.

When a high-to-low transition is registered on the input while the receiver is idle, this is recognized as a start-bit, and the baud rate generator is synchronized with the incoming frame.

For oversampling modes 16, 8 and 6, every bit in the incoming frame is sampled three times to gain a level of noise immunity. These samples are aimed at the middle of the bit-periods, as visualized in Figure 20.7 USART Sampling of Start and Data Bits on page 501. With OVS=0 in USARTn_CTRL, the start and data bits are thus sampled at locations 8, 9 and 10 in the figure, locations 4, 5 and 6 for OVS=1 and locations 3, 4, and 5 for OVS=2. The value of a sampled bit is determined by majority vote. If two or more of the three bit-samples are high, the resulting bit value is high. If the majority is low, the resulting bit value is low.

Majority vote is used for all oversampling modes except 4x oversampling. In this mode, a single sample is taken at position 3 as shown in Figure 20.7 USART Sampling of Start and Data Bits on page 501.

Majority vote can be disabled by setting MVDIS in USARTn CTRL.

If the value of the start bit is found to be high, the reception of the frame is aborted, filtering out false start bits possibly generated by noise on the input.

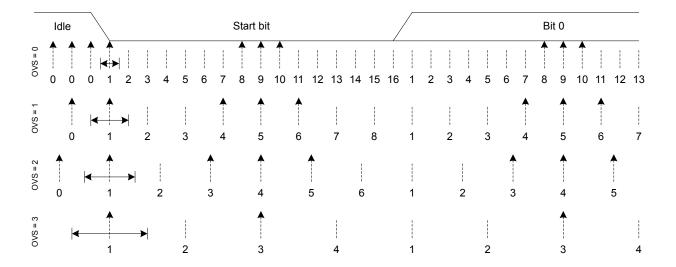


Figure 20.7. USART Sampling of Start and Data Bits

If the baud rate of the transmitter and receiver differ, the location each bit is sampled will be shifted towards the previous or next bit in the frame. This is acceptable for small errors in the baud rate, but for larger errors, it will result in transmission errors.

When the number of stop bits is 1 or more, stop bits are sampled like the start and data bits as seen in Figure 20.8 USART Sampling of Stop Bits when Number of Stop Bits are 1 or More on page 502. When a stop bit has been detected by sampling at positions 8, 9 and 10 for normal mode, or 4, 5 and 6 for smart mode, the USART is ready for a new start bit. As seen in Figure 20.8 USART Sampling of Stop Bits when Number of Stop Bits are 1 or More on page 502, a stop-bit of length 1 normally ends at c, but the next frame will be received correctly as long as the start-bit comes after position a for OVS=0 and OVS=3, and b for OVS=1 and OVS=2.

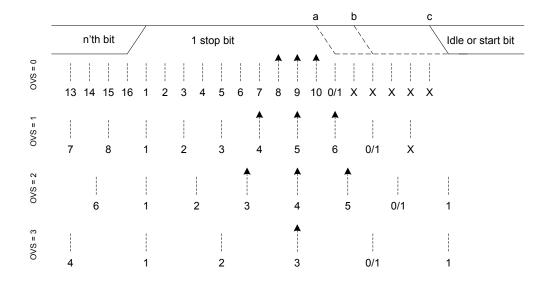


Figure 20.8. USART Sampling of Stop Bits when Number of Stop Bits are 1 or More

When working with stop bit lengths of half a baud period, the above sampling scheme no longer suffices. In this case, the stop-bit is not sampled, and no framing error is generated in the receiver if the stop-bit is not generated. The line must still be driven high before the next start bit however for the USART to successfully identify the start bit.

20.3.2.12 Parity Error

When parity bits are enabled, a parity check is automatically performed on incoming frames. When a parity error is detected in an incoming frame, the data parity error bit PERR in the frame is set, as well as the interrupt flag PERR in USARTn_IF. Frames with parity errors are loaded into the receive buffer like regular frames.

PERR can be accessed by reading the frame from the receive buffer using the USARTn_RXDATAX, USARTn_RXDATAXP, USARTn_RXDOUBLEX or USARTn_RXDOUBLEXP registers.

If ERRSTX in USARTn_CTRL is set, the transmitter is disabled on received parity and framing errors. If ERRSRX in USARTn_CTRL is set, the receiver is disabled on parity and framing errors.

20.3.2.13 Framing Error and Break Detection

A framing error is the result of an asynchronous frame where the stop bit was sampled to a value of 0. This can be the result of noise and baud rate errors, but can also be the result of a break generated by the transmitter on purpose.

When a framing error is detected in an incoming frame, the framing error bit FERR in the frame is set. The interrupt flag FERR in USARTn_IF is also set. Frames with framing errors are loaded into the receive buffer like regular frames.

FERR can be accessed by reading the frame from the receive buffer using the USARTn_RXDATAX, USARTn_RXDATAXP, USARTn RXDOUBLEX or USARTn RXDOUBLEXP registers.

If ERRSTX in USARTn_CTRL is set, the transmitter is disabled on parity and framing errors. If ERRSRX in USARTn_CTRL is set, the receiver is disabled on parity and framing errors.

20.3.2.14 Local Loopback

The USART receiver samples U(S)n_RX by default, and the transmitter drives U(S)n_TX by default. This is not the only option however. When LOOPBK in USARTn_CTRL is set, the receiver is connected to the U(S)n_TX pin as shown in Figure 20.9 USART Local Loopback on page 503. This is useful for debugging, as the USART can receive the data it transmits, but it is also used to allow the USART to read and write to the same pin, which is required for some half duplex communication modes. In this mode, the U(S)n_TX pin must be enabled as an output in the GPIO.

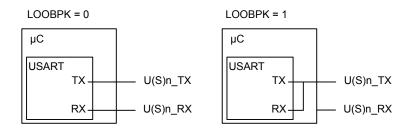


Figure 20.9. USART Local Loopback

20.3.2.15 Asynchronous Half Duplex Communication

When doing full duplex communication, two data links are provided, making it possible for data to be sent and received at the same time. In half duplex mode, data is only sent in one direction at a time. There are several possible half duplex setups, as described in the following sections.

20.3.2.16 Single Data-link

In this setup, the USART both receives and transmits data on the same pin. This is enabled by setting LOOPBK in USARTn_CTRL, which connects the receiver to the transmitter output. Because they are both connected to the same line, it is important that the USART transmitter does not drive the line when receiving data, as this would corrupt the data on the line.

When communicating over a single data-link, the transmitter must thus be tristated whenever not transmitting data. This is done by setting the command bit TXTRIEN in USARTn_CMD, which tristates the transmitter. Before transmitting data, the command bit TXTRI-DIS, also in USARTn_CMD, must be set to enable transmitter output again. Whether or not the output is tristated at a given time can be read from TXTRI in USARTn_STATUS. If TXTRI is set when transmitting data, the data is shifted out of the shift register, but is not put out on U(S)n TX.

When operating a half duplex data bus, it is common to have a bus master, which first transmits a request to one of the bus slaves, then receives a reply. In this case, the frame transmission control bits, which can be set by writing to USARTn_TXDATAX, can be used to make the USART automatically disable transmission, tristate the transmitter and enable reception when the request has been transmitted, making it ready to receive a response from the slave.

The timer, 20.3.10 Timer, can also be used to add delay between the RX and TX frames so that the interrupt service routine has time to process data that was just received before transmitting more data. Also hardware flow control is another method to insert time for processing the frame. RTS and CTS can be used to halt either the link partner's transmitter or the local transmitter. See the section on hardware flow control, 20.3.4 Hardware Flow Control, for more details.

Tristating the transmitter can also be performed automatically by the USART by using AUTOTRI in USARTn_CTRL. When AUTOTRI is set, the USART automatically tristates U(S)n_TX whenever the transmitter is idle, and enables transmitter output when the transmitter goes active. If AUTOTRI is set TXTRI is always read as 0.

Note: Another way to tristate the transmitter is to enable wired-and or wired-or mode in GPIO. For wired-and mode, outputting a 1 will be the same as tristating the output, and for wired-or mode, outputting a 0 will be the same as tristating the output. This can only be done on buses with a pull-up or pull-down resistor respectively.

20.3.2.17 Single Data-link with External Driver

Some communication schemes, such as RS-485 rely on an external driver. Here, the driver has an extra input which enables it, and instead of tristating the transmitter when receiving data, the external driver must be disabled.

This can be done manually by assigning a GPIO to turn the driver on or off, or it can be handled automatically by the USART. If AUTOCS in USARTn_CTRL is set, the USn_CS output is automatically activated a configurable number of baud periods before the transmitter starts transmitting data, and deactivated a configurable number of baud periods after the last bit has been transmitted and there is no more data in the transmit buffer to transmit. The number of baud periods are controlled by CSSETUP and CSHOLD in USARTn_TIMING. This feature can be used to turn the external driver on when transmitting data, and turn it off when the data has been transmitted.

The timer, 20.3.10 Timer, can also be used to configure CSSETUP and CSHOLD values between 1 to 256 baud-times by using TCMPVAL0, TCMPVAL1, or TCMPVAL2 for the TX sequencer.

USn CS is immediately deasserted when the transmitter becomes disabled.

Note: When using CSSETUP in asynchronous mode with AUTOCS (USARTn_CTRL.SYNC = 0, USARTn_CTRL.AUTOCS = 1), TXDELAY in USARTn TIMING should be set to 1.

Figure 20.10 USART Half Duplex Communication with External Driver on page 504 shows an example configuration where USn_CS is used to automatically enable and disable an external driver.

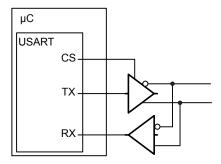


Figure 20.10. USART Half Duplex Communication with External Driver

The USn_CS output is active low by default, but its polarity can be changed with CSINV in USARTn_CTRL. AUTOCS works regardless of which mode the USART is in, so this functionality can also be used for automatic chip/slave select when in synchronous mode (e.g. SPI).

20.3.2.18 Two Data-links

Some limited devices only support half duplex communication even though two data links are available. In this case software is responsible for making sure data is not transmitted when incoming data is expected.

TXARXnEN in USARTn_TRIGCTRL may be used to automatically start transmission after the end of the RX frame plus any TXSTDE-LAY and CSSETUP delay in USARTn_TIMING. For enabling the receiver either use RXENAT in USARTn_TXDATAX or RXATXnEN in USARTn_TRIGCTRL.

20.3.2.19 Large Frames

As each frame in the transmit and receive buffers holds a maximum of 9 bits, both the elements in the buffers are combined when working with USART-frames of 10 or more data bits.

To transmit such a frame, at least two elements must be available in the transmit buffer. If only one element is available, the USART will wait for the second element before transmitting the combined frame. Both the elements making up the frame are consumed when transmitting such a frame.

When using large frames, the 9th bits in the buffers are unused. For an 11 bit frame, the 8 least significant bits are thus taken from the first element in the buffer, and the 3 remaining bits are taken from the second element as shown in Figure 20.11 USART Transmission of Large Frames on page 505. The first element in the transmit buffer, i.e. element 0 in Figure 20.11 USART Transmission of Large Frames on page 505 is the first element written to the FIFO, or the least significant byte when writing two bytes at a time using USARTn_TXDOUBLE.

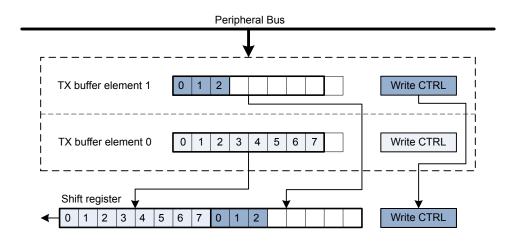


Figure 20.11. USART Transmission of Large Frames

As shown in Figure 20.11 USART Transmission of Large Frames on page 505, frame transmission control bits are taken from the second element in FIFO.

The two buffer elements can be written at the same time using the USARTn_TXDOUBLE or USARTn_TXDOUBLEX register. The TXDATAX0 bitfield then refers to buffer element 0, and TXDATAX1 refers to buffer element 1.

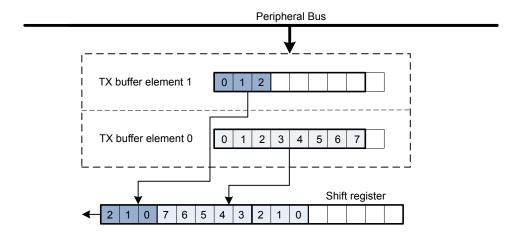


Figure 20.12. USART Transmission of Large Frames, MSBF

Figure 20.12 USART Transmission of Large Frames, MSBF on page 505 illustrates the order of the transmitted bits when an 11 bit frame is transmitted with MSBF set. If MSBF is set and the frame is smaller than 10 bits, only the contents of transmit buffer 0 will be transmitted.

When receiving a large frame, BYTESWAP in USARTn_CTRL determines the order the way the large frame is split into the two buffer elements. If BYTESWAP is cleared, the least significant 8 bits of the received frame are loaded into the first element of the receive buffer, and the remaining bits are loaded into the second element, as shown in Figure 20.13 USART Reception of Large Frames on page 506. The first byte read from the buffer thus contains the 8 least significant bits. Set BYTESWAP to reverse the order.

The status bits are loaded into both elements of the receive buffer. The frame is not moved from the receive shift register before there are two free spaces in the receive buffer.

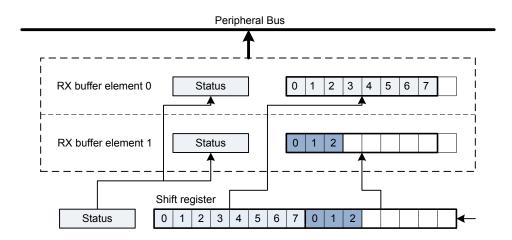


Figure 20.13. USART Reception of Large Frames

The two buffer elements can be read at the same time using the USARTn_RXDOUBLE or USARTn_RXDOUBLEX register. RXDATA0 then refers to buffer element 0 and RXDATA1 refers to buffer element 1.

Large frames can be used in both asynchronous and synchronous modes.

20.3.2.20 Multi-Processor Mode

To simplify communication between multiple processors, the USART supports a special multi-processor mode. In this mode the 9th data bit in each frame is used to indicate whether the content of the remaining 8 bits is data or an address.

When multi-processor mode is enabled, an incoming 9-bit frame with the 9th bit equal to the value of MPAB in USARTn_CTRL is identified as an address frame. When an address frame is detected, the MPAF interrupt flag in USARTn_IF is set, and the address frame is loaded into the receive register. This happens regardless of the value of RXBLOCK in USARTn_STATUS.

Multi-processor mode is enabled by setting MPM in USARTn_CTRL, and the value of the 9th bit in address frames can be set in MPAB. Note that the receiver must be enabled for address frames to be detected. The receiver can be blocked however, preventing data from being loaded into the receive buffer while looking for address frames.

When a slave has received an address frame and wants to receive the following data, it must make sure the receiver is unblocked before the next frame has been completely received in order to prevent data loss.

BIT8DV in USARTn_CTRL can be used to specify the value of the 9th bit without writing to the transmit buffer with USARTn_TXDATAX or USARTn_TXDOUBLEX, giving higher efficiency in multi-processor mode, as the 9th bit is only set when writing address frames, and 8-bit writes to the USART can be used when writing the data frames.

20.3.2.21 Collision Detection

The USART supports a basic form of collision detection. When the receiver is connected to the output of the transmitter, either by using the LOOPBK bit in USARTn_CTRL or through an external connection, this feature can be used to detect whether data transmitted on the bus by the USART did get corrupted by a simultaneous transmission by another device on the bus.

For collision detection to be enabled, CCEN in USARTn_CTRL must be set, and the receiver enabled. The data sampled by the receiver is then continuously compared with the data output by the transmitter. If they differ, the CCF interrupt flag in USARTn_IF is set. The collision check includes all bits of the transmitted frames. The CCF interrupt flag is set once for each bit sampled by the receiver that differs from the bit output by the transmitter. When the transmitter output is disabled, i.e. the transmitter is tristated, collisions are not registered.

20.3.2.22 SmartCard Mode

In SmartCard mode, the USART supports the ISO 7816 I/O line T0 mode. With exception of the stop-bits (guard time), the 7816 data frame is equal to the regular asynchronous frame. In this mode, the receiver pulls the line low for one baud, half a baud into the guard time to indicate a parity error. This NAK can for instance be used by the transmitter to re-transmit the frame. SmartCard mode is a half duplex asynchronous mode, so the transmitter must be tristated whenever not transmitting data.

To enable SmartCard mode, set SCMODE in USARTn_CTRL, set the number of databits in a frame to 8, and configure the number of stopbits to 1.5 by writing to STOPBITS in USARTn_FRAME.

The SmartCard mode relies on half duplex communication on a single line, so for it to work, both the receiver and transmitter must work on the same line. This can be achieved by setting LOOPBK in USARTn_CTRL or through an external connection. The TX output should be configured as open-drain in the GPIO module.

When no parity error is identified by the receiver, the data frame is as shown in Figure 20.14 USART ISO 7816 Data Frame Without Error on page 507. The frame consists of 8 data bits, a parity bit, and 2 stop bits. The transmitter does not drive the output line during the guard time.

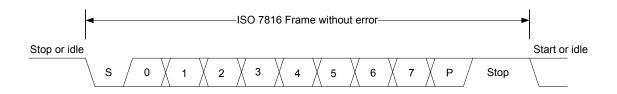


Figure 20.14. USART ISO 7816 Data Frame Without Error

If a parity error is detected by the receiver, it pulls the line I/O line low after half a stop bit, see Figure 20.15 USART ISO 7816 Data Frame With Error on page 507. It holds the line low for one bit-period before it releases the line. In this case, the guard time is extended by one bit period before a new transmission can start, resulting in a total of 3 stop bits.

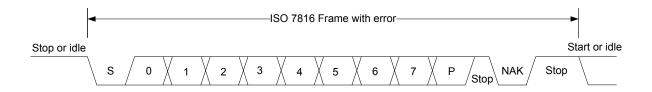


Figure 20.15. USART ISO 7816 Data Frame With Error

On a parity error, the NAK is generated by hardware. The NAK generated by the receiver is sampled as the stop-bit of the frame. Because of this, parity errors when in SmartCard mode are reported with both a parity error and a framing error.

When transmitting a T0 frame, the USART receiver on the transmitting side samples position 16, 17 and 18 in the stop-bit to detect the error signal when in 16x oversampling mode as shown in Figure 20.16 USART SmartCard Stop Bit Sampling on page 508. Sampling at this location places the stop-bit sample in the middle of the bit-period used for the error signal (NAK).

If a NAK is transmitted by the receiver, it will thus appear as a framing error at the transmitter, and the FERR interrupt flag in USARTn_IF will be set. If SCRETRANS USARTn_CTRL is set, the transmitter will automatically retransmit a NACK'ed frame. The transmitter will retransmit the frame until it is ACK'ed by the receiver. This only works when the number of databits in a frame is configured to 8.

Set SKIPPERRF in USARTn_CTRL to make the receiver discard frames with parity errors. The PERR interrupt flag in USARTn_IF is set when a frame is discarded because of a parity error.

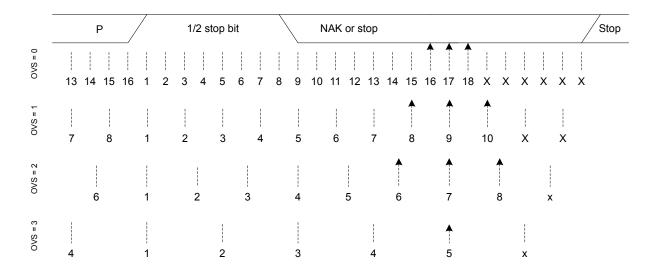


Figure 20.16. USART SmartCard Stop Bit Sampling

For communication with a SmartCard, a clock signal needs to be generated for the card. This clock output can be generated using one of the timers. See the ISO 7816 specification for more info on this clock signal.

SmartCard T1 mode is also supported. The T1 frame format used is the same as the asynchronous frame format with parity bit enabled and one stop bit. The USART must then be configured to operate in asynchronous half duplex mode.

20.3.3 Synchronous Operation

Most of the features in asynchronous mode are available in synchronous mode. Multi-processor mode can be enabled for 9-bit frames, loopback is available and collision detection can be performed.

20.3.3.1 Frame Format

The frames used in synchronous mode need no start and stop bits since a single clock is available to all parts participating in the communication. Parity bits cannot be used in synchronous mode.

The USART supports frame lengths of 4 to 16 bits per frame. Larger frames can be simulated by transmitting multiple smaller frames, i.e. a 22 bit frame can be sent using two 11-bit frames, and a 21 bit frame can be generated by transmitting three 7-bit frames. The number of bits in a frame is set using DATABITS in USARTn FRAME.

The frames in synchronous mode are by default transmitted with the least significant bit first like in asynchronous mode. The bit-order can be reversed by setting MSBF in USARTn CTRL.

The frame format used by the transmitter can be inverted by setting TXINV in USARTn_CTRL, and the format expected by the receiver can be inverted by setting RXINV, also in USARTn_CTRL.

20.3.3.2 Clock Generation

The bit-rate in synchronous mode is given by Figure 20.17 USART Synchronous Mode Bit Rate on page 509. As in the case of asynchronous operation, the clock division factor have a 15-bit integral part and a 5-bit fractional part.

$$br = f_{PCLK}/(2 \times (1 + USARTn_CLKDIV/256))$$

Figure 20.17. USART Synchronous Mode Bit Rate

Given a desired baud rate brdesired, the clock divider USARTn_CLKDIV can be calculated using Figure 20.18 USART Synchronous Mode Clock Division Factor on page 509

$$USARTn_CLKDIV = 256 \times (f_{PCLK}/(2 \times brdesired) - 1)$$

Figure 20.18. USART Synchronous Mode Clock Division Factor

When the USART operates in master mode, the highest possible bit rate is half the peripheral clock rate. When operating in slave mode however, the highest bit rate is an eighth of the peripheral clock:

- Master mode: br_{max} = f_{PCLK}/2
- Slave mode: br_{max} = f_{PCLK}/8

On every clock edge data on the data lines, MOSI and MISO, is either set up or sampled. When CLKPHA in USARTn_CTRL is cleared, data is sampled on the leading clock edge and set-up is done on the trailing edge. If CLKPHA is set however, data is set-up on the leading clock edge, and sampled on the trailing edge. In addition to this, the polarity of the clock signal can be changed by setting CLKPOL in USARTn_CTRL, which also defines the idle state of the clock. This results in four different modes which are summarized in Table 20.8 USART SPI Modes on page 509. Figure 20.19 USART SPI Timing on page 509 shows the resulting timing of data set-up and sampling relative to the bus clock.

Table 20.8. USART SPI Modes

SPI mode	CLKPOL	CLKPHA	Leading edge	Trailing edge				
0	0	0	Rising, sample	Falling, set-up				
1	0	1	Rising, set-up	Falling, sample				
2	1	0	Falling, sample	Rising, set-up				
3	1	1	Falling, set-up	Rising, sample				

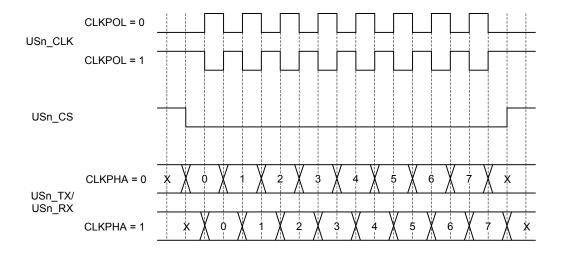


Figure 20.19. USART SPI Timing

If CPHA=1, the TX underflow flag, TXUF, will be set on the first setup clock edge of a frame in slave mode if TX data is not available. If CPHA=0, TXUF is set if data is not available in the transmit buffer three PCLK cycles prior to the first sample clock edge. The RXDA-TAV flag is updated on the last sample clock edge of a transfer, while the RX overflow interrupt flag, RXOF, is set on the first sample

clock edge if the receive buffer overflows. When a transfer has been performed, interrupt flags TXBL and TXC are updated on the first setup clock edge of the succeeding frame, or when CS is deasserted.

20.3.3.3 Master Mode

When in master mode, the USART is in full control of the data flow on the synchronous bus. When operating in full duplex mode, the slave cannot transmit data to the master without the master transmitting to the slave. The master outputs the bus clock on USn CLK.

Communication starts whenever there is data in the transmit buffer and the transmitter is enabled. The USART clock then starts, and the master shifts bits out from the transmit shift register using the internal clock.

When there are no more frames in the transmit buffer and the transmit shift register is empty, the clock stops, and communication ends. When the receiver is enabled, it samples data using the internal clock when the transmitter transmits data. Operation of the RX and TX buffers is as in asynchronous mode.

20.3.3.4 Operation of USn_CS Pin

When operating in master mode, the USn_CS pin can have one of two functions, or it can be disabled.

If USn_CS is configured as an output, it can be used to automatically generate a chip select for a slave by setting AUTOCS in USARTn_CTRL. If AUTOCS is set, USn_CS is activated before a transmission begins, and deactivated after the last bit has been transmitted and there is no more data in the transmit buffer.

The time between when CS is asserted and the first bit is transmitted can be controlled using the USART Timer and with CSSETUP in USARTn_TIMING. Any of the three comparators can be used to set this delay. If new data is ready for transmission before CS is deas-serted, the data is sent without deasserting CS in between. CSHOLD in USARTn_TIMING keeps CS asserted after the end of frame for the number of baud-times specified.

By default, USn_CS is active low, but its polarity can be inverted by setting CSINV in USARTn_CTRL.

When USn_CS is configured as an input, it can be used by another master that wants control of the bus to make the USART release it. When USn_CS is driven low, or high if CSINV is set, the interrupt flag SSM in USARTn_IF is set, and if CSMA in USARTn_CTRL is set, the USART goes to slave mode.

20.3.3.5 AUTOTX

A synchronous master is required to transmit data to a slave in order to receive data from the slave. In some cases, only a few words are transmitted and a lot of data is then received from the slave. In that case, one solution is to keep feeding the TX with data to transmit, but that consumes system bandwidth. Instead AUTOTX can be used.

When AUTOTX in USARTn_CTRL is set, the USART transmits data as long as there is available space in the RX shift register for the chosen frame size. This happens even though there is no data in the TX buffer. The TX underflow interrupt flag TXUF in USARTn_IF is set on the first word that is transmitted which does not contain valid data.

During AUTOTX the USART will always send the previous sent bit, thus reducing the number of transitions on the TX output. So if the last bit sent was a 0, 0's will be sent during AUTOTX and if the last bit sent was a 1, 1's will be sent during AUTOTX.

20.3.3.6 Slave Mode

When the USART is in slave mode, data transmission is not controlled by the USART, but by an external master. The USART is therefore not able to initiate a transmission, and has no control over the number of bytes written to the master.

The output and input to the USART are also swapped when in slave mode, making the receiver take its input from USn_TX (MOSI) and the transmitter drive USn_RX (MISO).

To transmit data when in slave mode, the slave must load data into the transmit buffer and enable the transmitter. The data will remain in the USART until the master starts a transmission by pulling the USn_CS input of the slave low and transmitting data. For every frame the master transmits to the slave, a frame is transferred from the slave to the master. After a transmission, MISO remains in the same state as the last bit transmitted. This also applies if the master transmits to the slave and the slave TX buffer is empty.

If the transmitter is enabled in synchronous slave mode and the master starts transmission of a frame, the underflow interrupt flag TXUF in USARTn_IF will be set if no data is available for transmission to the master.

If the slave needs to control its own chip select signal, this can be achieved by clearing CSPEN in the GPIO_USARTn_ROUTEEN register. The internal chip select signal can then be controlled through CSINV in the CTRL register. The chip select signal will be CSINV inverted, i.e. if CSINV is cleared, the chip select is active and vice versa.

20.3.3.7 Synchronous Half Duplex Communication

Half duplex communication in synchronous mode is very similar to half duplex communication in asynchronous mode as detailed in 20.3.2.15 Asynchronous Half Duplex Communication. The main difference is that in this mode, the master must generate the bus clock even when it is not transmitting data, i.e. it must provide the slave with a clock to receive data. To generate the bus clock, the master should transmit data with the transmitter tristated, i.e. TXTRI in USARTn_STATUS set, when receiving data. If 2 bytes are expected from the slave, then transmit 2 bytes with the transmitter tristated, and the slave uses the generated bus clock to transmit data to the master. TXTRI can be set by setting the TXTRIEN command bit in USARTn_CMD.

Note: When operating as SPI slave in half duplex mode, TX has to be tristated (not disabled) during data reception if the slave is to transmit data in the current transfer.

20.3.3.8 I2S

I2S is a synchronous format for transmission of audio data. The frame format is 32-bit, but since data is always transmitted with MSB first, an I2S device operating with 16-bit audio may choose to only process the 16 msb of the frame, and only transmit data in the 16 msb of the frame.

In addition to the bit clock used for regular synchronous transfers, I2S mode uses a separate word clock. When operating in mono mode, with only one channel of data, the word clock pulses once at the start of each new word. In stereo mode, the word clock toggles at the start of new words, and also gives away whether the transmitted word is for the left or right audio channel; A word transmitted while the word clock is low is for the left channel, and a word transmitted while the word clock is high is for the right.

When operating in I2S mode, the CS pin is used as a the word clock. In master mode, this is automatically driven by the USART, and in slave mode, the word clock is expected from an external master.

20.3.3.9 Word Format

The general I2S word format is 32 bits wide, but the USART also supports 16-bit and 8-bit words. In addition to this, it can be specified how many bits of the word should actually be used by the USART. These parameters are given by FORMAT in USARTn_I2SCTRL.

As an example, configuring FORMAT to using a 32-bit word with 16-bit data will make each word on the I2S bus 32-bits wide, but when receiving data through the USART, only the 16 most significant bits of each word can be read out of the USART. Similarly, only the 16 most significant bits have to be written to the USART when transmitting. The rest of the bits will be transmitted as zeroes.

20.3.3.10 Major Modes

The USART supports a set of different I2S formats as shown in Table 20.9 USART I2S Modes on page 512, but it is not limited to these modes. MONO, JUSTIFY and DELAY in USARTn_I2SCTRL can be mixed and matched to create an appropriate format. MONO enables mono mode, i.e. one data stream instead of two which is the default. JUSTIFY aligns data within a word on the I2S bus, either left or right which can bee seen in figures Figure 20.22 USART Left-justified I2S waveform on page 513 and Figure 20.23 USART Right-justified I2S waveform on page 513. Finally, DELAY specifies whether a new I2S word should be started directly on the edge of the word-select signal, or one bit-period after the edge.

Table 20.9. USART I2S Modes

Mode	MONO	JUSTIFY	DELAY	CLKPOL
Regular I2S	0	0	1	0
Left-Justified	0	0	0	1
Right-Justified	0	1	0	1
Mono	1	0	0	0

The regular I2S waveform is shown in Figure 20.20 USART Standard I2S waveform on page 512 and Figure 20.21 USART Standard I2S waveform (reduced accuracy) on page 512. The first figure shows a waveform transmitted with full accuracy. The wordlength can be configured to 32-bit, 16-bit or 8-bit using FORMAT in USARTn_I2SCTRL. In the second figure, I2S data is transmitted with reduced accuracy, i.e. the data transmitted has less bits than what is possible in the bus format.

Note that the msb of a word transmitted in regular I2S mode is delayed by one cycle with respect to word select

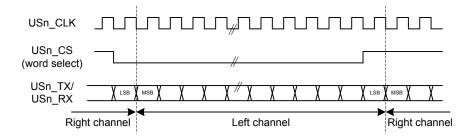


Figure 20.20. USART Standard I2S waveform

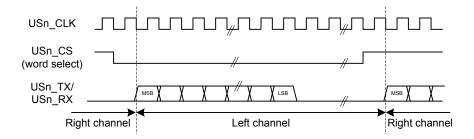


Figure 20.21. USART Standard I2S waveform (reduced accuracy)

A left-justified stream is shown in Figure 20.22 USART Left-justified I2S waveform on page 513. Note that the MSB comes directly after the edge on the word-select signal in contradiction to the regular I2S waveform where it comes one bit-period after.

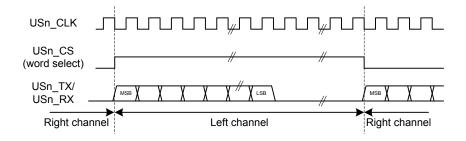


Figure 20.22. USART Left-justified I2S waveform

A right-justified stream is shown in Figure 20.23 USART Right-justified I2S waveform on page 513. The left and right justified streams are equal when the data-size is equal to the word-width.

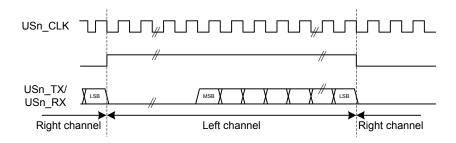


Figure 20.23. USART Right-justified I2S waveform

In mono-mode, the word-select signal pulses at the beginning of each word instead of toggling for each word. Mono I2S waveform is shown in Figure 20.24 USART Mono I2S waveform on page 513.

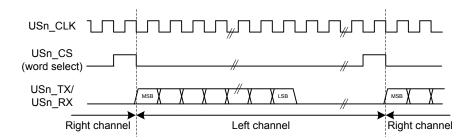


Figure 20.24. USART Mono I2S waveform

20.3.3.11 Using I2S Mode

When using the USART in I2S mode, DATABITS in USARTn_FRAME must be set to 8 or 16 data-bits. 8 databits can be used in all modes, and 16 can be used in the modes where the number of bytes in the I2S word is even. In addition to this, MSBF in USARTn CTRL should be set, and CLKPOL and CLKPHA in USARTn CTRL should be cleared.

The USART does not have separate TX and RX buffers for left and right data, so when using I2S in stereo mode, the application must keep track of whether the buffers contain left or right data. This can be done by observing TXBLRIGHT, RXDATAVRIGHT and RXFULLRIGHT in USARTn_STATUS. TXBLRIGHT tells whether TX is expecting data for the left or right channel. It will be set with TXBL if right data is expected. The receiver will set RXDATAVRIGHT if there is at least one right element in the buffer, and RXFULL-RIGHT if the buffer is full of right elements.

When using I2S with DMA, separate DMA requests can be used for left and right data by setting DMASPLIT in USARTn_I2SCTRL.

In both master and slave mode the USART always starts transmitting on the LEFT channel after being enabled. In master mode, the transmission will stop if TX becomes empty. In that case, TXC is set. Continuing the transmission in this case will make the data-stream continue where it left off. To make the USART start on the LEFT channel after going empty, disable and re-enable TX.

20.3.4 Hardware Flow Control

Hardware flow control can be used to hold off the link partner's transmission until RX buffer space is available. The RTS and CTS signals are enabled and configured using the GPIO_DBUSUSARTn_ROUTEEN, GPIO_DBUSUSARTn_RTSROUTEx and GPIO_DBUSUSARTn_CTSROUTE registers. RTS is an out going signal which indicates that RX buffer space is available to receive a frame. The link partner is being requested to send its data when RTS is asserted. CTS is an incoming signal to stop the next TX data from going out. When CTS is negated, the frame currently being transmitted is completed before stopping. CTS indicates that the link partner has RX buffer space available, and the local transmitter is clear to send. Also use CTSEN in USARTn_CTLX to enable the CTS input into the TX sequencer. For debug use set DBGHALT in USARTn_CTRLX which will force the RTS to request one frame from the link partner when the CPU core single steps.

20.3.5 Debug Halt

When DBGHALT in USART_CTRLX is clear, RTS is only dependent on the RX buffer having space available to receive data. Incoming data is always received until both the RX buffer is full and the RX shift register is full regardless of the state of DBGHALT or chip halt. Additional incoming data is discarded. When DBGHALT is set, RTS deasserts on RX buffer full or when chip halt is high. However, a low pulse detected on chip halt will keep RTS asserted when no frame is being received. At the start of frame reception, RTS will deassert if chip halt is high and DBGHALT is set. This behavior allows single stepping to pulse the chip halt low for a cycle, and receive the next frame. The link partner must stop transmitting when RTS is deasserted, or the RX buffer could overflow. All data in the transmit buffer is sent out even when chip halt is asserted; therefore, the DMA will need to be set to stop sending the USART TX data during chip halt.

20.3.6 PRS-triggered Transmissions

If a transmission must be started on an event with very little delay, the PRS system can be used to trigger the transmission. The PRS channel to use as a trigger can be selected using PRSSEL in PRS_USARTn_TRIGGER. When a positive edge is detected on this signal, the receiver is enabled if RXTEN in USARTn_TRIGCTRL is set, and the transmitter is enabled if TXTEN in USARTn_TRIGCTRL is set. Only one signal input is supported by the USART.

The AUTOTX feature can also be enabled via PRS. If an external SPI device sets a pin high when there is data to be read from the device, this signal can be routed to the USART through the PRS system and be used to make the USART clock data out of the external device. If AUTOTXTEN in USARTn_TRIGCTRL is set, the USART will transmit data whenever the PRS signal selected by PRS_USARTn_TRIGGER is high given that there is enough room in the RX buffer for the chosen frame size. Note that if there is no data in the TX buffer when using AUTOTX, the TX underflow interrupt will be set.

AUTOTXTEN can also be combined with TXTEN to make the USART transmit a command to the external device prior to clocking out data. To do this, disable TX using the TXDIS command, load the TX buffer with the command and enable AUTOTXTEN and TXTEN. When the selected PRS input goes high, the USART will now transmit the loaded command, and then continue clocking out while both the PRS input is high and there is room in the RX buffer

20.3.7 PRS RX Input

The USART can be configured to receive clock directly from a PRS channel by setting RXPRSEN in USARTn_CTRLX. The PRS channel used is selected using PRSSEL in PRS USARTn RX.

20.3.8 PRS CLK Input

The USART can be configured to receive clock directly from a PRS channel by setting CLKPRSEN in USARTn_CTRLX. The PRS channel used is selected using PRSSEL in PRS_USARTn_CLK. This is useful in synchronous slave mode and can together with RX PRS input be used to input data from PRS.

20.3.9 DMA Support

The USART has full DMA support. The DMA controller can write to the transmit buffer using the registers USARTn_TXDATA, USARTn_TXDOUBLE and USARTn_TXDOUBLEX, and it can read from the receive buffer using the registers USARTn_RXDATA, USARTn_RXDATAX, USARTn_RXDOUBLE and USARTn_RXDOUBLEX. This enables single byte transfers, 9 bit data + control/status bits, double byte and double byte + control/status transfers both to and from the USART.

A request for the DMA controller to read from the USART receive buffer can come from the following source:

- · Data available in the receive buffer
- Data available in the receive buffer and data is for the RIGHT I2S channel. Only used in I2S mode.

A write request can come from one of the following sources:

- Transmit buffer and shift register empty. No data to send.
- Transmit buffer has room for more data. This does not check the TXBIL for half full. For DMA use, it is either full or empty.
- · Transmit buffer has room for RIGHT I2S data. Only used in I2S mode

Even though there are two sources for write requests to the DMA, only one should be used at a time, since the requests from both sources are cleared even though only one of the requests are used.

In some cases, it may be sensible to temporarily stop DMA access to the USART when an error such as a framing error has occurred. This is enabled by setting ERRSDMA in USARTn CTRL.

Note: For Synchronous mode full duplex operation, if both receive buffer and transmit buffer are served by DMA, to make sure receive buffer is not overflowed the settings below should be followed.

- The DMA channel that serves receive buffer should have higher priority than the DMA channel that serves transmit buffer.
- · TXBL should be used as write request for transmit buffer DMA channel.
- IGNORESREQ should be set for both DMA channel.

20.3.10 Timer

In addition to the TX sequence timer, there is a versatile 8 bit timer that can generate up to three event pulses. These pulses can be used to create timing for a variety of uses such as RX timeout, break detection, response timeout, and RX enable delay. Transmission delay, CS setup, inter-character spacing, and CS hold use the TX sequence counter. The TX sequencer counter can use the three 8 bit compare values or preset values for delays. There is one general counter with three comparators. Each comparator has a start source, a stop source, a restart enable, and a timer compare value. The start source enables the comparator, resets the counter, and starts the counter. If the counter is already running, the start source will reset the counter and restart it.

Any comparator could start the counter using the same start source but have different timing events programmed into TCMPVALn in USARTn_TIMECMPn. The TCMP0, TCMP1, or TCMP2 events can be preempted by using the comparator stop source to disable the comparator before the counter reaches TCMPVAL0, TCMPVAL1, or TCMPVAL2. If one comparator gets disabled while the other comparator is still enabled, the counter continues counting. By default the counter will count up to 256 and stop unless a RESTARTEN is set in one of the USARTn_TIMECMPn registers. By using RESTARTEN and an interval programmed into TCMPVAL, an interval timer can be set up. The TSTART field needs to be changed to DISABLE to stop the interval timer. The timer stops running once all of the comparators are disabled. If a comparator's start and stop sources both trigger the same cycle, the TCMPn event triggers, the comparator stays enabled, and the counter begins counting from zero.

The TXDELAY, CSSETUP, ICS, and CSHOLD in USARTn_TIMING are used to program start of transmission delay, chip select setup delay, inter-character space, and chip select hold delay. Either a preset value of 0, 1, 2, 3, or 7 can be used for any of these delays; or the value in TCMPVALn may be used to set the delay. Using the preset values leaves the TCMPVALn free for other uses. The same TCMPVALn may be used for multiple events that require the same timing. The transmit sequencer's counter can run in parallel with the timer's counter. The counters and controls are shown in Figure 20.25 USART Timer Block Diagram on page 517.

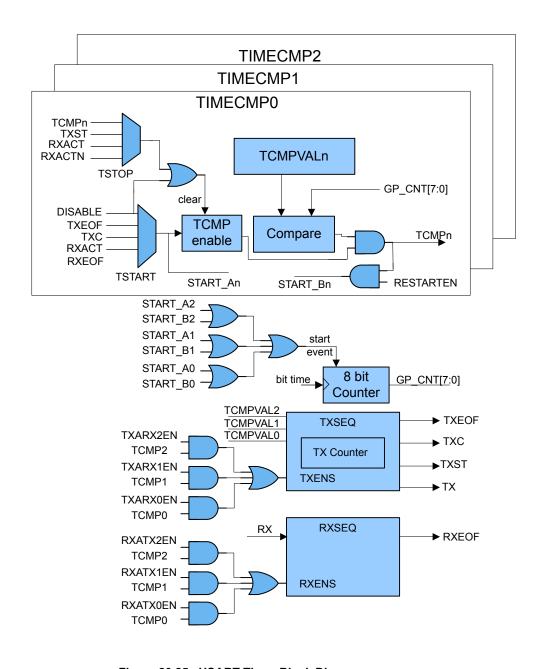


Figure 20.25. USART Timer Block Diagram

The following sections will go into more details on programming the various usage cases.

Table 20.10. USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn

Application	TSTARTn	TSTOPn	TCMPVALn	Other
Response Timeout	TSTART0 = TXEOF	TSTOP0 = RXACT	TCMPVAL0 = 0x08	TCMP0 in USARTn_IEN
Receiver Timeout	TSTART1 = RXEOF	TSTOP1 = RXACT	TCMPVAL1 = 0x08	TCMP1 in USARTn_IEN
Large Receiver Timeout	TSTART1 = RXEOF, TCMP1	TSTOP1 = RXACT	TCMPVAL1 = 0xFF	TCMP1 in USARTn_IEN; TIME- RRESTARTED in USARTn_STA- TUS; RESTART1EN in USARTn_TIMECMP1

Application	TSTARTn	TSTOPn	TCMPVALn	Other
Break Detect	TSTART1 = RXACT	TSTOP1 = RXACTN	TCMPVAL1 = 0x0C	TCMP1 in USARTn_IEN
TX delayed start of transmission and CS setup	TSTART0 = DISA- BLE, TSTART1 = DISABLE	TSTOP0 = TCMP0, TSTOP1 = TCMP1	TCMPVAL0 = 0x04, TCMPVAL1 = 0x02	TXDELAY = TCMP0, CSSETUP = TCMP1 in USARTn_TIMING; AUTOCS in USARTn_CTRL
TX inter-character spacing	TSTART2 = DISA- BLE	TSTOP2 = TCMP2	TCMPVAL2 = 0x03	ICS = TCMP2 in USARTn_TIMING; AUTOCS in USARTn_CTRL
TX Chip Select End Delay	TSTART1 = DISA- BLE	TSTOP1 = TCMP1	TCMPVAL1 = 0x04	CSHOLD = TCMP1 in USARTn_TIMING; AUTOCS in USARTn_CTRL
Response Delay	TSTART1 = RXEOF	TSTOP1 = TCMP1	TCMPVAL1 = 0x08	TXARX1EN in USARTn_TRIGCTRL
Combined TX and RX Example	TSTART1 = RXEOF, TSTART0 = TXEOF	TSTOP1 = TCMP1, TSTOP0 = TCMP0	TCMPVAL1 = 0x1C, TCMPVAL0 = 0x10	TXARX1EN, RXATX0EN in USARTn_TRIGCTRL; CSSETUP = 0x7, CSHOLD = 0x3 in USARTn_TIMING
Combined Delayed TX and Receiver Timeout Example	TSTART0 = TCMPVAL0, TSTART1 = RXEOF	TSTOP0 = RXACTN, TSTOP1 = RXACT	TCMPVAL0 = 0x20, TCMPVAL1 = 0x0C	TXARX0EN in USARTn_TRIGCTRL; TCMP0 in USARTn_IEN

Table 20.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 517 shows some examples of how the USART timer can be programmed for various applications. The following sections will describe more details for each applications shown in the table.

20.3.10.1 Response Timeout

Response Timeout is when a UART master sends a frame and expects the slave to respond within a certain number of baud-times. Refer to Table 20.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 517 for specific register settings. Comparator 0 will be looking for TX end of frame to use as the timer start source. For this example, a receiver start of frame RXACT has not been detected for 8 baud-times, and the TCMP0 interrupt in USARTn_IF is set. If an RX start bit is detected before the 8 baud-times, comparator 0 is disabled before the TCMP0 event can trigger.

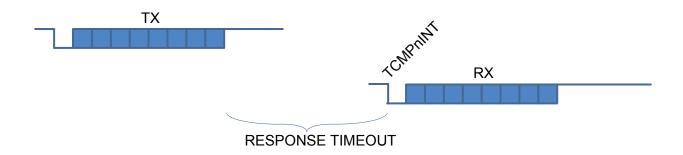


Figure 20.26. USART Response Timeout

20.3.10.2 RX Timeout

A receiver timeout function can be implemented by using the RX end of frame to start comparator 1 and look for the RX start bit RXACT to disable the comparator. See Table 20.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 517 for details on setting up this example. As long as the next RX start bit occurs before the counter reaches the comparator 1 value TCMPVAL1, the interrupt will not get set. In this example the RX Timeout was set to 8 baud-times. To get an RX timeout larger than 256 baud-times, RESTART1EN in USARTn_TIMER can used to restart the counter when it reaches TCMPVAL1. By setting TCMPVAL1 in USARTn_TIMING to 0xFF, an interrupt will be generated after 256 baud-times. An interrupt service routine can then increment a memory location until the desired timeout is reached. Once the RX start bit is detected, comparator 1 will be disabled. If TIMERRESTARTED in USARTn_STATUS is clear, the TCMP1 interrupt is the first interrupt after RXEOF.

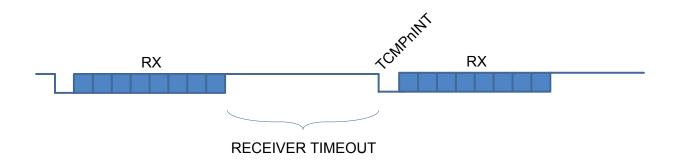


Figure 20.27. USART RX Timeout

20.3.10.3 Break Detect

LIN bus and half-duplex UARTs can take advantage of the timer configured for break detection where RX is held low for a number of baud-times to indicate a break condition. Table 20.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 517 shows the settings for this mode. Each time RX is active (default of low) such as for a start bit, the timer begins counting. If the counter reaches 12 baud-times before RX goes to inactive RXACTN (default of high), an interrupt is asserted.

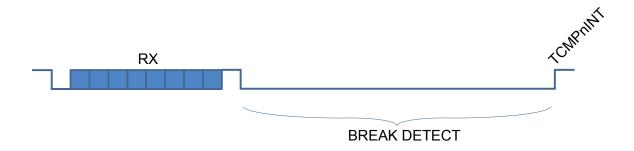


Figure 20.28. USART Break Detection

20.3.10.4 TX Start Delay

Some applications may require a delay before the start of transmission. This example in Figure 20.29 USART TXSEQ Timing on page 520 shows the TXSEQ timer used to delay the start of transmission by 4 baud times before the start of CS, and by 2 baud times with CS asserted. See Table 20.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 517 for details on how to configure this mode. The TX sequencer could be enabled on PRS and start the TXSEQ counter running for 4 baud times as programmed in TCMPVAL0. Then CS is asserted for 2 baud times before the transmitter begins sending TX data. TXDELAY in USARTn_TIMING is the initial delay before any CS assertion, and CSSETUP is the delay during CS assertion. There are several small preset timing values such as 1, 2, 3, or 7 that can be used for some of the TX sequencer timing which leaves TCMPVAL0, TCMPVAL1, and TCMPVAL2 free for other uses.

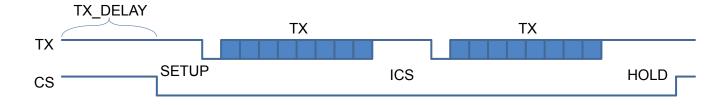


Figure 20.29. USART TXSEQ Timing

20.3.10.5 Inter-Character Space

In addition to delaying the start of frame transmission, it is sometimes necessary to also delay the time between each transmit character (inter-character space). After the first transmission, the inter-character space will delay the start of all subsequent transmissions until the transmit buffer is empty. See Table 20.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 517 for details on setting up this example. For this example in Figure 20.29 USART TXSEQ Timing on page 520 ICS is set to TCMP2 in USARTn_TIMING. To keep CS asserted during the inter-character space, set AUTOCS in USARTn_CTRL. There are a few small preset timing values provided for TX sequence timing. Using these preset timing values can free up the TCMPVALn for other uses. For this example, the inter-character space is set to 0x03 and a preset value could be used.

20.3.10.6 TX Chip Select End Delay

The assertion of CS can be extended after the final character of the frame by using CSHOLD in USARTn_TIMING. See Table 20.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 517 for details on setting up this example. AUTOCS in USARTn_CTRL needs to be set to extend the CS assertion after the last TX character is transmitted as shown in Figure 20.29 USART TXSEQ Timing on page 520.

20.3.10.7 Response Delay

A response delay can be used to hold off the transmitter until a certain number of baud-times after the RX frame. See Table 20.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 517 for details on setting up this example. TXARX1EN in USARTn_TRIGCTRL tells the TX sequencer to trigger after RX EOF plus tcmp1val baud times.

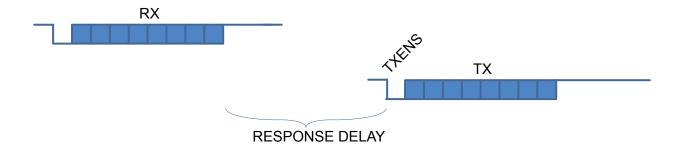


Figure 20.30. USART Response Delay

20.3.10.8 Combined TX and RX Example

This example describes how to alternate between TX and RX frames. This has a 28 baud-time space after RX and a 16 baud-time space after TX. The TSTART1 in USARTn_TIMECMP1 is set to RXEOF which uses the the receiver end of frame to start the timer. The TSTOP1 is set to TCMP1 to generate an event after 28 baud times. Set TXARX1EN in USARTn_TRIGCTRL, and the transmitter is held off until 28 baud times. TCMPVAL in USARTn_TIMECMP1 is set to 0x1C for 28 baud times. By setting TSTART0 in USARTn_TIMECMP0 to TXEOF, the timer will be started after the transmission has completed. RXATX0EN in USARTn_TRIGCTRL is used to delay enabling of the receiver until 16 baud times after the transmitter has completed. Write 0x10 into TCMPVAL of USARTn_TIMECMP0 for a 16 baud time delay. CS is also asserted 7 baud-times before start of transmission by setting CSSETUP to 0x7 in USARTn_TIMING. To keep CS asserted for 3 baud-times after transmission completes, CSHOLD is set to 0x3 in USARTn_TIMING. See Table 20.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 517 for details on setting up this example.

20.3.10.9 Combined TX delay and RX break detect

This example describes how to delay TX transmission after an RX frame and how to have a break condition signal an interrupt. See Table 20.10 USART Application Settings for USARTn_TIMING and USARTn_TIMECMPn on page 517 for details on setting up this example. The TX delay is set up by using transmit after RX, TXARX0EN in USARTn_TRIGCTRL to start the timer. TSTART0 in USARTn_TIMECMP0 is set to RXEOF which enables the transitter of the timer delay. For this example TCMPVAL in USARTn_TIMECMP0 is set to 0x20 to create a 32 baud-time delay between the end of the RX frame and the start of the TX frame. The break detect is configured by setting TSTART1 to RXACT to detect the start bit, and setting TSTOP1 to RXACTN to detect RX going high. In this case the interrupt asserts after RX stays low for 12 baud-times, so TCMPVAL1 is set to 0x0C.

20.3.10.10 Other Stop Conditions

There is also a timer stop on TX start using the TXST setting in TSTOP of USARTn_TIMECMPn. This can be used to see that the DMA has not written to the TXBUFFER for a given time.

20.3.11 Interrupts

The interrupts generated by the USART are combined into two interrupt vectors. Interrupts related to reception are assigned to one interrupt vector, and interrupts related to transmission are assigned to the other. Separating the interrupts in this way allows different priorities to be set for transmission and reception interrupts.

The transmission interrupt vector groups the transmission-related interrupts generated by the following interrupt flags:

- TXC
- TXBL
- TXOF
- CCF
- TXIDLE

The reception interrupt on the other hand groups the reception-related interrupts, triggered by the following interrupt flags:

- RXDATAV
- RXFULL
- RXOF
- RXUF
- PERR
- FERR
- MPAF
- SSM
- TCMPn

If USART interrupts are enabled, an interrupt will be made if one or more of the interrupt flags in USART_IF and their corresponding bits in USART_IEN are set.

20.3.12 IrDA Modulator/ Demodulator

The IrDA modulator implements the physical layer of the IrDA specification, which is necessary for communication over IrDA. The modulator takes the signal output from the USART module, and modulates it before it leaves the USART. In the same way, the input signal is demodulated before it enters the actual USART module. The modulator implements the original Rev. 1.0 physical layer and one high speed extension which supports speeds from 2.4 kbps to 1.152 Mbps.

The data from and to the USART is represented in a NRZ (Non Return to Zero) format, where the signal value is at the same level through the entire bit period. For IrDA, the required format is RZI (Return to Zero Inverted), a format where a "1" is signalled by holding the line low, and a "0" is signalled by a short high pulse. An example is given in Figure 20.31 USART Example RZI Signal for a given Asynchronous USART Frame on page 522.

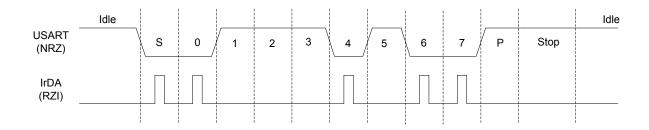


Figure 20.31. USART Example RZI Signal for a given Asynchronous USART Frame

The IrDA module is enabled by setting IREN. The USART transmitter output and receiver input is then routed through the IrDA modula-

The width of the pulses generated by the IrDA modulator is set by configuring IRPW in USARTn_IRCTRL. Four pulse widths are available, each defined relative to the configured bit period as listed in Table 20.11 USART IrDA Pulse Widths on page 522.

IRPW	Pulse width OVS=0	Pulse width OVS=1	Pulse width OVS=2	Pulse width OVS=3
00	1/16	1/8	1/6	1/4
01	2/16	2/8	2/6	N/A
10	3/16	3/8	N/A	N/A
11	4/16	N/A	N/A	N/A

Table 20.11. USART IrDA Pulse Widths

By default, no filter is enabled in the IrDA demodulator. A filter can be enabled by setting IRFILT in USARTn_IRCTRL. When the filter is enabled, an incoming pulse has to last for 4 consecutive clock cycles to be detected by the IrDA demodulator.

Note that by default, the idle value of the USART data signal is high. This means that the IrDA modulator generates negative pulses, and the IrDA demodulator expects negative pulses. To make the IrDA module use RZI signalling, both TXINV and RXINV in USARTn CTRL must be set.

20.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description					
0x000	USART_IPVERSION	R	IPVERSION					
0x004	USART_EN	RW	USART Enable					
0x008	USART_CTRL	RW	Control Register					
0x00C	USART_FRAME	RW	USART Frame Format Register					
0x010	USART_TRIGCTRL	RW	USART Trigger Control register					
0x014	USART_CMD	w	Command Register					
0x018	USART_STATUS	RH	USART Status Register					
0x01C	USART_CLKDIV	RWH	Clock Control Register					
0x020	USART_RXDATAX	RH	RX Buffer Data Extended Register					
0x024	USART_RXDATA	RH	RX Buffer Data Register					
0x028	USART_RXDOUBLEX	RH	RX Buffer Double Data Extended Register					
0x02C	USART_RXDOUBLE	RH	RX FIFO Double Data Register					
0x030	USART_RXDATAXP	RH	RX Buffer Data Extended Peek Register					
0x034	USART_RXDOUBLEXP	RH	RX Buffer Double Data Extended Peek R					
0x038	USART_TXDATAX	W	TX Buffer Data Extended Register					
0x03C	USART_TXDATA	W	TX Buffer Data Register					
0x040	USART_TXDOUBLEX	W	TX Buffer Double Data Extended Register					
0x044	USART_TXDOUBLE	W	TX Buffer Double Data Register					
0x048	USART_IF	RWH INTFLAG	Interrupt Flag Register					
0x04C	USART_IEN	RW	Interrupt Enable Register					
0x050	USART_IRCTRL	RW	IrDA Control Register					
0x054	USART_I2SCTRL	RW	I2S Control Register					
0x058	USART_TIMING	RW	Timing Register					
0x05C	USART_CTRLX	RW	Control Register Extended					
0x060	USART_TIMECMP0	RW	Used to generate interrupts and vario					
0x064	USART_TIMECMP1	RW	Used to generate interrupts and vario					
0x068	USART_TIMECMP2	RW	Used to generate interrupts and vario					
0x1000	USART_IPVERSION_SET	R	IPVERSION					
0x1004	USART_EN_SET	RW	USART Enable					
0x1008	USART_CTRL_SET	RW	Control Register					
0x100C	USART_FRAME_SET	RW	USART Frame Format Register					
0x1010	USART_TRIGCTRL_SET	RW	USART Trigger Control register					
0x1014	USART_CMD_SET	w	Command Register					
0x1018	USART_STATUS_SET	RH	USART Status Register					
0x101C	USART_CLKDIV_SET	RWH	Clock Control Register					

Offset	Name	Туре	Description					
0x1020	USART_RXDATAX_SET	RH	RX Buffer Data Extended Register					
0x1024	USART_RXDATA_SET	RH	RX Buffer Data Register					
0x1028	USART_RXDOUBLEX_SET	RH	RX Buffer Double Data Extended Register					
0x102C	USART_RXDOUBLE_SET	RH	RX FIFO Double Data Register					
0x1030	USART_RXDATAXP_SET	RH	RX Buffer Data Extended Peek Register					
0x1034	USART_RXDOUBLEXP_SET	RH	RX Buffer Double Data Extended Peek R					
0x1038	USART_TXDATAX_SET	W	TX Buffer Data Extended Register					
0x103C	USART_TXDATA_SET	W	TX Buffer Data Register					
0x1040	USART_TXDOUBLEX_SET	W	TX Buffer Double Data Extended Register					
0x1044	USART_TXDOUBLE_SET	W	TX Buffer Double Data Register					
0x1048	USART_IF_SET	RWH INTFLAG	Interrupt Flag Register					
0x104C	USART_IEN_SET	RW	Interrupt Enable Register					
0x1050	USART_IRCTRL_SET	RW	IrDA Control Register					
0x1054	USART_I2SCTRL_SET	RW	I2S Control Register					
0x1058	USART_TIMING_SET	RW	Timing Register					
0x105C	USART_CTRLX_SET	RW	Control Register Extended					
0x1060	USART_TIMECMP0_SET	RW	Used to generate interrupts and vario					
0x1064	USART_TIMECMP1_SET	RW	Used to generate interrupts and vario					
0x1068	USART_TIMECMP2_SET	RW	Used to generate interrupts and vario					
0x2000	USART_IPVERSION_CLR	R	IPVERSION					
0x2004	USART_EN_CLR	RW	USART Enable					
0x2008	USART_CTRL_CLR	RW	Control Register					
0x200C	USART_FRAME_CLR	RW	USART Frame Format Register					
0x2010	USART_TRIGCTRL_CLR	RW	USART Trigger Control register					
0x2014	USART_CMD_CLR	W	Command Register					
0x2018	USART_STATUS_CLR	RH	USART Status Register					
0x201C	USART_CLKDIV_CLR	RWH	Clock Control Register					
0x2020	USART_RXDATAX_CLR	RH	RX Buffer Data Extended Register					
0x2024	USART_RXDATA_CLR	RH	RX Buffer Data Register					
0x2028	USART_RXDOUBLEX_CLR	RH	RX Buffer Double Data Extended Register					
0x202C	USART_RXDOUBLE_CLR	RH	RX FIFO Double Data Register					
0x2030	USART_RXDATAXP_CLR	RH	RX Buffer Data Extended Peek Register					
0x2034	USART_RXDOUBLEXP_CLR	RH	RX Buffer Double Data Extended Peek R					
0x2038	USART_TXDATAX_CLR	W	TX Buffer Data Extended Register					
0x203C	USART_TXDATA_CLR	W	TX Buffer Data Register					
0x2040	USART_TXDOUBLEX_CLR	W	TX Buffer Double Data Extended Register					
0x2044	USART_TXDOUBLE_CLR	W	TX Buffer Double Data Register					

Offset	Name	Туре	Description					
0x2048	USART_IF_CLR	RWH INTFLAG	Interrupt Flag Register					
0x204C	USART_IEN_CLR	RW	Interrupt Enable Register					
0x2050	USART_IRCTRL_CLR	RW	IrDA Control Register					
0x2054	USART_I2SCTRL_CLR	RW	I2S Control Register					
0x2058	USART_TIMING_CLR	RW	Timing Register					
0x205C	USART_CTRLX_CLR	RW	Control Register Extended					
0x2060	USART_TIMECMP0_CLR	RW	Used to generate interrupts and vario					
0x2064	USART_TIMECMP1_CLR	RW	Used to generate interrupts and vario					
0x2068	USART_TIMECMP2_CLR	RW	Used to generate interrupts and vario					
0x3000	USART_IPVERSION_TGL	R	IPVERSION					
0x3004	USART_EN_TGL	RW	USART Enable					
0x3008	USART_CTRL_TGL	RW	Control Register					
0x300C	USART_FRAME_TGL	RW	USART Frame Format Register					
0x3010	USART_TRIGCTRL_TGL	RW	USART Trigger Control register					
0x3014	USART_CMD_TGL	W	Command Register					
0x3018	USART_STATUS_TGL	RH	USART Status Register					
0x301C	USART_CLKDIV_TGL	RWH	Clock Control Register					
0x3020	USART_RXDATAX_TGL	RH	RX Buffer Data Extended Register					
0x3024	USART_RXDATA_TGL	RH	RX Buffer Data Register					
0x3028	USART_RXDOUBLEX_TGL	RH	RX Buffer Double Data Extended Register					
0x302C	USART_RXDOUBLE_TGL	RH	RX FIFO Double Data Register					
0x3030	USART_RXDATAXP_TGL	RH	RX Buffer Data Extended Peek Register					
0x3034	USART_RXDOUBLEXP_TGL	RH	RX Buffer Double Data Extended Peek R					
0x3038	USART_TXDATAX_TGL	W	TX Buffer Data Extended Register					
0x303C	USART_TXDATA_TGL	W	TX Buffer Data Register					
0x3040	USART_TXDOUBLEX_TGL	W	TX Buffer Double Data Extended Register					
0x3044	USART_TXDOUBLE_TGL	W	TX Buffer Double Data Register					
0x3048	USART_IF_TGL	RWH INTFLAG	Interrupt Flag Register					
0x304C	USART_IEN_TGL	RW	Interrupt Enable Register					
0x3050	USART_IRCTRL_TGL	RW	IrDA Control Register					
0x3054	USART_I2SCTRL_TGL	RW	I2S Control Register					
0x3058	USART_TIMING_TGL	RW	Timing Register					
0x305C	USART_CTRLX_TGL	RW	Control Register Extended					
0x3060	USART_TIMECMP0_TGL	RW	Used to generate interrupts and vario					
0x3064	USART_TIMECMP1_TGL	RW	Used to generate interrupts and vario					
0x3068	USART_TIMECMP2_TGL	RW	Used to generate interrupts and vario					

20.5 Register Description

20.5.1 USART_IPVERSION - IPVERSION

Offset	Bit Position											
0x000	31 31 32 33 34 34 35 36 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39											
Reset	0×0											
Access	α											
Name	IPVERSION											

Bit	Name	Reset	Access	Description
31:0	IPVERSION	0x0	R	IPVERSION
	The read only IPVERSIO modules with different va	•		this module. There may be minor software changes required for

20.5.2 USART_EN - USART Enable

Offset		Bit Position																														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																																0x0
Access																																W M
Name																																EN

Bit	Name	Reset	Access	Description						
31:1	Reserved	To ensure o	compatibility witl	h future devices, always write bits to 0. More information in 1.2 Con-						
0	EN	0x0	RW	USART Enable						
		the module. Software should write to CONFIG type registers before setting the ENABLE bit. SYNC type registers only after setting the ENABLE bit.								

20.5.3 USART_CTRL - Control Register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset	0x0	000	000	000			000	0x0	0X0	0×0	000	000	0X0	000	0x0	0X0	0x0	0X0	0x0	000	0X0	000	0x0	000		2	OXO	000	0x0	0x0	0x0	0x0
Access	₩ M	W.	RW W	Z.			Z.	RW W	Z.	R M M	₩ M	R.	M	RW W	₩ M	R N N	R N N	Z.	R W	R N N	RW	Z.	R.	Z.		Š	<u>}</u>	₩ M	₹	₩ M	RW	RW
Name	SMSDELAY	MVDIS	AUTOTX	BYTESWAP			SSSEARLY	ERRSTX	ERRSRX	ERRSDMA	BIT8DV	SKIPPERRF	SCRETRANS	SCMODE	AUTOTRI	AUTOCS	CSINV	TXINV	RXINV	TXBIL	CSMA	MSBF	CLKPHA	CLKPOL		9,0	>	MPAB	MPM	CCEN	LOOPBK	SYNC

Bit	Name	Reset	Access	Description					
31	SMSDELAY	0x0	RW	Synchronous Master Sample Delay					
	Delay Synchronous speeds	Master sample	point to the nex	t setup edge to improve timing and allow communication at higher					
30	MVDIS	0x0	RW	Majority Vote Disable					
	Disable majority vot	te for 16x, 8x and	d 6x oversampli	ng modes.					
29	AUTOTX	0x0	RW	Always Transmit When RX Not Full					
	Transmits as long a	s RX is not full. I	f TX is empty, ι	underflows are generated.					
28	BYTESWAP	0x0	RW	Byteswap In Double Accesses					
	Set to switch the ord	der of the bytes i	n double acces	ses.					
	Value	Mode		Description					
	0	DISABLE		Normal byte order					
	1	ENABLE		Byte order swapped					
27:26	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-					
25	SSSEARLY	0x0	RW	Synchronous Slave Setup Early					
	Setup data on samp	ole edge in synch	nronous slave m	node to improve MOSI setup time					
24	ERRSTX	0x0	RW	Disable TX On Error					
	When set, the trans	When set, the transmitter is disabled on framing and parity errors (asynchronous mode only) in the receiver.							
	Value	Mode		Description					
	0	DISABLE		Received framing and parity errors have no effect on transmitter					
	1	ENABLE		Received framing and parity errors disable the transmitter					
23	ERRSRX	0x0	RW	Disable RX On Error					
	When set, the recei	ver is disabled o	n framing and p	parity errors (asynchronous mode only).					
	Value	Mode		Description					
	0	DISABLE		Framing and parity errors have no effect on receiver					
	1	ENABLE		Framing and parity errors disable the receiver					

Bit	Name	Reset	Access	Description					
22	ERRSDMA	0x0	RW	Halt DMA On Error					
	When set, DMA reque	ests will be clea	red on framing a	and parity errors (asynchronous mode only).					
	Value	Mode		Description					
	0	DISABLE		Framing and parity errors have no effect on DMA requests from the USART					
	1	ENABLE		DMA requests from the USART are blocked while the PERR or FERR interrupt flags are set					
21	BIT8DV	0x0	RW	Bit 8 Default Value					
	The default value of the fied, the 9th bit is set to			ed, and an 8-bit write operation is done, leaving the 9th bit unspeci-					
20	SKIPPERRF	0x0	RW	Skip Parity Error Frames					
	When set, the receive	r discards fram	es with parity er	rors (asynchronous mode only). The PERR interrupt flag is still set.					
19	SCRETRANS	0x0	RW	SmartCard Retransmit					
	When in SmartCard menabled.	node, a NACK'e	ed frame will be	kept in the shift register and retransmitted if the transmitter is still					
18	SCMODE	0x0	RW	SmartCard Mode					
	Use this bit to enable	Use this bit to enable or disable SmartCard mode.							
17	AUTOTRI	0x0	RW	Automatic TX Tristate					
	When enabled, TXTR transmission starts.	l is set by hard	ware whenever	the transmitter is idle, and TXTRI is cleared by hardware when					
	Value	Mode		Description					
	0	DISABLE		The output on U(S)n_TX when the transmitter is idle is defined by TXINV					
	1	ENABLE		U(S)n_TX is tristated whenever the transmitter is idle					
16	AUTOCS	0x0	RW	Automatic Chip Select					
	When enabled, the ou when transmission en		S will be activat	ed one baud-period before transmission starts, and deactivated					
15	CSINV	0x0	RW	Chip Select Invert					
	Default value is active low. This affects both the selection of external slaves, as well as the selection of the microcontroller as a slave.								
	Value	Mode		Description					
	0	DISABLE		Chip select is active low					
	1	ENABLE		Chip select is active high					
14	TXINV	0x0	RW	Transmitter output Invert					
				y be inverted by setting this bit.					
	Value	Mode		Description					
	0	DISABLE		Output from the transmitter is passed unchanged to U(S)n_TX					
	1	ENABLE		Output from the transmitter is inverted before it is passed to $U(S)n_TX$					

	Name	Reset	Access	Description						
13	RXINV	0x0	RW	Receiver Input Invert						
	Setting this bit wi	Il invert the input to th	e USART red	ceiver.						
	Value	Mode		Description						
	0	DISABLE		Input is passed directly to the receiver						
	1	ENABLE		Input is inverted before it is passed to the receiver						
12	TXBIL	0x0 RW		TX Buffer Interrupt Level						
	Determines the interrupt and status level of the transmit buffer.									
	Value	Mode		Description						
	0	EMPTY		TXBL and the TXBL interrupt flag are set when the transmit buf- fer becomes empty. TXBL is cleared when the buffer becomes nonempty.						
	1	HALFFULL		TXBL and TXBLIF are set when the transmit buffer goes from full to half-full or empty. TXBL is cleared when the buffer becomes full.						
11	CSMA	0x0	RW	Action On Slave-Select In Master Mode						
	This register determines the action to be performed when slave-select is configured as an input and driven low while in master mode.									
	Value	Mode		Description						
	0	NOACTION								
	O	NOACTION		No action taken						
	1	GOTOSLAV		No action taken Go to slave mode						
10										
10	1 MSBF	GOTOSLAV 0x0	/EMODE	Go to slave mode						
10	1 MSBF	GOTOSLAV 0x0	/EMODE	Go to slave mode Most Significant Bit First						
10	MSBF Decides whether	GOTOSLAV 0x0 data is sent with the I	/EMODE	Go to slave mode Most Significant Bit First ant bit first, or the most significant bit first.						
10	MSBF Decides whether Value	Ox0 data is sent with the I	/EMODE	Go to slave mode Most Significant Bit First ant bit first, or the most significant bit first. Description						
10	1 MSBF Decides whether Value 0	GOTOSLAV 0x0 data is sent with the I Mode DISABLE	/EMODE	Go to slave mode Most Significant Bit First ant bit first, or the most significant bit first. Description Data is sent with the least significant bit first						
	MSBF Decides whether Value 0 1 CLKPHA	GOTOSLAV 0x0 data is sent with the I Mode DISABLE ENABLE 0x0	RW least significa	Most Significant Bit First ant bit first, or the most significant bit first. Description Data is sent with the least significant bit first Data is sent with the most significant bit first						
	MSBF Decides whether Value 0 1 CLKPHA	GOTOSLAV 0x0 data is sent with the I Mode DISABLE ENABLE 0x0	RW least significa	Most Significant Bit First ant bit first, or the most significant bit first. Description Data is sent with the least significant bit first Data is sent with the most significant bit first Clock Edge For Setup/Sample						
	MSBF Decides whether Value 0 1 CLKPHA Determines wher	GOTOSLAV 0x0 data is sent with the I Mode DISABLE ENABLE 0x0 e data is set-up and set	RW least significations RW	Most Significant Bit First ant bit first, or the most significant bit first. Description Data is sent with the least significant bit first Data is sent with the most significant bit first Clock Edge For Setup/Sample ording to the bus clock when in synchronous mode.						
	MSBF Decides whether Value 0 1 CLKPHA Determines where Value	GOTOSLAV 0x0 data is sent with the I Mode DISABLE ENABLE 0x0 re data is set-up and set of the set of th	RW least significates RW sampled accord	Most Significant Bit First ant bit first, or the most significant bit first. Description Data is sent with the least significant bit first Data is sent with the most significant bit first Clock Edge For Setup/Sample ording to the bus clock when in synchronous mode. Description Data is sampled on the leading edge and set-up on the trailing						
	MSBF Decides whether Value 0 1 CLKPHA Determines wher Value 0	GOTOSLAV 0x0 data is sent with the I Mode DISABLE ENABLE 0x0 de data is set-up and set of the set of th	RW least significates RW sampled accord	Most Significant Bit First ant bit first, or the most significant bit first. Description Data is sent with the least significant bit first Data is sent with the most significant bit first Clock Edge For Setup/Sample ording to the bus clock when in synchronous mode. Description Data is sampled on the leading edge and set-up on the trailing edge of the bus clock in synchronous mode Data is set-up on the leading edge and sampled on the trailing						
9	MSBF Decides whether Value 0 1 CLKPHA Determines wher Value 0 1	GOTOSLAV 0x0 data is sent with the I Mode DISABLE ENABLE 0x0 e data is set-up and s Mode SAMPLELE SAMPLETR	RW least significates RW sampled accord ADING RAILING	Most Significant Bit First ant bit first, or the most significant bit first. Description Data is sent with the least significant bit first Data is sent with the most significant bit first Clock Edge For Setup/Sample ording to the bus clock when in synchronous mode. Description Data is sampled on the leading edge and set-up on the trailing edge of the bus clock in synchronous mode Data is set-up on the leading edge and sampled on the trailing edge of the bus clock in synchronous mode						
9	MSBF Decides whether Value 0 1 CLKPHA Determines wher Value 0 1	GOTOSLAV 0x0 data is sent with the I Mode DISABLE ENABLE 0x0 e data is set-up and s Mode SAMPLELE SAMPLETR	RW least significates RW sampled accord ADING RAILING	Most Significant Bit First ant bit first, or the most significant bit first. Description Data is sent with the least significant bit first Data is sent with the most significant bit first Clock Edge For Setup/Sample ording to the bus clock when in synchronous mode. Description Data is sampled on the leading edge and set-up on the trailing edge of the bus clock in synchronous mode Data is set-up on the leading edge and sampled on the trailing edge of the bus clock in synchronous mode Clock Polarity						

Bit	Name	Reset	Access	Description				
	1	IDLEHIGH		The bus clock used in synchronous mode has a high base value				
7	Reserved	To ensure ventions	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-				
6:5	ovs	0x0	RW	Oversampling				
	Sets the number of clo gives better performan	•	a UART bit-period	d. More clock cycles gives better robustness, while less clock cycles				
	Value	Mode		Description				
	0	X16		Regular UART mode with 16X oversampling in asynchronous mode				
	1	X8		Double speed with 8X oversampling in asynchronous mode				
	2	X6		6X oversampling in asynchronous mode				
	3	X4		Quadruple speed with 4X oversampling in asynchronous mode				
4	MPAB	0x0	RW	Multi-Processor Address-Bit				
	Defines the value of the the frame as a multi-p			An incoming frame with its 9th bit equal to the value of this bit marks				
3	MPM	0x0	RW	Multi-Processor Mode				
	Multi-processor mode uses the 9th bit of the USART frames to tell whether the frame is an address frame or a data frame.							
	Value	Mode		Description				
	0	DISABLE		The 9th bit of incoming frames has no special function				
	1	ENABLE		An incoming frame with the 9th bit equal to MPAB will be loaded into the receive buffer regardless of RXBLOCK and will result in the MPAB interrupt flag being set				
2	CCEN	0x0	RW	Collision Check Enable				
	Enables collision chec	king on data w	hen operating in	half duplex modus.				
	Value	Mode		Description				
	0	DISABLE		Collision check is disabled				
	1	ENABLE		Collision check is enabled. The receiver must be enabled for the check to be performed				
1	LOOPBK	0x0	RW	Loopback Enable				
	Allows the receiver to	be connected	directly to the US	ART transmitter for loopback and half duplex communication.				
	Value	Mode		Description				
	0	DISABLE		The receiver is connected to and receives data from U(S)n_RX				
	1	ENABLE		The receiver is connected to and receives data from U(S)n_TX				
0	SYNC	0x0	RW	USART Synchronous Mode				
	Determines whether the	ne USART is o	perating in async	hronous or synchronous mode.				
	Value	Mode		Description				
				r · ·				

Bit	Name	Reset	Access	Description
	0	DISABLE		The USART operates in asynchronous mode
	1	ENABLE		The USART operates in synchronous mode

20.5.4 USART_FRAME - USART Frame Format Register

Offset	Bit Position	
0x00C	33 30 30 30 30 30 30 30 30 30 30 30 30 3	8 2 1 1 0 0 8 7 0 2 7 0 0
Reset		000 000
Access		X X X
Name		STOPBITS PARITY DATABITS

Bit	Name	Reset	Access	Description		
31:14	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-		
13:12	STOPBITS	0x1	RW	Stop-Bit Mode		
	Determines the nu	ımber of stop-bits	used.			
	Value	Mode		Description		
	0	HALF		The transmitter generates a half stop bit. Stop-bits are not verified by receiver		
	1	ONE		One stop bit is generated and verified		
	2	ONEAND	AHALF	The transmitter generates one and a half stop bit. The receiver verifies the first stop bit		
	3	TWO		The transmitter generates two stop bits. The receiver checks the first stop-bit only		
			To ensure compatibility with future devices, always write bits to 0. More information in ventions			
11:10	Reserved		e compatibility w	rith future devices, always write bits to 0. More information in 1.2 Con-		
9:8	Reserved PARITY		e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con- Parity-Bit Mode		
	PARITY	ventions 0x0	RW			
	PARITY Determines wheth	ventions 0x0	RW	Parity-Bit Mode		
	PARITY Determines wheth nous mode.	ventions 0x0 er parity bits are e	RW	Parity-Bit Mode ether even or odd parity should be used. Only available in asynchro-		
	PARITY Determines wheth nous mode. Value	ventions 0x0 er parity bits are e	RW	Parity-Bit Mode ether even or odd parity should be used. Only available in asynchro- Description		
	PARITY Determines wheth nous mode. Value	ventions 0x0 er parity bits are e Mode NONE	RW	Parity-Bit Mode ether even or odd parity should be used. Only available in asynchro- Description Parity bits are not used Even parity are used. Parity bits are automatically generated		
	PARITY Determines wheth nous mode. Value 0 2	wentions 0x0 er parity bits are e Mode NONE EVEN ODD	RW nabled, and wh	Parity-Bit Mode ether even or odd parity should be used. Only available in asynchro- Description Parity bits are not used Even parity are used. Parity bits are automatically generated and checked by hardware. Odd parity is used. Parity bits are automatically generated and		
9:8	PARITY Determines wheth nous mode. Value 0 2	wentions 0x0 er parity bits are e Mode NONE EVEN ODD	RW nabled, and wh	Parity-Bit Mode ether even or odd parity should be used. Only available in asynchro- Description Parity bits are not used Even parity are used. Parity bits are automatically generated and checked by hardware. Odd parity is used. Parity bits are automatically generated and checked by hardware.		
9:8	PARITY Determines wheth nous mode. Value 0 2 3 Reserved	wentions 0x0 er parity bits are e Mode NONE EVEN ODD To ensure ventions 0x5	RW nabled, and wh	Parity-Bit Mode ether even or odd parity should be used. Only available in asynchro- Description Parity bits are not used Even parity are used. Parity bits are automatically generated and checked by hardware. Odd parity is used. Parity bits are automatically generated and checked by hardware. with future devices, always write bits to 0. More information in 1.2 Con- Data-Bit Mode		
9:8	PARITY Determines wheth nous mode. Value 0 2 3 Reserved DATABITS	wentions 0x0 er parity bits are e Mode NONE EVEN ODD To ensure ventions 0x5	RW nabled, and wh	Parity-Bit Mode ether even or odd parity should be used. Only available in asynchro- Description Parity bits are not used Even parity are used. Parity bits are automatically generated and checked by hardware. Odd parity is used. Parity bits are automatically generated and checked by hardware. with future devices, always write bits to 0. More information in 1.2 Con- Data-Bit Mode		
9:8	PARITY Determines wheth nous mode. Value 0 2 3 Reserved DATABITS This register sets to	wentions 0x0 er parity bits are e Mode NONE EVEN ODD To ensure ventions 0x5 the number of data	RW nabled, and wh	Parity-Bit Mode ether even or odd parity should be used. Only available in asynchro- Description Parity bits are not used Even parity are used. Parity bits are automatically generated and checked by hardware. Odd parity is used. Parity bits are automatically generated and checked by hardware. oith future devices, always write bits to 0. More information in 1.2 Conditional Data-Bit Mode RT frame.		

Bit	Name	Reset	Access	Description
	3	SIX		Each frame contains 6 data bits
	4	SEVEN		Each frame contains 7 data bits
	5	EIGHT		Each frame contains 8 data bits
	6	NINE		Each frame contains 9 data bits
	7	TEN		Each frame contains 10 data bits
	8	ELEVEN		Each frame contains 11 data bits
	9	TWELVE		Each frame contains 12 data bits
	10	THIRTEEN		Each frame contains 13 data bits
	11	FOURTEEN		Each frame contains 14 data bits
	12	FIFTEEN		Each frame contains 15 data bits
	13	SIXTEEN		Each frame contains 16 data bits

20.5.5 USART_TRIGCTRL - USART Trigger Control register

Offset	Bit Position	
0x010	1 0 <th>2 7 7 9 8 8 7 9 4 8 7 7 0</th>	2 7 7 9 8 8 7 9 4 8 7 7 0
Reset		000 000
Access		X X
Name		RXATX2EN RXATX1EN RXATX0EN TXARX2EN TXARX1EN TXARX0EN AUTOTXTEN TXTEN RXTEN

Bit	Name	Reset	Access	Description
31:13	Reserved	To ensure ventions	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
12	RXATX2EN	0x0	RW	Enable Receive Trigger after TX end of f
	When set, a TX end of f	rame will trigg	er the receiver a	after a TCMPVAL2 baud-time delay
11	RXATX1EN	0x0	RW	Enable Receive Trigger after TX end of f
	When set, a TX end of f	rame will trigg	er the receiver a	after a TCMPVAL1 baud-time delay
10	RXATX0EN	0x0	RW	Enable Receive Trigger after TX end of f
	When set, a TX end of f	rame will trigg	er the receiver a	after a TCMPVAL0 baud-time delay
9	TXARX2EN	0x0	RW	Enable Transmit Trigger after RX End of
	When set, an RX end of	frame will trig	ger the transmit	ter after TCMP2VAL bit times to force a minimum response delay
8	TXARX1EN	0x0	RW	Enable Transmit Trigger after RX End of
	When set, an RX end of	frame will trig	ger the transmit	ter after TCMP1VAL bit times to force a minimum response delay
7	TXARX0EN	0x0	RW	Enable Transmit Trigger after RX End of
	When set, an RX end of	frame will trig	ger the transmit	ter after TCMP0VAL bit times to force a minimum response delay
6	AUTOTXTEN	0x0	RW	AUTOTX Trigger Enable
	When set, AUTOTX is e	nabled as lon	g as the PRS ch	nannel selected by TSEL has a high value
5	TXTEN	0x0	RW	Transmit Trigger Enable
	When set, the PRS cha	nnel selected	by TSEL sets TX	KEN, enabling the transmitter on positive trigger edges.
4	RXTEN	0x0	RW	Receive Trigger Enable
	When set, the PRS cha	nnel selected	by TSEL sets R	XEN, enabling the receiver on positive trigger edges.
3:0	Reserved	To ensure ventions	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-

20.5.6 USART_CMD - Command Register

Offset	Bit Position	
0x014	33 30 30 22 22 22 22 22 22 22 22 22 21 19 10 10 11 11 11 12	1 0 0 8 7 9 5 7 0 0
Reset		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access		3 3 3 3 3 3 3 3 3 3 3 3
Name		CLEARRX CLEARTX TXTRIDIS TXTRIEN RXBLOCKDIS RXBLOCKEN MASTEREN MASTEREN TXDIS TXEN RXEN RXEN

Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure ventions	e compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
11	CLEARRX	0x0	W	Clear RX
	Set to clear receive I	buffer and the R	X shift register.	
10	CLEARTX	0x0	W	Clear TX
	Set to clear transmit	buffer and the 1	X shift register.	
9	TXTRIDIS	0x0	W	Transmitter Tristate Disable
	Disables tristating of	the transmitter	output.	
8	TXTRIEN	0x0	W	Transmitter Tristate Enable
	Tristates the transmi	itter output.		
7	RXBLOCKDIS	0x0	W	Receiver Block Disable
	Set to clear RXBLO	CK, resulting in a	all incoming frame	es being loaded into the receive buffer.
6	RXBLOCKEN	0x0	W	Receiver Block Enable
	Set to set RXBLOCK	K, resulting in all	incoming frames	being discarded.
5	MASTERDIS	0x0	W	Master Disable
	Set to disable maste	r mode, clearing	g the MASTER sta	atus bit and putting the USART in slave mode.
4	MASTEREN	0x0	W	Master Enable
				us bit. Master mode should not be enabled while TXENS is set to 1. EN before TXEN, or enable them both in the same write operation.
3	TXDIS	0x0	W	Transmitter Disable
	Set to disable transn	nission.		
2	TXEN	0x0	W	Transmitter Enable
	Set to enable data tr	ansmission.		
1	RXDIS	0x0	W	Receiver Disable
	Set to disable data reded.	eception. If a fra	me is under recep	otion when the receiver is disabled, the incoming frame is discar-
0	RXEN	0x0	W	Receiver Enable
	Set to activate data	reception on U(S	S)n RX.	

20.5.7 USART_STATUS - USART Status Register

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	7	10	6	∞	7	9	2	4	3	2	_	0
Reset				•			•	•				•	•		2	3		0×0	0×1	000	0x0	000	0x0	0×0	0x0	0x1	0×0	0x0	0x0	0x0	000	0x0
Access															۵	۷		2	~	2	2	22	22	2	2	2	2	22	22	22	22	~
Name															TXBLIECNT			TIMERRESTARTED	TXIDLE	RXFULLRIGHT	RXDATAVRIGHT	TXBSRIGHT	TXBDRIGHT	RXFULL	RXDATAV	TXBL	TXC	TXTRI	RXBLOCK	MASTER	TXENS	RXENS

Bit	Name	Reset	Access	Description
31:18	Reserved	To ensure ventions	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
17:16	TXBUFCNT	0x0	R	TX Buffer Count
	Count of TX buffer ent TX shifter register.	ry 0, entry 1, a	and TX shift reg	gister. For large frames, the count is only of TX buffer entry 0 and the
15	Reserved	To ensure ventions	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
14	TIMERRESTARTED	0x0	R	The USART Timer restarted itself
	event in the sequence there is a TCMP interr	of multiple TO upt and TIME	CMP events. An RRESTARTED	vent, a TIMERRESTARTED value of 0x0 indicates the first TCMP by non TCMP timer start events will clear TIMERRESTARTED. When is 0x0, an interrupt service routine can set a TCMP event counter of the sequence.
13	TXIDLE	0x1	R	TX Idle
	Set when TX idle			
12	RXFULLRIGHT	0x0	R	RX Full of Right Data
	When set, the entire R	X buffer conta	ains right data. (Only used in I2S mode
11	RXDATAVRIGHT	0x0	R	RX Data Right
	When set, reading RX	DATA or RXD	ATAX gives rig	ht data. Else left data is read. Only used in I2S mode
10	TXBSRIGHT	0x0	R	TX Buffer Expects Single Right Data
	When set, the TX buffe	er expects at I	least a single rig	ght data. Else it expects left data. Only used in I2S mode
9	TXBDRIGHT	0x0	R	TX Buffer Expects Double Right Data
	When set, the TX buffe mode	er expects do	uble right data.	Else it may expect a single right data or left data. Only used in I2S
8	RXFULL	0x0	R	RX FIFO Full
	Set when the RXFIFO one more frame in the			eive buffer is no longer full. When this bit is set, there is still room for
7	RXDATAV	0x0	R	RX Data Valid
	Set when data is availa	able in the red	ceive buffer. Cle	eared when the receive buffer is empty.
6	TXBL	0x1	R	TX Buffer Level

			-	
Bit	Name	Reset	Access	Description
		el of the transmit but is set whenever the		is 0x0, TXBL is set whenever the transmit buffer is completely empty. comes half full.
5	TXC	0x0	R	TX Complete
		mission has completen to the transmit I		ore data is available in the transmit buffer and shift register. Cleared
4	TXTRI	0x0	R	Transmitter Tristated
	Set when the tran	•	and cleared v	when transmitter output is enabled. If AUTOTRI in USARTn_CTRL is
3	RXBLOCK	0x0	R	Block Incoming Data
		ceiver discards inco the frame has beer		An incoming frame will not be loaded into the receive buffer if this bit is eceived.
2	MASTER	0x0	R	SPI Master Mode
	Set when the US mand.	ART operates as a	master. Set u	sing the MASTEREN command and clear using the MASTERDIS com-
1	TXENS	0x0	R	Transmitter Enable Status
	Set when the tran	nsmitter is enabled.		
0	RXENS	0x0	R	Receiver Enable Status
	Set when the rec	eiver is enabled.		

20.5.8 USART_CLKDIV - Clock Control Register

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset	0x0		'		'											'			ç	e X						'	•					
Access	R																		Š	≥ Y												
Name	AUDEN																															
Name	AUTOBAUI																		Ž	<u>></u>												

Bit	Name	Reset	Access	Description
31	AUTOBAUDEN	0x0	RW	AUTOBAUD detection enable
	Detects the baud rate ba	sed on receiv	ing a 0x55 fram	e (0x00 for IrDA). This is used in Asynchronous mode.
30:23	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
22:3	DIV	0x0	RW	Fractional Clock Divider
	Specifies the fractional c field.	lock divider fo	or the USART. S	etting AUTOBAUDEN in USARTn_CLKDIV will overwrite the DIV
2:0	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-

20.5.9 USART_RXDATAX - RX Buffer Data Extended Register

Offset															Ві	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	0	8	7	9	5	4	က	2	_	0
Reset																•	0x0	0x0									•	0×0				
Access																	œ	œ										<u>~</u>				
Name																	FERR	PERR										RXDATA				

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
15	FERR	0x0	R	Data Framing Error
	Set if data in buffer has	a framing erro	r. Can be the re	sult of a break condition.
14	PERR	0x0	R	Data Parity Error
	Set if data in buffer has	a parity error (asynchronous r	node only).
13:9	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
8:0	RXDATA	0x0	R	RX Data
	Use this register to acce	ss data read f	rom the USAR1	. Buffer is cleared on read access.

20.5.10 USART_RXDATA - RX Buffer Data Register

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	5	6	∞	7	9	5	4	က	2	_	0
Reset																												>	040			
Access																												۵	۷			
Name																												VTVU	ל ל			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
7:0	RXDATA	0x0	R	RX Data
	Use this register to accest this register.	ss data read f	rom USART. Bu	uffer is cleared on read access. Only the 8 LSB can be read using

20.5.11 USART_RXDOUBLEX - RX Buffer Double Data Extended Register

Offset															Ві	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	တ	8	7	9	5	4	3	2	_	0
Reset	0x0	000					•			000								000		•	•							0X0	•			
Access	22	22										<u>~</u>					Я	22										2				
Name	FERR1	PERR1										RXDATA1					FERR0	PERR0										RXDATA0				

Bit	Name	Reset	Access	Description
31	FERR1	0x0	R	Data Framing Error 1
	Set if data in buffe	r has a framing er	ror. Can be the	e result of a break condition.
30	PERR1	0x0	R	Data Parity Error 1
	Set if data in buffe	er has a parity erro	r (asynchronou	is mode only).
29:25	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
24:16	RXDATA1	0x0	R	RX Data 1
	Second frame rea	d from buffer.		
15	FERR0	0x0	R	Data Framing Error 0
	Set if data in buffe	r has a framing er	ror. Can be the	e result of a break condition.
14	PERR0	0x0	R	Data Parity Error 0
	Set if data in buffe	r has a parity erro	r (asynchronou	is mode only).
13:9	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
8:0	RXDATA0	0x0	R	RX Data 0
	First frame read fr	om buffer.		

20.5.12 USART_RXDOUBLE - RX FIFO Double Data Register

Offset	Bit Po												osition																			
0x02C	31	33 34 35 36 37 38 39 30 30 31 32 33 34 35 36 37 47 47 47 47 47 47 47 47 47 48 40 <th>_</th> <th>0</th>															_	0														
Reset													0 0 0 0									OX O										
Access													α.								α_											
														TA1								ТАО										
Name																				2	2							\ C V	2			

Bit	Name	Reset	Access	Description									
31:16	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-									
15:8	RXDATA1	0x0	R	RX Data 1									
	Second frame read from	buffer.											
7:0	RXDATA0	0x0	R	RX Data 0									
	First frame read from bu	ffer.											

20.5.13 USART_RXDATAXP - RX Buffer Data Extended Peek Register

Offset		Bit Position																														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	5	4	က	2	_	0
Reset													0x0	0x0	0×0																	
Access												~	22						~													
Name																	FERRP	PERRP										RXDATAP				

Bit	Name	Reset	Access	Description									
31:16	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-									
15	FERRP	0x0	R	Data Framing Error Peek									
	Set if data in buffe	r has a framing er	ror. Can be th	e result of a break condition.									
14	PERRP	0x0	R	Data Parity Error Peek									
	Set if data in buffe	r has a parity erro	r (asynchrono	us mode only).									
13:9	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-									
8:0	RXDATAP	0x0	R	RX Data Peek									
	Use this register to access data read from the USART.												

20.5.14 USART_RXDOUBLEXP - RX Buffer Double Data Extended Peek R...

Offset															Bi	t Po	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset	0x0	000				•						0x0	•		•		000	000		•							•	000		•	•	
Access	2	22										~					22	22										<u>~</u>				
Name	FERRP1	PERRP1										RXDATAP1					FERRP0	PERRP0										RXDATAP0				

D''	News			Book files
Bit	Name	Reset	Access	Description
31	FERRP1	0x0	R	Data Framing Error 1 Peek
	Set if data in buffer	has a framing err	ror. Can be the	result of a break condition.
30	PERRP1	0x0	R	Data Parity Error 1 Peek
	Set if data in buffer	has a parity error	r (asynchronou	is mode only).
29:25	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
24:16	RXDATAP1	0x0	R	RX Data 1 Peek
	Second frame read	from FIFO.		
15	FERRP0	0x0	R	Data Framing Error 0 Peek
	Set if data in buffer	has a framing err	ror. Can be the	result of a break condition.
14	PERRP0	0x0	R	Data Parity Error 0 Peek
	Set if data in buffer	has a parity error	r (asynchronou	is mode only).
13:9	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
8:0	RXDATAP0	0x0	R	RX Data 0 Peek
	First frame read fro	m FIFO.		

20.5.15 USART_TXDATAX - TX Buffer Data Extended Register

Offset															Bi	t Po	siti	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset			'		'									'		•	000	0×0	0x0	0X0	0x0						•	0×0	•	'		
Access																	>	>	>	>	>							≥				
Name																	RXENAT	TXDISAT	TXBREAK	TXTRIAT	UBRXAT							TXDATAX				

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure ventions	e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
15	RXENAT	0x0	W	Enable RX After Transmission
	Set to enable recepti	on after transm	ission.	
14	TXDISAT	0x0	W	Clear TXEN After Transmission
	Set to disable transm	itter and releas	e data bus dire	ctly after transmission.
13	TXBREAK	0x0	W	Transmit Data As Break
	Set to send data as a the value of TXDATA		ent will see a fra	ming error or a break condition depending on its configuration and
12	TXTRIAT	0x0	W	Set TXTRI After Transmission
	Set to tristate transm	itter by setting	TXTRI after trar	esmission.
11	UBRXAT	0x0	W	Unblock RX After Transmission
	Set to clear RXBLOC	K after transm	ssion, unblockir	ng the receiver.
10:9	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
8:0	TXDATAX	0x0	W	TX Data
	Use this register to w	rite data to the	USART. If TXE	N is set, a transfer will be initiated at the first opportunity.

20.5.16 USART_TXDATA - TX Buffer Data Register

Offset															Ві	t Po	siti	on														
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	3	2	_	0
Reset																												2	OX O			
Access																												}	>			
Name																												\	Y Y Y			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
7:0	TXDATA	0x0	W	TX Data
	This frame will be added cleared.	to TX buffer.	Only 8 LSB car	be written using this register. 9th bit and control bits will be

20.5.17 USART_TXDOUBLEX - TX Buffer Double Data Extended Register

Offset															Bi	t Po	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	ω	7	9	2	4	က	2	_	0
Reset	000	0x0	000	0×0	000							0×0					0×0	0×0	0x0	000	0x0							0×0				
Access	>	>	>	>	>							≥					>	>	>	>	>							>				
Name	RXENAT1	TXDISAT1	TXBREAK1	TXTRIAT1	UBRXAT1							TXDATA1					RXENAT0	TXDISAT0	TXBREAK0	TXTRIAT0	UBRXAT0							TXDATA0				

Bit	Name	Reset	Access	Description
31	RXENAT1	0x0	W	Enable RX After Transmission
01	Set to enable recep			
30	TXDISAT1	0x0	W	Clear TXEN After Transmission
30	_			
				ctly after transmission.
29	TXBREAK1	0x0	W	Transmit Data As Break
	Set to send data as the value of USART		ent will see a fra	ıming error or a break condition depending on its configuration and
28	TXTRIAT1	0x0	W	Set TXTRI After Transmission
	Set to tristate transr	mitter by setting	TXTRI after trar	nsmission.
27	UBRXAT1	0x0	W	Unblock RX After Transmission
	Set clear RXBLOCk	K after transmiss	ion, unblocking	the receiver.
26:25	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
24:16	TXDATA1	0x0	W	TX Data
	Second frame to wr	ite to FIFO.		
15	RXENAT0	0x0	W	Enable RX After Transmission
	Set to enable recep	tion after transm	ission.	
14	TXDISAT0	0x0	W	Clear TXEN After Transmission
	Set to disable trans	mitter and releas	se data bus dire	ctly after transmission.
13	TXBREAK0	0x0	W	Transmit Data As Break
	Set to send data as the value of TXDAT		ent will see a fra	nming error or a break condition depending on its configuration and
12	TXTRIAT0	0x0	W	Set TXTRI After Transmission
	Set to tristate transr	mitter by setting	TXTRI after trar	nsmission.
11	UBRXAT0	0x0	W	Unblock RX After Transmission
	Set clear RXBLOCk	K after transmiss	ion, unblocking	the receiver.
10:9	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
8:0	TXDATA0	0x0	W	TX Data
	First frame to write	to buffer.		

20.5.18 USART_TXDOUBLE - TX Buffer Double Data Register

Offset															Bi	t Po	siti	on														
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	∞	7	9	2	4	3	7	_	0
Reset						•		•						•		•				Š	e S			•			•	2	3	•		•
Access																				3	>							}	>			
Name																				+ 4 C >	YDAIAI							TXDATAD				

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
15:8	TXDATA1	0x0	W	TX Data
	Second frame to write to	buffer.		
7:0	TXDATA0	0x0	W	TX Data
	First frame to write to bu	ffer.		

20.5.19 USART_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x048	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset			'		'						•		•	•	'	0X0	000	000	0x0	0X0	0x0	0X0	000	0X0	0X0	000	000	0X0	0X0	0×0	0×1	0x0
Access																R.	R M M	Z.	₽	\ N	RW	W.	RW	W.	S.	RW	R W	RW	₩ M	RW	Z.	RW
Name																TCMP2	TCMP1	TCMP0	TXIDLE	CCF	SSM	MPAF	FERR	PERR	TXUF	TXOF	RXUF	RXOF	RXFULL	RXDATAV	TXBL	TXC

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure ventions	e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con
16	TCMP2	0x0	RW	Timer comparator 2 Interrupt Flag
	Set when the time	er reaches the com	parator 2 value	, TCMP2.
15	TCMP1	0x0	RW	Timer comparator 1 Interrupt Flag
	Set when the time	er reaches the com	parator 1 value	, TCMP1.
14	TCMP0	0x0	RW	Timer comparator 0 Interrupt Flag
	Set when the Time	er reaches the cor	nparator 0 value	e, TCMP0.
13	TXIDLE	0x0	RW	TX Idle Interrupt Flag
	Set when TX goes	s idle. At this point	, transmission h	as ended
12	CCF	0x0	RW	Collision Check Fail Interrupt Flag
	Set when a collision	on check notices a	n error in the tra	ansmitted data.
11	SSM	0x0	RW	Slave-Select In Master Mode Interrupt FI
	Set when the devi	ice is selected as a	a slave when in	master mode.
10	MPAF	0x0	RW	Multi-Processor Address Frame Interrupt
	Set when a multi-	processor address	frame is detect	ted.
9	FERR	0x0	RW	Framing Error Interrupt Flag
	Set when a frame	with a framing err	or is received w	hile RXBLOCK is cleared.
8	PERR	0x0	RW	Parity Error Interrupt Flag
	Set when a frame	with a parity error	(asynchronous	mode only) is received while RXBLOCK is cleared.
7	TXUF	0x0	RW	TX Underflow Interrupt Flag
	Set when operatir sion of a new fram	•	us slave, no dat	a is available in the transmit buffer when the master starts transmis-
6	TXOF	0x0	RW	TX Overflow Interrupt Flag
	Set when a write i	s done to the trans	smit buffer while	e it is full. The data already in the transmit buffer is preserved.
5	RXUF	0x0	RW	RX Underflow Interrupt Flag
	Set when trying to	read from the rec	eive buffer whe	n it is empty.
4	RXOF	0x0	RW	RX Overflow Interrupt Flag
	Set when data is i	ncoming while the	receive shift re	gister is full. The data previously in the shift register is lost.

Bit	Name	Reset	Access	Description
3	RXFULL	0x0	RW	RX Buffer Full Interrupt Flag
	Set when the rece	ive buffer become	es full.	
2	RXDATAV	0x0	RW	RX Data Valid Interrupt Flag
	Set when data bed	comes available ir	the receive b	uffer.
1	TXBL	0x1	RW	TX Buffer Level Interrupt Flag
	Set when buffer be specified buffer lev		ouffer level is s	et to 0x0, or when the number of empty TX buffer elements equals
0	TXC	0x0	RW	TX Complete Interrupt Flag
	This interrupt is se	et after a transmiss	sion when both	n the TX buffer and shift register are empty.

20.5.20 USART_IEN - Interrupt Enable Register

Offset															Ві	it Po	siti	on														
0x04C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset		•	•		•									•	•	0X0	0x0	0x0	000	000	0x0	000	000	000	0x0	000	000	0×0	000	0x0	0X0	0x0
Access																₩ M	RW	R.	₩ M	₩ M	RW	W.	RW	W.	S.	Z.	R W	RW	₩ M	RW	R.	RW
Name																TCMP2	TCMP1	TCMP0	TXIDLE	CCF	SSM	MPAF	FERR	PERR	TXUF	TXOF	RXUF	RXOF	RXFULL	RXDATAV	TXBL	TXC

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure ventions	e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
16	TCMP2	0x0	RW	Timer comparator 2 Interrupt Enable
	Set when the time	r reaches the com	parator 2 value	, TCMP2.
15	TCMP1	0x0	RW	Timer comparator 1 Interrupt Enable
	Set when the time	r reaches the com	parator 1 value	, TCMP1.
14	TCMP0	0x0	RW	Timer comparator 0 Interrupt Enable
	Set when the Time	er reaches the cor	nparator 0 value	e, TCMP0.
13	TXIDLE	0x0	RW	TX Idle Interrupt Enable
	Set when TX goes	idle. At this point	, transmission h	as ended
12	CCF	0x0	RW	Collision Check Fail Interrupt Enable
	Set when a collision	on check notices a	n error in the tra	ansmitted data.
11	SSM	0x0	RW	Slave-Select In Master Mode Interrupt Fl
	Set when the devi	ce is selected as a	a slave when in	master mode.
10	MPAF	0x0	RW	Multi-Processor Address Frame Interrupt
	Set when a multi-p	processor address	frame is detect	ted.
9	FERR	0x0	RW	Framing Error Interrupt Enable
	Set when a frame	with a framing err	or is received w	hile RXBLOCK is cleared.
8	PERR	0x0	RW	Parity Error Interrupt Enable
	Set when a frame	with a parity error	(asynchronous	mode only) is received while RXBLOCK is cleared.
7	TXUF	0x0	RW	TX Underflow Interrupt Enable
	Set when operatin sion of a new fram		us slave, no dat	a is available in the transmit buffer when the master starts transmis-
6	TXOF	0x0	RW	TX Overflow Interrupt Enable
	Set when a write is	s done to the trans	smit buffer while	e it is full. The data already in the transmit buffer is preserved.
5	RXUF	0x0	RW	RX Underflow Interrupt Enable
	Set when trying to	read from the rec	eive buffer whe	n it is empty.
4	RXOF	0x0	RW	RX Overflow Interrupt Enable
	Set when data is in	ncoming while the	receive shift re	gister is full. The data previously in the shift register is lost.

Bit	Name	Reset	Access	Description
3	RXFULL	0x0	RW	RX Buffer Full Interrupt Enable
	Set when the rece	ive buffer become	es full.	
2	RXDATAV	0x0	RW	RX Data Valid Interrupt Enable
	Set when data bed	comes available ir	the receive b	uffer.
1	TXBL	0x0	RW	TX Buffer Level Interrupt Enable
	Set when buffer be specified buffer lev		ouffer level is s	eet to 0x0, or when the number of empty TX buffer elements equals
0	TXC	0x0	RW	TX Complete Interrupt Enable
	This interrupt is se	et after a transmiss	sion when botl	n the TX buffer and shift register are empty.

20.5.21 USART_IRCTRL - IrDA Control Register

Offset															Bi	t Po	siti	on														
0x050	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset																									0X0				0X0	2	2	0x0
Access																									\ N				₹	2	}	RW
Name																									IRPRSEN				IRFILT	/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>	IREN

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
7	IRPRSEN	0x0	RW	IrDA PRS Channel Enable
	Enable the PRS ch	annel selected by	IRPRSSEL as	s input to IrDA module instead of TX.
6:4	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
3	IRFILT	0x0	RW	IrDA RX Filter
	Set to enable filter	on IrDA demodula	ator.	
	Value	Mode		Description
	0	DISABLE		No filter enabled
	1	ENABLE		Filter enabled. IrDA pulse must be high for at least 4 consecutive clock cycles to be detected
2:1	IRPW	0x0	RW	IrDA TX Pulse Width
	Configure the pulse	e width generated	by the IrDA m	odulator as a fraction of the configured USART bit period.
	Value	Mode		Description
	0	ONE		IrDA pulse width is 1/16 for OVS=0 and 1/8 for OVS=1
	1	TWO		IrDA pulse width is 2/16 for OVS=0 and 2/8 for OVS=1
	2	THREE		IrDA pulse width is 3/16 for OVS=0 and 3/8 for OVS=1
	3	FOUR		IrDA pulse width is 4/16 for OVS=0 and 4/8 for OVS=1
0	IREN	0x0	RW	Enable IrDA Module
	Enable IrDA modul	e and rout USAR	T signals throu	gh it.

20.5.22 USART_I2SCTRL - I2S Control Register

Offset															Bi	t Po	siti	on														
0x054	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	2	4	က	2	_	0
Reset																		'		•			0x0					0×0	0×0	0x0	000	0x0
Access																							RW					W.	₩ M	₽	R.	RW W
Name																							FORMAT					DELAY	DMASPLIT	JUSTIFY	MONO	Z

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
10:8	FORMAT	0x0	RW	I2S Word Format
	Configure the data	-width used interna	ally for I2S data	a
	Value	Mode		Description
	0	W32D32		32-bit word, 32-bit data
	1	W32D24M		32-bit word, 32-bit data with 8 lsb masked
	2	W32D24		32-bit word, 24-bit data
	3	W32D16		32-bit word, 16-bit data
	4	W32D8		32-bit word, 8-bit data
	5	W16D16		16-bit word, 16-bit data
	6	W16D8		16-bit word, 8-bit data
	7	W8D8		8-bit word, 8-bit data
7:5	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
4	DELAY	0x0	RW	Delay on I2S data
	Set to add a one-c standard I2S forma		n a transition o	n the word-clock and the start of the I2S word. Should be set for
3	DMASPLIT	0x0	RW	Separate DMA Request For Left/Right Data
	When set DMA red	quests for right-cha	nnel data are p	out on the TXBLRIGHT and RXDATAVRIGHT DMA requests.
2	JUSTIFY	0x0	RW	Justification of I2S Data
	Determines whether	er the I2S data is l	eft or right justi	fied
	Value	Mode		Description
	0	LEFT		Data is left-justified
	1	RIGHT		Data is right-justified
1	MONO	0x0	RW	Stero or Mono
	Switch between ste	ereo and mono mo	de. Set for mo	no
		0x0	RW	Enable I2S Mode

Bit	Name	Reset	Access	Description
	Set the U(S)ART in I2S n	node.		

20.5.23 USART_TIMING - Timing Register

Offset															Bi	t Po	siti	on														
0x058	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			0x0				0X0				0×0				000			•							•		•					
Access			₩ M				₽				₽				₽																	
Name			CSHOLD				ICS				CSSETUP				TXDELAY																	

Bit	Name	Reset	Access	Description
31	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
30:28	CSHOLD	0x0	RW	Chip Select Hold

Chip Select will be asserted after the end of frame transmission. When using TCMPn, normally set TIMECMPn_TSTART to DISABLE to stop general timer and to prevent unwanted interrupts.

	Value	Mode	Description
	0	ZERO	Disable CS being asserted after the end of transmission
	1	ONE	CS is asserted for 1 baud-times after the end of transmission
	2	TWO	CS is asserted for 2 baud-times after the end of transmission
	3	THREE	CS is asserted for 3 baud-times after the end of transmission
	4	SEVEN	CS is asserted for 7 baud-times after the end of transmission
	5	TCMP0	CS is asserted after the end of transmission for TCMPVAL0 baud-times
	6	TCMP1	CS is asserted after the end of transmission for TCMPVAL1 baud-times
	7	TCMP2	CS is asserted after the end of transmission for TCMPVAL2 baud-times
27	Reserved	To ensure compativentions	ibility with future devices, always write bits to 0. More information in 1.2 Con-

Inter-character spacing after each TX frame while the TX buffer is not empty. When using USART_TIMECMPn, normally set TSTART to DISABLE to stop general timer and to prevent unwanted interrupts.

Inter-character spacing

Value	Mode	Description
0	ZERO	There is no space between charcters
1	ONE	Create a space of 1 baud-times before start of transmission
2	TWO	Create a space of 2 baud-times before start of transmission
3	THREE	Create a space of 3 baud-times before start of transmission
4	SEVEN	Create a space of 7 baud-times before start of transmission
5	TCMP0	Create a space of before the start of transmission for TCMPVAL0 baud-times

26:24

ICS

0x0

RW

Bit	Name	Reset	Access	Description
	6	TCMP1	A00033	Create a space of before the start of transmission for
				TCMPVAL1 baud-times
	7	TCMP2		Create a space of before the start of transmission for TCMPVAL2 baud-times
23	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
22:20	CSSETUP	0x0	RW	Chip Select Setup
				ne transmission. When using USART_TIMECMPn, normally set prevent unwanted interrupts.
	Value	Mode		Description
	0	ZERO		CS is not asserted before start of transmission
	1	ONE		CS is asserted for 1 baud-times before start of transmission
	2	TWO		CS is asserted for 2 baud-times before start of transmission
	3	THREE		CS is asserted for 3 baud-times before start of transmission
	4	SEVEN		CS is asserted for 7 baud-times before start of transmission
	5	TCMP0		CS is asserted before the start of transmission for TCMPVAL0 baud-times
	6	TCMP1		CS is asserted before the start of transmission for TCMPVAL1 baud-times
	7	TCMP2		CS is asserted before the start of transmission for TCMPVAL2 baud-times
19	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
18:16	TXDELAY	0x0	RW	TX frame start delay
		imes to delay the sta op general timer and		ansmission. When using USART_TIMECMPn, normally set TSTART nwanted interrupts.
	Value	Mode		Description
	0	DISABLE		Disable - TXDELAY in USARTn_CTRL can be used for legacy
	1	ONE		Start of transmission is delayed for 1 baud-times
	2	TWO		Start of transmission is delayed for 2 baud-times
	3	THREE		Start of transmission is delayed for 3 baud-times
	4	SEVEN		Start of transmission is delayed for 7 baud-times
	5	TCMP0		Start of transmission is delayed for TCMPVAL0 baud-times
	6	TCMP1		Start of transmission is delayed for TCMPVAL1 baud-times
	7	TCMP2		Start of transmission is delayed for TCMPVAL2 baud-times
15:0	Reserved	To ensure o	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-

20.5.24 USART_CTRLX - Control Register Extended

Offset															Bi	t Po	siti	on														
0x05C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•	•		•					•	•		•	•		•	000						•		0X0		•		000	0x0	000	0x0
Access																	₩ N								Z N				₩ M	W.	S.	RW
Name																	CLKPRSEN								RXPRSEN				RTSINV	CTSEN	CTSINV	DBGHALT

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
15	CLKPRSEN	0x0	RW	PRS CLK Enable
	When set, the PRS	channel selected	as input to CLI	ζ.
14:8	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
7	RXPRSEN	0x0	RW	PRS RX Enable
	When set, the PRS	channel selected	I as input to RX	
6:4	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
3	RTSINV	0x0	RW	RTS Pin Inversion
	When set, the RTS	pin polarity is inv	erted.	
	Value	Mode		Description
	0	DISABLE		The USn_RTS pin is low true
	1	ENABLE		The USn_RTS pin is high true
2	CTSEN	0x0	RW	CTS Function enabled
				til link partner asserts CTS. Any data in the TX shift register will load into the TX shift register
	Value	Mode		Description
	0	DISABLE		Ingore CTS
	1	ENABLE		Stop transmitting when CTS is negated
1	CTSINV	0x0	RW	CTS Pin Inversion
	When set, the CTS	pin polarity is inv	erted.	
	Value	Mode		Description
	0	DISABLE		The USn_CTS pin is low true
	1	ENABLE		The USn_CTS pin is high true
0	DBGHALT	0x0	RW	Debug halt

Bit	Name	Reset	Access	Description
	Value	Mode		Description
	0	DISABLE		Continue to transmit until TX buffer is empty
	1	ENABLE		Negate RTS to stop link partner's transmission during debug HALT. NOTE** The core clock should be equal to or faster than the peripheral clock; otherwise, each single step could transmit multiple frames instead of just transmitting one frame.

20.5.25 USART_TIMECMP0 - Used to generate interrupts and vario...

Offset															Bi	t Po	siti	on														
0x060	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	-	_ o
Reset			•	•	•		•	0x0			000				0X0					•			•			•	•	2	2			
Access								R W			R M				₩													2	2			
Name								RESTARTEN			TSTOP				TSTART																	_

Bit	Name	Reset	Access	Description
31:25	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
24	RESTARTEN	0x0	RW	Restart Timer on TCMP0
	Each TCMP0 event	will reset and res	tart the timer	
	Value	Mode		Description
	0	DISABLE		Disable the timer restarting on TCMP0
	1	ENABLE		Enable the timer restarting on TCMP0
23	Reserved	To ensure ventions	compatibility w	rith future devices, always write bits to 0. More information in 1.2 Con-
22:20	TSTOP	0x0	RW	Source used to disable comparator 0
	Select the source w	hich disables con	nparator 0	
	Value	Mode		Description
	0	TCMP0		Comparator 0 is disabled when the counter equals TCMPVAL and triggers a TCMP0 event
	1	TXST		Comparator 0 is disabled at TX start TX Engine
	2	RXACT		Comparator 0 is disabled on RX going going Active (default: low)
	3	RXACTN		Comparator 0 is disabled on RX going Inactive
19	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
18:16	TSTART	0x0	RW	Timer start source
	Source used to start	comparator 0 ar	nd timer	
	Value	Mode		Description
	0	DISABLE		Comparator 0 is disabled
	1	TXEOF		Comparator 0 and timer are started at TX end of frame
	2	TXC		Comparator 0 and timer are started at TX Complete
	3	RXACT		Comparator 0 and timer are started at RX going going Active (default: low)

Bit	Name	Reset	Access	Description
	4	RXEOF		Comparator 0 and timer are started at RX end of frame
15:8	Reserved	To ensur ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
7:0	TCMPVAL	0x0	RW	Timer comparator 0.
			•	CMP0 event and sets the TCMP0 flag. This event can also be used to 00 represents 256 baud times.

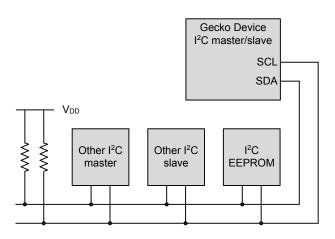
20.5.26 USART_TIMECMP1 - Used to generate interrupts and vario...

Offset															Bi	t Po	siti	on														
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•	•	•		•	0x0			0X0				000	•			•				•			•	•	() X			
Access								R W			X ≪				₩ M													i	≩			
Name								RESTARTEN			TSTOP				TSTART													(ICMPVAL			

Bit	Name	Reset	Access	Description
31:25	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
24	RESTARTEN	0x0	RW	Restart Timer on TCMP1
	Each TCMP1 event	will reset and res	tart the timer	
	Value	Mode		Description
	0	DISABLE		Disable the timer restarting on TCMP1
	1	ENABLE		Enable the timer restarting on TCMP1
23	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
22:20	TSTOP	0x0	RW	Source used to disable comparator 1
	Select the source wh	nich disables con	nparator 1	
	Value	Mode		Description
	0	TCMP1		Comparator 1 is disabled when the counter equals TCMPVAL and triggers a TCMP1 event
	1	TXST		Comparator 1 is disabled at TX start TX Engine
	2	RXACT		Comparator 1 is disabled on RX going going Active (default: low)
	3	RXACTN		Comparator 1 is disabled on RX going Inactive
19	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
18:16	TSTART	0x0	RW	Timer start source
	Source used to start	comparator 1 ar	d timer	
	Value	Mode		Description
	0	DISABLE		Comparator 1 is disabled
	1	TXEOF		Comparator 1 and timer are started at TX end of frame
	2	TXC		Comparator 1 and timer are started at TX Complete
	3	RXACT		Comparator 1 and timer are started at RX going going Active (default: low)

Bit	Name	Reset	Access	Description
	4	RXEOF		Comparator 1 and timer are started at RX end of frame
15:8	Reserved	To ensur		with future devices, always write bits to 0. More information in 1.2 Con-
7:0	TCMPVAL	0x0	RW	Timer comparator 1.
			•	TCMP1 event and sets the TCMP1 flag. This event can also be used to coo represents 256 baud times.

20.5.27 USART_TIMECMP2 - Used to generate interrupts and vario...


Offset															Bi	t Po	sitio	on													
0x068	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	∞	7	9	5	4	က	2	- 0
Reset		•	•	•	•		•	0x0			0×0				000				•			•	•	•			•	2	OXO		
Access								W M			S N				RW													2	<u>}</u>		
Name								RESTARTEN			TSTOP				TSTART													TOMBYA	- CIVIL		

Bit	Name	Reset	Access	Description			
31:25	Reserved	To ensure ventions	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Coventions				
24	RESTARTEN	0x0	RW	Restart Timer on TCMP2			
	Each TCMP2 event will reset and restart the timer						
	Value	Mode		Description			
	0	DISABLE		Disable the timer restarting on TCMP2			
	1	ENABLE		Enable the timer restarting on TCMP2			
23	Reserved To ensure compatibility with future devices, always we ventions			ith future devices, always write bits to 0. More information in 1.2 Con-			
22:20	TSTOP	0x0	RW	Source used to disable comparator 2			
	Select the source which disables comparator 2						
	Value	Mode		Description			
	0	TCMP2		Comparator 2 is disabled when the counter equals TCMPVAL and triggers a TCMP2 event			
	1	TXST		Comparator 2 is disabled at TX start TX Engine			
	2	RXACT		Comparator 2 is disabled on RX going going Active (default: low)			
	3	RXACTN		Comparator 2 is disabled on RX going Inactive			
19	Reserved	To ensure ventions	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions				
18:16	TSTART	0x0	RW	Timer start source			
	Source used to start comparator 2 and timer						
	Value	Mode		Description			
	0	DISABLE		Comparator 2 is disabled			
	1	TXEOF		Comparator 2 and timer are started at TX end of frame			
	2	TXC		Comparator 2 and timer are started at TX Complete			
	3	RXACT		Comparator 2 and timer are started at RX going going Active (default: low)			

Bit	Name	Reset	Access	Description			
	4	RXEOF		Comparator 2 and timer are started at RX end of frame			
15:8	Reserved		To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions				
7:0	TCMPVAL	0x0	RW	Timer comparator 2.			
	When the timer equals TCMPVAL, this signals a TCMP2 event and sets the TCMP2 flag. This event can also be used to enable various USART functionality. A value of 0x00 represents 256 baud times.						

21. I2C - Inter-Integrated Circuit Interface

Quick Facts

What?

The I²C interface allows communication on I²C-buses with the lowest energy consumption possible.

Why?

I²C is a popular serial bus that enables communication with a number of external devices using only two I/O pins.

How?

With the help of DMA, the I 2 C interface allows I 2 C communication with minimal CPU intervention. Address recognition is available in all energy modes (except EM4), allowing the MCU to wait for data on the I 2 C-bus with sub- μ A current consumption.

21.1 Introduction

The I^2C module provides an interface between the MCU and a serial I^2C -bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I^2C module allows precise control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in all energy modes (except EM4).

21.2 Features

- · True multi-master capability
- · Support for different bus speeds
 - · Standard-mode (Sm) bit rate up to 100 kbit/s
 - · Fast-mode (Fm) bit rate up to 400 kbit/s
 - · Fast-mode Plus (Fm+) bit rate up to 1 Mbit/s
- · Arbitration for both master and slave (allows SMBus ARP)
- · Clock synchronization and clock stretching
- · Hardware address recognition
 - · 7-bit masked address
 - · General call address
 - · Supported in EM2/3 (I2C0-only)
- · 10-bit address support
- · Error handling
 - · Clock low timeout
 - · Clock high timeout
 - Arbitration lost
 - · Bus error detection
- · Separate receive/ transmit 2-level buffers, with additional separate shift registers
- Full DMA support

21.3 Functional Description

An overview of the I2C module is shown in Figure 21.1 I2C Overview on page 564.

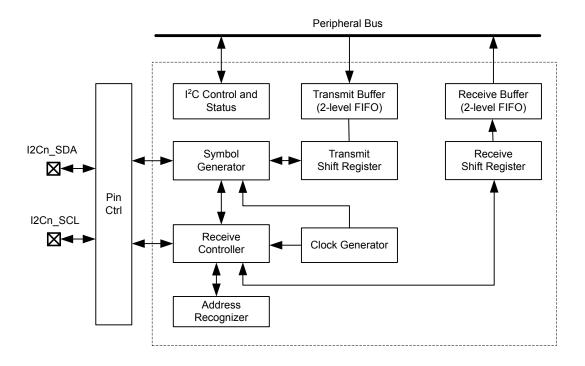


Figure 21.1. I2C Overview

21.3.1 I2C-Bus Overview

The I²C-bus uses two wires for communication; a serial data line (SDA) and a serial clock line (SCL) as shown in Figure 21.2 I2C-Bus Example on page 565. As a true multi-master bus it includes collision detection and arbitration to resolve situations where multiple masters transmit data at the same time without data loss.

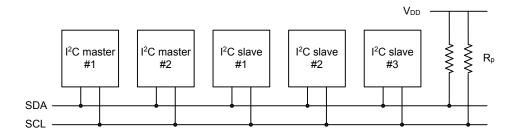


Figure 21.2. I2C-Bus Example

Each device on the bus is addressable by a unique address, and an I²C master can address all the devices on the bus, including other masters.

Both the bus lines are open-drain. The maximum value of the pull-up resistor can be calculated as a function of the maximal rise-time **tr** for the given bus speed, and the estimated bus capacitance **Cb** as shown in Figure 21.3 I2C Pull-up Resistor Equation on page 565.

$$R_{p(max)} = t_r/(0.8473 \times C_b).$$

Figure 21.3. I2C Pull-up Resistor Equation

The maximal rise times for 100 kHz, 400 kHz and 1 MHz I²C are 1 µs, 300 ns and 120 ns respectively.

Note: The GPIO slew rate control should be set for the desired slew rate..

Note: If V_{dd} drops below the voltage on SCL and SDA lines, the MCU could become back powered and pull the SCL and SDA lines low.

21.3.1.1 START and STOP Conditions

START and STOP conditions are used to initiate and stop transactions on the I²C-bus. All transactions on the bus begin with a START condition (S) and end with a STOP condition (P). As shown in Figure 21.4 I2C START and STOP Conditions on page 566, a START condition is generated by pulling the SDA line low while SCL is high, and a STOP condition is generated by pulling the SDA line high while SCL is high.

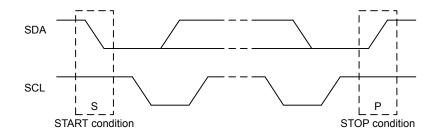


Figure 21.4. I2C START and STOP Conditions

The START and STOP conditions are easily identifiable bus events as they are the only conditions on the bus where a transition is allowed on SDA while SCL is high. During the actual data transmission, SDA is only allowed to change while SCL is low, and must be stable while SCL is high. One bit is transferred per clock pulse on the I²C-bus as shown in Figure 21.5 I2C Bit Transfer on I²C-Bus on page 566.

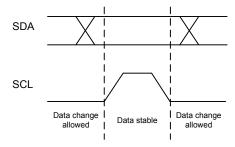


Figure 21.5. I2C Bit Transfer on I²C-Bus

21.3.1.2 Bus Transfer

When a master wants to initiate a transfer on the bus, it waits until the bus is idle and transmits a START condition on the bus. The master then transmits the address of the slave it wishes to interact with and a single R/W bit telling whether it wishes to read from the slave (R/W bit set to 1) or write to the slave (R/W bit set to 0).

After the 7-bit address and the R/W bit, the master releases the bus, allowing the slave to acknowledge the request. During the next bit-period, the slave pulls SDA low (ACK) if it acknowledges the request, or keeps it high if it does not acknowledge it (NACK).

Following the address acknowledge, either the slave or master transmits data, depending on the value of the R/W bit. After every 8 bits (one byte) transmitted on the SDA line, the transmitter releases the line to allow the receiver to transmit an ACK or a NACK. Both the data and the address are transmitted with the most significant bit first.

The number of bytes in a bus transfer is unrestricted. The master ends the transmission after a (N)ACK by sending a STOP condition on the bus. After a STOP condition, any master wishing to initiate a transfer on the bus can try to gain control of it. If the current master wishes to make another transfer immediately after the current, it can start a new transfer directly by transmitting a repeated START condition (Sr) instead of a STOP followed by a START.

Examples of I²C transfers are shown in Figure 21.6 I2C Single Byte Write to Slave on page 567, Figure 21.7 I2C Double Byte Read from Slave on page 567, and Figure 21.8 I2C Single Byte Write, then Repeated Start and Single Byte Read on page 567. The identifiers used are:

- · ADDR Address
- · DATA Data
- · S Start bit
- · Sr Repeated start bit
- · P Stop bit
- W/R Read(1)/Write(0)
- A ACK
- N NACK

Figure 21.6. I2C Single Byte Write to Slave

Figure 21.7. I2C Double Byte Read from Slave

Figure 21.8. I2C Single Byte Write, then Repeated Start and Single Byte Read

21.3.1.3 Addresses

 I^2C supports both 7-bit and 10-bit addresses. When using 7-bit addresses, the first byte transmitted after the START-condition contains the address of the slave that the master wants to contact. In the 7-bit address space, several addresses are reserved. These addresses are summarized in Table 21.1 I2C Reserved I^2C Addresses on page 568, and include a General Call address which can be used to broadcast a message to all slaves on the I^2C -bus.

Table 21.1. I2C Reserved I²C Addresses

I ² C Address	R/W	Description
0000-000	0	General Call address
0000-000	1	START byte
0000-001	x	Reserved for the C-Bus format
0000-010	X	Reserved for a different bus format
0000-011	X	Reserved for future purposes
0000-1XX	x	Reserved for future purposes
1111-1XX	X	Reserved for future purposes
1111-0XX	X	10 Bit slave addressing mode

21.3.1.4 10-bit Addressing

To address a slave using a 10-bit address, two bytes are required to specify the address instead of one. The seven first bits of the first byte must then be 1111 0XX, where XX are the two most significant bits of the 10-bit address. As with 7-bit addresses, the eighth bit of the first byte determines whether the master wishes to read from or write to the slave. The second byte contains the eight least significant bits of the slave address.

When a slave receives a 10-bit address, it must acknowledge both the address bytes if they match the address of the slave.

When performing a master transmitter operation, the master transmits the two address bytes and then the remaining data, as shown in Figure 21.9 I2C Master Transmitter/Slave Receiver with 10-bit Address on page 568.

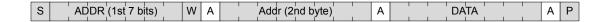


Figure 21.9. I2C Master Transmitter/Slave Receiver with 10-bit Address

When performing a master receiver operation however, the master first transmits the two address bytes in a master transmitter operation, then sends a repeated START followed by the first address byte and then receives data from the addressed slave. The slave addressed by the 10-bit address in the first two address bytes must remember that it was addressed, and respond with data if the address transmitted after the repeated start matches its own address. An example of this (with one byte transmitted) is shown in Figure 21.10 I2C Master Receiver/Slave Transmitter with 10-bit Address on page 568.

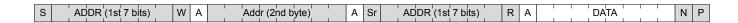


Figure 21.10. I2C Master Receiver/Slave Transmitter with 10-bit Address

21.3.1.5 Arbitration, Clock Synchronization, Clock Stretching

Arbitration and clock synchronization are features aimed at allowing multi-master buses. Arbitration occurs when two devices try to drive the bus at the same time. If one device drives it low, while the other drives it high, the one attempting to drive it high will not be able to do so due to the open-drain bus configuration. Both devices sample the bus, and the one that was unable to drive the bus in the desired direction detects the collision and backs off, letting the other device continue communication on the bus undisturbed.

Clock synchronization is a means of synchronizing the clock outputs from several masters driving the bus at once, and is a requirement for effective arbitration.

Slaves on the bus are allowed to force the clock output on the bus low in order to pause the communication on the bus and give themselves time to process data or perform any real-time tasks they might have. This is called clock stretching.

Arbitration is supported by the I²C module for both masters and slaves. Clock synchronization and clock stretching is also supported.

21.3.2 Enable and Reset

The I²C is enabled by setting the EN bit in the I2C_EN register.

To reset the internal state of the I^2C module and terminate any ongoing transfers, set the CORERST bit in $I2C_CTRL$. After resetting, the CORERST bit must be cleared to resume I^2C operation.

Note: When enabling the I²C, the ABORT command or the Bus Idle Timeout feature must be applied prior to use even if the BUSY flag is not set.

21.3.3 Pin Configuration

The I²C SDA and SCL pins are configured and enableed in the GPIO_DBUSI2Cn_ROUTEEN, GPIO_DBUSI2Cn_SCLROUTE, and GPIO_DBUSI2Cn_SDAROUTE registers.

The I²C module must be configured to use pins on either Port A or B if wakeup on address recognition from EM2/3 is desired. All other ports are available only in EM0/1. See GPIO chapter for more details on Port limitations.

If the I²C module is configured to use pins other than Port A or B, firmware should reset the module before entering EM2/3 by setting the CORERST bit in I2C_CTRL. After resuming EM0/1 operation, firmware should then clear CORERST.

21.3.4 Safely Disabling and Changing Slave Configuration

The I²C slave is partially asynchronous, and some precautions are necessary to always ensure a safe slave disable or slave configuration change. These measures should be taken, if (while the slave is enabled) the user cannot guarantee that an address match will not occur at the exact time of slave disable or slave configuration change.

Worst case consequences for an address match while disabling slave or changing configuration is that the slave may end up in an undefined state. To reset the slave back to a known state, the EN bit in I2C_EN must be cleared. This should be done regardless of whether the slave is going to be re-enabled or not.

21.3.5 Clock Generation

The I^2C peripheral clock (I2CCLK) for I2C0 is derived from the LSPCLK (max freq = 25 MHz), and for I2C1 is derived from the PCLK (max freq = 50 MHz).

The SCL signal generated by the I²C master determines the maximum transmission rate on the bus. The clock is generated as a division of the peripheral clock (I2CCLK), and is given by the following equation:

$$f_{SCL} = f_{12CCLK}/(((N_{low} + N_{high}) \times (DIV + 1)) + 8),$$

Figure 21.11. I2C Maximum Transmission Rate

Where DIV is the clock divider value set in I2C_CLKDIV, and the values of N_{low} and N_{high} (and thus the ratio between the high and low parts of the clock signal) are controlled by CLHR in the I2C_CTRL register.

The values of N_{low} and N_{high} , in combination with the synchronization cycles (discussed below), specify the number of prescaled clock cycles in the low and high periods of the clock signal respectively. The worst case low and high periods of the signal are:

$$T_{high} >= ((N_{high}) \times (DIV + 1) + 4)/f_{I2CCLK},$$

 $T_{low} >= (N_{low} \times (DIV + 1) + 4)/f_{I2CCLK}.$

Figure 21.12. I2C High and Low Cycles Equations

In worst case, T_{high} and T_{low} can be 1 f_{l2CCLK} cycle longer than the number found by above equations due to synchronization uncertainty (i.e., if the synchronization takes 3 f_{l2CCLK} cycles instead of 2). Similarly, in the worst case the number 8 in the denominator in f_{SCL} equation can be 9 (if the synchronization cycles were 3 instead of 2 in T_{high} or T_{low}) or 10 (if synchronization cycles were 3 in both T_{high} and T_{low}).

Note: DIV must be set to 1 during slave mode operation.

21.3.6 Arbitration

Arbitration is enabled by default, but can be disabled by setting the ARBDIS bit in I2C_CTRL. When arbitration is enabled, the value on SDA is sensed every time the I²C module attempts to change its value. If the sensed value is different than the value the I²C module tried to output, it is interpreted as a simultaneous transmission by another device, and that the I²C module has lost arbitration.

Whenever arbitration is lost, the ARBLOST interrupt flag in I2C_IF is set, any lines held are released, and the I^2C device goes idle. If an I^2C master loses arbitration during the transmission of an address, another master may be trying to address it. The master therefore receives the rest of the address, and if the address matches the slave address of the master, the master goes into either slave transmitter or slave receiver mode.

Note:

Arbitration can be lost both when operating as a master and when operating as a slave.

21.3.7 Buffers

21.3.7.1 Transmit Buffer and Shift Register

The I²C transmitter has a 2-level FIFO transmit buffer and a transmit shift register as shown in Figure 21.1 I2C Overview on page 564. A byte is loaded into the transmit buffer by writing to I2C_TXDATA or 2 bytes can be loaded simultaneously in the transmit buffer by writing to I2C_TXDOUBLE. Figure 21.13 I2C Transmit Buffer Operation on page 571 shows the basics of the transmit buffer. When the transmit shift register is empty and ready for new data, the byte from the transmit buffer is then loaded into the shift register. The byte is then kept in the shift register until it is transmitted. When a byte has been transmitted, a new byte is loaded into the shift register (if available in the transmit buffer). If the transmit buffer is empty, then the shift register also remains empty. The TXC flag in I2C_STATUS and the TXC interrupt flags in I2C_IF are then set, signaling that the transmit shift register is out of data. TXC is cleared when new data becomes available, but the TXC interrupt flag must be cleared by software.

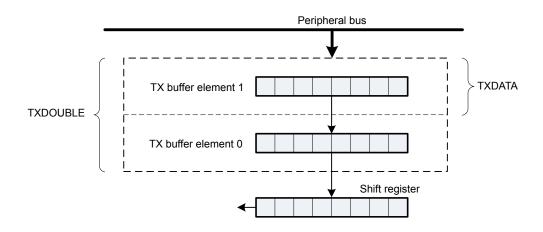


Figure 21.13. I2C Transmit Buffer Operation

The TXBL flags in I2C_STATUS and I2C_IF are used to indicate the level of the transmit buffer. The TXBIL bit in I2C_CTRL controls the level at which these flag bits are set:

- If TXBIL is cleared, the TXBL flags are set whenever the transmit buffer becomes empty (used when transmitting using I2C TXDOUBLE).
- If TXBIL is set, the TXBL flags are set whenever the transmit buffer goes from full to half-empty or empty (used when transmitting with I2C_TXDATA).

The TXBL status flag in I2C_STATUS is cleared automatically when the condition becomes false. After the transmit FIFOs are filled, software needs to manually clear the TXBL interrupt flag. Note that the TXBL interrupt flag is 0 by default, but immediately after software sets I2C_EN.EN = 1, the TXBL interrupt flag will be set to indicate the transmit FIFO is empty. When the I²C module is disabled (I2C_EN.EN=0), software needs to manually clear the TXBL interrupt flag (or ignore it).

Additionally, the TXBUFCNT bitfield in I2C_STATUS can be read to determine the exact number of transmit buffers filled with valid data. This is particularly useful for determining whether the transmit buffers are full. For example, if TXBUFCNT = '2', firmware can determine that both transmit buffers are filled, and that any additional data written to the transmit buffer would result in an overflow condition. Note that the TXBUFCNT count does not include the TX shift register.

If an attempt is made to write more bytes to the transmit buffer than the space available, the TXOF interrupt flag in I2C_IF is set, indicating the overflow. The data already in the buffer remains preserved, and no new data is written.

The transmit buffer and the transmit shift register can be cleared by setting command bit CLEARTX in I2C_CMD. This will prevent the I²C module from transmitting the data in the buffer and the shift register, and will make them available for new data. Any byte currently being transmitted will not be aborted. Transmission of this byte will be completed.

21.3.7.2 Receive Buffer and Shift Register

The I²C receiver uses a 2-level FIFO receive buffer and a receive shift register as shown in Figure 21.14 I2C Receive Buffer Operation on page 572. When a byte has been fully received by the receive shift register, it is loaded into the receive buffer if there is room for it, making the shift register empty to receive another byte. Otherwise, the byte waits in the shift register until space becomes available in the buffer.

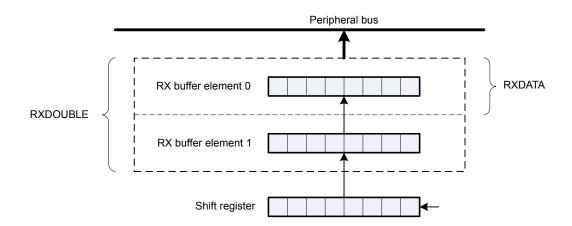


Figure 21.14. I2C Receive Buffer Operation

When a byte becomes available in the receive buffer, the RXDATAV flags in I2C_STATUS and I2C_IF are set. When the buffer becomes full, the RXFULL flags in I2C_STATUS and I2C_IF are set. The RXDATAV and RXFULL flags in I2C_STATUS are automatically cleared by hardware when their condition is no longer true. The RXDATAV and RXFULL flags in I2C_IF must be manually cleared by software after the receive FIFO is emptied. Note that when the RXFULL flag is set, indicating the buffer is full, space is still available in the receive shift register for one more byte.

The data can be fetched from the buffer in two ways. I2C_RXDATA gives access to the received byte (if two bytes are received then the one received first is fetched first). I2C_RXDOUBLE makes it possible to read the two received bytes simultaneously. If an attempt is made to read more bytes from the buffer than available, the RXUF interrupt flag in I2C_IF is set to signal the underflow, and the data read from the buffer is undefined.

When using I2C_RXDOUBLE to pick data, AUTOACK in I2C_CTRL should be set to 1. This ensures that an ACK is automatically sent out after the first byte is received so that the reception of the next byte can begin. In order to stop receiving data bytes, a NACK must be sent out through the I2C_CMD register.

I2C_RXDATAP and I2C_RXDOUBLEP can be used to read data from the receive buffer without removing it from the buffer. The RXUF interrupt flag in I2C_IF will never be set as a result of reading from I2C_RXDATAP and I2C_RXDOUBLEP, but the data read through I2C_RXDATAP when the receive buffer is empty is still undefined.

Once a transaction is complete (STOP sent or received), the receive buffer needs to be flushed (all received data must be read) before starting a new transaction.

21.3.8 Master Operation

A bus transaction is initiated by transmitting a START condition (S) on the bus. This is done by setting the START bit in I2C_CMD. The command schedules a START condition, and makes the I²C module generate a start condition whenever the bus becomes free.

The I²C-bus is considered busy whenever another device on the bus transmits a START condition. Until a STOP condition is detected, the bus is owned by the master issuing the START condition. The bus is considered free when a STOP condition is transmitted on the bus. After a STOP is detected, all masters that have data to transmit send a START condition and begin transmitting data. Arbitration ensures that collisions are avoided.

When the START condition has been transmitted, the master must transmit a slave address (ADDR) with an R/W bit on the bus. If this address is available in the transmit buffer, the master transmits it immediately, but if the buffer is empty, the master holds the I²C-bus while waiting for software to write the address to the transmit buffer.

After the address has been transmitted, a sequence of bytes can be read from or written to the slave, depending on the value of the R/W bit (bit 0 in the address byte). If the bit was cleared, the master has entered a master transmitter role, where it now transmits data to the slave. If the bit was set, it has entered a master receiver role, where it now should receive data from the slave. In either case, an unlimited number of bytes can be transferred in one direction during the transmission.

At the end of the transmission, the master either transmits a repeated START condition (Sr) if it wishes to continue with another transfer, or transmits a STOP condition (P) if it wishes to release the bus. When operating in the master mode, I2CCLK frequency must be higher than 2 MHz for Standard-mode, 9 MHz for Fast-mode, and 20 MHz for Fast-mode Plus.

21.3.8.1 Master State Machine

The master state machine is shown in Figure 21.15 I2C Master State Machine on page 574. A master operation starts in the far left of the state machine, and follows the solid lines through the state machine, ending the operation or continuing with a new operation when arriving at the right side of the state machine.

Branches in the path through the state machine are the results of bus events and choices made by software, either directly or indirectly. The dotted lines show where I²C-specific interrupt flags are set along the path and the full-drawn circles show places where interaction may be required by software to let the transmission proceed.

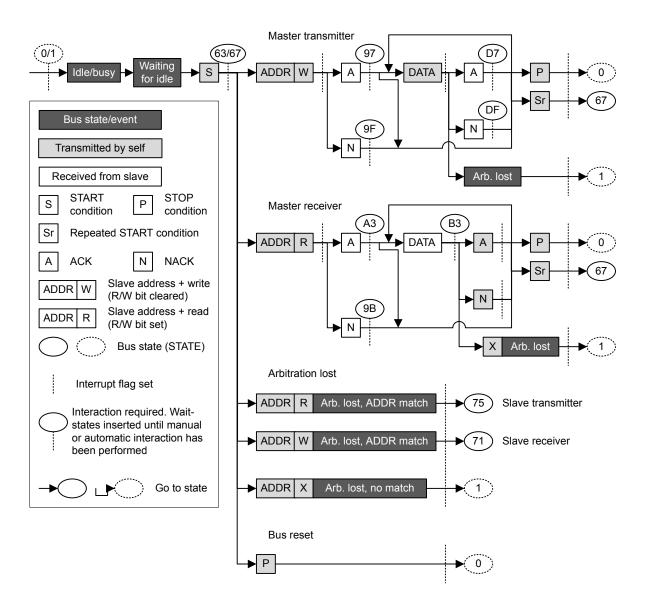


Figure 21.15. I2C Master State Machine

21.3.8.2 Interactions

Whenever the I^2C module is waiting for interaction from software, it holds the bus clock SCL low, freezing all bus activities, and the BUSHOLD interrupt flag in $I2C_IF$ is set. The action(s) required by software depends on the current state the of the I^2C module. This state can be read from the $I2C_IF$ is set.

As an example, Table 21.3 I2C Master Transmitter on page 577 shows the different states the I^2C goes through when operating as a Master Transmitter, i.e., a master that transmits data to a slave. As seen in the table, when a start condition has been transmitted, a requirement is that there is an address and an R/W bit in the transmit buffer. If the transmit buffer is empty, then the BUSHOLD interrupt flag is set, and the bus is held until data becomes available in the buffer. While waiting for the address, I^2C_STATE has a value 0x67, which can be used to identify exactly what the I^2C module is waiting for.

Note: The bus would never stop at state 0x67 if the address was available in the transmit buffer.

The BUSHOLD interrupt flag needs to be manually cleared by software after the appropriate action has been taken.

The different interactions used by the I^2C module are listed in Table 21.2 I2C Interactions in Prioritized Order on page 575 in a prioritized order. If the I^2C module is in such a state that multiple courses of action are possible, then the action chosen is the one that has the highest priority. For example, after sending out a START, if an address is present in the buffer and a STOP is also pending, then the I^2C will send out the STOP since it has the higher priority.

Table 21.2. I2C Interactions in Prioritized Order

Interaction	Priority	Software action	Automatically continues if
STOP*	1	Set the STOP command bit in I2C_CMD	PSTOP is set (STOP pending) in I2C_STATUS
ABORT	2	Set the ABORT command bit in I2C_CMD	Never, the transmission is aborted
CONT*	3	Set the CONT command bit in I2C_CMD	PCONT is set in I2C_STATUS (CONT pending)
NACK*	4	Set the NACK command bit in I2C_CMD	PNACK is set in I2C_STATUS (NACK pending)
ACK*	5	Set the ACK command bit in I2C_CMD	AUTOACK is set in I2C_CTRL or PACK is set in I2C_STATUS (ACK pending)
ADDR+W -> TXDATA	6	Write an address to the transmit buffer with the R/W bit set	Address is available in transmit buffer with R/W bit set
ADDR+R -> TXDATA	7	Write an address to the transmit buffer with the R/W bit cleared	Address is available in transmit buffer with R/W bit cleared
START*	8	Set the START command bit in I2C_CMD	PSTART is set in I2C_STATUS (START pending)
TXDATA/ TXDOUBLE	9	Write data to the transmit buffer	Data is available in transmit buf- fer
RXDATA/ RXDOUBLE	10	Read data from receive buffer	Space is available in receive buffer
None	11	No interaction is required	

The commands marked with a * in Table 21.2 I2C Interactions in Prioritized Order on page 575 can be issued before an interaction is required. When such a command is issued before it can be used/consumed by the I²C module, the command is set in a pending state, which can be read from the STATUS register. A pending START command can for instance be identified by PSTART having a high value.

Whenever the I²C module requires an interaction, it checks the pending commands. If one or a combination of these can fulfill an interaction, they are consumed by the module and the transmission continues without setting the BUSHOLD interrupt flag in I2C_IF to get an interaction from software. The pending status of a command goes low when it is consumed.

When several interactions are possible from a set of pending commands, the interaction with the highest priority, i.e., the interaction closest to the top of Table 21.2 I2C Interactions in Prioritized Order on page 575 is applied to the bus.

Pending commands can be cleared by setting the CLEARPC command bit in I2C_CMD.

21.3.8.3 Automatic ACK Interaction

When receiving addresses and data, an ACK command in I2C_CMD is normally required after each received byte. When AUTOACK is set in I2C_CTRL, an ACK is always pending, and the ACK-pending bit PACK in I2C_STATUS is thus always set, even after an ACK has been consumed. This is used when data is picked using I2C_RXDOUBLE and can also be used with I2C_RXDATA in order to reduce the amount of software interaction required during a transfer.

21.3.8.4 Reset State

After a reset, the state of the I^2C -bus is unknown. To avoid interrupting transfers on the I^2C -bus after a reset of the I^2C module or the entire MCU, the I^2C -bus is assumed to be busy when coming out of a reset, and the BUSY flag in I^2C -STATUS is thus set. To be able to carry through master operations on the I^2C -bus, the bus must be idle.

The bus goes idle when a STOP condition is detected on the bus, but on buses with little activity, the time before the I^2C module detects that the bus is idle can be significant. There are two ways of assuring that the I^2C module gets out of the busy state.

- Use the ABORT command in I2C_CMD. When the ABORT command is issued, the I²C module is instructed that the bus is idle. The I²C module can then initiate master operations.
- Use the Bus Idle Timeout. When SCL has been high for a long period of time, it is very likely that the bus is idle. Set BITO in I2C_CTRL to an appropriate timeout period and set GIBITO in I2C_CTRL. If activity has not been detected on the bus within the timeout period, the bus is then automatically assumed idle, and master operations can be initiated.

Note: If operating in slave mode, the above approach is not necessary.

21.3.8.5 Master Transmitter

To transmit data to a slave, the master must operate as a master transmitter. Table 21.3 I2C Master Transmitter on page 577 shows the states the I²C module goes through while acting as a master transmitter. Every state where an interaction is required has the possible interactions listed, along with the result of the interactions. The table also shows which interrupt flags are set in the different states. The interrupt flags enclosed in parenthesis may be set. If the BUSHOLD interrupt in I2C_IF is set, the module is waiting for an interaction, and the bus is frozen. The value of I2C_STATE will be equal to the values given in the table when the BUSHOLD interrupt flag is set, and can be used to determine which interaction is required to make the transmission continue.

The interrupt flag START in I2C IF is set when the I²C module transmits the START.

A master operation is started by issuing a START command by setting START in I2C_CMD. ADDR+W, i.e., the address of the slave + the R/W bit is then required by the I²C module. If this is not available in the transmit buffer, then the bus is held and the BUSHOLD interrupt flag is set. The value of I2C_STATE will then be 0x67. As seen in the table, the I²C module also stops in this state if the address is not available after a repeated start condition.

To continue, write a byte to I2C_TXDATA with the address of the slave in the 7 most significant bits and the least significant bit cleared (ADDR+W). This address will then be transmitted, and the slave will reply with an ACK or a NACK. If no slave replies to the address, the response will also be NACK. If the address was acknowledged, the master now has four choices. It can send data by placing it in I2C_TXDATA/ I2C_TXDOUBLE (the master should check the TXBL interrupt flag before writing to the transmit buffer), this data is then transmitted. The master can also stop the transmission by sending a STOP, it can send a repeated start by sending START, or it can send a STOP and then a START as soon as possible. If the master wishes to make another transfer immediately after the current, the preferred way is to start a new transfer directly by transmitting a repeated START instead of a STOP followed by a START. This is so because if a STOP is sent out, then any master wishing to initiate a transfer on the bus can try to gain control of it.

If a NACK was received, the master has to issue a CONT command in addition to providing data in order to continue transmission. This is not standard I²C, but is provided for flexibility. The rest of the options are similar to when an ACK was received.

If a new byte was transmitted, an ACK or NACK is received after the transmission of the byte, and the master has the same options as for when the address was sent.

The master may lose arbitration at any time during transmission. In this case, the ARBLOST interrupt flag in I2C_IF is set. If the arbitration was lost during the transfer of an address, and SLAVE in I2C_CTRL is set, the master then checks which address was transmitted. If it was the address of the master, then the master goes to slave mode.

After a master has transmitted a START and won any arbitration, it owns the bus until it transmits a STOP. After a STOP, the bus is released, and arbitration decides which bus master gains the bus next. The MSTOP interrupt flag in I2C_IF is set when a STOP condition is transmitted by the master.

Table 21.3. I2C Master Transmitter

I2C_STATE	Description	I2C_IF	Required in- teraction	Response
0x67	Start transmitted	START interrupt flag (BUSHOLD interrupt flag)	ADDR+W -> TXDATA	ADDR+W will be sent
			STOP	STOP will be sent and bus released.
			STOP + START	STOP will be sent and bus released. Then a START will be sent when bus becomes idle.
0x67	Repeated start trans- mitted	START interrupt flag (BUSHOLD interrupt flag)	ADDR+W -> TXDATA	ADDR+W will be sent
			STOP	STOP will be sent and bus released.
			STOP + START	STOP will be sent and bus released. Then a START will be sent when bus becomes idle.
-	ADDR+W transmitted	TXBL interrupt flag (TXC interrupt flag)	None	

I2C_STATE	Description	I2C_IF	Required in- teraction	Response
0x97	ADDR+W transmitted,	ACK interrupt flag (BUSHOLD interrupt flag)	TXDATA	DATA will be sent
	ACK received		STOP	STOP will be sent. Bus will be released
			START	Repeated start condition will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle
0x9F	ADDR+W transmit- ted,NACK received	NACK (BUSHOLD interrupt flag)	CONT + TXDATA	DATA will be sent
			STOP	STOP will be sent. Bus will be released
			START	Repeated start condition will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle
-	Data transmitted	TXBL interrupt flag (TXC interrupt flag)	None	
0xD7	Data transmitted,ACK received	ACK interrupt flag (BUSHOLD interrupt flag)	TXDATA	DATA will be sent
			STOP	STOP will be sent. Bus will be released
			START	Repeated start condition will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle
0xDF	Data transmitted,NACK received	NACK(BUSHOLD interrupt flag)	CONT + TXDATA	DATA will be sent
			STOP	STOP will be sent. Bus will be released
			START	Repeated start condition will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle
-	Stop transmitted	MSTOP interrupt flag	None	
			START	START will be sent when bus becomes idle
-	Arbitration lost	ARBLOST interrupt flag	None	
			START	START will be sent when bus becomes idle

21.3.8.6 Master Receiver

To receive data from a slave, the master must operate as a master receiver, see Table 21.4 I2C Master Receiver on page 579. This is done by transmitting ADDR+R as the address byte instead of ADDR+W, which is transmitted to become a master transmitter. The address byte loaded into the data register thus has to contain the 7-bit slave address in the 7 most significant bits of the byte, and have the least significant bit set.

When the address has been transmitted, the master receives an ACK or a NACK. If an ACK is received, the ACK interrupt flag in I2C_IF is set, and if space is available in the receive shift register, reception of a byte from the slave begins. If the receive buffer and shift register is full however, the bus is held until data is read from the receive buffer or another interaction is made. Note that the STOP and START interactions have a higher priority than the data-available interaction, so if a STOP or START command is pending, the highest priority interaction will be performed, and data will not be received from the slave.

If a NACK was received, the CONT command in I2C_CMD has to be issued in order to continue receiving data, even if there is space available in the receive buffer and/or shift register.

After a data byte has been received the master must ACK or NACK the received byte. If an ACK is pending or AUTOACK in I2C_CTRL is set, an ACK is sent automatically and reception continues if space is available in the receive buffer.

If a NACK is sent, the CONT command must be used in order to continue transmission. If an ACK or NACK is issued along with a START or STOP or both, then the ACK/NACK is transmitted and the reception is ended. If START in I2C_CMD is set alone, a repeated start condition is transmitted after the ACK/NACK. If STOP in I2C_CMD is set, a stop condition is sent regardless of whether START is set. If START is set in this case, it is set as pending.

As when operating as a master transmitter, arbitration can be lost as a master receiver. When this happens the ARBLOST interrupt flag in I2C_IF is set, and the master has a possibility of being selected as a slave given the correct conditions.

Table 21.4. I2C Master Receiver

I2C_STATE	Description	I2C_IF	Required in- teraction	Response
0x63	START transmitted	START interrupt flag (BUSHOLD interrupt	ADDR+R -> TXDATA	ADDR+R will be sent
		flag)	STOP	STOP will be sent and bus released.
			STOP + START	STOP will be sent and bus released. Then a START will be sent when bus becomes idle.
0x67	Repeated START transmitted	START interrupt flag(BUSHOLD inter-	ADDR+R -> TXDATA	ADDR+R will be sent
		rupt flag)	STOP	STOP will be sent and bus released.
			STOP + START	STOP will be sent and bus released. Then a START will be sent when bus becomes idle.
-	ADDR+R transmitted	TXBL interrupt flag (TXC interrupt flag)	None	
0xA3	ADDR+R transmitted, ACK received	ACK interrupt flag(BUS-	RXDATA	Start receiving
		HOLD)	STOP	STOP will be sent and the bus released
			START	Repeated START will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle
0x9B	ADDR+R transmit- ted,NACK received	NACK(BUSHOLD)	CONT + RXDATA	Continue, start receiving
			STOP	STOP will be sent and the bus released
			START	Repeated START will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle

I2C_STATE	Description	I2C_IF	Required in- teraction	Response
0xB3	Data received	RXDATA interrupt flag(BUSHOLD inter-	ACK + RXDA- TA	ACK will be transmitted, reception continues
	rupt flag)	rupt flag)	NACK + CONT + RXDATA	NACK will be transmitted, reception continues
			ACK/NACK + STOP	ACK/NACK will be sent and the bus will be released.
			ACK/NACK + START	ACK/NACK will be sent, and then a repeated start condition.
			ACK/NACK + STOP + START	ACK/NACK will be sent and the bus will be released. Then a START will be sent when the bus becomes idle
-	Stop received	MSTOP interrupt flag	None	
			START	START will be sent when bus becomes idle
-		ARBLOST interrupt flag	None	
		START	START will be sent when bus becomes idle	

21.3.8.7 SDA/SCL Status Monitor

The I²C module supports an SDA and SCL monitoring function. Note that this functionality is only supported when the I2C module is in single master mode, and when the slave doesn't use clock stretching. Additionally, firmware should set the ARBDIS bit in I2C_CTRL when using the SDA/SCL monitoring to prevent the bus being released.

The SDA monitor is enabled by setting the SDAMONEN in I2C_CTRL. Once enabled, the SDA monitor will check the status of the SDA line at the following points:

- · At a Start Condition, before SDA falls
- · At Stop Condition, after SDA rises

After checking, the monitor will set the SDAERR flag in I2C_IF it fails to read SDA==1. To allow the SDAERR flag to generate an IRQ, set the SDAERR bit in I2C_IEN.

Similarly, the SCL monitor is enabled by setting the SCLMONEN in I2C_CTRL. Once enabled, the SCL monitor will check the status of the SCL line at the following points:

- · At a Start Condition, before SCL falls
- · At every clock cycle, before SCL falls
- · At Stop Condition, after SCL rises

After checking, the monitor will set the SCLERR flag in I2C_IF it fails to read SCL==1. To allow the SCLERR flag to generate an IRQ, set the SCLERR bit in I2C_IEN.

21.3.9 Bus States

The I2C_STATE register can be used to determine which state the I^2C module and the I^2C bus are in at a given time. The register consists of the STATE bit-field, which shows which state the I^2C module is at in any ongoing transmission, and a set of single-bits, which reveal the transmission mode, whether the bus is busy or idle, and whether the bus is held by this I^2C module waiting for a software response.

The possible values of the STATE field are summarized in Table 21.5 I2C STATE Values on page 581. When this field is cleared, the I²C module is not a part of any ongoing transmission. The remaining status bits in the I2C_STATE register are listed in Table 21.6 I2C Transmission Status on page 581.

Table 21.5. I2C STATE Values

Mode	Value	Description	
IDLE	0	No transmission is being performed by this module.	
WAIT	1	Waiting for idle. Will send a start condition as soon as the bus is idle.	
START	2	Start transmit phase	
ADDR	3	Address transmit or receive phase	
ADDRACK	4	Address ACK/NACK transmit or receive phase	
DATA	5	Data transmit or receive phase	
DATAACK	6	Data ACK/NACK transmit or receive phase	

Table 21.6. I2C Transmission Status

Bit	Description
BUSY	Set whenever there is activity on the bus. Whether or not this module is responsible for the activity cannot be determined by this byte.
MASTER	Set when operating as a master. Cleared at all other times.
TRANSMITTER	Set when operating as a transmitter; either a master transmitter or a slave transmitter. Cleared at all other times
BUSHOLD	Set when the bus is held by this I ² C module because an action is required by software.
NACK	Only valid when bus is held and STATE is ADDRACK or DATAACK. In that case it is set if a NACK was received. In all other cases, the bit is cleared.

Note: I2C_STATE reflects the internal state of the I^2 C module, and therefore only held constant as long as the bus is held, i.e., as long as BUSHOLD in I2C_STATUS is set.

21.3.10 Slave Operation

The I^2C module operates in master mode by default. To enable slave operation, i.e., to allow the device to be addressed as an I^2C slave, the SLAVE bit in I^2C must be set. In this case the I^2C module operates in a mixed mode, both capable of starting transmissions as a master, and being addressed as a slave. When operating in the slave mode, I^2CCLK frequency must be higher than 2 MHz for Standard-mode, 5 MHz for Fast-mode, and 14 MHz for Fast-mode Plus.

21.3.10.1 Slave State Machine

The slave state machine is shown in Figure 21.16 I2C Slave State Machine on page 582. The dotted lines show where I²C-specific interrupt flags are set. The full-drawn circles show places where interaction may be required by software to let the transmission proceed.

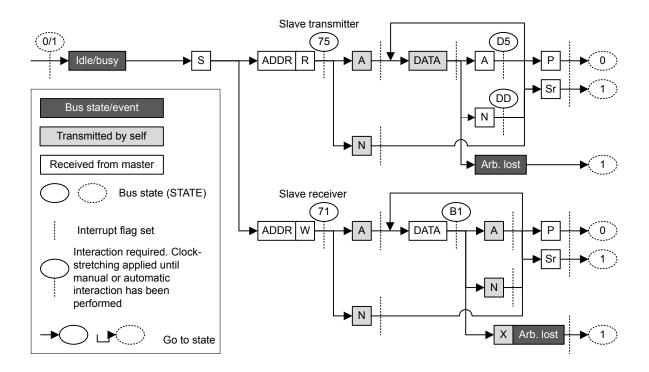


Figure 21.16. I2C Slave State Machine

21.3.10.2 Address Recognition

The I^2C module provides automatic address recognition for 7-bit addresses. 10-bit address recognition is not fully automatic, but can be assisted by the 7-bit address comparator as shown in 21.3.12 Using 10-bit Addresses. Address recognition is supported in EM2/3 for I^2CO - however, the I^2CO module must be configured to use pins on either Port A or B if wakeup on address recognition from EM2/3 is desired. All other ports are available only in EM0/1. See GPIO chapter for more details.

The slave address, i.e., the address which the I^2C module should be addressed with, is defined in the I^2C module should be addressed with a sh

An incoming address that fails address recognition is automatically replied to with a NACK. Since only the bits defined by the mask are checked, a mask with a value 0x00 will result in all addresses being accepted. A mask with a value 0x7F will only match the exact address defined in I2C_SADDR, while a mask 0x70 will match all addresses where the three most significant bits in I2C_SADDR and the incoming address are equal.

If GCAMEN in I2C_CTRL is not set, the start-byte, i.e., the general call address with the R/W bit set is ignored unless it is included in the defined slave address and the address mask.

When an address is accepted by the address comparator, the decision of whether to ACK or NACK the address is passed to software.

21.3.10.3 Slave Transmitter

When SLAVE in I2C_CTRL is set, the RSTART interrupt flag in I2C_IF will be set when repeated START conditions are detected. After a START or repeated START condition, the bus master will transmit an address along with an R/W bit. If there is no room in the receive shift register for the address, the bus will be held by the slave until room is available in the shift register. Transmission then continues and the address is loaded into the shift register. If this address does not pass address recognition, it is automatically NACK'ed by the slave, and the slave goes to an idle state. The address byte is in this case discarded, making the shift register ready for a new address. It is not loaded into the receive buffer.

If the address was accepted and the R/W bit was set (R), indicating that the master wishes to read from the slave, the slave now goes into the slave transmitter mode. Software interaction is now required to decide whether the slave wants to acknowledge the request or not. The accepted address byte is loaded into the receive buffer like a regular data byte. If no valid interaction is pending, the bus is held until the slave responds with a command. The slave can reject the request with a single NACK command.

The slave will in that case go to an idle state, and wait for the next start condition. To continue the transmission, the slave must make sure data is loaded into the transmit buffer and send an ACK. The loaded data will then be transmitted to the master, and an ACK or NACK will be received from the master.

Data transmission can also continue after a NACK if a CONT command is issued along with the NACK. This is not standard I²C however.

If the master responds with an ACK, it may expect another byte of data, and data should be made available in the transmit buffer. If data is not available, the bus is held until data is available.

If the response is a NACK however, this is an indication of that the master has received enough bytes and wishes to end the transmission. The slave now automatically goes idle, unless CONT in I2C_CMD is set and data is available for transmission. The latter is not standard I²C.

The master ends the transmission by sending a STOP or a repeated START. The SSTOP interrupt flag in I2C_IF is set when the master transmits a STOP condition. If the transmission is ended with a repeated START, then the SSTOP interrupt flag is not set.

Note: The SSTOP interrupt flag in I2C_IF will be set regardless of whether the slave is participating in the transmission or not, as long as SLAVE in I2C_CTRL is set and a STOP condition is detected

If arbitration is lost at any time during transmission, the ARBLOST interrupt flag in I2C_IF is set, the bus is released and the slave goes idle.

See Table 21.7 I2C Slave Transmitter on page 583 for more information.

Table 21.7. I2C Slave Transmitter

I2C_STATE	Description	I2C_IF	Required in- teraction	Response
0x01	Repeated START received	RSTART interrupt flag (BUSHOLD interrupt flag)	RXDATA	Receive and compare address
0x75	ADDR + R received	ADDR interrupt flag	ACK + TXDA- TA	ACK will be sent, then DATA
		RXDATA interrupt flag	NACK	NACK will be sent, slave goes idle
		(BUSHOLD interrupt flag)	NACK + CONT + TXDATA	NACK will be sent, then DATA.
-	Data transmitted	TXBL interrupt flag (TXC interrupt flag)	None	
0xD5	Data transmitted, ACK received	ACK interrupt flag (BUSHOLD interrupt flag)	TXDATA	DATA will be transmitted
0xDD	Data transmitted, NACK	NACK interrupt flag	None	The slave goes idle
	received	(BUSHOLD interrupt flag)	CONT + TXDATA	DATA will be transmitted

I2C_STATE	Description	I2C_IF	Required in- teraction	Response
-	Stop received	SSTOP interrupt flag	None	The slave goes idle
			START	START will be sent when bus becomes idle
-	Arbitration lost	ARBLOST interrupt flag	None	The slave goes idle
			START	START will be sent when the bus becomes idle

21.3.10.4 Slave Receiver

A slave receiver operation is started in the same way as a slave transmitter operation, with the exception that the address transmitted by the master has the R/W bit cleared (W), indicating that the master wishes to write to the slave. The slave then goes into slave receiver mode.

To receive data from the master, the slave should respond to the address with an ACK and make sure space is available in the receive buffer. Transmission will then continue, and the slave will receive a byte from the master.

If a NACK is sent without a CONT, the transmission is ended for the slave, and it goes idle. If the slave issues both the NACK and CONT commands and has space available in the receive buffer, it will be open for continuing reception from the master.

When a byte has been received from the master, the slave must ACK or NACK the byte. The responses here are the same as for the reception of the address byte.

The master ends the transmission by sending a STOP or a repeated START. The SSTOP interrupt flag is set when the master transmits a STOP condition. If the transmission is ended with a repeated START, then the SSTOP interrupt flag in I2C IF is not set.

Note: The SSTOP interrupt flag in I2C_IF will be set regardless of whether the slave is participating in the transmission or not, as long as SLAVE in I2C_CTRL is set and a STOP condition is detected

If arbitration is lost at any time during transmission, the ARBLOST interrupt flag in I2C_IF is set, the bus is released and the slave goes idle.

See Table 21.8 I2C - Slave Receiver on page 585 for more information.

Table 21.8. I2C - Slave Receiver

I2C_STATE	Description	I2C_IF	Required in- teraction	Response
0x01	Repeated START received	RSTART interrupt flag (BUSHOLD interrupt flag)	RXDATA	Receive and compare address
0x71	ADDR + W received	ADDR interrupt flag RXDATA interrupt flag	ACK + RXDATA	ACK will be sent and data will be received
		(BUSHOLD interrupt flag)	NACK	NACK will be sent, slave goes idle
			NACK + CONT + RXDATA	NACK will be sent and DATA will be received.
0xB1	Data received	RXDATA interrupt flag (BUSHOLD interrupt flag)	ACK + RXDATA	ACK will be sent and data will be received
			NACK	NACK will be sent and slave will go idle
			NACK + CONT + RXDATA	NACK will be sent and data will be received
-	Stop received	SSTOP interrupt flag	None	The slave goes idle
			START	START will be sent when bus becomes idle
-	Arbitration lost	ARBLOST interrupt flag	None	The slave goes idle
			START	START will be sent when the bus becomes idle

21.3.11 Transfer Automation

The I²C can be set up to complete transfers with a minimal amount of interaction.

21.3.11.1 DMA

DMA can be used to automatically load data into the transmit buffer and load data out from the receive buffer. When using DMA, software is thus relieved of moving data to and from memory after each transferred byte.

21.3.11.2 Automatic ACK

When AUTOACK in I2C_CTRL is set, an ACK is sent automatically whenever an ACK interaction is possible and no higher priority interactions are pending.

21.3.11.3 Automatic STOP

A STOP can be generated automatically on two conditions. These apply only to the master transmitter.

If AUTOSN in I2C_CTRL is set, the I²C module ends a transmission by transmitting a STOP condition when operating as a master transmitter and a NACK is received.

If AUTOSE in I2C_CTRL is set, the I²C module always ends a transmission when there is no more data in the transmit buffer. If data has been transmitted on the bus, the transmission is ended after the (N)ACK has been received by the slave. If a START is sent when no data is available in the transmit buffer and AUTOSE is set, then the STOP condition is sent immediately following the START. Software must thus make sure data is available in the transmit buffer before the START condition has been fully transmitted if data is to be transferred.

21.3.12 Using 10-bit Addresses

When using 10-bit addresses in slave mode, set the I2C_SADDR register to 1111 0XX where XX are the two most significant bits of the 10-bit address, and set I2C_SADDRMASK to 0xFF. Address matches will now be given on all 10-bit addresses where the two most significant bits are correct.

When receiving an address match, the slave must acknowledge the address and receive the first data byte. This byte contains the second part of the 10-bit address. If it matches the address of the slave, the slave should ACK the byte to continue the transmission, and if it does not match, the slave should NACK it.

When the master is operating as a master transmitter, the data bytes will follow after the second address byte. When the master is operating as a master receiver however, a repeated START condition is sent after the second address byte. The address sent after this repeated START is equal to the first of the address bytes transmitted previously, but now with the R/W byte set, and only the slave that found a match on the entire 10-bit address in the previous message should ACK this address. The repeated start should take the master into a master receiver mode, and after the single address byte sent this time around, the slave begins transmission to the master.

21.3.13 Error Handling

Note: Some registers in the I^2C module are considered static. This means that these need to be set before an I^2C transaction starts and need to stay stable during the entire transaction.

Specifically:

- The GCAMEN and SLAVE fields in the I2C CTRL register
- · The I2C_SADDR register
- The GPIO DBUSI2Cn ROUTEEN, GPIO DBUSI2Cn SCLROUTE, and GPIO DBUSI2Cn SDAROUTE registers

21.3.13.1 ABORT Command

Some bus errors may require software intervention to be resolved. The I^2C module provides an ABORT command, which can be set in $I2C_CMD$, to help resolve bus errors.

When the bus for some reason is locked up and the I^2C module is in the middle of a transmission it cannot get out of, or for some other reason the I^2C wants to abort a transmission, the ABORT command can be used.

Setting the ABORT command will make the I²C module discard any data currently being transmitted or received, release the SDA and SCL lines and go to an idle mode. ABORT effectively makes the I²C module forget about any ongoing transfers.

21.3.13.2 Bus Reset

A bus reset can be performed by setting the START and STOP commands in I2C_CMD while the transmit buffer is empty. A START condition will then be transmitted, immediately followed by a STOP condition. A bus reset can also be performed by transmitting a START command with the transmit buffer empty and AUTOSE set.

21.3.13.3 I2C-Bus Errors

An I²C-bus error occurs when a START or STOP condition is misplaced, which happens when the value on SDA changes while SCL is high during bit-transmission on the I²C-bus. If the I²C module is part of the current transmission when a bus error occurs, any data currently being transmitted or received is discarded, SDA and SCL are released, the BUSERR interrupt flag in I2C_IF is set to indicate the error, and the module automatically takes a course of action as defined in Table 21.9 I2C Bus Error Response on page 587.

Table 21.9. I2C Bus Error Response

	Misplaced START	Misplaced STOP
In a master/slave operation	Treated as START. Receive address.	Go idle. Perform any pending actions.

21.3.13.4 Bus Lockup

A lockup occurs when a master or slave on the I²C-bus has locked the SDA or SCL at a low value, preventing other devices from putting high values on the bus, and thus making communication on the bus impossible.

Many slave-only devices operating on an I^2C -bus are not capable of driving SCL low, but in the rare case that SCL is stuck LOW, the advice is to apply a hardware reset signal to the slaves on the bus. If this does not work, cycle the power to the devices in order to make them release SCL.

When SDA is stuck low and SCL is free, a master should send 9 clock pulses on SCL while tristating the SDA. This procedure is performed in the GPIO module after clearing the GPIO_DBUSI2Cn_ROUTEEN register and disabling the I2C module. The device that held the bus low should release it sometime within those 9 clocks. If not, use the same approach as for when SCL is stuck, resetting and possibly cycling power to the slaves.

Lockup of SDA can be detected by keeping count of the number of continuous arbitration losses during address transmission. If arbitration is also lost during the transmission of a general call address, i.e., during the transmission of the STOP condition, which should never happen during normal operation, this is a good indication of SDA lockup.

Detection of SCL lockups can be done using the timeout functionality defined in 21.3.13.6 Clock Low Timeout

21.3.13.5 Bus Idle Timeout

When SCL has been high for a significant amount of time, this is a good indication of that the bus is idle. On an SMBus system, the bus is only allowed to be in this state for a maximum of 50 µs before the bus is considered idle.

The bus idle timeout BITO in I2C_CTRL can be used to detect situations where the bus goes idle in the middle of a transmission. The timeout can be configured in BITO, and when the bus has been idle for the given amount of time, the BITO interrupt flag in I2C_IF is set. The bus can also be set idle automatically on a bus idle timeout. This is enabled by setting GIBITO in I2C_CTRL.

When the bus idle timer times out, it wraps around and continues counting as long as its condition is true. If the bus is not set idle using GIBITO or the ABORT command in I2C CMD, this will result in periodic timeouts.

Note: This timeout will be generated even if SDA is held low.

The bus idle timeout is active as long as the bus is busy, i.e., BUSY in I2C_STATUS is set. The timeout can be used to get the I²C module out of the busy-state it enters when reset, see 21.3.8.4 Reset State.

21.3.13.6 Clock Low Timeout

The clock timeout, which can be configured in CLTO in I2C_CTRL, starts counting whenever SCL goes low, and times out if SCL does not go high within the configured timeout. A clock low timeout results in CLTOIF in I2C_IF being set, allowing software to take action.

When the timer times out, it wraps around and continues counting as long as SCL is low. An SCL lockup will thus result in periodic clock low timeouts as long as SCL is low.

21.3.13.7 Clock Low Error

The I²C module can continue transmission in parallel with another device for the entire transaction, as long as the two communications are identical. A case may arise when (before an arbitration has been decided upon) the I²C module decides to send out a repeated START or a STOP condition while the other device is still sending data. In the I²C protocol specifications, such a combination results in an undefined condition. The I²C deals with this by generating a clock low error. This means that if the I²C is transmitting a repeated START or a STOP condition and another device (another master or a misbehaving slave) pulls SCL low before the I²C sends out the START/STOP condition on SDA, a clock low error is generated. The CLERR interrupt flag is then set in the I²C device goes to idle.

21.3.14 DMA Support

The I²C module has full DMA support. A request for the DMA controller to write to the I²C transmit buffer can come from TXBL (transmit buffer has room for more data). The DMA controller can write to the transmit buffer using the I2C_TXDATA or the I2C_TXDOUBLE register. In order to write to the I2C_TXDOUBLE register (i.e., transferring 2 bytes simultaneously to the transmit buffer using the DMA), DMA_USEBURSTS needs to be set to 1 for the selected DMA channel. This ensures that the transfer is made to the transmit buffer only when both buffer elements are empty. For performing a DMA write to the I2C_TXDATA register, DMA_USEBURSTC needs to be set to 1 for the selected DMA channel. This ensures that a DMA transfer is made even when the transmit buffer is half-empty.

A request for the DMA controller to read from the I²C receive buffer can come from RXDATAV (data available in the receive buffer). To receive from I2C_RXDOUBLE (i.e., receive only when both buffer elements are full), DMA_USEBURSTS needs to be set to 1 for the selected DMA channel. In order to receive from I2C_RXDATA through the DMA, DMA_USEBURSTC needs to be set to 1. This ensures that the data gets picked up even when the receive buffer is half-full.

21.3.15 Interrupts

The interrupts generated by the I^2C module are combined into one interrupt vector, $I2C_INT$. If I^2C interrupts are enabled, an interrupt will be made if one or more of the interrupt flags in $I2C_IF$ and their corresponding bits in $I2C_IF$ are set.

21.3.16 Wake-up

The I²C receive section can be active all the way down to energy mode EM3 stop, and can wake up the CPU on address interrupt. All address match modes are supported.

21.4 Register Map

The offset register address is relative to the registers base address.

0x004 120 0x008 120	C_EN C_CTRL C_CMD	R RW RW W	IP VERSION Register Enable Register Control Register
0x008 I20	C_CTRL C_CMD	RW	
	C_CMD		Control Register
0x00C 120	_	W	
1	C_STATE	**	Command Register
0x010 I20		RH	State Register
0x014 I20	C_STATUS	RH	Status Register
0x018 I20	C_CLKDIV	RW	Clock Division Register
0x01C I20	C_SADDR	RW	Slave Address Register
0x020 I20	C_SADDRMASK	RW	Slave Address Mask Register
0x024 I20	C_RXDATA	RH	Receive Buffer Data Register
0x028 I20	C_RXDOUBLE	RH	Receive Buffer Double Data Register
0x02C I20	C_RXDATAP	RH	Receive Buffer Data Peek Register
0x030 I20	C_RXDOUBLEP	RH	Receive Buffer Double Data Peek Register
0x034 I20	C_TXDATA	W	Transmit Buffer Data Register
0x038 I20	C_TXDOUBLE	W	Transmit Buffer Double Data Register
0x03C I20	C_IF	RWH INTFLAG	Interrupt Flag Register
0x040 I20	C_IEN	RW	Interrupt Enable Register
0x1000 I20	C_IPVERSION_SET	R	IP VERSION Register
0x1004 I20	C_EN_SET	RW	Enable Register
0x1008 I20	C_CTRL_SET	RW	Control Register
0x100C I20	C_CMD_SET	W	Command Register
0x1010 I20	C_STATE_SET	RH	State Register
0x1014 I20	C_STATUS_SET	RH	Status Register
0x1018 I20	C_CLKDIV_SET	RW	Clock Division Register
0x101C I20	C_SADDR_SET	RW	Slave Address Register
0x1020 I20	C_SADDRMASK_SET	RW	Slave Address Mask Register
0x1024 I20	C_RXDATA_SET	RH	Receive Buffer Data Register
0x1028 I20	C_RXDOUBLE_SET	RH	Receive Buffer Double Data Register
0x102C I20	C_RXDATAP_SET	RH	Receive Buffer Data Peek Register
0x1030 I20	C_RXDOUBLEP_SET	RH	Receive Buffer Double Data Peek Register
0x1034 I20	C_TXDATA_SET	W	Transmit Buffer Data Register
0x1038 I20	C_TXDOUBLE_SET	W	Transmit Buffer Double Data Register
0x103C I20	C_IF_SET	RWH INTFLAG	Interrupt Flag Register
0x1040 I20	C_IEN_SET	RW	Interrupt Enable Register
0x2000 I20	C_IPVERSION_CLR	R	IP VERSION Register

Offset	Name	Туре	Description
0x2004	I2C_EN_CLR	RW	Enable Register
0x2008	I2C_CTRL_CLR	RW	Control Register
0x200C	I2C_CMD_CLR	w	Command Register
0x2010	I2C_STATE_CLR	RH	State Register
0x2014	I2C_STATUS_CLR	RH	Status Register
0x2018	I2C_CLKDIV_CLR	RW	Clock Division Register
0x201C	I2C_SADDR_CLR	RW	Slave Address Register
0x2020	I2C_SADDRMASK_CLR	RW	Slave Address Mask Register
0x2024	I2C_RXDATA_CLR	RH	Receive Buffer Data Register
0x2028	I2C_RXDOUBLE_CLR	RH	Receive Buffer Double Data Register
0x202C	I2C_RXDATAP_CLR	RH	Receive Buffer Data Peek Register
0x2030	I2C_RXDOUBLEP_CLR	RH	Receive Buffer Double Data Peek Register
0x2034	I2C_TXDATA_CLR	W	Transmit Buffer Data Register
0x2038	I2C_TXDOUBLE_CLR	W	Transmit Buffer Double Data Register
0x203C	I2C_IF_CLR	RWH INTFLAG	Interrupt Flag Register
0x2040	I2C_IEN_CLR	RW	Interrupt Enable Register
0x3000	I2C_IPVERSION_TGL	R	IP VERSION Register
0x3004	I2C_EN_TGL	RW	Enable Register
0x3008	I2C_CTRL_TGL	RW	Control Register
0x300C	I2C_CMD_TGL	W	Command Register
0x3010	I2C_STATE_TGL	RH	State Register
0x3014	I2C_STATUS_TGL	RH	Status Register
0x3018	I2C_CLKDIV_TGL	RW	Clock Division Register
0x301C	I2C_SADDR_TGL	RW	Slave Address Register
0x3020	I2C_SADDRMASK_TGL	RW	Slave Address Mask Register
0x3024	I2C_RXDATA_TGL	RH	Receive Buffer Data Register
0x3028	I2C_RXDOUBLE_TGL	RH	Receive Buffer Double Data Register
0x302C	I2C_RXDATAP_TGL	RH	Receive Buffer Data Peek Register
0x3030	I2C_RXDOUBLEP_TGL	RH	Receive Buffer Double Data Peek Register
0x3034	I2C_TXDATA_TGL	W	Transmit Buffer Data Register
0x3038	I2C_TXDOUBLE_TGL	W	Transmit Buffer Double Data Register
0x303C	I2C_IF_TGL	RWH INTFLAG	Interrupt Flag Register
0x3040	I2C_IEN_TGL	RW	Interrupt Enable Register

21.5 Register Description

21.5.1 I2C_IPVERSION - IP VERSION Register

Offset	Bit Position
0x000	33 34 36 37 38 38 39 30 30 31 32 33 34 35 36 37 38 40
Reset	0×0
Access	α
Name	IPVERSION

Bit	Name	Reset	Access	Description								
31:0	IPVERSION	0x0	R	IP version ID								
	The read only IPVERSION field gives the version for this module. There may be minor software changes required for modules with different values of IPVERSION.											

21.5.2 I2C_EN - Enable Register

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	9	8	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																																0x0
Access																																A W
Name																																Z E

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensui ventions		with future devices, always write bits to 0. More information in 1.2 Con-
0	EN	0x0	RW	module enable
				ould write to CONFIG type registers before setting the ENABLE bit. after setting the ENABLE bit.
	Value	Mode		Description
	0	DISABI I	F	Disable Peripheral Clock
		BIONBE	_	Disable i elipliciai Clock

21.5.3 I2C_CTRL - Control Register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset		•	•	•			•			•	000	0x0			0X0		000		Š	<u> </u>			Š	e X	0x0	000	000	0x0	000	0x0	000	0x0
Access											W.	W.			M		₩ N		2	≩			2	<u>}</u>	R M	RW	S.	RW	₩.	RW	S.	RW
Name											SDAMONEN	SCLMONEN			CLTO		GIBITO		C	0 9			-		TXBIL	GCAMEN	ARBDIS	AUTOSN	AUTOSE	AUTOACK	SLAVE	CORERST

Bit	Name	Reset	Access	Description
31:22	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
21	SDAMONEN	0x0	RW	SDA Monitor Enable
	Set to enable SDA i MultiMaster applica		his will enable S	SDA rise check at loopback path. This monitor can not be enabled in
	Value	Mode		Description
	0	DISABLE		Disable SDA Monitor
	1	ENABLE		Enable SDA Monitor
20	SCLMONEN	0x0	RW	SCL Monitor Enable
	Set to enable SCL r MultiMaster applica		nis will enable S	CL rise check at loopback path. This monitor can not be enabled in
	Value	Mode		Description
	0	DISABLE		Disable SCL monitor
	1	ENABLE		Enable SCL monitor
19	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
18:16	CLTO	0x0	RW	Clock Low Timeout

Use to generate a timeout when CLK has been low for the given amount of time. Wraps around and continues counting when the timeout is reached. The timeout value can be calculated by timeout = PCC/(Fscl x (Nlow + Nhigh))

Value	Mode	Description
0	OFF	Timeout disabled
1	I2C40PCC	Timeout after 40 prescaled clock cycles. In standard mode at 100 kHz, this results in a 50us timeout.
2	I2C80PCC	Timeout after 80 prescaled clock cycles. In standard mode at 100 kHz, this results in a 100us timeout.
3	I2C160PCC	Timeout after 160 prescaled clock cycles. In standard mode at 100 kHz, this results in a 200us timeout.
4	I2C320PCC	Timeout after 320 prescaled clock cycles. In standard mode at 100 kHz, this results in a 400us timeout.

Bit	Name	Reset	Access	Description							
	5	I2C1024P	СС	Timeout after 1024 prescaled clock cycles. In standard mode at 100 kHz, this results in a 1280us timeout.							
15	GIBITO	0x0	RW	Go Idle on Bus Idle Timeout							
	When set, the bus	automatically goe	s idle on a bus	idle timeout, allowing new transfers to be initiated.							
	Value	Mode		Description							
	0	DISABLE		A bus idle timeout has no effect on the bus state.							
	1	ENABLE		A bus idle timeout tells the I2C module that the bus is idle, allowing new transfers to be initiated.							
14	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-							
13:12	BITO	0x0	RW	Bus Idle Timeout							
	the value defined l SCL remains high. GIBITO is set. It is	by BITO, it sets the The bus idle time also stopped a ST or the bus goes BU	e BITO interrup out is active as FOP condition i ISY, i.e. a STA	a timer is started whenever SCL goes high. When the timer reaches that flag. The BITO interrupt flag will then be set periodically as long as a long as BUSY is set. It is thus stopped automatically on a timeout if its detected and when the ABORT command is issued. The timeout is RT condition is detected. The timeout value can be calculated by							
	Value	Mode		Description							
	0	OFF		Timeout disabled							
	1	I2C40PCC	:	Timeout after 40 prescaled clock cycles. In standard mode at 100 kHz, this results in a 50us timeout.							
	2	I2C80PC0		Timeout after 80 prescaled clock cycles. In standard mode at 100 kHz, this results in a 100us timeout.							
	3	I2C160PC	C	Timeout after 160 prescaled clock cycles. In standard mode at 100 kHz, this results in a 200us timeout.							
11:10	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-							
9:8	CLHR	0x0	RW	Clock Low High Ratio							
	Determines the va	lues of (and ratio b	petween) the lo	w and high parts of the clock signal generated on SCL as master.							
	Value	Mode		Description							
	0	STANDAR	RD	Nlow=4 and Nhigh=4, and the Nlow:Nhigh ratio is 4:4							
	1	ASYMME	TRIC	Nlow=6 and Nhigh=3, and the Nlow:Nhigh ratio is 6:3							
	2	FAST		Nlow=11 and Nhigh=6, and the Nlow:Nhigh ratio is 11:6							
7	TXBIL	0x0	RW	TX Buffer Interrupt Level							
	Determines the int	errupt and status I	evel of the tran	smit buffer.							
	Value	Mode		Description							
	0	EMPTY		TXBL status and the TXBL interrupt flag are set when the transmit buffer becomes empty. TXBL is cleared when the buffer becomes nonempty.							

Bit	Name	Reset	Access	Description
	1	HALF_FUL	L	TXBL status and the TXBL interrupt flag are set when the transmit buffer goes from full to half-full or empty. TXBL is cleared when the buffer becomes full
6	GCAMEN	0x0	RW	General Call Address Match Enable
	Set to enable address n	natch on gene	eral call in addition	on to the programmed slave address.
	Value	Mode		Description
	0	DISABLE		General call address will be NACK'ed if it is not included by the slave address and address mask.
	1	ENABLE		When a general call address is received, a software response is required
5	ARBDIS	0x0	RW	Arbitration Disable
	A master or slave will no	ot release the	bus upon losing	arbitration.
	Value	Mode		Description
	0	DISABLE		When a device loses arbitration, the ARBIF interrupt flag is set and the bus is released.
	1	ENABLE		When a device loses arbitration, the ARBIF interrupt flag is set, but communication proceeds.
4	AUTOSN	0x0	RW	Automatic STOP on NACK
	Write to 1 to make a ma	ster transmitte	er send a STOP	when a NACK is received from a slave.
	Value	Mode		Description
	0	DISABLE		Stop is not automatically sent if a NACK is received from a slave.
	1	ENABLE		The master automatically sends a STOP if a NACK is received from a slave.
3	AUTOSE	0x0	RW	Automatic STOP when Empty
	Write to 1 to make a ma	ster transmitte	er send a STOP	when no more data is available for transmission.
	Value	Mode		Description
	0	DISABLE		A stop must be sent manually when no more data is to be transmitted.
	1	ENABLE		The master automatically sends a STOP when no more data is available for transmission.
2	AUTOACK	0x0	RW	Automatic Acknowledge
	Set to enable automatic	acknowledge	S.	
	Value	Mode		Description
	0	DISABLE		Software must give one ACK command for each ACK transmitted on the I2C bus.
	1	ENABLE		Addresses that are not automatically NACK'ed, and all data is automatically acknowledged.
1	SLAVE	0x0	RW	Addressable as Slave

Bit	Name	Reset	Access	Description						
	Set this bit to allow	v the device to be	selected as an	I2C slave.						
	Value	Mode		Description						
	0	DISABLE		All addresses will be responded to with a NACK						
	1	ENABLE		Addresses matching the programmed slave address or the general call address (if enabled) require a response from software. Other addresses are automatically responded to with a NACK.						
0	CORERST	0x0	RW	Soft Reset the internal state registers						
	Set to reset the I2 operation condition		, and return the	e I2C module to the IDLE state. Must clear this bit to resume normal						
	Value	Mode		Description						
	0	DISABLE		No change to internal state registers						
	1	ENABLE		Reset the internal state registers						

21.5.4 I2C_CMD - Command Register

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	ω	7	9	2	4	က	2	_	0
Reset		•	'		'	•							'	•					•					•	000	000	0x0	000	0X0	0x0	0X0	0x0
Access																									>	≥	≥	≥	>	≥	≥	>
Name																									CLEARPC	CLEARTX	ABORT	CONT	NACK	ACK	STOP	START

Bit	Name	Reset	Access	Description									
31:8	Reserved	To ensure ventions	e compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-									
7	CLEARPC	0x0	W	Clear Pending Commands									
	Set to clear pending	g commands.											
6	CLEARTX	0x0	W	Clear TX									
	Set to clear transmi	it buffer and shift	register. Will no	t abort ongoing transfer.									
5	ABORT	0x0	W	Abort transmission									
				le. When used in combination with STOP, a STOP condition is sent n. The stop condition is subject to clock synchronization.									
4	CONT	ONT 0x0 W Continue transmission											
	Set to continue tran	smission after a	NACK has been	received.									
3	NACK	0x0	W	Send NACK									
	Set to transmit a NA	ACK the next tim	e an acknowledo	ge is required.									
2	ACK	0x0	W	Send ACK									
	Set to transmit an A	ACK the next time	e an acknowledg	ge is required.									
1	STOP	0x0	W	Send stop condition									
	Set to send stop co	ndition as soon a	as possible.										
0	START	0x0	W	Send start condition									
	sent as soon as the	bus is idle. If the	e current transm	transmission is ongoing and not owned, the start condition will be ission is owned by this module, a repeated start condition will be automatically send a STOP, then a START when the bus becomes									

21.5.5 I2C_STATE - State Register

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	9	6	8	7	9	2	4	က	2	_	0
Reset																								•		0×0		0×0	0x0	0x0	0x0	0x1
Access																										22		22	22	22	22	<u>~</u>
Name																										STATE		BUSHOLD	NACKED	TRANSMITTER	MASTER	BUSY

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure ventions	e compatibility w	th future devices, always write bits to 0. More information in 1.2 Con-
7:5	STATE	0x0	R	Transmission State
	The state of any curre	ent transmissio	n. Cleared if the	I2C module is idle.
	Value	Mode		Description
	0	IDLE		No transmission is being performed.
	1	WAIT		Waiting for idle. Will send a start condition as soon as the bus is idle.
	2	START		Start transmit phase
	3	ADDR		Address transmit or receive phase
	4	ADDRAC	K	Address ack/nack transmit or receive phase
	5	DATA		Data transmit or receive phase
	6	DATAAC	<	Data ack/nack transmit or receive phase
4	BUSHOLD	0x0	R	Bus Held
	Set if the bus is curre	ntly being held	by this I2C mod	ule.
3	NACKED	0x0	R	Nack Received
	Set if a NACK was re	ceived and ST	ATE is ADDRAC	K or DATAACK.
2	TRANSMITTER	0x0	R	Transmitter
	Set when operating a ter receiver, a slave r			e transmitter. When cleared, the system may be operating as a masnot known.
1	MASTER	0x0	R	Master
	Set when operating a	s an I2C maste	er. When cleared	, the system may be operating as an I2C slave.
0	BUSY	0x1	R	Bus Busy
		s out of reset,	the state of the b	s in control of the bus or not has no effect on the value of this bit. bus is not known, and thus BUSY is set. Use the ABORT command the BUSY state.

21.5.6 I2C_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	ω	7	9	2	4	က	2	_	0
Reset			•																	•	Š	2	0x0	000	0X1	000	0×0	0×0	0×0	0x0	0x0	0x0
Access																					٥	۷	<u>~</u>	œ	œ	œ	œ	œ	œ	œ	œ	<u>~</u>
Name																					FACTIONE		RXFULL	RXDATAV	TXBL	TXC	PABORT	PCONT	PNACK	PACK	PSTOP	PSTART

Bit	Name	Reset	Access	Description
				·
31:12	Reserved	ventions	сотрацынку witi	h future devices, always write bits to 0. More information in 1.2 Con-
11:10	TXBUFCNT	0x0	R	TX Buffer Count
	Indicates the number of	buffers filled	with valid data a	nd not transmit to tx shift register
9	RXFULL	0x0	R	RX FIFO Full
	Set when the receive but for one more frame in the			receive buffer is no longer full. When this bit is set, there is still room
8	RXDATAV	0x0	R	RX Data Valid
	Set when data is availab	ole in the rece	ive buffer. Clear	red when the receive buffer is empty.
7	TXBL	0x1	R	TX Buffer Level
	Indicates the level of the transmit buffer is half ful		fer. if TXBIL==0,	set when the transmit buffer is empty. if TXBIL==1, set when the
6	TXC	0x0	R	TX Complete
	Set when a transmission mission starts.	n has complet	ed and no more	data is available in the transmit buffer. Cleared when a new trans-
5	PABORT	0x0	R	Pending abort
	An abort is pending and	will be transr	nitted as soon a	s possible.
4	PCONT	0x0	R	Pending continue
	A continue is pending a	nd will be tran	smitted as soon	as possible.
3	PNACK	0x0	R	Pending NACK
	A not-acknowledge is pe	ending and wi	II be transmitted	as soon as possible.
2	PACK	0x0	R	Pending ACK
	An acknowledge is pend	ding and will b	e transmitted as	s soon as possible.
1	PSTOP	0x0	R	Pending STOP
	A stop condition is pend	ling and will b	e transmitted as	soon as possible.
0	PSTART	0x0	R	Pending START
	A start condition is pend	ling and will b	e transmitted as	soon as possible.

21.5.7 I2C_CLKDIV - Clock Division Register

Offset															Bi	t Po	sitio	on														
0x018	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset				•		•																					•	0×0	•			
Access																												R≪				
Name																												DIV				

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
8:0	DIV	0x0	RW	Clock Divider
	Specifies the clock divide	er for the I2C.	Note that DIV r	nust be 1 or higher when slave is enabled.

21.5.8 I2C_SADDR - Slave Address Register

Offset															Bi	t Po	siti	on														
0x01C	31	39	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	∞	7	9	5	4	က	7	_	0
Reset		•												•	•			•	•					•				0×0				
Access																												ΑW				
Name																												ADDR				

Bit	Name	Reset	Access	Description							
31:8	Reserved	To ensure c ventions	ompatibility with	future devices, always write bits to 0. More information in 1.2 Con-							
7:1	ADDR	0x0	RW	Slave address							
	Specifies the slave addre	ess of the dev	ice.								
0	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 ventions									

21.5.9 I2C_SADDRMASK - Slave Address Mask Register

Offset	Bit Position	
0x020	1	- 0 r 4 w 7 - 0
Reset		0×0
Access		RW
Name		SADDRMASK

Bit	Name	Reset	Access	Description						
31:8	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-						
7:1	SADDRMASK	0x0	RW	Slave Address Mask						
	Specifies the signification 0x7F will only match			Setting the mask to 0x00 will match all addresses, while setting it to y ADDR.						
0	Reserved	To ensure ventions	To ensure compatibility with future devices, always write bits to 0. More information in 1.2							

21.5.10 I2C_RXDATA - Receive Buffer Data Register

Offset															Bi	t Po	sitio	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	8	7	6	5	4	က	2	_	0
Reset															•	•												2	2			
Access																												۵	۷			
Name																												V L V C X C	7			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
7:0	RXDATA	0x0	R	RX Data
	Use this register to read	from the rece	ive buffer. Buffe	er is emptied on read access.

21.5.11 I2C_RXDOUBLE - Receive Buffer Double Data Register

Offset															Bi	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	О	_∞	7	9	2	4	က	2	_	0
Reset																		•		2	S S	•						2	3			
Access																				ב	צ							۵	۷			
																				,								V \	2			
Name																				2	Y Y Y							, C V	۲ ک			
																				ב	צ							۵	_			

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
15:8	RXDATA1	0x0	R	RX Data 1
	Second byte read from b	uffer. Buffer i	s emptied on re	ad access.
7:0	RXDATA0	0x0	R	RX Data 0
	First byte read from buffe	er. Buffer is ei	mptied on read	access.

21.5.12 I2C_RXDATAP - Receive Buffer Data Peek Register

Offset															Bi	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset																												OXO	8			
Access																												α				
Name																												RXDATAP				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility witi	n future devices, always write bits to 0. More information in 1.2 Con-
7:0	RXDATAP	0x0	R	RX Data Peek
	Use this register to read	from the rece	ive buffer. Buffe	er is not emptied on read access.

21.5.13 I2C_RXDOUBLEP - Receive Buffer Double Data Peek Register

Offset	Bit Po	osition	
0x030	1 1 <th>1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 6 8 8</th> <th>r 9 8 4 8 2 t 0</th>	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 6 8 8	r 9 8 4 8 2 t 0
Reset		0×0	0×0
Access		α	α
Name		RXDATAP1	RXDATAP0

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
15:8	RXDATAP1	0x0	R	RX Data 1 Peek
	Second byte read from b	ouffer. Buffer i	s not emptied o	n read access.
7:0	RXDATAP0	0x0	R	RX Data 0 Peek
	First byte read from buffe	er. Buffer is no	ot emptied on re	ead access.

21.5.14 I2C_TXDATA - Transmit Buffer Data Register

Offset															Bi	t Po	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	3	2	_	0
Reset																												0				
Access																												}	:			
Name																												TXDATA				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility witi	n future devices, always write bits to 0. More information in 1.2 Con-
7:0	TXDATA	0x0	W	TX Data
	Use this register to write	a byte to the	transmit buffer.	

21.5.15 I2C_TXDOUBLE - Transmit Buffer Double Data Register

Offset															Bi	t Po	siti	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	_∞	7	9	2	4	က	2	_	0
Reset										1										2	OXO							2) N	'		
Access																				}	>							}	>			
																				- -	<u> </u>							C <	2			
Name																				2 2	Y 2 7							2 2	2			
																				F	_							F	_			

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
15:8	TXDATA1	0x0	W	TX Data
	Second byte to write to b	ouffer.		
7:0	TXDATA0	0x0	W	TX Data
	First byte to write to buff	er.		

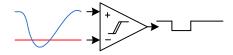
21.5.16 I2C_IF - Interrupt Flag Register

Offset															Bi	t Po	ositi	on														
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset		•	•		•		•					000	000	000	000	000	0x0	000	0x0	0X0	0x0	0X0	0x0	000	000	000	000	000	000	0x0	000	0x0
Access												W.	R W	S.	₩ N	Z.	RW	Z.	RW	Z.	RW	RW	RW	₩ N	RW W	₩ N	Z.	W.	S.	₩ M	W.	RW
Name												SDAERR	SCLERR	CLERR	RXFULL	SSTOP	CLTO	BITO	RXUF	TXOF	BUSHOLD	BUSERR	ARBLOST	MSTOP	NACK	ACK	RXDATAV	TXBL	TXC	ADDR	RSTART	START

Bit	Name	Reset	Access	Description
31:21	Reserved	To ensure ventions	e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
20	SDAERR	0x0	RW	SDA Error Interrupt Flag
	Set when the SDA at	loopback path	is not equal to	SDA output
19	SCLERR	0x0	RW	SCL Error Interrupt Flag
	Set when the SCL at I	loopback path	is not equal to S	SCL output
18	CLERR	0x0	RW	Clock Low Error Interrupt Flag
	Set when the clock is	pulled low before	ore a START or	a STOP condition could be transmitted.
17	RXFULL	0x0	RW	Receive Buffer Full Interrupt Flag
	Set when the receive	buffer become	s full.	
16	SSTOP	0x0	RW	Slave STOP condition Interrupt Flag
	Set when a STOP cornot.	ndition has bee	en received. Wil	be set regardless of the slave being involved in the transaction or
15	CLTO	0x0	RW	Clock Low Timeout Interrupt Flag
	Set on each clock low	timeout. The	timeout value ca	an be set in CLTO bit field in the I2Cn_CTRL register.
14	ВІТО	0x0	RW	Bus Idle Timeout Interrupt Flag
	Set on each bus idle t	timeout. The tir	neout value car	n be set in the BITO bit field in the I2Cn_CTRL register.
13	RXUF	0x0	RW	Receive Buffer Underflow Interrupt Flag
				gh the I2Cn_RXDATA register while the receive buffer is empty. It is UBLE while the buffer is not full.
12	TXOF	0x0	RW	Transmit Buffer Overflow Interrupt Flag
	Set when data is writte	en to the trans	mit buffer while	the transmit buffer is full.
11	BUSHOLD	0x0	RW	Bus Held Interrupt Flag
	Set when the bus bed	comes held by	the I2C module	
10	BUSERR	0x0	RW	Bus Error Interrupt Flag
	Set when a bus error	is detected. Th	ne bus error is re	esolved automatically, but the current transfer is aborted.
9	ARBLOST	0x0	RW	Arbitration Lost Interrupt Flag
	Set when arbitration is	s lost.		
8	MSTOP	0x0	RW	Master STOP Condition Interrupt Flag

Bit	Name	Reset	Access	Description							
	Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set.										
7	NACK	0x0	RW	Not Acknowledge Received Interrupt Flag							
	Set when a NACK ha	as been receive	ed.								
6	ACK	0x0	RW	Acknowledge Received Interrupt Flag							
	Set when an ACK has been received.										
5	RXDATAV	0x0	RW	Receive Data Valid Interrupt Flag							
	Set when received data is half full										
4	TXBL	0x0	RW	Transmit Buffer Level Interrupt Flag							
	if TXBIL==0, set whe	n the transmit b	ouffer is empty.	if TXBIL==1, set when the transmit is half full							
3	TXC	0x0 RW Transfer Completed Interrupt Flag									
	Set when the transm	it shift register l	becomes empty	and there is no more data in the transmit buffer.							
2	ADDR	0x0	RW	Address Interrupt Flag							
	Set when incoming a	ddress is acce	pted, i.e. own ad	ddress or general call address is received.							
1	RSTART	0x0	RW	Repeated START condition Interrupt Flag							
	Set when a repeated	start condition	is detected.								
0	START	0x0	RW	START condition Interrupt Flag							
	Set when a start con-	dition is succes	sfully transmitte	ed.							

21.5.17 I2C_IEN - Interrupt Enable Register


Offset	Bit Position																															
0x040	30 30 30 30 30 30 30 30 30 30 30 30 30 3							20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0				
Reset					'		'	•				0x0	0×0	0X0	0x0	0×0	000	0×0	0x0	0X0	0x0	0X0	0x0	000	0X0	000	000	0x0	000	0x0	0×0	0x0
Access								W.	W.	R W	W.	Z.	RW W	Z.	RW	Z.	RW	R W	RW	₩ N	R M	W.	₩ M	W.	₩ M	₩ M	W.	RW				
Name												SDAERR	SCLERR	CLERR	RXFULL	SSTOP	CLTO	BITO	RXUF	TXOF	BUSHOLD	BUSERR	ARBLOST	MSTOP	NACK	ACK	RXDATAV	TXBL	TXC	ADDR	RSTART	START

Bit	Name	Reset	Access	Description							
31:21	Reserved	To ensure ventions	To ensure compatibility with future devices, always write bits to 0. More informations								
20	SDAERR	0x0	RW	SDA Error Interrupt Flag							
	Set when SDA at loopback path is not equal to SDA output										
19	SCLERR	0x0	RW	SCL Error Interrupt Flag							
	Set when SCL at loopback path is not equal to SCL output										
18	CLERR	0x0	RW	Clock Low Error Interrupt Flag							
	Set when the clock is pulled low before a START or a STOP condition could be transmitted.										
17	RXFULL	0x0	RW	Receive Buffer Full Interrupt Flag							
	Set when the receive buffer becomes full.										
16	SSTOP	0x0	RW	Slave STOP condition Interrupt Flag							
	Set when a STOP condition has been received. Will be set regardless of the slave being involved in the transaction or not.										
15	CLTO	0x0	RW	Clock Low Timeout Interrupt Flag							
	Set on each clock low timeout. The timeout value can be set in CLTO bit field in the I2Cn_CTRL register.										
14	BITO	0x0	RW	Bus Idle Timeout Interrupt Flag							
	Set on each bus idl	le timeout. The tir	neout value car	n be set in the BITO bit field in the I2Cn_CTRL register.							
13	RXUF	0x0	RW	Receive Buffer Underflow Interrupt Flag							
				gh the I2Cn_RXDATA register while the receive buffer is empty. It is UBLE while the buffer is not full.							
12	TXOF	0x0	RW	Transmit Buffer Overflow Interrupt Flag							
	Set when data is w	ritten to the trans	mit buffer while	the transmit buffer is full.							
11	BUSHOLD	0x0	RW	Bus Held Interrupt Flag							
	Set when the bus becomes held by the I2C module.										
10	BUSERR	0x0	RW	Bus Error Interrupt Flag							
	Set when a bus err	or is detected. Th	ne bus error is re	esolved automatically, but the current transfer is aborted.							
9	ARBLOST	0x0	RW	Arbitration Lost Interrupt Flag							
	Set when arbitration is lost.										
8	MSTOP	0x0	RW	Master STOP Condition Interrupt Flag							

Bit	Name	Reset	Access	Description							
	Set when a STOP condition has been successfully transmitted. If arbitration is lost during the transmission of the STOP condition, then the MSTOP interrupt flag is not set.										
7	NACK	0x0	RW	Not Acknowledge Received Interrupt Flag							
	Set when a NACh	K has been receive	d.								
6	ACK	0x0	RW	Acknowledge Received Interrupt Flag							
	Set when an ACK	Chas been received	d.								
5	RXDATAV	0x0	RW	Receive Data Valid Interrupt Flag							
	Set when data is available in the receive buffer. Cleared automatically when the receive buffer is read.										
4	TXBL 0x0 RW Transmit Buffer Level Interrupt Flag										
	Set when the tran	smit buffer become	es empty. Clea	ared automatically when new data is written to the transmit buffer.							
3	TXC	TXC 0x0 RW Transfer Completed Interrupt Flag									
	Set when the tran	smit shift register b	oecomes empt	y and there is no more data in the transmit buffer.							
2	ADDR	0x0	RW	Address Interrupt Flag							
	Set when incoming	ng address is accep	oted, i.e. own a	address or general call address is received.							
1	RSTART	0x0	RW	Repeated START condition Interrupt Flag							
	Set when a repea	ated start condition	is detected.								
0	START	0x0	RW	START condition Interrupt Flag							
	Set when a start of	condition is succes	sfully transmitt	ted.							
	,										

22. ACMP - Analog Comparator

Quick Facts

What?

The ACMP (Analog Comparator) compares two analog signals and returns a digital value telling which is greater.

Why?

Applications often do not need to know the exact value of an analog signal, only if it has passed a certain threshold. Often the voltage must be monitored continuously, which requires extremely low power consumption.

How?

Available down to Energy Mode 3, the ACMP can wake up the system when input signals pass the threshold. The analog comparator can compare two analog signals or one analog signal and a highly configurable internal reference.

22.1 Introduction

The Analog Comparator compares the voltage of two analog inputs and outputs a digital signal indicating which input voltage is higher. Inputs can either be from internal references or from external pins. Response time, and thereby the current consumption, can be configured by altering the current supply to the comparator.

22.2 Features

- · Internal and external input selections:
 - External port I/O
 - · Internal 1.25 V bandgap reference voltage with programmable divider
 - Internal 2.5 V bandgap reference voltage with programmable divider
 - · AVDD supply voltage with programmable divider
- · Voltage supply monitoring
- · Configurable hysteresis
- · Selectable response time
- Operational in EM0 to EM3
- · Capacitive sense mode
- · Asynchronous interrupt generation on selectable edges
- · Configurable output state when inactive
- · Comparator output available on PRS
- · Comparator output on GPIO through DBUS

22.3 Functional Description

An overview of the ACMP is shown in Figure 22.1 ACMP Overview on page 609.

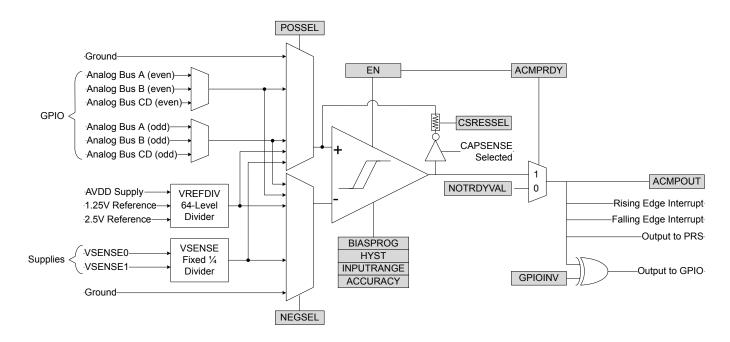


Figure 22.1. ACMP Overview

The comparator has two analog inputs: one positive and one negative. When the comparator is active, the output indicates which of the two input voltages is higher. When the voltage on the positive input is higher than the voltage on the negative input, the digital output is high and vice versa.

In addition to the comparator core, the ACMP front-end includes reference sources, voltage divider circuits, and input muxes to route signals to the positive and negative inputs. There is also a feeback resistor which is used in capacitive sense mode. The output from the ACMP is available on both PRS and GPIO, in addition to being observable in the ACMP STATUS register.

22.3.1 Configuration and Control

The ACMP is configured and controlled through three registers: ACMP_CFG, ACMP_CTRL, and ACMP_INPUTCTRL. Configuration through ACMP_CFG needs to happen before the ACMP is enabled. The control registers ACMP_CTRL and ACMP_INPUTCTRL can only be updated after the ACMP is enabled. The ACMP is enabled by setting the EN bit in ACMP_EN. If ACMP_CFG is updated when EN = 1, or ACMP_CTRL / ACMP_INPUTCTRL is updated while EN = 0, a bus fault is issued.

The input muxes are configured in the POSSEL / NEGSEL bitfields in ACMP_INPUTCTRL. All references and inputs are available in the modes defined for these two registers. The INPUTCTRL bit in ACMP_SYNCBUSY should be checked before writing to ACMP_INPUTCTRL. If the ACMP_SYNCBUSY_INPUTCTRL bit is 1, it means a previous write to the ACMP_INPUTCTRL register is pending, and software should wait until ACMP_SYNCBUSY_INPUTCTRL bit reads 0.

The POSSEL and NEGSEL muxes share several resources on the device, such as the VREFDIV and VSENSE divider circuits. Thus, there are some constraints on the POSSEL / NEGSEL configurations:

- POSSEL and NEGSEL cannot select an even numbered GPIO pin at the same time.
- POSSEL and NEGSEL cannot select an odd numbered GPIO pin at the same time.
- POSSEL and NEGSEL cannot both select a supply voltage via one of the VSENSE inputs.
- POSSEL and NEGSEL cannot both select an input using VREFDIV.

If one of these constraints are violated, the INPUTCONFLICT status flag and INPUTCONFLICTIF interrupt flag will be set.

The ACMP also uses shared chip-level analog bus resources to connect to external GPIO pins. Which bus the ACMP is using depends on the configuration of POSSEL and NEGSEL. To allow the ACMP to control an analog bus, the bus must be allocated to ACMP in the GPIO module, using the GPIO_xBUSALLOC registers. For example, pin PB5 is an odd-numbered pin on port PB, and could connect via either analog bus BODD0 or BODD1. This is configured using the BODD0 or BODD1 field in GPIO BBUSALLOC.

If the ACMP peripheral is trying to access a bus that has not been allocated to that instance of ACMP, the PORTALLOCERR status flag and PORTALLOCERRIF interrupt flag will be set.

22.3.2 Warmup Time

When the comparator is enabled or the input muxes are reconfigured, it requires some time to stabilize. On first enable (ACMP_EN_EN = 1), the comparator core requires 2.5 us to stabilize. In addition to this, any references selected may require some time to warm up. See table Table 22.1 Warmup Time on page 610 for warmup times for the different references. When reconfiguring the ACMP (without disabling it), only the warmup times given in the table will be observed. When the comparator is ready for use, the ACMPRDY status flag and the ACMPRDYIF interrupt will be set. During the warmup time and when the comparator is inactive, the comparator output will be set to the state defined by the NOTRDYVAL bit in ACMP_CTRL.

Table 22.1. Warmup Time

Reference	Warmup time
Low power reference: POSSEL / NEGSEL = *LP	10 us
VSENSE: POSSEL / NEGSEL = VSENSE*	5 us
VREF: POSSEL / NEGSEL = VREF*	2 us
None of the above	0.5 us

22.3.3 Response Time

There is a delay from when the input voltage changes polarity to when the output toggles. This delay is called the response time and can be altered by increasing or decreasing the bias current to the comparator through the BIASPROG bitfield in the ACMP_CFG register. The current and speed of the circuit increase as the value of BIASPROG is increased. See the part datasheet for specific current and response times releated to setting of BIASPROG.

22.3.4 Hysteresis

When the hysteresis level is set to a non-zero value, the digital output will not toggle until the positive input voltage is at a voltage equal to the hysteresis level above or below the negative input voltage (see Figure 22.2 Hysteresis on page 610). This feature can be used avoid continual comparator output changes due to input noise when the positive and negative inputs are similar. Hysteresis requires the input difference to exceed the hysteresis threshold before the output can change and can reject limited amounts of noise. The hystersis in ACMP can be configured to three different levels (10 mV, 20 mV, 30 mV), and can be enabled on positive (rising), negative (falling), or both edges. Hysteresis is configured in the HYST bitfield in ACMP CFG.

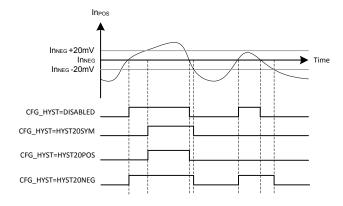


Figure 22.2. Hysteresis

22.3.5 VREFDIV Sources

The ACMP has two internal bandgap references: 2.5 V and 1.25 V. In addition, AVDD can be used as a reference. To select one of these references, configure POSSEL / NEGSEL to VREFDIVAVDD, VREFDIV1V25, or VREFDIV2V5. The ACMP also includes sample/hold functionality to reduce energy consumption. To enable the sample/hold feature, select VREFDIVAVDDLP, VREFDIV1V25LP, or VREFDIV2V5LP. These references can be divided by configuring VREFDIV in ACMP_INPUTCTRL. This division factor will be VREFDIV / 63, such that VREFOUT = VREFIN * (VREFDIV / 63).

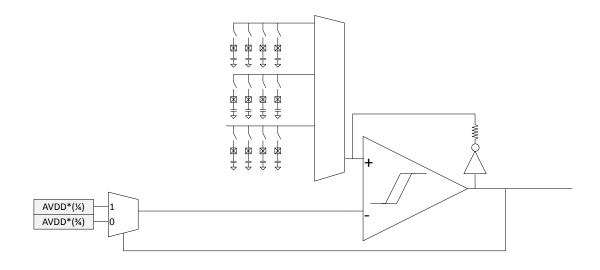
22.3.6 Supply Voltage Monitoring (VSENSE)

The ACMP can be used to monitor supply voltages. This is done by selecting VSENSE01DIV4(LP) or VSENSE11DIV4(LP) for either POSSEL or NEGSEL. Note that the input to the comparator core will be divided by 4, as illustrated in Figure 22.1 ACMP Overview on page 609. To reduce energy consumption, a sample/hold circuit can be used to periodically sample the power supplies. To enable this, select VSENSE01DIV4LP or VSENSE11DIV4LP in POSSEL / NEGSEL. Because the sample/hold feature uses the comparator in a non-continuous fashion, enabling this will increase response times and reduce the accuracy of the comparator. The connections between VSENSE0 and VSENSE1 to power supplies are summarized in Table 22.2 VSENSE connections on page 611.

Table 22.2. VSENSE connections

ACMP instance	VSENSE0	VSENSE1
ACMP0	AVDD	VDDIO0
ACMP1	DVDD	Not connected

22.3.7 Input Range and Accuracy Settings


By default, the ACMP can accept external rail-to-rail inputs, from 0 to AVDD. If external voltages will never be higher than AVDD - 0.7 V, the INPUTRANGE bit in ACMP CFG can be set to 1 to reduce the power consumption of the block.

The ACMP also has an adjustable accuracy setting (ACCURACY in ACMP_CFG). ACCURACY is set to LOW by default, which conserves power, but may have degraded performance for rapidly changing analog Port selections in either the ACMP or the GPIO. ACCURACY can be set to HIGH to insure ACMP accuracy (at the expense of extra power consumption), when configuration changes are expected at a high rate (more than once per ms, for example), such as when scanning through channels or using the capacitive sense feature.

22.3.8 Capacitive Sense Mode

The analog comparator includes specialized hardware for capacitive sensing of passive push buttons. Such buttons are traces on the PCB laid out in a way that creates a parasitic capacitor between the button and the ground node. Because a human finger will have a small intrinsic capacitance to ground, the capacitance of the button will increase when the button is touched. The capacitance is measured by including the capacitor in a free-running RC oscillator (see Figure 22.3 Capacitive Sense on page 612). The resistance in this oscillator can be configured through INPUTCTRL_CSRESSEL, see datasheet for resistor values. The frequency produced will decrease when the button is touched compared to when it is not touched. By measuring the output frequency with a timer (via the PRS), the change in capacitance can be detected.

To enable the capacitive sense mode, select CAPSENSE in INPUTCTRL_NEGSEL, and select the pin to measure in IN-PUTCTRL_POSSEL.

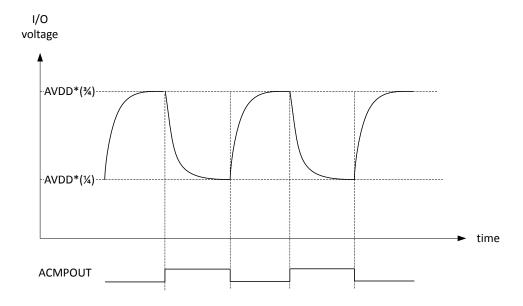


Figure 22.3. Capacitive Sense

22.3.9 Interrupts and PRS Output

The analog comparator includes independent output flags for rising edge (RISEIF) and falling edge (FALLIF) events. These will be set when a rising or falling edge is detected, respectively.

Three other interrupt sources are also available. PORTALLOCERRIF and INPUTCONFLICTIF are input configuration error flags, detailed in 22.3.1 Configuration and Control. The ACMPRDYIF flag indicates comparator stability after a warmup period, as detailed in 22.3.2 Warmup Time.

The comparator output is available as an asynchronous PRS producer, and can be routed to other peripherals in the system via PRS.

22.3.10 Output to GPIO

The output from the comparator and the capacitive sense output are available as alternate functions to the GPIO pins. Each pin connection can be enabled/disabled separately using the GPIO module control registers. See the device data sheet for the available locations for each signal.

The GPIO pin must also be set as output. The output to the GPIO can be inverted by setting the GPIOINV bit in ACMP CTRL.

22.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	ACMP_IPVERSION	R	IP version ID
0x004	ACMP_EN	RW ENABLE	ACMP enable
0x008	ACMP_CFG	RW CONFIG	Configuration register
0x00C	ACMP_CTRL	RW	Control Register
0x010	ACMP_INPUTCTRL	RW SYNC	Input Control Register
0x014	ACMP_STATUS	RH	Status Register
0x018	ACMP_IF	RWH INTFLAG	Interrupt Flag Register
0x01C	ACMP_IEN	RW	Interrupt Enable Register
0x020	ACMP_SYNCBUSY	RH	Syncbusy
0x1000	ACMP_IPVERSION_SET	R	IP version ID
0x1004	ACMP_EN_SET	RW ENABLE	ACMP enable
0x1008	ACMP_CFG_SET	RW CONFIG	Configuration register
0x100C	ACMP_CTRL_SET	RW	Control Register
0x1010	ACMP_INPUTCTRL_SET	RW SYNC	Input Control Register
0x1014	ACMP_STATUS_SET	RH	Status Register
0x1018	ACMP_IF_SET	RWH INTFLAG	Interrupt Flag Register
0x101C	ACMP_IEN_SET	RW	Interrupt Enable Register
0x1020	ACMP_SYNCBUSY_SET	RH	Syncbusy
0x2000	ACMP_IPVERSION_CLR	R	IP version ID
0x2004	ACMP_EN_CLR	RW ENABLE	ACMP enable
0x2008	ACMP_CFG_CLR	RW CONFIG	Configuration register
0x200C	ACMP_CTRL_CLR	RW	Control Register
0x2010	ACMP_INPUTCTRL_CLR	RW SYNC	Input Control Register
0x2014	ACMP_STATUS_CLR	RH	Status Register
0x2018	ACMP_IF_CLR	RWH INTFLAG	Interrupt Flag Register
0x201C	ACMP_IEN_CLR	RW	Interrupt Enable Register
0x2020	ACMP_SYNCBUSY_CLR	RH	Syncbusy
0x3000	ACMP_IPVERSION_TGL	R	IP version ID
0x3004	ACMP_EN_TGL	RW ENABLE	ACMP enable
0x3008	ACMP_CFG_TGL	RW CONFIG	Configuration register
0x300C	ACMP_CTRL_TGL	RW	Control Register
0x3010	ACMP_INPUTCTRL_TGL	RW SYNC	Input Control Register
0x3014	ACMP_STATUS_TGL	RH	Status Register
0x3018	ACMP_IF_TGL	RWH INTFLAG	Interrupt Flag Register
0x301C	ACMP_IEN_TGL	RW	Interrupt Enable Register

Offset	Name	Туре	Description
0x3020	ACMP_SYNCBUSY_TGL	RH	Syncbusy

22.5 Register Description

22.5.1 ACMP_IPVERSION - IP version ID

Offset															Bi	t Po	sitio	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	ဖ	2	4	က	2	_	0
Reset	0X 0																															
Access																۵																
Name																IDVEDVION																

Bit	Name	Reset	Access	Description
31:0	IPVERSION	0x0	R	IP version ID
	The read only IPVERSIC modules with different va	0		this module. There may be minor software changes required for

22.5.2 ACMP_EN - ACMP enable

Offset															Bi	t Po	sitio	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	9	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																																0×0
Access																																RW
Name																																EN

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
0	EN	0x0	RW	Module enable
				d write to CONFIG type registers before setting the ENABLE bit. er setting the ENABLE bit.

22.5.3 ACMP_CFG - Configuration register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																0x2																
Access															₩ N	W.						i	≩ Ƴ								Z.	
Name															ACCURACY	INPUTRANGE						H] [0 L								BIAS	

Bit	Name	Reset	Access	Description
31:18	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
17	ACCURACY	0x0	RW	ACMP accuracy mode
		rformance to de	grade. For such	the signal input path of the ACMP. Note, high frequency changes can uses, such as quickly scanning through multiple channels or setting uld be set to HIGH.
	Value	Mode		Description
	0	LOW		ACMP operates in low-accuracy mode but consumes less current.
	1	HIGH		ACMP operates in high-accuracy mode but consumes more current.
16	INPUTRANGE	0x0	RW	Input Range
	Adjust performance	of the comparat	or for a given ir	put voltage range.
	Value	Mode		Description
	0	FULL		Use this setting when the input to the comparator core can be from 0 to AVDD.
	1	REDUCE	D	It is recommended to use this setting when the input to the comparator core will always be less than AVDD-0.7V.
15:12	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
11:8	HYST	0x0	RW	Hysteresis mode
	Set hysteresis mode	and level.		
	Value	Mode		Description
	0	DISABLE	D	Hysteresis disabled
	1	SYM10M	/	10mV symmetrical hysteresis
	2	SYM20M	/	20mV symmetrical hysteresis
	3	SYM30MY	/	30mV symmetrical hysteresis
	4	POS10M\	/	10mV hysteresis on positive edge transitions
	5	POS20M\	/	20mV hysteresis on positive edge transitions

Bit	Name	Reset	Access	Description
	6	POS30MV	′	30mV hysteresis on positive edge transitions
	8	NEG10MV	/	10mV hysteresis on negative edge transitions
	9	NEG20MV	/	20mV hysteresis on negative edge transitions
	10	NEG30MV	′	30mV hysteresis on negative edge transitions
7:3	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
2:0	BIAS	0x2	RW	Bias Configuration
	These bits control	the bias current le	vel. See the c	latasheet for details.

22.5.4 ACMP_CTRL - Control Register

Offset															Bi	it Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset								•				•						•													0X0	0x0
Access																															% M	RW
Name																															GPIOINV	NOTRDYVAL

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
1	GPIOINV	0x0	RW	Comparator GPIO Output Invert
	Set this bit to 1 to in	vert the compara	ator alternate fu	nction output to GPIO.
	Value	Mode		Description
	0	NOTINV		The comparator output to GPIO is not inverted
	1	INV		The comparator output to GPIO is inverted
0	NOTRDYVAL	0x0	RW	Not Ready Value
	The value of this bit	is used as the co	omparator outp	ut when the comparator is not ready.
	Value	Mode		Description
	0	LOW		ACMP output is 0 when the ACMP is not ready.
	1	HIGH		ACMP output is 1 when the ACMP is not ready.

22.5.5 ACMP_INPUTCTRL - Input Control Register

Offset															Bi	t Po	siti	on														
0x010	33	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	9	6	8	7	9	5	4	- ო	2	_	0
Reset			0X0	•			•			•			2	e X		•				Š	OX O	•				•	•		000	•	•	
Access			₽										<u> </u>	<u>}</u>						2	<u>}</u>								Z.			
Name			CSRESSEL										VDEEDIV	VIUTE							NEGOEL								POSSEL			

Bit	Name	Reset	Access	Description
31	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Cor
30:28	CSRESSEL	0x0	RW	Capacitive Sense Mode Internal Resistor
	These bits select the in the device datashe		e for the interna	ll capacitive sense resistor. Resulting actual resistor values are give
	Value	Mode		Description
	0	RES0		Internal capacitive sense resistor value 0
	1	RES1		Internal capacitive sense resistor value 1
	2	RES2		Internal capacitive sense resistor value 2
	3	RES3		Internal capacitive sense resistor value 3
	4	RES4		Internal capacitive sense resistor value 4
	5	RES5		Internal capacitive sense resistor value 5
	6	RES6		Internal capacitive sense resistor value 6
27:22	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Cor
21:16	VREFDIV	0x0	RW	VREF division
	Set division factor for	VREFDIV. VRE	FOUT = VREF	IN * (VREFDIV / 63)
15:8	NEGSEL	0x0	RW	Negative Input Select
	Select negative input			
	Value	Mode	,	Description
	0	VSS		VSS
	16	\/DEED!\//		Divided AVDD
	10	VREFDIVA	AVDD	Divided AVDD
	17	VREFDIVA		Low-Power Divided AVDD
			AVDDLP	
	17	VREFDIVA	AVDDLP IV25	Low-Power Divided AVDD
	17 18	VREFDIVA	AVDDLP IV25 IV25LP	Low-Power Divided AVDD Divided 1V25 reference
	17 18 19	VREFDIVA VREFDIV1	AVDDLP IV25 IV25LP 2V5	Low-Power Divided AVDD Divided 1V25 reference Low-power Divided 1V25 reference

		Reset Access	Description
(33	VSENSE01DIV4LP	Low-power VSENSE0 divided by 4
;	34	VSENSE11DIV4	VSENSE1 divided by 4
;	35	VSENSE11DIV4LP	Low-power VSENSE1 divided by 4
4	48	CAPSENSE	Capsense mode
•	128	PA0	Port A, Pin0
•	129	PA1	Port A, Pin1
•	130	PA2	Port A, Pin2
•	131	PA3	Port A, Pin3
•	132	PA4	Port A, Pin4
•	133	PA5	Port A, Pin5
•	134	PA6	Port A, Pin6
	135	PA7	Port A, Pin7
	136	PA8	Port A, Pin8
	137	PA9	Port A, Pin9
	138	PA10	Port A, Pin10
	139	PA11	Port A, Pin11
	140	PA12	Port A, Pin12
	141	PA13	Port A, Pin13
	142	PA14	Port A, Pin14
	143	PA15	Port A, Pin15
_	144	PB0	Port B, Pin0
•	145	PB1	Port B, Pin1
_	146	PB2	Port B, Pin2
•	147	PB3	Port B, Pin3
_	148	PB4	Port B, Pin4
_	149	PB5	Port B, Pin5
•	150	PB6	Port B, Pin6
_	151	PB7	Port B, Pin7
•	152	PB8	Port B, Pin8
_	153	PB9	Port B, Pin9
_	154	PB10	Port B, Pin10
•	155	PB11	Port B, Pin11
_	156	PB12	Port B, Pin12
_	157	PB13	Port B, Pin13
	158	PB14	Port B, Pin14
_	159	PB15	Port B, Pin15
	160	PC0	Port C, Pin0

Bit	Name	Reset	Access	Description
	161	PC1		Port C, Pin1
	162	PC2		Port C, Pin2
	163	PC3		Port C, Pin3
	164	PC4		Port C, Pin4
	165	PC5		Port C, Pin5
	166	PC6		Port C, Pin6
	167	PC7		Port C, Pin7
	168	PC8		Port C, Pin8
	169	PC9		Port C, Pin9
	170	PC10		Port C, Pin10
	171	PC11		Port C, Pin11
	172	PC12		Port C, Pin12
	173	PC13		Port C, Pin13
	174	PC14		Port C, Pin14
	175	PC15		Port C, Pin15
	176	PD0		Port D, Pin0
	177	PD1		Port D, Pin1
	178	PD2		Port D, Pin2
	179	PD3		Port D, Pin3
	180	PD4		Port D, Pin4
	181	PD5		Port D, Pin5
	182	PD6		Port D, Pin6
	183	PD7		Port D, Pin7
	184	PD8		Port D, Pin8
	185	PD9		Port D, Pin9
	186	PD10		Port D, Pin10
	187	PD11		Port D, Pin11
	188	PD12		Port D, Pin12
	189	PD13		Port D, Pin13
	190	PD14		Port D, Pin14
	191	PD15		Port D, Pin15
7:0	POSSEL	0x0	RW	Positive Input Select
	Select positive input.			
	Value	Mode		Description
	0	VSS		VSS
	16	VREFDIVA	AVDD	Divided AVDD
		VINEL DIVE		

Bit	Name	Reset Access	Description
	17	VREFDIVAVDDLP	Low-Power Divided AVDD
	18	VREFDIV1V25	Divided 1V25 reference
	19	VREFDIV1V25LP	Low-power Divided 1V25 reference
	20	VREFDIV2V5	Divided 2V5 reference
	21	VREFDIV2V5LP	Low-power Divided 2V5 reference
	32	VSENSE01DIV4	VSENSE0 divided by 4
	33	VSENSE01DIV4LP	Low-power VSENSE0 divided by 4
	34	VSENSE11DIV4	VSENSE1 divided by 4
	35	VSENSE11DIV4LP	Low-power VSENSE1 divided by 4
	128	PA0	Port A, Pin0
	129	PA1	Port A, Pin1
	130	PA2	Port A, Pin2
	131	PA3	Port A, Pin3
	132	PA4	Port A, Pin4
	133	PA5	Port A, Pin5
	134	PA6	Port A, Pin6
	135	PA7	Port A, Pin7
	136	PA8	Port A, Pin8
	137	PA9	Port A, Pin9
	138	PA10	Port A, Pin10
	139	PA11	Port A, Pin11
	140	PA12	Port A, Pin12
	141	PA13	Port A, Pin13
	142	PA14	Port A, Pin14
	143	PA15	Port A, Pin15
	144	PB0	Port B, Pin0
	145	PB1	Port B, Pin1
	146	PB2	Port B, Pin2
	147	PB3	Port B, Pin3
	148	PB4	Port B, Pin4
	149	PB5	Port B, Pin5
	150	PB6	Port B, Pin6
	151	PB7	Port B, Pin7
	152	PB8	Port B, Pin8
	153	PB9	Port B, Pin9
	154	PB10	Port B, Pin10
	155	PB11	Port B, Pin11

3it	Name	Reset	Access	Description
	156	PB12		Port B, Pin12
	157	PB13		Port B, Pin13
	158	PB14		Port B, Pin14
	159	PB15		Port B, Pin15
	160	PC0		Port C, Pin0
	161	PC1		Port C, Pin1
	162	PC2		Port C, Pin2
	163	PC3		Port C, Pin3
	164	PC4		Port C, Pin4
	165	PC5		Port C, Pin5
	166	PC6		Port C, Pin6
	167	PC7		Port C, Pin7
	168	PC8		Port C, Pin8
	169	PC9		Port C, Pin9
	170	PC10		Port C, Pin10
	171	PC11		Port C, Pin11
	172	PC12		Port C, Pin12
	173	PC13		Port C, Pin13
	174	PC14		Port C, Pin14
	175	PC15		Port C, Pin15
	176	PD0		Port D, Pin0
	177	PD1		Port D, Pin1
	178	PD2		Port D, Pin2
	179	PD3		Port D, Pin3
	180	PD4		Port D, Pin4
	181	PD5		Port D, Pin5
	182	PD6		Port D, Pin6
	183	PD7		Port D, Pin7
	184	PD8		Port D, Pin8
	185	PD9		Port D, Pin9
	186	PD10		Port D, Pin10
	187	PD11		Port D, Pin11
	188	PD12		Port D, Pin12
	189	PD13		Port D, Pin13
	190	PD14		Port D, Pin14
	191	PD15		Port D, Pin15

22.5.6 ACMP_STATUS - Status Register

Offset															Ві	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•	•		•		•	•										•								•	•	0x0	0×0	0x0		0x0
Access																												œ	œ	œ		~
Name																												PORTALLOCERR	INPUTCONFLICT	ACMPRDY		ACMPOUT

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
4	PORTALLOCERR	0x0	R	Port allocation error
	The port selected by INP needs to be configured in			CTRL_NEGSEL is not allocated to this ACMP. Port allocation
3	INPUTCONFLICT	0x0	R	INPUT conflict
	INPUTCTRL_POSSEL a	ind INPUTCT	RL_NEGSEL is	configured illegally.
2	ACMPRDY	0x0	R	Analog Comparator Ready
	Analog comparator ready	y status.		
1	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
0	ACMPOUT	0x0	R	Analog Comparator Output
	Analog comparator output	ut value.		

22.5.7 ACMP_IF - Interrupt Flag Register

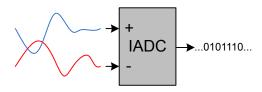
Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	æ	7	9	2	4	က	7	_	0
Reset			•		<u>'</u>		'						'					'		'							<u>'</u>	000	0×0	000	0x0	0x0
Access																												₩ M	₩ M	RW	RW	A M
Name																												PORTALLOCERR	INPUTCONFLICT	ACMPRDY	FALL	RISE

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
4	PORTALLOCERR	0x0	RW	Port allocation error
	The port selected by INF needs to be configured in			CTRL_NEGSEL is not allocated to this ACMP. Port allocation
3	INPUTCONFLICT	0x0	RW	Input conflict
	INPUTCTRL_POSSEL a	and INPUTCT	RL_NEGSEL is	configured illegally.
2	ACMPRDY	0x0	RW	ACMP ready Interrupt flag
	Indicates that the analog	comparator i	s ready and refe	erences have settled.
1	FALL	0x0	RW	Falling Edge Triggered Interrupt Flag
	Indicates that there has I	oeen a falling	edge on the and	alog comparator output.
0	RISE	0x0	RW	Rising Edge Triggered Interrupt Flag
	Indicates that there has I	peen a rising	edge on the ana	alog comparator output.

22.5.8 ACMP_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	7	_	0
Reset			•				'									<u>'</u>				'			•	'				000	0×0	000	0x0	0x0
Access																												W.	W.	₩.	RW	R W
Name																												PORTALLOCERR	INPUTCONFLICT	ACMPRDY	FALL	RISE

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
4	PORTALLOCERR	0x0	RW	Port allocation error interrupt enable
3	INPUTCONFLICT	0x0	RW	Input conflict interrupt enable
2	ACMPRDY	0x0	RW	ACMP ready interrupt enable
1	FALL	0x0	RW	Falling edge interrupt enable
0	RISE	0x0	RW	Rising edge interrupt enable


22.5.9 ACMP_SYNCBUSY - Syncbusy

Offset															Bi	t Pc	siti	on														
0x020	33	30	29	78	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset																																0x0
Access																																<u>~</u>
Name																																INPUTCTRL

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions		
0	INPUTCTRL	0x0	R	Syncbusy for INPUTCTRL
	Synchronization of INPUTCTRL ongoing			

23. IADC - Incremental Analog to Digital Converter

Quick Facts

What?

The IADC is used to convert analog voltages into a digital representation and features high-speed, low-power operation.

Why?

In many applications there is a need to measure analog signals and record them in a digital representation, without exhausting the energy source.

How?

The low power IADC samples one or more input channels in a programmable sequence. With the help of PRS and DMA, the IADC can operate without CPU intervention in EM2 and EM3, minimizing the number of powered up resources. The IADC can be automatically shut down between conversions to further reduce the energy consumption.

23.1 Introduction

The IADC uses an Incremental Analog to Digital architecture, with a resolution of 12 bits when operating at one million samples per second (1 Msps). The flexible incremental architecture uses oversampling to allow applications to trade speed for higher resolution. An integrated input multiplexer can select from external I/Os and several internal signals.

23.2 Features

- · Flexible oversampled architecture allows for tradeoffs between speed and resolution.
 - 1 Msps with oversampling ratio = 2
 - 555 ksps with oversampling ratio = 4
- · Internal and external conversion trigger sources
 - · Immediate (software triggered)
 - Local IADC timer
 - · External TIMER module (synchronous with output / PWM generation)
 - · General PRS hardware signal
- Integrated prescaler for conversion clock generation
- · Can be run during EM2 and EM3, waking up the system on interrupts as needed
- · Selectable reference sources
 - · 1.21 V internal reference
 - · External precision reference
 - Analog supply
- · Support for offset and gain calibration
- Programmable input gain: 0.5x, 1x, 2x, 3x, or 4x
- · Flexible output formatting
 - · Unipolar or 2's complement bipolar data
 - · Results can be saved in 12 bit format
 - · Programmable left or right justification
 - · Optional channel ID tag
- Digital window comparison function detects when results are inside/outside a programmable window
- Two independent groups of configuration registers for setting IADC mode, clock prescaler, reference selection, oversample rate, unipolar/bipolar output formatting, and analog gain
- · Programmable single channel conversion
 - · Can use either configuration group
 - · Triggered by any conversion trigger source
 - · Can be tailgated after a scan sequence
 - · One shot or continuous mode
 - Local 4-entry FIFO for immediate data storage
 - · Programmable watermark level to generate interrupt or initiate DMA transfer
 - · Supports overflow and underflow interrupt generation
 - · Supports window compare function
- · Autonomous multi-channel scan
 - · Up to 16 configurable slots in scan sequence
 - · Each slot allows independent selection of configuration group, channel selection, and window compare enable
 - · Triggered by any conversion trigger source
 - · One shot or continuous mode
 - Local 4-entry FIFO for immediate data storage
 - · Programmable watermark level to generate interrupt or initiate DMA transfer
 - · Supports overflow and underflow interrupt generation
 - · Conversion tailgating support for predictable periodic scans

- Available interrupt sources:
 - · Single FIFO has DVL (data valid level) entries available (also generates DMA request)
 - · Scan FIFO has DVL (data valid level) entries available (also generates DMA request)
 - · Single FIFO result compared true for digital compare window
 - · Scan FIFO result compared true for digital compare window
 - · Single queue conversion has completed
 - · Scan queue entry conversion has completed
 - · Scan gueue table conversion has completed
 - · Single FIFO overflow or underflow
 - · Scan FIFO overflow or underflow
 - · Polarity Error interrupt
 - Port Allocation Error interrupt
 - · EM23 clock configuration error

23.3 Functional Description

The incremental ADC module block diagram is shown in Figure 23.1 IADC Overview on page 628.

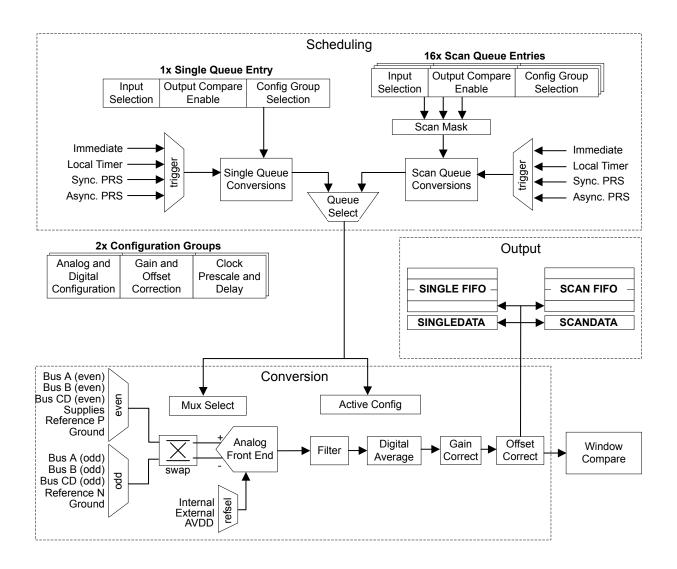


Figure 23.1. IADC Overview

23.3.1 Register Access

Many of the IADC module's configuration registers can only be written while the module is disabled (IADC_EN_EN = 0). These are IADC_CTRL, IADC_TIMER, IADC_CMPTHR, IADC_TRIGGER, IADC_CFGx, IADC_SCALEx, IADC_SCHEDx, and IADC_SCANx. A typical setup sequence for the IADC module is:

- 1. With the IADC disabled (IADC EN EN = 0), program all configuration registers listed above.
- 2. Enable the IADC by setting EN in IADC_EN to 1.
- 3. Program the remaining configuration registers.
- 4. Enable the single or scan queue.
- 5. The IADC is ready for use.

23.3.2 Clocking

The IADC logic is partitioned into two clock domains: CLK_BUS (APBIF) and CLK_SRC_ADC (CORE). The APBIF domain contains the IADC registers and FIFO read logic. The rest of the IADC is clocked mainly by CLK_SRC_ADC and ADC_CLK, both of which are derived from CLK_CMU_ADC, as shown in Figure 23.2 Clocking on page 631.

CLK_CMU_ADC is the incoming clock routed to the ADC by the CMU, and may be up to 80 MHz. It is selected within the CMU module. If the ADC is to be used synchronously with an external TIMER module, the clock should be configured to derive from the group A clock. If configuring for operation in EM2 or EM3, a clock source available in EM2 and EM3 must be used directly, as the group A clock multiplexer will be shut down in EM2 and EM3.

CLK_SRC_ADC is derived from CLK_CMU_ADC, and must be no faster than 40 MHz. The HSCLKRATE field in IADC_CTRL sets the prescaler to divide CLK_CMU_ADC. If CLK_CMU_ADC is already 40 MHz or slower, HSCLKRATE can be set to 0x0 to pass the clock through to CLK_SRC_ADC without dividing it. CLK_SRC_ADC is the clock source used for the TIMEBASE prescaler as well as the local IADC timer.

ADC_CLK is used to drive the ADC front-end and state machine logic. Another prescaler is used to reduce CLK_SRC_ADC to a suitable frequency for the ADC operating mode. Because the operational mode may be different for single vs. scan conversions, or even for different conversions within a scan, each configuration group has a PRESCALE bit field in the IADC_SCHEDx register. PRESCALE must be set to limit ADC_CLK to no faster than 10 MHz in normal mode for 0.5x and 1x analog gain settings. For analog gain of 2x, 3x, and 4x, the maximum ADC_CLK is 5 MHz, 3.3 MHz, or 2.5 MHz respectively.

Note: If HSCLKRATE is configured to divide CLK_CMU_ADC by more than 1 (HSCLKRATE != 0), then PRESCALE must not be set to divide by 1 (PRESCALE = 0). When this condition is detected, a PRESCALE value of 1 (divide by 2) will be automatically be used instead of the programmed PRESCALE value.

The suspend mode fields IADC_CTRL_ADCCLKSUSPEND0 (for scan conversions) or IADC_CTRL_ADCCLKSUSPEND1 (for single conversions) can be used to shut down the clock between conversions and save power. The ADC logic will wake up the clock before starting IADC warmup and performing a conversion. If the suspend mode is set, the clock will shut down again once the conversion is complete.

Note: For asynchronous PRS triggers, the clock continues to run after the conversion is complete if the trigger source is still active. For PRSPOS the clock will continue to run while the PRS signal is logic high, and for PRSNEG the clock will continue to run while the PRS signal is logic low. It is recommended to generate a short pulse when using these PRS trigger sources to avoid extra energy consumption.

When IADC_TRIGGER_SCANTRIGSEL or IADC_TRIGGER_SINGLETRIGSEL is set to IMMEDIATE, IADC_CTRL_ADCCLKSUS-PENDn will force the clock to only be running when one of the queues is enabled.

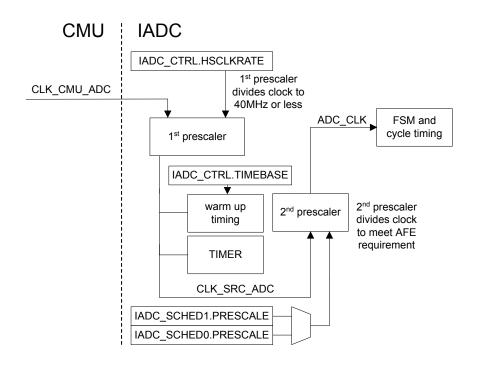
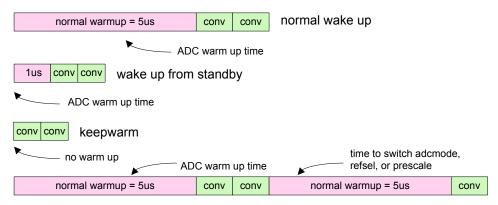


Figure 23.2. Clocking


23.3.3 Conversion Timing

The IADC takes multiple samples of the analog signal to produce each output. The number of input samples contributing to an output word is determined by the oversampling ratio (OSR). Higher OSR settings will improve the ADC's INL and DNL, and reduce system-level noise, but require more time for each conversion. The OSR is configured with the OSRHS bit field in the IADC_CFGx register. Different OSRs may be specified for each configuration group. It is important to note that oversampling is an analog process (pre-digital filter).

23.3.3.1 Warmup Time

To save energy, the IADC can be configured to power down completely or enter a standby state between conversions, if full speed operation is not required for the application. The required ADC warm up time from a full powered-down state is 5 us. Warmup from a standby state requires 1 us. Warmup is automatically timed by the ADC logic when it is required, but software must configure the TIMEBASE field in IADC_CTRL for a minimum 1 us interval. Note that the TIMEBASE counter receives CLK_SRC_ADC, and should be programmed based on that frequency. For example, if CLK_SRC_ADC is 40 MHz, TIMEBASE should be set to at least 0x27 (39) to produce the minimum 1 us interval. When transitioning from a powered-down state, the IADC will use five TIMEBASE intervals. When in standby the IADC will use one TIMEBASE interval.

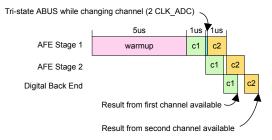
The WARMUPMODE field in the IADC_CTRL register defines whether the IADC is powered down between conversions (WARMUPMODE = NORMAL), in standby between conversions (WARMUPMODE = KEEPINSTANDBY), or remains powered up (WARMUPMODE = KEEPWARM). The resulting start-up time is shown in Figure 23.3 Start-up Timing on page 632. Note that even in WARMUPMODE = KEEPWARM or KEEPINSTANDBY, the ADC will implement 5 TIMEBASE intervals of warmup on initial power up, or any configuration change affecting PRESCALE, ADCMODE, or REFSEL. IADC_STATUS_ADCWARM reflects the current warmup status of the IADC.

Each change in ADCMODE, REFSEL, or PRESCALE require a 5us warm up period

Figure 23.3. Start-up Timing

23.3.3.2 Conversion Pipeline

The IADC uses a pipelined architecture to perform different stages of the ADC conversion in parallel.


The conversion time for a single sample can be determined from the OSR and the pre-scaled CLK_ADC frequency (f_{CLK ADC}) as:

Conversion Time = $((4 * OSR) + 2) / f_{CLK_ADC}$

The minimum OSR is 2, meaning that the fastest possible conversion lasts 10 CLK_ADC clock cycles.

The IADC will automatically insert 2 additional cycles in the pipeline when changing channels to a new GPIO. This allows for hold timing on the previous conversion and allows for time to tristate the ABUS analog buses before connecting the next GPIO to the analog bus. Therefore the maximum sampling rate while continuously sampling on one channel (with CLK_ADC = 10 MHz) is 1 Msps, and the maximum sampling rate while switching channels is 833 ksps. Figure 23.4 Normal ADC Mode Pipeline on page 633 shows both single-channel and channel-switching scenarios powering up from a shutdown state with WARMUPMODE = NORMAL. The 5 us warmup is shown in pink, a first conversion pipeline in green, and a second conversion in orange. The blue area in the top diagram represents the extra time to tristate while changing channels.

Normal mode switching channel between conversions

Normal mode converting same channel twice

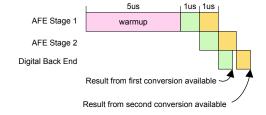


Figure 23.4. Normal ADC Mode Pipeline

23.3.3.3 Scheduling and Triggers

The IADC has several triggering options available for both the Single queue and the Scan queue. When a conversion trigger occurs and there are no other conversions active or pending, the request is serviced immediately. If both the single and scan queues are being used in an application, it is possible to serve the conversion requests as needed, and specify their priority.

Conversion triggering is configured using bit fields in the IADC_TRIGGER register. The SINGLETRIGSEL and SCANTRIGSEL fields specify the trigger source for Single and Scan conversion queues, respectively. The options for trigger source are:

- IMMEDIATE Trigger from software. This is useful for triggering conversions on-demand from software with no specific sampling frequency requirements, or initiating continuous conversions at full speed.
- TIMER Use the IADC local timer to trigger conversions. This is useful for triggering conversions at precise intervals.
- PRSCLKGRP Use a synchronous PRS channel to trigger from an external peripheral in the same clock group domain (i.e. clock group A). This is useful for synchronizing conversions precisely with external TIMER events or PWM outputs.

Note: It is recommended to configure the PRS consumer registers prior to enabling synchronous PRS triggers to avoid false triggers.

- PRSPOS Use a positive edge of an asynchronous PRS channel to trigger conversions. The trigger source will require 1-2
 ADC_SRC_CLK cycles to synchronize. This is useful for triggering conversions as needed from asynchronous peripheral sources
 such as GPIO inputs, RTCC events, etc.
- PRSNEG Use a negative edge of an asynchronous PRS channel to trigger conversions. This is the same as PRSPOS, but operates on negative edges of the selected input.

Both the single and scan trigger sources can be configured to generate one request per trigger, or begin continuous conversions. Setting SINGLETRIGACTION to ONCE will make one conversion request each time the selected single trigger occurs, and a single ADC output will be converted. Setting SINGLETRIGACTION to CONTINUOUS allows the single trigger to begin the first conversion, and when a conversion completes a new one will be requested immediately without requiring a new trigger. Channel selections and configuration should not be changed while SINGLETRIGACTION is set to CONTINUOUS. Doing so can produce conversion errors. The scan queue should be used if channel or configuration switching is required.

The SCANTRIGACTION field works to request conversion scans in a similar manner. Setting SCANTRIGACTION to ONCE will make one request each time the selected scan trigger occurs, and the IADC will perform all conversions specified in the scan once before stopping. Setting SCANTRIGACTION to CONTINUOUS allows the scan trigger to initiate continuous scans. When a scan cycle completes, a new one will be requested immediately without requiring a new trigger.

Conversion priority can be adjusted using the SINGLETAILGATE bit. By default, SINGLETAILGATE is set to TAILGATEOFF, meaning that conversion triggers are queued in the order they are received. Any conversion trigger for the Single queue or the Scan queue will initiate a conversion as soon as possible. If any conversion is already in progress or pending, the new conversion will be handled after the current operation.

Setting SINGLETAILGATE to TAILGATEON gives ultimate priority to the Scan queue. The IADC will only perform single conversions immediately after completion of a scan. This allows systems to use the scan queue for high-priority conversions with tight timing requirements, and the single queue for low-priority, on-demand conversion events. Note that this setting should only be used when scan conversions are guaranteed to trigger. If no scan sequence is triggered, any single conversion trigger will remain pending indefinitely. It is also important to note that if there is not enough time between scan conversions to service a single conversion, the next scan conversion will be delayed.

23.3.3.1 Conversion Triggering Examples

Scheduling a Single Sample

The simplest use case for the IADC is performing one conversion on-demand from the Single queue. Figure 23.5 Immediate Single Conversion on page 635 shows the configuration and timing of this use case. The IADC warmup mode is configured for normal (shuts down between conversions). The single queue trigger is configured for immediate triggering of one conversion, and tailgating is turned off. When the conversion is requested (by setting IADC_CMD_SINGLESTART), the IADC block warms up and then begins converting. During the conversion, the CONVERTING bit in IADC_STATUS is set. When the conversion is complete, the queue is disabled, and SINGLEQEN returns low.

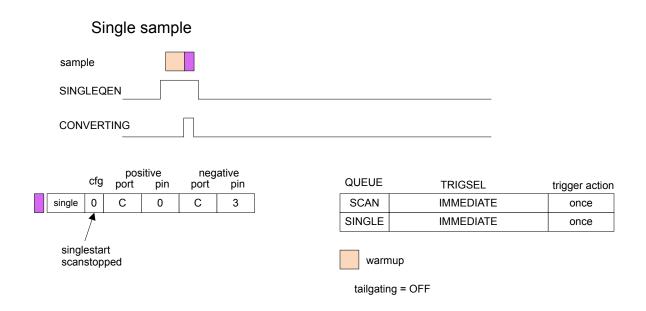


Figure 23.5. Immediate Single Conversion

Periodic Scans

Another common use case is to periodically trigger the IADC to perform a multi-channel scan. Figure 23.6 Periodic Scan Example on page 636 shows the timing of a periodic scan triggered by the IADC's local timer. The scanner is configured to sample four different channels; two using configuration 0 and two using configuration 1. Note that a single TIMER trigger is used to initiate each scan, and all four samples are taken for each trigger. Note also that the IADC inserts another warmup time between conversions 1 and 2, when it switches from configuration 0 to configuration 1. The single queue is disabled and not used in this example.

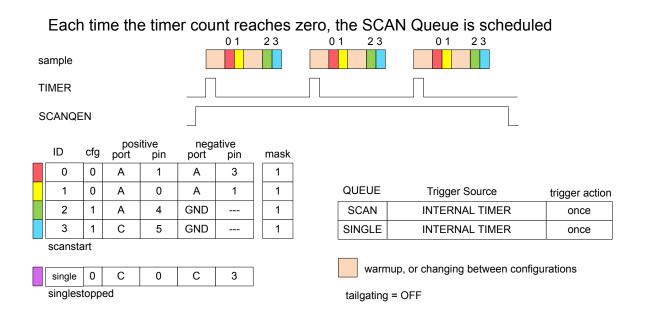


Figure 23.6. Periodic Scan Example

Tailgating Examples

An example using conversion tailgating is shown in Figure 23.7 Simple Conversion with Tailgating Enabled on page 637. In the example, the Scan queue is configured to trigger a two-channel conversion periodically on the IADC local timer, while the Single queue is configured to trigger on-demand from software. When a single conversion is requested, it waits until after the scan sequence is complete, and then the single conversion is performed. The scan conversions are using configuration 0, and the single conversion is using configuration 1, so a warmup delay is inserted between the end of the scan and the beginning of the single conversion cycle. Note that this example provides plenty of time between IADC scan conversions for the single conversion to occur, and no scan conversions are delayed.

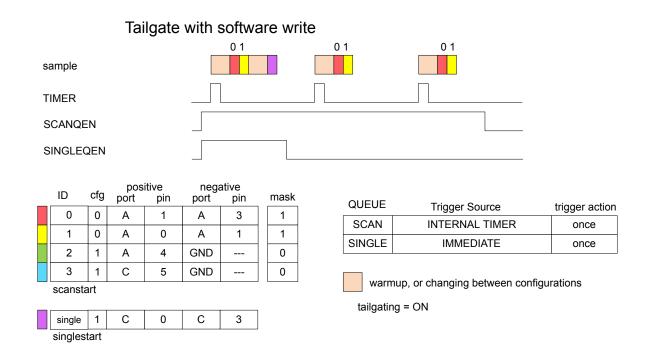


Figure 23.7. Simple Conversion with Tailgating Enabled

Another example, shown in Figure 23.8 Conversions with Tailgating Disabled on page 638, demonstrates how requests are handled on the different conversion gueues with tailgating disabled.

In this example, the scan queue is being triggered on the internal timer while the single queue is being triggered on a PRS positive edge. Since tailgating is not enabled, the queues will be serviced on a first come first served basis. The first single queue trigger falls between two scan queue triggers and does not interfere with scan queue timing. The second single queue trigger happens just before the scan queue trigger. The IADC will complete this single queue conversion and delay the next scan queue conversions.

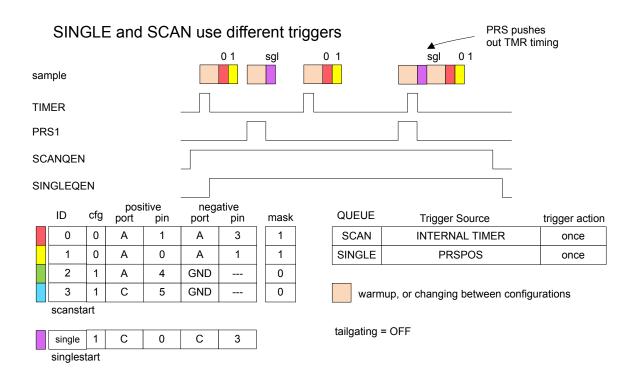


Figure 23.8. Conversions with Tailgating Disabled

Continuous Conversions

An example of continuous conversions triggered from the scan queue is shown in Figure 23.9 Continuous Conversions on page 638. In this example the SCANTRIGACTION field in IADC_TRIGGER is set to CONTINUOUS, and the conversion trigger source is software (SCANTRIGSEL = IMMEDIATE). When the scan queue is enabled with IADC_CMD_SCANSTART, the ADC warms up and then performs repeated back-to-back scans until software disables the scan queue using IADC_CMD_SCANSTOP. While this example shows only one channel converted continuously, it is possible to enable multiple channels for the scan sequence.

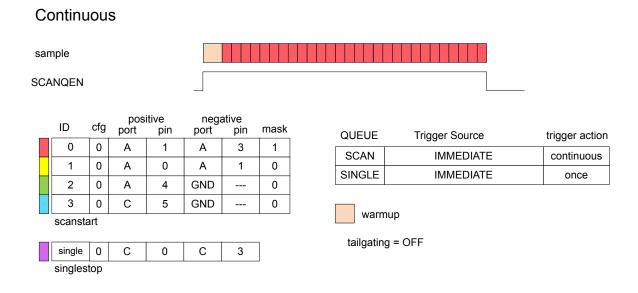


Figure 23.9. Continuous Conversions

23.3.4 Reference Selection and Analog Gain

The default IADC reference is to use the internal band gap circuit. The analog power supply voltage can also be used as a voltage reference. The reference voltage is selected using the REFSEL field in IADC_CFGx. Refer to Table 23.1 Mode Settings on page 639.

Table 23.1. Mode Settings

Reference	Description	Voltage
VBGR	Internal	1.21V
VDDX	Analog Power Supply	AVDD
VREF	External	1.0V - AVDD (1.25V Nominal)

The IADC also has analog gain selection, controlled via the ANALOGGAIN field in IADC_CFGx. The analog gain can be set to 0.5x, 1x, 2x, 3x, or 4x. Note that 2x, 3x, and 4x gain modes require slower ADC_CLK as detailed in 23.3.2 Clocking. The analog gain impacts where the full-scale input reading occurs. For example, with a 1.25 V external reference and ANALOGGAIN set to 2x, the analog input to the IADC is multiplied by a factor of 2x, and a full-scale reading occurs at 2x V / 2x = 2x 0.625 V. If ANALOGGAIN is set to 2x, the full-scale reading of the ADC will not occur until the input reaches 2x V. Note that the ADC is only capable of measuring inputs within the supply rails of the device. If the full scale is configured to be greater than the supply voltage, the maximum input will be limited to the supply.

23.3.5 Input and Configuration Selection

The IADC supports measurement on a number of internal and external signals. External signals are routed to GPIO through shared ABUS resources on the device, or (on some devices) through dedicated analog inputs available to the IADC block.

The single queue and the scan queue have separate registers available to select inputs and configurations. The IADC_SINGLE register is used to select the input and configuration for the single queue. The IADC_SCANx registers are used to select the inputs and configurations for each of the scan table entries. In both cases, the register contents and setup are similar. The PORTPOS and PINPOS fields are used to select a signal for the positive ADC input, while PORTNEG and PINNEG are used to select a signal for the negative ADC input. The CFG field selects which of the two configuration sets will be used with the input (i.e. configuration options specified in IADC_SCALEx, and IADC_SCHEDx).

To perform single-ended conversions, the PORTNEG field should be set to GND. This indicates that the positive ADC input will be measured with reference to chip ground. PORTPOS and PINPOS should be used to select the desired input signal. The PINNEG field is not used for single-ended conversions.

To perform differential conversions, PORTPOS, PINPOS are used to select the positive input to the ADC, while PORTNEG and PINNEG are used to select the negative input. Note that there are two independent multiplexers in the ADC, and firmware cannot select two signals from the same multiplexer for a differential measurement. The "even" multiplexer consists of all EVEN ABUS selections, Supply voltage options, GND, and VREFP. The "odd" multiplexer consists of all ODD ABUS selections, GND, and VREFN. One selection from each multiplexer is allowed on the positive and negative input. More detailed examples may be found in 23.3.5.3 Input Selection Examples.

The scan queue has one additional register, IADC_MASKREQ, to specify which of the 16 possible channel slots will be converted during a scan operation. Each channel in the scan queue is enabled by writing the corresponding bit in the IADC_MASKREQ register to 1. Enabled channels will be converted in sequence from lowest to highest, during a scan. See 23.3.5.4 Scan Queue for more details on using the scan queue.

23.3.5.1 External GPIO Inputs

GPIO input selections are routed through shared ABUS resources. In order for the IADC to use any GPIO as an input, the IADC must be allocated appropriate analog bus resources in the GPIO_ABUSALLOC, GPIO_BBUSALLOC, or GPIO_CDBUSALLOC registers. For example, if IADC0 will be using both odd and even numbered pins on GPIO port PA, then AEVEN0 and AODD0 in GPIO_ABUSALLOC could both be set to IADC0. This gives IADC0 access to these two buses. Generally, bus access is set to specific peripherals at configuration time and left alone - it is not normally required to change the bus allocation on the fly. If the IADC requests a pin from a bus that has not been allocated to the IADC, an error will be generated, the PORTALLOCERRIF in IADC_IF will be set, and any conversion result will be 0. For more details on analog bus structure and capabilities, refer to the GPIO section.

When the appropriate analog buses have been configured to route to the IADC, GPIO selection is a simple matter of programming the desired port and pin into the PORTPOS, PINPOS, PORTNEG, and PINNEG fields. For example, to configure a channel to convert the differential voltage between pins PA5 and PA4, PORTPOS = PORTA, PINPOS = 5, PORTNEG = PORTA, PINNEG = 4. If an invalid selection is made, a polarity error will be generated. More specific examples are described in 23.3.5.3 Input Selection Examples.

23.3.5.2 Internal and Dedicated Inputs

Internal signals and dedicated inputs are not routed through the shared ABUS resources. In general, these resources are selected directly by the settings of PORTPOS and PORTNEG, while the PINPOS and PINNEG fields are not used. When PORTPOS is set to SUPPLY, PINPOS is used to select which of the power supplies is connected. To facilitate power supply measurments using internal reference options, all supplies are attenuated by a factor of 4.

Note: When selecting SUPPLY for PORTPOS and GND for PORTNEG, PINNEG should be configured for an odd number (1, 3, 5...) to avoid a polarity error.

Table 23.2. Supply Selection (PORTPOS = SUPPLY)

PINPOS	Supply Connection	Voltage at Positive Input
0	AVDD	AVDD / 4
1	VDDIO	VDDIO / 4
2	vss	VSS
3	vss	vss
4	DVDD	DVDD / 4
7	DECOUPLE	DECOUPLE

23.3.5.3 Input Selection Examples

When configuring to measure a single-ended signal, the positive input selection should always point to the desired input, and PORT-NEG should be programmed to GND.

Correct configuration examples for single-ended conversions are shown in Figure 23.10 Single Ended Port/Pin Selection Odd Channel on page 641 and Figure 23.11 Single Ended Port/Pin Selection Even Channel on page 641. Note that the IADC logic will automatically swap the appropriate multiplexer to the positive input of the ADC.

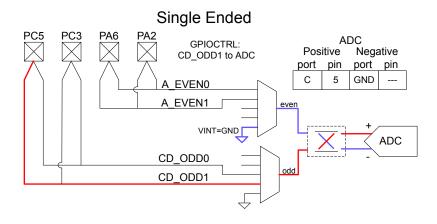


Figure 23.10. Single Ended Port/Pin Selection Odd Channel

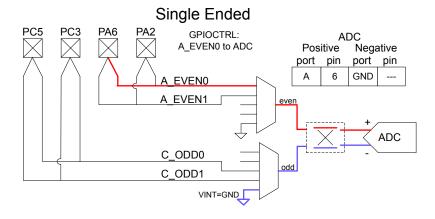


Figure 23.11. Single Ended Port/Pin Selection Even Channel

Figure 23.12 Single Ended Port/Pin Selection Polarity Error on page 642 shows an example where the PORTPOS input has been configured to GND, with PORTNEG and PINNEG configured for a GPIO pin. This will result in a polarity error (POLARITYERRIF in IADC_IF will be set) and any conversion result will be 0.

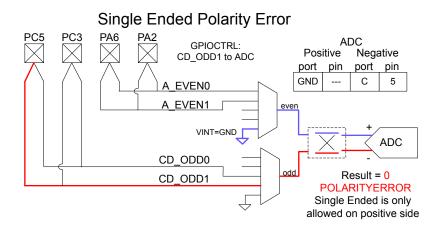


Figure 23.12. Single Ended Port/Pin Selection Polarity Error

Correct configuration examples for differential conversions are shown in Figure 23.13 Differential Port/Pin Selection without Swap on page 642 and Figure 23.14 Differential Port/Pin Selection with Swap on page 643. In both these examples, the inputs were selected from one EVEN multiplexer channel and one ODD multiplexer channel. As with single-ended mode, the IADC logic will automatically swap the multiplexer connections to the IADC input if needed.

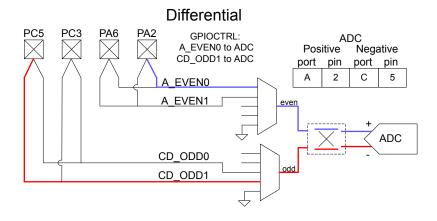


Figure 23.13. Differential Port/Pin Selection without Swap

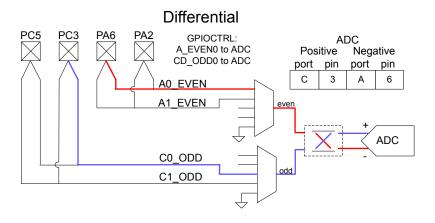


Figure 23.14. Differential Port/Pin Selection with Swap

Figure 23.15 Differential Port/Pin Selection Polarity Error on page 643 shows an example where the both the positive and the negative input selections point to ODD buses. Even though the IADC has been allocated both buses, they both route through the ODD input multiplexer and cannot be measured against one another. This will result in a polarity error (POLARITYERRIF in IADC_IF will be set) and any conversion result will be 0x7FFFF. Likewise, a polarity error will occur if both inputs are selected from EVEN buses.

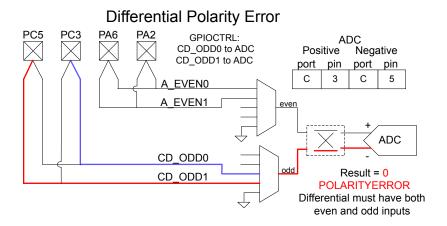


Figure 23.15. Differential Port/Pin Selection Polarity Error

23.3.5.4 Scan Queue

The scan queue allows the IADC to automatically convert up to 16 channels in sequence without CPU intervention. Input and configuration selection for each channel in the scan table is specified by the IADC_SCANx register for that channel (channel 0 is configured with IADC_SCAN0, channel 1 is configured with IADC_SCAN1, and so on). The IADC_MASKREQ register allows software to define which of the scan table entries (IADC_SCANx) to convert during a scan. For example, channels 0, 1, and 7 can be enabled by writing bits 0, 1, and 7 of IADC MASKREQ to 1 (IADC MASKREQ = 0x0083).

The IADC_SCANx registers must be configured when the IADC module is disabled (IADC_EN_EN = 0). IADC_MASKREQ can be written while IADC_EN_EN is set to 1. If a scan operation is in progress, MASKREQ will be synchronized and held until the current scan operation has completed. Then MASKREQ is copied into the STMASK register for the next scan operation. IADC_STMASK is the working copy of the MASKREQ used by the IADC during a scan. MASKREQ will only transfer to STMASK when the scan queue is not scanning and converting the scan table. IADC_STATUS_MASKWRITEPENDING can be used by software to see when the MASKREQ write has been transferred to STMASK. Writing a new MASKREQ in the middle of a scan will not corrupt the current scan. Software which writes to MASKREQ during a scan operation must ensure IADC_STATUS_MASKWRITEPENDING returns to 0 before updating IADC_MASKREQ again. Figure 23.16 MASKREQ Updates on page 644 shows a time line of when the MASKREQ write is updated.

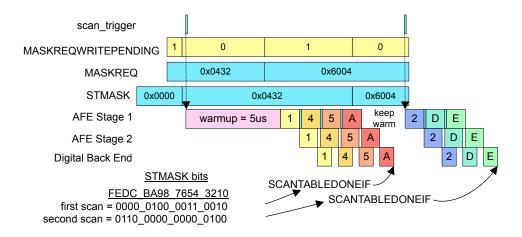


Figure 23.16. MASKREQ Updates

23.3.6 Gain and Offset Correction

The IADC has built in gain and offset correction capabilities. Each of the two configuration groups contains its own correction values stored in the IADC_SCALEx register, allowing the IADC to automatically apply the appropriate correction for the IADC configuration that is being used.

Gain correction is performed through a fixed-point 16-bit value with a range from 0.75x to 1.2499x. The 3 MSBs of the gain value are not directly writeable. The GAIN3MSB bit in IADC_SCALEx is used to select between 011 and 100 for the 3 MSBs, and the lower 13 bits are programmed directly into IADC_SCALEx_GAIN13LSB. Clearing GAIN3MSB to 0 selects the most significant bits of the gain as 011, representing a range from 0.75x to 0.9999x. Setting GAIN3MSB to 1 selects the most significant bits of the gain as 100, representing a range from 1.00x to 1.2499x.

Offset correction is controlled by the OFFSET field in IADC_SCALEx. It is important to note that the offset correction does not have a direct 1-to-1 relationship with the LSB of the IADC output, and depends on both the OSR and gain correction settings. The offset correction range is \pm 1. 2.5% of full scale. OFFSET is encoded as a 2's complement, 18-bit number with the LSB representing 1 / \pm 20 of full scale. Thus, bit 8 of OFFSET aligns with bit 0 of the 12-bit IADC output word.

23.3.6.1 Using Production Calibration Parameters

IADC calibration is performed on every device during Silicon Labs production test and production calibration parameters are stored in the flash DI page. The production calibration values are useful for a wide variety of possible IADC configurations, but do not map directly to the offset and gain correction fields in the IADC_SCALEx registers. Software must calculate the actual offset and gain correction values from the factory calibration values.

23.3.6.1.1 Gain Correction

The IADC gain error is designed to be minimal with the digital gain correction set to 1.0 (GAIN3MSB = 1 and GAIN13LSB = 0). Tighter gain error is achieved by adjusting these values in IADC_SCALEx. Using this gain correction mechanism will result in a slight increase to the DNL of the converter, which is reduced by higher OSR settings.

Gain error is measured during production test at various settings of ANALOGGAIN, and stored in the DEVINFO_IADC0GAIN0 and DE-VINFO_IADC0GAIN1 locations. The GAINCANA1 field is used for 0.5x and 1x ANALOGGAIN settings, while GAINCANA2, GAINCA-NA3, and GANCANA4 are used for ANALOGGAIN settings of 2x, 3x, and 4x, respectively. The GAINCANAn values are expressed as the full 16-bit fixed-point gain, and must be compressed before writing to the IADC_SCALEx register.

To apply a factory-calibrated gain:

- 1. Read the appropriate GAINCANAn field from the DEVINFO locations for the selected ANALOGGAIN.
- 2. Write the MSB (bit 15) of GAINCANAn to GAIN3MSB in IADC_SCALEx.
- 3. Write the 13 LSBs (bits 12-0) of GAINCANAn to GAIN13LSB in IADC_SCALEx.

23.3.6.1.2 Offset Correction

Offset is impacted by the selected ANALOGGAIN and OSR settings in IADC_CFGx, the GAIN3MSB and GAIN13LSB values in IADC_SCALEx, and the voltage reference. Offset is production calibrated for any combination of possibilities, but the OFFSET register value must be calculated for the given situation before it can be effectively used. The production offset calibration consists of four 16-bit terms written to the DEVICEINFO space in the IADCOFFSETCAL0 and IADCOFFSETCAL1 locations: OFFSETANA1NORM, OFFSETANA2NORM, OFFSETANA3NORM, and OFFSETANABASE. The following procedures will determine the setting for the OFFSET register based on production calibration values.

Step 1: Determine the offset gain adjustment term (off_gain) based on ANALOGGAIN.

For ANALOGGAIN set to 0.5x or 1x:

 $off_gain = 0$

For ANALOGGAIN set to 2x, 3x, or 4x, off_gain is calculated as:

off_gain = OFFSETANA2NORM * (gain - 1)

This is summarized in Table 23.3 Offset Gain Adjustment on page 646.

Table 23.3. Offset Gain Adjustment

ANALOGGAIN Setting	Analog front-end gain	Offset Gain Adjustment Term (off_gain)
ANAGAIN0P5	0.5 x	0
ANAGAIN1	1 x	0
ANAGAIN2	2 x	OFFSETANA2NORM * 1
ANAGAIN3	3 x	OFFSETANA2NORM * 2
ANAGAIN4	4 x	OFFSETANA2NORM * 3

Step 2: Calculate the analog offset adjustment term (off_ana) based on OSR and off_gain.

For an OSR of 2x (OSRHS = 0):

off_ana = OFFSETANA1NORM + off_gain

For all other OSR settings, 4x - 64x:

off_ana = OFFSETANABASE + 2*(OFFSETANA3NORM - off_gain)/OSR

The following table expresses these equations:

Table 23.4. Analog Offset Adjustment

OSRHS Setting	OSR	Analog Offset Adjustment Term (off_ana)
HISPD2	2 x	OFFSETANA1NORM + off_gain
HISPD4	4 x	OFFSETANABASE + (OFFSETANA3NORM - off_gain)/2
HISPD8	8 x	OFFSETANABASE + (OFFSETANA3NORM - off_gain)/4
HISPD16	16 x	OFFSETANABASE + (OFFSETANA3NORM - off_gain)/8
HISPD32	32 x	OFFSETANABASE + (OFFSETANA3NORM - off_gain)/16
HISPD64	64 x	OFFSETANABASE + (OFFSETANA3NORM - off_gain)/32

Step 3: Compensate for reference voltage differences.

The off_ana term represents the offset at the input of the ADC, meaning that the reference voltage will have an impact on the magnitude of the offset at the output. Production calibration values are determined with a 1.25 V reference source. If a voltage significantly different than 1.25 V is used for V_{REF} , adjust the off_ana term by a factor of 1.25 / V_{REF} .

off_ana = off_ana * (1.25 / V_{REF})

Step 4: Calculate total offset by adding the analog offset to the systematic offset.

Systematic offset is a fixed number dependent on OSR, and calculated according to the following equation:

off sys = 640*(256/OSR)

Total uncorrected offset (off tot) is calculated by:

off_tot = (off_ana * 4 + off_sys)

Step 5: Apply gain error correction, if needed.

Before writing the OFFSET field, the total uncorrected offset must be multiplied by the gain calibration factor. If the gain calibration factor is equal to 1.0 (0x8000 in 16-bit hex, or GAIN3MSB = 1 and GAIN13LSB = 0), this step may be skipped. Otherwise, adjust off_tot according to the following equation:

off_tot = GAIN_FACTOR * (off_tot + 0x80000) - 0x80000

where GAIN_FACTOR = GAINCANAn / 32768.

Step 6: Write the offset correction value to the OFFSET field.

The OFFSET field holds an 18-bit 2's complement number, which should be the negation of the total offset, or -(off_tot). Before writing to the SCALE register, any leading sign bits should be masked off to avoid corrupting the programmed gain settings.

OFFSET = 0x3FFFF & (-off tot)

23.3.6.2 Calibration

Calibration can be performed in-system to correct for external errors and provide more accurate measurements. The general calibration procedure is as follows:

- 1. Configure the ADC to the desired mode, OSR, analog gain settings, reference source, etc.
- 2. Force the IADC to use bipolar output for the conversion: IADC_CFGx_TWOSCOMPL = FORCEBIPOLAR.
- 3. Set the initial offset to the maximum negative value (IADC_SCALEx_OFFSET = 0x20000), and the initial gain to 1.0 (GAIN3MSB = 1, GAIN13LSB = 0x0000). This will prevent output saturation when measuring full scale.
- 4. Apply a full-scale positive input to the IADC and perform a conversion (*result_fullscale*). Multiple conversions can be performed and averaged together to reduce any system-level noise.
- 5. Apply a zero input to the IADC and perform a conversion (*result_zero*). Multiple conversions can be performed and averaged together to reduce any system-level noise.
- 6. Calculate the gain correction factor: Divide the expected value by the difference in the measured values (result_fullscale result_zero). Note that the offset adjustment in Step 3 will be canceled out by this calculation.
- 7. Write the gain correction factor to the IADC using the GAIN3MSB and GAIN13LSB fields in IADC SCALEx.
- 8. Set IADC_SCALEx_OFFSET to 0x00000 in preparation for the offset calibration.
- 9. Apply the desired zero voltage to the IADC input and perform a conversion (*result_offset*). Multiple conversions can be performed and averaged together to reduce any system-level noise.
- 10. Multiply result_offset to convert to a 20-bit value (result_offset_20). For example, a 12-bit result should be multiplied by 256.
- 11. Negate result_offset_20 and write the value to IADC_SCALEx_OFFSET.

Note that the IADC_SCALEx_OFFSET field is 18 bits. If the result is greater than (2¹⁷ - 1) or less than (-2¹⁷), the offset is too large to be corrected.

23.3.7 Output Data FIFOs

The single and scan queues each have a four-word data FIFO. Conversions results are written to the output data FIFO associated with the queue. Single queue results are written to the single FIFO and scan queue results are written to the scan data FIFO. The two queues are identical in operation, but independent.

Conversion results are read from the single FIFO using IADC_SINGLEFIFODATA. Reading SINGLEFIFODATA will pop the oldest result from the FIFO. It is also possible to read the most recent valid data word using IADC_SINGLEDATA. Reading SINGLEDATA does not pop a conversion from the FIFO. Similarly, the scan FIFO results are read with IADC_SCANFIFODATA, which reads the oldest result and pops the FIFO. The most recent scan result can be read using IADC_SCANDATA.

When the single FIFO has valid data, the SINGLEFIFODV flag in IADC_STATUS is set to 1. When the scan FIFO has valid data SCANFIFODV in IADC_STATUS is set to 1. These data valid status bits are cleared automatically whenever the associated FIFO is empty. For more granular FIFO status, the number of data words present in the FIFO is indicated in IADC_SINGLEFIFOSTAT (for single FIFO) or IADC_SCANFIFOSTAT (for scan FIFO).

A programmable data level watermark is also available for the FIFOs, allowing hardware to trigger interrupts or DMA operations when a specified number of conversion results are available. The DVL field in register SINGLEFIFOCFG or SCANFIFOCFG sets the watermark level, between 1 and 4 conversions. If the number of valid entries in the FIFO reaches or exceeds the level set in DVL, the SINGLEFIFODVLIF (for single FIFO) or SCANFIFODVLIF (for scan FIFO) flag in the IADC_IF register will be set to 1. If enabled, an interrupt or DMA request will be triggered when the flag is set.

By default, DMA requests are turned off for operation in EM2 or EM3. However, the DMAWUFIFOSINGLE or DMAWUFIFOSCAN bits in SINGLEFIFOCFG or SCANFIFOCFG may be used to enable DMA operations in these lower energy modes.

Overflow and underflow status flags are also available in IADC_IF. An overflow condition occurs when an IADC conversion completes, but the associated FIFO is already full. In an overflow case the SINGLEFIFOOFIF or SCANFIFOOFIF flag will be set. The most recent conversion will still be available in the SINGLEDATA or SCANDATA register, but the FIFO will not be updated with the new data. An underflow condition occurs when software or hardware attempts to read from an empty FIFO. In an underflow case the SINGLEFIFOUFIF or SCANFIFOUFIF flag will be set.

23.3.7.1 Data Alignment and Channel ID

The IADC has data alignment options and the ability to include a channel ID along with the conversion data. For the single queue, alignment and channel ID are configured in the IADC_SINGLEFIFOCFG register. For the scan queue, alignment and channel ID are configured in the IADC_SCANFIFOCFG register.

The ALIGNMENT bit field specifies the data justification and the number of data bits as shown in Figure 23.17 Data Alignment on page 649. By default, the converter will produce 12-bit right-justified data, corresponding to ALIGNMENT = RIGHT12.

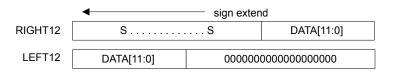


Figure 23.17. Data Alignment

The SHOWID bit controls whether the conversion channel ID is included in the output data word. This option is primarily used with the scan FIFO to help software determine which channel each conversion result came from. If SHOWID is enabled for single conversions, the ID will always be set to 0x20. Figure 23.18 Data Alignment With ID on page 649 shows output data formatting including the ID, when SHOWID = 1.

RIGHT12	ID[7:0]		SS	D	ATA[11:0]
LEFT12	DATA[11:0)]	000000000	000	ID[7:0]

ID for single queue result is 0x20

Figure 23.18. Data Alignment With ID

23.3.7.2 Output Polarity

The output polarity of the IADC is controlled by the TWOSCOMPL field in the IADC_CFGx register. The IADC supports unipolar and bipolar output formatting independent of the input configuration. By default, the TWOSCOMPL field is set to AUTO, meaning that single-ended conversions will produce unipolar output, and differential conversions will produce bipolar output. The polarity can be forced to unipolar or bipolar mode by setting TWOSCOMPL to FORCEUNIPOLAR or FORCEBIPOLAR, respectively.

Unipolar samples are unsigned integers representing zero to positive full-scale. Bipolar samples are two's-complement signed integers, representing negative full-scale to positive full-scale. Using unipolar mode on a differential input signal allows for more dynamic range when the signal is positive, but will saturate to zero when the signal is negative.

Note: If bipolar output is used with a single-ended input configuration, it is possible to see negative output values when the input is close to ground. However, the input voltage is still limited by the supply range of the device.

23.3.8 Window Compare

The IADC has a window comparison unit that can trigger interrupts conditional on the output data of the converter. The window comparison unit has two thresholds - greater than or equal (ADGT), and less than or equal (ADLT), which are programmable through the IADC_CMPTHR register. The ADGT and ADLT thresholds always use a 16 bit, left-justified format, regardless of the format specified by the FIFO. The 12-bit conversion result will be compared against the upper 12 bits of the window comparator.

The window comparison unit is active on the ADC output on a conversion-by-conversion basis, and is shared between the two FIFOs. It is not possible to set different window comparison thresholds for different channels or for each FIFO. However, each channel specified in the IADC has a CMP bit field to enable the window comparison on results from that channel. For example, it is possible to only apply the window comparison and associated interrupt to scan channel #3 by setting the CMP field in IADC_SCAN3 to 1. When the CMP field associated with a channel is 0, the window comparator will not be active for results from that channel.

The window comparator supports conditional triggering on output results which are inside or outside a specified window. When ADLT is greater than or equal to ADGT, the comparator will trigger on an "inside" condition, or when DATA <= ADLT **and** DATA >= GT. When ADLT is less than ADGT, the comparator will trigger on an "outside" condition, or when DATA <= ADLT **or** DATA >= GT.

Figure 23.19 Window Comparison Examples on page 650 shows different configurations of the ADLT and ADGT values and the resulting windows. When the window comparator detects that the appropriate conditions are met (shown by the shaded region in the figure), it will generate an interrupt via the SINGLECMPIF flag for conversions on the single queue, or via the SCANCMPIF flag for conversions on the scan queue.

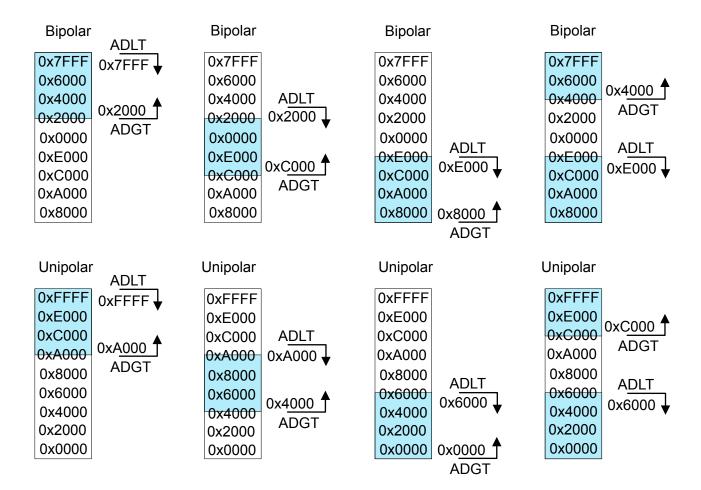


Figure 23.19. Window Comparison Examples

23.3.9 Interrupts

Interrupts are enabled in the IADC_IEN register, allowing interrupts to be generated on several different IADC conditions. Each of the flags in IADC_IF has a corresponding enable bit in the IADC_IEN register. A brief overview of the available interrupt sources is shown in the list below; more details can be found in the relevant sections of this chapter.

- SINGLEFIFODVLIF The single FIFO watermark specified in SINGLEFIFOCFG DVL has been reached or exceeded.
- SCANFIFODVLIF The scan FIFO watermark specified in SCANFIFOCFG DVL has been reached or exceeded.
- SINGLECMPIF A conversion result from the single queue tripped the window comparator.
- · SCANCMPIF A conversion result from the scan queue tripped the window comparator.
- SCANENTRYDONEIF A scan gueue conversion has completed.
- SCANTABLEDONEIF A scan queue operation has completed (all channels specified in the scan mask have been converted once).
- POLARITYERRIF A channel polarity selection error has occurred (two channels from the EVEN multiplexer or two channels from the ODD multiplexer were selected for positive and negative inputs).
- PORTALLOCERRIF A port allocation error has occurred (a pin not allocated to the IADC in the GPIO bus allocation registers was requested).
- SINGLEFIFOOFIF A single FIFO overflow has occurred.
- SCANFIFOOFIF A scan FIFO overflow has occurred.
- SINGLEFIFOUFIF A single FIFO underflow has occurred.
- · SCANFIFOUFIF A scan FIFO underflow has occurred.
- EM23ABORTERRORIF The system entered EM2 or EM3 while the IADC was converting and using a clock not supported in EM2 or EM3.

Hardware sets the interrupt flags in IADC_IF, and the flags remain set (sticky) until cleared by software. The interrupts flags should be cleared before enabling the IADC to remove any previous interrupt history. Clearing or setting interrupt bits can be done by writing to IADC_IF with a set or clear mask.

23.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	IADC_IPVERSION	R	IPVERSION
0x004	IADC_EN	RW ENABLE	Enable
0x008	IADC_CTRL	RW	Control
0x00C	IADC_CMD	W SYNC	Command
0x010	IADC_TIMER	RW CONFIG	Timer
0x014	IADC_STATUS	RH	Status
0x018	IADC_MASKREQ	RW SYNC	Mask Request
0x01C	IADC_STMASK	RH SYNC	Scan Table Mask
0x020	IADC_CMPTHR	RW CONFIG	Digital Window Comparator Threshold
0x024	IADC_IF	RWH INTFLAG	Interrupt Flags
0x028	IADC_IEN	RW	Interrupt Enable
0x02C	IADC_TRIGGER	RW CONFIG	Trigger
0x048	IADC_CFGx	RW CONFIG	Configuration
0x050	IADC_SCALEx	RW CONFIG	Scaling
0x054	IADC_SCHEDx	RW CONFIG	Scheduling
0x070	IADC_SINGLEFIFOCFG	RW CONFIG	Single FIFO Configuration
0x074	IADC_SINGLEFIFODATA	R(r)H	Single FIFO Read Data
0x078	IADC_SINGLEFIFOSTAT	RH	Single FIFO Status
0x07C	IADC_SINGLEDATA	RH SYNC	Single Data
0x080	IADC_SCANFIFOCFG	RW CONFIG	Scan FIFO Configuration
0x084	IADC_SCANFIFODATA	R(r)H	Scan FIFO Read Data
0x088	IADC_SCANFIFOSTAT	RH	Scan FIFO Status
0x08C	IADC_SCANDATA	RH SYNC	Scan Data
0x098	IADC_SINGLE	RW SYNC	Single Queue Port Selection
0x0A0	IADC_SCANx	RW CONFIG	SCAN Entry
0x1000	IADC_IPVERSION_SET	R	IPVERSION
0x1004	IADC_EN_SET	RW ENABLE	Enable
0x1008	IADC_CTRL_SET	RW	Control
0x100C	IADC_CMD_SET	W SYNC	Command
0x1010	IADC_TIMER_SET	RW CONFIG	Timer
0x1014	IADC_STATUS_SET	RH	Status
0x1018	IADC_MASKREQ_SET	RW SYNC	Mask Request
0x101C	IADC_STMASK_SET	RH SYNC	Scan Table Mask
0x1020	IADC_CMPTHR_SET	RW CONFIG	Digital Window Comparator Threshold
0x1024	IADC_IF_SET	RWH INTFLAG	Interrupt Flags

Offset	Name	Туре	Description
0x1028	IADC_IEN_SET	RW	Interrupt Enable
0x102C	IADC_TRIGGER_SET	RW CONFIG	Trigger
0x1048	IADC_CFGx_SET	RW CONFIG	Configuration
0x1050	IADC_SCALEx_SET	RW CONFIG	Scaling
0x1054	IADC_SCHEDx_SET	RW CONFIG	Scheduling
0x1070	IADC_SINGLEFIFOCFG_SET	RW CONFIG	Single FIFO Configuration
0x1074	IADC_SINGLEFIFODATA_SET	R(r)H	Single FIFO Read Data
0x1078	IADC_SINGLEFIFOSTAT_SET	RH	Single FIFO Status
0x107C	IADC_SINGLEDATA_SET	RH SYNC	Single Data
0x1080	IADC_SCANFIFOCFG_SET	RW CONFIG	Scan FIFO Configuration
0x1084	IADC_SCANFIFODATA_SET	R(r)H	Scan FIFO Read Data
0x1088	IADC_SCANFIFOSTAT_SET	RH	Scan FIFO Status
0x108C	IADC_SCANDATA_SET	RH SYNC	Scan Data
0x1098	IADC_SINGLE_SET	RW SYNC	Single Queue Port Selection
0x10A0	IADC_SCANx_SET	RW CONFIG	SCAN Entry
0x2000	IADC_IPVERSION_CLR	R	IPVERSION
0x2004	IADC_EN_CLR	RW ENABLE	Enable
0x2008	IADC_CTRL_CLR	RW	Control
0x200C	IADC_CMD_CLR	W SYNC	Command
0x2010	IADC_TIMER_CLR	RW CONFIG	Timer
0x2014	IADC_STATUS_CLR	RH	Status
0x2018	IADC_MASKREQ_CLR	RW SYNC	Mask Request
0x201C	IADC_STMASK_CLR	RH SYNC	Scan Table Mask
0x2020	IADC_CMPTHR_CLR	RW CONFIG	Digital Window Comparator Threshold
0x2024	IADC_IF_CLR	RWH INTFLAG	Interrupt Flags
0x2028	IADC_IEN_CLR	RW	Interrupt Enable
0x202C	IADC_TRIGGER_CLR	RW CONFIG	Trigger
0x2048	IADC_CFGx_CLR	RW CONFIG	Configuration
0x2050	IADC_SCALEx_CLR	RW CONFIG	Scaling
0x2054	IADC_SCHEDx_CLR	RW CONFIG	Scheduling
0x2070	IADC_SINGLEFIFOCFG_CLR	RW CONFIG	Single FIFO Configuration
0x2074	IADC_SINGLEFIFODATA_CLR	R(r)H	Single FIFO Read Data
0x2078	IADC_SINGLEFIFOSTAT_CLR	RH	Single FIFO Status
0x207C	IADC_SINGLEDATA_CLR	RH SYNC	Single Data
0x2080	IADC_SCANFIFOCFG_CLR	RW CONFIG	Scan FIFO Configuration
0x2084	IADC_SCANFIFODATA_CLR	R(r)H	Scan FIFO Read Data
0x2088	IADC_SCANFIFOSTAT_CLR	RH	Scan FIFO Status

Offset	Name	Туре	Description
0x208C	IADC_SCANDATA_CLR	RH SYNC	Scan Data
0x2098	IADC_SINGLE_CLR	RW SYNC	Single Queue Port Selection
0x20A0	IADC_SCANx_CLR	RW CONFIG	SCAN Entry
0x3000	IADC_IPVERSION_TGL	R	IPVERSION
0x3004	IADC_EN_TGL	RW ENABLE	Enable
0x3008	IADC_CTRL_TGL	RW	Control
0x300C	IADC_CMD_TGL	W SYNC	Command
0x3010	IADC_TIMER_TGL	RW CONFIG	Timer
0x3014	IADC_STATUS_TGL	RH	Status
0x3018	IADC_MASKREQ_TGL	RW SYNC	Mask Request
0x301C	IADC_STMASK_TGL	RH SYNC	Scan Table Mask
0x3020	IADC_CMPTHR_TGL	RW CONFIG	Digital Window Comparator Threshold
0x3024	IADC_IF_TGL	RWH INTFLAG	Interrupt Flags
0x3028	IADC_IEN_TGL	RW	Interrupt Enable
0x302C	IADC_TRIGGER_TGL	RW CONFIG	Trigger
0x3048	IADC_CFGx_TGL	RW CONFIG	Configuration
0x3050	IADC_SCALEx_TGL	RW CONFIG	Scaling
0x3054	IADC_SCHEDx_TGL	RW CONFIG	Scheduling
0x3070	IADC_SINGLEFIFOCFG_TGL	RW CONFIG	Single FIFO Configuration
0x3074	IADC_SINGLEFIFODATA_TGL	R(r)H	Single FIFO Read Data
0x3078	IADC_SINGLEFIFOSTAT_TGL	RH	Single FIFO Status
0x307C	IADC_SINGLEDATA_TGL	RH SYNC	Single Data
0x3080	IADC_SCANFIFOCFG_TGL	RW CONFIG	Scan FIFO Configuration
0x3084	IADC_SCANFIFODATA_TGL	R(r)H	Scan FIFO Read Data
0x3088	IADC_SCANFIFOSTAT_TGL	RH	Scan FIFO Status
0x308C	IADC_SCANDATA_TGL	RH SYNC	Scan Data
0x3098	IADC_SINGLE_TGL	RW SYNC	Single Queue Port Selection
0x30A0	IADC_SCANx_TGL	RW CONFIG	SCAN Entry

23.5 Register Description

23.5.1 IADC_IPVERSION - IPVERSION

Offset	Bit Position
0x000	33 34 36 37 38 38 39 30 30 31 32 33 34 35 36 37 38 40
Reset	0×0
Access	α
Name	IPVERSION

Bit	Name	Reset	Access	Description
31:0	IPVERSION	0x0	R	IP version ID
	The read only IPVERSIOn modules with different values	•		this module. There may be minor software changes required for

23.5.2 IADC_EN - Enable

Offset	Bit Position																															
0x004	31	30	29	28	27	26	25	24	23	22	21	20	9	9	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset				•	•			•	•							•				•												0x0
Access																																Z N
Name																																Z

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensur ventions		with future devices, always write bits to 0. More information in 1.2 Con-
0	EN	0x0	RW	Enable IADC Module
	The EN bit enable should write to SY			rite to CONFIG type registers before setting the EN bit. Software ng the EN bit.
	Value	Mode		Description
	Value 0	Mode DISABLE	<u> </u>	Description Disable

23.5.3 IADC_CTRL - Control

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	∞	7	9	2	4	က	7	_	0
Reset			000				'				'		0X0					'		'		'		•	<u>'</u>	•	6	S S	000	0×0	0X0	
Access			Z.										X M														à	≩	₹	Z.	Z.	
Name			HSCLKRATE										TIMEBASE															WAKMUPMODE	DBGHALT	ADCCLKSUSPEND1	ADCCLKSUSPEND0	

Bit	Name	Reset	Access	Description
31	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
30:28	HSCLKRATE	0x0	RW	High Speed Clock Rate
	Ratio to divide incomi	ng CLK_CMU_	_ADC clock by.	The resulting clock (CLK_SRC_ADC) must be 40 MHz or less.
	Value	Mode		Description
	0	DIV1		Use CMU_CLK_ADC directly. The source clock must be 40 MHz or less.
	1	DIV2		Divide CMU_CLK_ADC by 2 before using it. The resulting CLK_SRC_ADC must be 40 MHz or less.
	2	DIV3		Divide CMU_CLK_ADC by 3 before using it. The resulting CLK_SRC_ADC must be 40 MHz or less.
	3	DIV4		Divide CMU_CLK_ADC by 4 before using it. The resulting CLK_SRC_ADC must be 40 MHz or less.
27:23	Reserved	To ensure	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
22:16	TIMEBASE	0x0	RW	Time Base
				rate a 1 us interval for warm up and start up timing. Does not allow aced with 0x1 (2 cycles).
15:6	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
5:4	WARMUPMODE	0x0	RW	Warmup Mode
	Select the warmup mo	ode for the AD	C.	
	Value	Mode		Description
	0	NORMAL		Shut down the IADC after conversions have completed.
	1	KEEPINS	TANDBY	Switch to standby mode after conversions have completed. The next warmup time will require 1us.
	2	KEEPWA	RM	Keep IADC fully powered after conversions have completed.
3	DBGHALT	0x0	RW	Debug Halt

D:4	Name	Doort	A	Description					
Bit	Name	Reset	Access	Description					
	ADC behavior when ha	tea by debug	ger.						
	Value	Mode		Description					
	0	NORMAL		Continue operation as normal during debug mode					
	1	HALT		Complete the current conversion and then halt during debug mode					
2	ADCCLKSUSPEND1	0x0	RW	ADC_CLK Suspend - PRS1					
		ains running.	In EM2 and EM	PRSPOS or PRSNEG. In EM0 and EM1, this gates the local clock 43, this disables the clock source until the PRSPOS or PRSNEG ADC timer is running.					
	Value	Mode		Description					
	0	PRSWUD	IS	Normal mode which does not disable the ADC_CLK.					
	1	PRSWUE	N	ADCCLKWUEN will gate off ADC_CLK until the trigger is detected provided the internal timer is not selected as the trigger. Once the trigger is detected the ADC_CLK will be started, the band gap will be started, the ADC will be warmed up, and the SCAN Table and the Single entry will be converted. Once the conversions are done, the ADC_CLK will be gated off.					
1	ADCCLKSUSPEND0	0x0	RW	ADC_CLK Suspend - PRS0					
		ınning. In EM	2 and EM3, this	RSPOS or PRSNEG. In EM0 and EM1, this gates the local clock while s disables the clock source until the PRSPOS or PRSNEG event is er is running.					
	Value	Mode		Description					
	0	PRSWUD	IS	Normal mode which does not disable the ADC_CLK.					
	1	PRSWUE	N	ADCCLKWUEN will gate off ADC_CLK until the trigger is detected provided the internal timer is not selected as the trigger. Once the trigger is detected the ADC_CLK will be started, the band gap will be started, the ADC will be warmed up, and the SCAN Table and the Single entry will be converted. Once the conversions are done, the ADC_CLK will be gated off.					
0	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-					

23.5.4 IADC_CMD - Command

Offset	Bit Position		
0x00C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 დ	0 7 0
Reset	000	000	000
Access	3 3	3 3	3 3
Name	TIMEREN	SCANSTOR	SINGLESTOP

Bit	Name	Reset	Access	Description
31:18	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
17	TIMERDIS	0x0	W	Timer Disable
	Disable the local timer a	nd reset the c	ounter to timer r	eload value.
16	TIMEREN	0x0	W	Timer Enable
	Enable the local timer.			
15:5	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
4	SCANSTOP	0x0	W	Scan Queue Stop
		continue until i	it is complete. If	ars pending conversions in the Scan queue. Any conversion that the scan queue is stopped before all entries of the scan table have l.
3	SCANSTART	0x0	W	Scan Queue Start
	Start the Scan queue. En	nables trigger	ing of the Scan	queue.
2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1	SINGLESTOP	0x0	W	Single Queue Stop
	Stop the Single queue. I sion that has already sta			and clears pending conversions in the Single queue. Any convernplete.
0	SINGLESTART	0x0	W	Single Queue Start
	Start the Single queue. E	Enables trigge	ring of the Singl	e queue.

23.5.5 IADC_TIMER - Timer

Offset															Bi	t Po	sitio	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset				•	•			•		•					•									>	2				•			
Access																								<u> </u>	2							
Name																								TIMED								

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
15:0	TIMER	0x0	RW	Timer Period
	Number of CLK_SRC_A	DC cycles pe	er timer event.	

23.5.6 IADC_STATUS - Status

Offset															Bi	t Po	sitio	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	ω	7	9	2	4	က	2	_	0
Reset		0x0	'		•		'		•		0×0	0x0				000		•		'			0x0	0×0		0×0		0×0	000		0x0	0x0
Access		2									œ	<u>~</u>				œ							<u>~</u>	22		œ		22	œ		Я	~
Name		ADCWARM									MASKREQWRITEPENDING	SINGLEWRITEPENDING				TIMERACTIVE							SCANFIFODV	SINGLEFIFODV		CONVERTING		SCANQUEUEPENDING	SCANQEN		SINGLEQUEUEPENDING	SINGLEQEN

Bit	Name	Reset	Access	Description
31	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
30	ADCWARM	0x0	R	ADCWARM
				elay before converting when coming from a powered down or stand- it end and reference are ready.
29:22	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
21	MASKREQWRITE- PENDING	0x0	R	MASKREQ write pending
	A write to MASKREQ is to the local working vers			using a local working mask register, and only transfers MASKREQ s not converting.
20	SINGLEWRITEPEND-ING	0x0	R	SINGLE write pending
				verts using a local working version of the SINGLE register, and only ne SINGLE queue is not being converted.
19:17	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
16	TIMERACTIVE	0x0	R	Timer Active
	The local timer is runnin	g.		
15:10	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
9	SCANFIFODV	0x0	R	SCANFIFO Data Valid
	At least one result in the	single FIFC	is ready to read	l.
8	SINGLEFIFODV	0x0	R	SINGLEFIFO Data Valid
	At least one result in the	scan FIFO	is ready to read.	
7	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
6	CONVERTING	0x0	R	Converting

		_		
Bit	Name	Reset	Access	Description
	The ADC is warmed up a	and in the pro	cess of perform	ing a conversion.
5	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
4	SCANQUEUEPENDING	0x0	R	Scan Queue Pending
	The SCAN queue has be	en triggered	and is waiting to	o start conversion.
3	SCANQEN	0x0	R	Scan Queued Enabled
	The Scan queue is enabl	ed.		
2	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
1	SINGLEQUEUEPEND- ING	0x0	R	Single Queue Pending
	The Single queue has be ING will remain high until		•	o start conversion. When tailgating is used, SINGLEQUEUEPEND-impleted.
0	SINGLEQEN	0x0	R	Single Queue Enabled
	The Single queue is enab	oled.		

23.5.7 IADC_MASKREQ - Mask Request

Offset															Bi	t Po	sitio	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	œ	7	9	2	4	က	2	_	0
Reset		•		•								•		<u>'</u>					•					5	Š				•			
Access																								<u> </u>	<u>}</u>							
Name																								CHONO	שר אלט ביות ביות							
																								2	<u>{</u> ≥							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
15:0	MASKREQ	0x0	RW	Scan Queue Mask Request
				able should be converted. For example MASKREQ = 0x8014 verted. The other entries will not be converted.

23.5.8 IADC_STMASK - Scan Table Mask

Offset	Bit Position	ion
0x01C	31 30 29 28 28 27 27 24 24 25 25 22 22 20 19 19 16 16	4 6 7 1
Reset		0×0
Access		<u>«</u>
		Marask — — — — — — — — — — — — — — — — — — —
Name		ST M

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensur ventions		with future devices, always write bits to 0. More information in 1.2 Con-
15:0	STMASK	0x0	R	Scan Table Mask
	This is the active / w sequence or when n	•		2 register that the ADC uses. It will only be updated at the end of a scan

23.5.9 IADC_CMPTHR - Digital Window Comparator Threshold

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	o	8	7	9	2	4	က	7	_	0
Reset		× × × × × × × × × × × × × × × × × × ×												•								>	2		•		•		•			
Access																						<u> </u>	2									
Name								FOC	5															⊢ I □ V	7							

Bit	Name	Reset	Access	Description
31:16	ADGT	0x0	RW	ADC Greater Than or Equal to Threshold
	mat regardless of the FI value. Comparisons with	FO ALIGNM n 20-bit form n ADGT is g	ENT setting. Coats will ignore the reater than ADL	o comparison. ADGT should be specified in a left-justified, 16-bit for- omparisons with 12-bit formats will ignore the 4 LSBs of the ADGT ne 4 LSBs of the 20-bit result. Unipolar or bipolar mode is considered .T, the comparison is true if the result is either greater than ADGT or the values.
15:0	ADLT	0x0	RW	ADC Less Than or Equal to Threshold
	regardless of the FIFO A Comparisons with 20-bi	ALIGNMENT t formats will T is greater	setting. Compa ignore the 4 LS than ADLT, the	comparison. ADLT should be specified in a left-justified, 16-bit format arisons with 12-bit formats will ignore the 4 LSBs of the ADLT value. SBs of the 20-bit result. Unipolar or bipolar mode is considered in the comparison is true if the result is either greater than ADGT or less alues.

23.5.10 IADC_IF - Interrupt Flags

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	5	4	က	2	_	0
Reset	000				•		'		•		•		000	0×0	0×0	0×0		'	0x0	000		'	0x0	0×0	0X0			•	0×0	0x0	0×0	0x0
Access	R W												₩ W	RW	RW W	Z.			₩ M	S.			S M M	Z.	¥ M				₩ M	RW	Z.	A M
Name	EM23ABORTERROR												SCANFIFOUF	SINGLEFIFOUF	SCANFIFOOF	SINGLEFIFOOF			PORTALLOCERR	POLARITYERR			SINGLEDONE	SCANTABLEDONE	SCANENTRYDONE				SCANCMP	SINGLECMP	SCANFIFODVL	SINGLEFIFODVL

Bit	Name	Reset	Access	Description
31	EM23ABORTERROR	0x0	RW	EM2/3 Abort Error
	The system entered EM	12 or EM3 du	ring a conversion	on with an unsupported clock. Conversion results may be corrupted.
30:20	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
19	SCANFIFOUF	0x0	RW	Scan FIFO Underflow
	A scan FIFO underflow	has occured.		
18	SINGLEFIFOUF	0x0	RW	Single FIFO Underflow
	A single FIFO underflow	v has occured	d.	
17	SCANFIFOOF	0x0	RW	Scan FIFO Overflow
	A scan FIFO overflow h	as occured.		
16	SINGLEFIFOOF	0x0	RW	Single FIFO Overflow
	A single FIFO overflow	has occured.		
15:14	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
13	PORTALLOCERR	0x0	RW	Port Allocation Error
	A pin was selected on a	port which h	as not been allo	ocated to the IADC in GPIO control.
12	POLARITYERR	0x0	RW	Polarity Error
	Either two even channe set to 0xFFFF.	ls or two odd	channels were	programmed into the channel mux selection. The ADC result will be
11:10	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
9	SINGLEDONE	0x0	RW	Single Conversion Done
	A single conversion has	completed.		
8	SCANTABLEDONE	0x0	RW	Scan Table Done
	A scan sequence comp	leted. Set at t	the end of a sca	an sequence after all valid entries of the scan table have completed.
7	SCANENTRYDONE	0x0	RW	Scan Entry Done
	A scan table conversion	completed.	Set at the comp	oletion of each valid entry of the scan table.

Bit	Name	Reset	Access	Description
6:4	Reserved	To ensure ventions	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
3	SCANCMP	0x0	RW	Scan Result Window Compare
	Scan digital compare	window trippe	d.	
2	SINGLECMP	0x0	RW	Single Result Window Compare
	Single digital compare	window tripp	ed.	
1	SCANFIFODVL	0x0	RW	Scan FIFO Data Valid Level
	A minimum of (DVL+1) entries are r	eady to be read	from the Scan FIFO.
0	SINGLEFIFODVL	0x0	RW	Single FIFO Data Valid Level
	A minimum of (DVL+1) entries are r	eady to be read	from the Single FIFO.

23.5.11 IADC_IEN - Interrupt Enable

Offset															Bi	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	5	4	က	2	_	0
Reset	000		•				'		'		•		0×0	0×0	0×0	0×0		'	0x0	000		'	0x0	0×0	0X0		'	•	0X	0×0	0×0	0x0
Access	R W												Z.	RW	RW W	Z.			₩ M	S.			RW	Z.	¥ M				¥ M	RW	Z.	RW
Name	EM23ABORTERROR												SCANFIFOUF	SINGLEFIFOUF	SCANFIFOOF	SINGLEFIFOOF			PORTALLOCERR	POLARITYERR			SINGLEDONE	SCANTABLEDONE	SCANENTRYDONE				SCANCMP	SINGLECMP	SCANFIFODVL	SINGLEFIFODVL

Bit	Name	Reset	Access	Description
31	EM23ABORTERROR	0x0	RW	EM2/3 Abort Error Enable
	EM2/3 Abort Error Enat	ole		
30:20	Reserved	To ensur	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
19	SCANFIFOUF	0x0	RW	Scan FIFO Underflow Enable
	Scan FIFO Underflow E	nable		
18	SINGLEFIFOUF	0x0	RW	Single FIFO Underflow Enable
	Single FIFO Underflow	Enable		
17	SCANFIFOOF	0x0	RW	Scan FIFO Overflow Enable
	Scan FIFO Overflow En	able		
16	SINGLEFIFOOF	0x0	RW	Single FIFO Overflow Enable
	Single FIFO Overflow E	nable		
15:14	Reserved	To ensur	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
13	PORTALLOCERR	0x0	RW	Port Allocation Error Enable
	Port Allocation Error En	able		
12	POLARITYERR	0x0	RW	Polarity Error Enable
	Polarity Error Enable			
11:10	Reserved	To ensur	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
9	SINGLEDONE	0x0	RW	Single Conversion Done Enable
	Single Conversion Done	e Enable		
8	SCANTABLEDONE	0x0	RW	Scan Table Done Enable
	Scan Table Done Enab	le		
7	SCANENTRYDONE	0x0	RW	Scan Entry Done Enable
	Scan Entry Done Enabl	e		

Bit	Name	Reset	Access	Description
6:4	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
3	SCANCMP	0x0	RW	Scan Result Window Compare Enable
	Scan Result Window (Compare Enab	le	
2	SINGLECMP	0x0	RW	Single Result Window Compare Enable
	Single Result Window	Compare Ena	ble	
1	SCANFIFODVL	0x0	RW	Scan FIFO Data Valid Level Enable
	Scan FIFO Data Valid	Level Enable		
0	SINGLEFIFODVL	0x0	RW	Single FIFO Data Valid Level Enable
	Single FIFO Data Valid	d Level Enable		

23.5.12 IADC_TRIGGER - Trigger

Offset															Bi	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	-	0
Reset					•		•								•	0×0				0×0			0x0			•	•	000			000	
Access																₩ M				Z.			Z ≪					W.			S. N	
Name																SINGLETAILGATE				SINGLETRIGACTION			SINGLETRIGSEL					SCANTRIGACTION			SCANTRIGSEL	

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
16	SINGLETAILGATE	0x0	RW	Single Tailgate Enable
	Enables tailgating.			
	Value	Mode		Description
	0	TAILGATE	OFF	The single queue is ready to start warming up and converting once the trigger had been detected.
	1	TAILGATE	ON	After the single queue's trigger is detected, it must wait until the end of a scan operation before the Single queue can be converted.
15:13	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
12	SINGLETRIGACTION	0x0	RW	Single Trigger Action
	Selects the trigger action	n for the sing	le queue.	
	Value	Mode		Description
	0	ONCE		For TRIGSEL=IMMEDIATE, converts the single queue once and disables queue. For TRIGSEL = TIMER, PRSCLKGRP, PRSPOS, PRSNEG, converts the single queue once per trigger.ask.
	1	CONTINU	ous	Converts the single queue, then checks for a pending scan queue before converting the single queue again continuously. The queues are first come first serve. If both queues are continuous, the IADC alternates between them.
11	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
10:8	SINGLETRIGSEL	0x0	RW	Single Trigger Select
	Selects the trigger source	ce for the sing	gle queue.	
	-			Description

Bit	Name	Reset Access	Description
	0	IMMEDIATE	Immediate triggering. The single queue will be disabled once the conversion is complete, unless TRIGGERACTION is set to continuous.
	1	TIMER	Triggers when the timer count reaches zero.
	2	PRSCLKGRP	Triggers on PRS1 from a timer module that is using the same clock group as the ADC and has been programmed to use the same clock source as the ADC. The prescale may be different between the ADC and the timer module.
	3	PRSPOS	Triggers on asynchronous PRS1 positive edge. Requires PRS1 to go low for 3 ADC_CLKs before another positive edge can be detected. Generates an additional delay of 1 to 2 ADC_SRC_CLK cycles for synchronization.
	4	PRSNEG	Triggers on asynchronous PRS1 negative edge. Requires PRS1 to go high for 3 ADC_CLKs before another negative edge can be detected. Generates an additional delay of 1 to 2 ADC_SRC_CLK cycles for synchronization. PRSNEG should only be used when the trigger source is from a module that remains powered during EM23. For modules (ie: TIMER) that power down during EM23, PRSPOS should be used for an asynchronous trigger, and PRSCLKGRP should be used for a synchronous trigger.
7:5	Reserved	To ensure compatibility with ventions	h future devices, always write bits to 0. More information in 1.2 Con-
4	SCANTRIGACTION	0x0 RW	Scan Trigger Action
	Selects the trigger action	for the scan queue.	
	Value	Mode	Description
	0	ONCE	For TRIGSEL=IMMEDIATE, goes through the scan table once and disables queue. For TRIGSEL = TIMER, PRSCLKGRP, PRSPOS, PRSNEG, goes through the scan table once per trigger.
	1	CONTINUOUS	Goes through the scan table, converts each entry with a mask bit set, and puts it back into the scan queue to repeat again continuously. The queues are first come first serve. If both queues are triggered, the single queue will get to convert after each scan table completes. The scan queue will get to convert after each single conversion completes.
3	Reserved	To ensure compatibility with ventions	h future devices, always write bits to 0. More information in 1.2 Con-
2:0	SCANTRIGSEL	0x0 RW	Scan Trigger Select
	Selects the trigger source	e for the scan queue.	
	Value	Mode	Description
	0	IMMEDIATE	Immediate triggering. The scan queue will be disabled once all conversions in the scan table are complete, unless TRIGGER-ACTION is set to continuous.
	1	TIMER	Triggers when the local timer count reaches zero.
	2	PRSCLKGRP	Triggers on PRS0 from a timer module that is using the same clock group as the ADC and has been programmed to use the same clock source as the ADC. The prescale may be different between the ADC and the timer module.

Bit	Name	Reset	Access	Description
	3	PRSPOS		Triggers on asynchronous PRS0 positive edge. Requires PRS0 to go low for 3 ADC_CLKs before another positive edge can be detected. Generates an additional delay of 1 to 2 ADC_SRC_CLK cycles for synchronization.
	4	PRSNEG		Triggers on asynchronous PRS0 negative edge. Requires PRS0 to go high for 3 ADC_CLKs before another negative edge can be detected. Generates an additional delay of 1 to 2 ADC_SRC_CLK cycles for synchronization. PRSNEG should only be used when the trigger source is from a module that remains powered during EM23. For modules (ie: TIMER) that power down during EM23, PRSPOS should be used for an asynchronous trigger, and PRSCLKGRP should be used for a synchronous trigger.

23.5.13 IADC_CFGx - Configuration

Offset															Bi	t Po	siti	on														
0x048	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	9	6	8	7	9	5	4	က	2	_	0
Reset		•	2	2											0X0				0x2					•					0×0		OXO	3
Access			2	Ž											ΑW				X M										Z W		NA NA	<u> </u>
Name			IdVOCACAT												REFSEL				ANALOGGAIN										OSRHS		ADCMODE)))

Bit	Name	Reset	Access	Description
31:30	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
29:28	TWOSCOMPL	0x0	RW	Two's Complement
	Selects output word	polarity.		
	Value	Mode		Description
	0	AUTO		Automatic: Single ended measurements are reported as unipolar and differential measurements are reported as bipolar.
	1	FORCEU	NIPOLAR	Force all measurements to result in unipolar output. Negative differential numbers will saturate to 0.
	2	FORCEB	IPOLAR	Force all measurements to result in bipolar output. Single ended measurements are half the range, but allow for small negative measurements.
27:19	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
18:16	REFSEL	0x0	RW	Reference Select
	Selects voltage refer	rence.		
	Value	Mode		Description
	0	VBGR		Internal 1.21 V reference.
	1	VREF		External Reference. (Calibrated for 1.25V nominal.)
	3	VDDX		AVDD (unbuffered)
	4	VDDX0P	8BUF	AVDD (buffered) * 0.8
15	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
14:12	ANALOGGAIN	0x2	RW	Analog Gain
	Sets analog froont e	nd gain.		
	Value	Mode		Description
	4	ANAGAIN	INDE	Analog gain of 0.5x.
	1	ANAGAII	NOFS	, thatog gain or o.ox.

Bit	Name	Reset	Access	Description
	3	ANAGAIN	2	Analog gain of 2x.
	4	ANAGAIN	3	Analog gain of 3x.
	5	ANAGAIN	4	Analog gain of 4x.
11:5	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
4:2	OSRHS	0x0	RW	High Speed OSR
	Over sampling ratio	o for high speed c	onversions.	
	Value	Mode		Description
	0	HISPD2		High speed over sampling of 2x.
	1	HISPD4		High speed over sampling of 4x.
	2	HISPD8		High speed over sampling of 8x.
	3	HISPD16		High speed over sampling of 16x.
	4	HISPD32		HIgh speed over sampling of 32x.
	5	HISPD64		High speed over sampling of 64x.
1:0	ADCMODE	0x0	RW	ADC Mode
	Selects ADC conve	ersion mode.		
	Value	Mode		Description
	0	NORMAL		High speed mode with a maximum CLK_ADC of 10 MHz.

23.5.14 IADC_SCALEx - Scaling

Offset															Bi	t Po	sitio	on														
0x050	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	∞	7	9	2	4	က	2	_	0
Reset	0X	0%																•						OXXCOOO	'	•				,		
Access	₽		XW 0.																				2	≥ Y								
Name	GAIN3MSB																						FLOLIC									

Bit	Name	Reset	Access	Description
31	GAIN3MSB	0x1	RW	Gain 3 MSBs
				1xx or 1.00). Example {GAIN3MSB, GAIN13LSB} = {100, MSB, GAIN13LSB} = {011, 0_0000_1010_0010} = 0.75494x.
	Value	Mode		Description
	0	GAIN011		Upper 3 bits of gain = 011 (0.75x)
	1	GAIN100		Upper 3 bits of gain = 100 (1.00x)
30:18	GAIN13LSB	0x0	RW	Gain 13 LSBs
	13 LSBs of the 16-bi	t gain value.		
17:0	OFFSET	0x2C000	RW	Offset
	Offset			

23.5.15 IADC_SCHEDx - Scheduling

Offset															Bi	t Po	sitio	on														
0x054	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	0	8	7	9	5	4	3	2	_	0
Reset			•																								2	3				
Access																											<u> </u>	2				
Name																											DDECONIE	Ź				

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
9:0	PRESCALE	0x0	RW	Prescale
	Second level prescaler - only be used with HSCL			by (PRESCALE + 1) to generate CLK_ADC. PRESCALE=0 should

23.5.16 IADC_SINGLEFIFOCFG - Single FIFO Configuration

Offset															Bi	t Po	siti	on														
0x070	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	~	0
Reset							'		'										•	'		•		0×0			ç	Š	000		0X0	
Access																								₽			à	≥ Y	₩ M		R≪	
Name																								DMAWUFIFOSINGLE			ã	UVF.	SHOWID		ALIGNMENT	

Reset	Name	Access	Description
To ensure ventions	Reserved	e compatibility witl	n future devices, always write bits to 0. More information in 1.2 Con-
INGLE 0x0	DMAWUFIFOSINGLE	RW	Single FIFO DMA wakeup.
FIFO to wake DMA in	Enables single FIFO	n EM2 or EM3.	
Mode	Value		Description
DISABLE	0	:D	While in EM2 or EM3, the DMA controller will not be requested.
ENABLE	1	D	While in EM2 or EM3, the DMA controller will be requested when the single FIFO reaches its Data Valid Level. [DVL must be set to 0 (VALID1).]
To ensure ventions	Reserved	e compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
0x3	DVL	RW	Data Valid Level
	Data valid level before requests will be gene	MA transfer. If the	number of words in the FIFO reaches or exceeds DVL+1, DMA
Mode	Value		Description
VALID1	0		When 1 entry in the single FIFO is valid, set the SINGLEFI-FODVL interrupt and request DMA.
VALID2	1		When 2 entries in the single FIFO are valid, set the SINGLEFI-FODVL interrupt and request DMA.
VALID3	2		When 3 entries in the single FIFO are valid, set the SINGLEFI-FODVL interrupt and request DMA.
VALID4	3		When 4 entries in the single FIFO are valid, set the SINGLEFI-FODVL interrupt and request DMA.
0x0	SHOWID	RW	Show ID
e applied in the outp	ID of 0x20 will be app	out words.	
0x0	ALIGNMENT	RW	Alignment
tput data written into	Alignment of output d	FIFO.	
Mode	Value		Description
			tput data written into FIFO. Mode

Bit	Name	Reset	Access	Description
	0	RIGHT12		ID[7:0], SIGN_EXT, DATA[11:0]
	3	LEFT12		DATA[11:0], 000000000000, ID[7:0]

23.5.17 IADC_SINGLEFIFODATA - Single FIFO Read Data

Offset	Bit Position
0x074	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Reset	0×0
Access	R(r)
Name	DATA

Bit	Name	Reset	Access	Description
31:0	DATA	0x0	R(r)	Data
	Reads and pops the old	est value from	n the single FIF0	D.

23.5.18 IADC_SINGLEFIFOSTAT - Single FIFO Status

Offset															Ві	it Po	siti	on														
0x078	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	7	_	0
Reset			•	•			•				•	•	•		•	•	•							•				•	•		0x0	
Access																															ď	
Name																															FIFOREADCNT	

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
2:0	FIFOREADCNT	0x0	R	FIFO Read Count
	Number of valid entrie	es available to	read.	

23.5.19 IADC_SINGLEDATA - Single Data

Offset	Bit Position
0x07C	33 34 35 36 37 38 38 39 30 31 32 33 34 35 36 37 38 40
Reset	0×0
Access	α
Name	DATA

Bit	Name	Reset	Access	Description
31:0	DATA	0x0	R	Data
				O, but does not pop a value. Even if the FIFO has overflowed and attinue to overwrite SINGLEDATA.

23.5.20 IADC_SCANFIFOCFG - Scan FIFO Configuration

Offset															Bi	t Po	siti	on														
0x080	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	ω	7	9	2	4	က	7	_	0
Reset			•	•			•			•						•							•	000			2	CX C	000		0x0	
Access																								₽			2	<u>}</u>	R M		Σ	
Name																								DMAWUFIFOSCAN			3	D^L	SHOWID		ALIGNMENT	

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure ventions	e compatibility w	rith future devices, always write bits to 0. More information in 1.2 Con-
8	DMAWUFIFOSCAN	0x0	RW	Scan FIFO DMA Wakeup
	Enables scan FIFO to	wake DMA in	EM2 or EM3.	
	Value	Mode		Description
	0	DISABLE	D	While in EM2 or EM3, the DMA controller will not be requested.
	1	ENABLE)	While in EM2 or EM3, the DMA controller will be requested when the scan FIFO reaches its Data Valid Level. [DVL must be set to 0 (VALID1).]
7:6	Reserved	To ensure	e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
F. 4	D) //	00	RW	Data Valid Level
5:4	DVL	0x3	RVV	Data valiu Levei
5.4		requesting D		ne number of words in the FIFO reaches or exceeds DVL+1, DMA
5.4	Data valid level before	requesting D		-
5.4	Data valid level before requests will be generated	e requesting D ated.		ne number of words in the FIFO reaches or exceeds DVL+1, DMA
5.4	Data valid level before requests will be generally	e requesting D ated.		Description When 1 entry in the scan FIFO is valid, set the SCANFIFODVL
5.4	Data valid level before requests will be generally Value	e requesting D ated. Mode VALID1		Description When 1 entry in the scan FIFO is valid, set the SCANFIFODVL interrupt and request DMA. When 2 entries in the scan FIFO are valid, set the SCANFI-
5.4	Data valid level before requests will be generally Value	Mode VALID1 VALID2		Description When 1 entry in the scan FIFO is valid, set the SCANFIFODVL interrupt and request DMA. When 2 entries in the scan FIFO are valid, set the SCANFIFODVL interrupt and request DMA. When 3 entries in the scan FIFO are valid, set the SCANFI-
3	Data valid level before requests will be generally Value 0 1	Mode VALID1 VALID2 VALID3		Description When 1 entry in the scan FIFO is valid, set the SCANFIFODVL interrupt and request DMA. When 2 entries in the scan FIFO are valid, set the SCANFIFODVL interrupt and request DMA. When 3 entries in the scan FIFO are valid, set the SCANFIFODVL interrupt and request DMA. When 4 entries in the scan FIFO are valid, set the SCANFIFODVL interrupt and request DMA.
	Data valid level before requests will be generally Value 0 1 2 3	Mode VALID1 VALID2 VALID3 VALID4	MA transfer. If the	Description When 1 entry in the scan FIFO is valid, set the SCANFIFODVL interrupt and request DMA. When 2 entries in the scan FIFO are valid, set the SCANFIFODVL interrupt and request DMA. When 3 entries in the scan FIFO are valid, set the SCANFIFODVL interrupt and request DMA. When 4 entries in the scan FIFO are valid, set the SCANFIFODVL interrupt and request DMA. When 4 entries in the scan FIFO are valid, set the SCANFIFODVL interrupt and request DMA.
	Data valid level before requests will be generally Value 0 1 2 3 SHOWID	Mode VALID1 VALID2 VALID3 VALID4	MA transfer. If the	Description When 1 entry in the scan FIFO is valid, set the SCANFIFODVL interrupt and request DMA. When 2 entries in the scan FIFO are valid, set the SCANFIFODVL interrupt and request DMA. When 3 entries in the scan FIFO are valid, set the SCANFIFODVL interrupt and request DMA. When 4 entries in the scan FIFO are valid, set the SCANFIFODVL interrupt and request DMA. When 4 entries in the scan FIFO are valid, set the SCANFIFODVL interrupt and request DMA.
3	Data valid level before requests will be generally Value 0 1 2 3 SHOWID Enable ID in output wo	wated. Mode VALID1 VALID2 VALID3 VALID4 0x0 ords. 0x0	MA transfer. If the	Description When 1 entry in the scan FIFO is valid, set the SCANFIFODVL interrupt and request DMA. When 2 entries in the scan FIFO are valid, set the SCANFIFODVL interrupt and request DMA. When 3 entries in the scan FIFO are valid, set the SCANFIFODVL interrupt and request DMA. When 4 entries in the scan FIFO are valid, set the SCANFIFODVL interrupt and request DMA. Show ID

Bit	Name	Reset	Access	Description
	0	RIGHT12		ID[7:0], SIGN_EXT, DATA[11:0]
	3	LEFT12		DATA[11:0], 000000000000, ID[7:0]

23.5.21 IADC_SCANFIFODATA - Scan FIFO Read Data

Offset															Bi	t Po	siti	on														
0x084	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset										•						2	Š				•				•							
Access		R(r) 0x0																														
Name																\ \ \ C	<u> </u>															

Bit	Name	Reset	Access	Description
31:0	DATA	0x0 R(r)		Data
	Reads and pops the old	est value from	the scan FIFO	

23.5.22 IADC_SCANFIFOSTAT - Scan FIFO Status

Offset															Bi	t Po	siti	on														
0x088	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	7	_	0
Reset		•		•	•		•	•			•	•	•		•		•						•	•				•	•		0x0	
Access																															<u>~</u>	
Name																															FIFOREADCNT	

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
2:0	FIFOREADCNT	0x0	R	FIFO Read Count
	Number of valid entries a	available to re	ead.	

23.5.23 IADC_SCANDATA - Scan Data

Offset	Bit Position
0x08C	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Reset	000
Access	<u>د</u>
Name	DATA

Bit	Name	Reset	Access	Description
31:0	DATA	0x0	R	Data
				, but does not pop a value. Even if the FIFO has overflowed and natinue to overwrite SCANDATA.

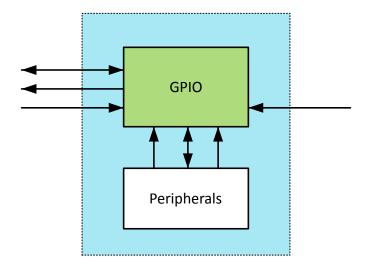
23.5.24 IADC_SINGLE - Single Queue Port Selection

Offset															Bi	t Po	siti	on														
0x098	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		000 00 00 00 00															3															
Access		RW RW OXC OXC															2															
Name															CMP	CFG		o Cataoa	70X X0X				NIN CO				טק האוראטר			PINNEG)	

Bit	Name	Reset	Access	Description									
31:18	Reserved	To ensure ventions	e compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-									
17	CMP	0x0	RW	Comparison Enable									
	Enable digital window comparison for this entry.												
16	CFG	0x0	RW	Configuration Group Select									
	Select which configuration group (CFGx, SCALEx, SCHEDx registers) is used with this entry.												
	Value	Mode		Description									
	0	CONFIG0)	Use configuration group 0									
	1	CONFIG1		Use configuration group 1									
15:12	PORTPOS	0x0	RW	Positive Port Select									
	Port (A, B, C, D) or special signal assigned to the positve input of the ADC												
	Value	Mode		Description									
	0	GND		Ground									
	1	SUPPLY		Supply Pin - Select specific supply using PINPOS									
	6	PADREF	POS	External Positive Reference Pin									
	8	PORTA		Port A - Select pin number using PINPOS									
	9	PORTB		Port B - Select pin number using PINPOS									
	10	PORTC		Port C - Select pin number using PINPOS									
	11	PORTD		Port D - Select pin number using PINPOS									
11:8	PINPOS	0x0	RW	Positive Pin Select									
	Pin number for the positive input of the ADC.												
7:4	PORTNEG	0x0	RW	Negative Port Select									
	Port (A, B, C, D) or special signal assigned to the negative input of the ADC												
	Value	Mode		Description									
	0	GND		Ground (single-ended)									
	6	PADREF	NEG	External Negative Reference Pin									
	8	PORTA		Port A - Select pin number using PINNEG									

Bit	Name	Reset	Access	Description									
	9	PORTB		Port B - Select pin number using PINNEG									
	10	PORTC		Port C - Select pin number using PINNEG									
	11	PORTD		Port D - Select pin number using PINNEG									
3:0	PINNEG	0x0	RW	Negative Pin Select									
	Pin number for th												

23.5.25 IADC_SCANx - SCAN Entry


Offset	Bit Position																															
0x0A0	0 7 8 8 7 9 9 7 7 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1												9	2	4	က	7	_	0													
Reset											•	000	0x0	0x0				0x0				0x0				0x0						
Access													₩ W	₩ M	RW W			RW				RW			RW							
Name															CMP	CFG		OCATACA	טק ה				207				ם ביי					

Bit	Name	Reset	Access	Description										
31:18	Reserved	To ensure ventions	e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-										
17	CMP	0x0	RW	Comparison Enable										
	Enable digital wind	dow comparison fo	or this entry.											
16	CFG	0x0	RW	Configuration Group Select										
	Select which configuration group (CFGx, SCALEx, SCHEDx registers) is used with this entry.													
	Value	Mode		Description										
	0	CONFIGO		Use configuration group 0										
	1	CONFIG1		Use configuration group 1										
15:12	PORTPOS	0x0	RW	Positive Port Select										
	Port (A, B, C, D) or special signal assigned to the positve input of the ADC													
	Value	Mode		Description										
	0	GND		Ground										
	1	SUPPLY		Supply Pin - Select specific supply using PINPOS										
	6	PADREF	POS	External Positive Reference Pin										
	8	PORTA		Port A - Select pin number using PINPOS										
	9	PORTB		Port B - Select pin number using PINPOS										
	10	PORTC		Port C - Select pin number using PINPOS										
	11	PORTD		Port D - Select pin number using PINPOS										
11:8	PINPOS	0x0	RW	Positive Pin Select										
	Pin number for the positive input of the ADC.													
7:4	PORTNEG	0x0	RW	Negative Port Select										
	Port (A, B, C, D) or special signal assigned to the negative input of the ADC													
	Value	Mode		Description										
	0	GND		Ground (single-ended)										
	6	PADREFI	NEG	External Negative Reference Pin										
	8	PORTA		Port A - Select pin number using PINNEG										

Bit	Name	Reset	Access	Description									
	9	PORTB		Port B - Select pin number using PINNEG									
	10	PORTC		Port C - Select pin number using PINNEG									
	11	PORTD		Port D - Select pin number using PINNEG									
3:0	PINNEG	0x0	RW	Negative Pin Select									
	Pin number for the neg	gative input of	the ADC.										

24. GPIO - General Purpose Input/Output

Quick Facts

What?

The General Purpose Input/Output (GPIO) is used for pin configuration, direct pin manipulation, and sensing, as well as routing for peripheral pin connections.

Why?

Easy to use and highly configurable input/output pins are important to fit many communication protocols as well as minimizing software control overhead. Flexible routing of peripheral functions helps to ease PCB layout.

How?

Each pin on the device can be individually configured as either an input or an output with several different drive modes. Also, individual bit manipulation registers minimizes control overhead. Peripheral connections to pins can be routed to pins as desired solving congestion and contention issues that may arise with limited routing flexibility. Fully asynchronous interrupts can also be generated from any pin.

24.1 Introduction

In the EFR32xG21 devices the General Purpose Input/Output (GPIO) pins are organized into ports with up to 16 pins each. These GPIO pins can be individually configured as either an output or input. More advanced configurations like open-drain, open-source, and glitch filtering can be configured for each individual GPIO pin. Peripheral resources, like Timer PWM outputs or USART RX/TX can be routed to the GPIO pins as desired by the user. Finally, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals or used to trigger an external interrupt.

24.2 Features

- · Individual configuration for each pin
 - · Tristate (reset state)
 - Push-pull
 - · Open-drain
 - · Pull-up resistor
 - · Pull-down resistor
 - · Programable Slewrate Control
- EM4 IO pin retention
 - · Output enable
 - · Output value
 - · Pull enable
 - · Pull direction
- · EM4 wake-up on selected GPIO pins
- · Glitch suppression input filter
- · Extremely flexible analog and digital resource routing
- · Toggle register for output data
- Dedicated data input register (read-only)
- · Interrupts
 - · 2 Interrupt lines using either levels or edges
 - EM4 wake-up pins are selectable for level interrupts
 - · All GPIO pins are selectable for edge interrupts
 - · Separate enable, status, set and clear registers
 - · Asynchronous sensing
 - · Rising, falling or both edges
 - · High or low level detection
 - Wake up from EM1-EM3
- · Peripheral Reflex System producer
 - · All GPIO pins are selectable

24.3 Functional Description

An overview of the GPIO module is shown in Figure 24.1 Pin Configuration on page 685. The GPIO pins are grouped into 16-pin ports. Each individual GPIO pin is called Pxn where x indicates the port (A, B, C ...) and n indicates the pin number (0,1,....,15). Fewer than 16 pins may be available on some ports depending on the total number of I/O pins on the package. After a reset, both input and output are disabled for all pins on the device, except for the Serial Wire Debug pins.

To use a pin, the Mode Register (GPIO_Px_MODEL/GPIO_Px_MODEH) must be configured for the pin to make it an input or output. These registers can also do more advanced configuration, which is covered in 24.3.1 Pin Configuration. When the port is configured as an input or an output, the Data In Register (GPIO_Px_DIN) can be used to read the level of each pin in the port (bit n in the register is connected to pin n on the port). When configured as an output, the value of the Data Out Register (GPIO_Px_DOUT) will be driven to the pin.

The DOUT value can be changed in 4 different ways:

- · Writing to the GPIO_Px_DOUT register
- · Writing the SET address of the GPIO Px DOUT register sets the DOUT bits
- · Writing the CLEAR address of the GPIO_Px_DOUT register clears the DOUT bits
- Writing the GPIO_Px_DOUTTGL register toggles the corresponding DOUT bits

Reading the GPIO_Px_DOUT register will return its contents. Reading the GPIO_Px_DOUTTGL register will return 0.

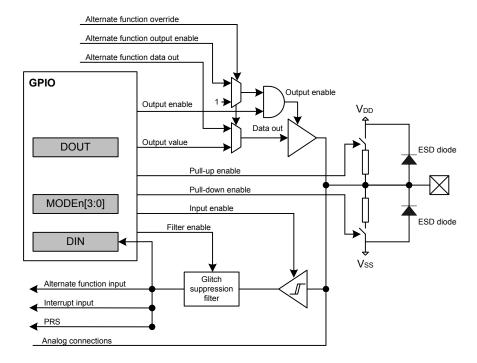


Figure 24.1. Pin Configuration

24.3.1 Pin Configuration

In addition to setting the pins as either outputs or inputs, the GPIO_Px_MODEL and GPIO_Px_MODEH registers can be used for more advanced configurations. GPIO_Px_MODEL contains 8 bit fields named MODEn (n=0,1,..7) which control pins 0-7, while GPIO_Px_MODEH contains 8 bit fields named MODEn (n=8,9,..15) which control pins 8-15. In some modes GPIO_Px_DOUT is also used for extra configurations like pull-up/down and glitch suppression filter enable. Table 24.1 Pin Configuration on page 686 shows the available configurations.

Table 24.1. Pin Configuration

MODEn	Input	Output	DOUT	Pull- down	Pull- up	Alt Port Ctrl	Input Filter	Description
DISABLED	Disabled	Disabled	0					Input disabled
			1		On			Input disabled with pull-up
INPUT	Enabled		0					Input enabled
	if not DINDIS		1				On	Input enabled with filter
INPUTPULL			0	On				Input enabled with pull-down
			1		On			Input enabled with pull-up
INPUTPULLFILTER			0	On			On	Input enabled with pull- down and filter
			1		On		On	Input enabled with pull-up and filter
PUSHPULL		Push-	х					Push-pull
PUSHPULLALT		pull	х			On		Push-pull with alternate port control values
WIREDOR		Open	х					Open-source
WIREDORPULLDOWN		Source (Wired- OR)	х	On				Open-source with pull-down
WIREDAND		Open	х					Open-drain
WIREDANDFILTER		Drain (Wired-	х				On	Open-drain with filter
WIREDANDPULLUP		AND)	х		On			Open-drain with pull-up
WIREDANDPULLUPFILTER			х		On		On	Open-drain with pull-up and filter
WIREDANDALT			х			On		Open-drain with alternate port control values
WIREDANDALTFILTER			х			On	On	Open-drain with alternate port control values and filter
WIREDANDALTPULLUP			х		On	On		Open-drain with alternate port control values and pull-up
WIREDANDALTPULLUPFILTER			х		On	On	On	Open-drain with alternate port control values, pull-up and filter

MODEn determines which mode the pin is in at a given time. Setting MODEn to DISABLED disables the pin, reducing power consumption to a minimum. When the output driver and input driver are disabled, the pin can be used as a connection for an analog module. An input is enabled by setting MODEn to any value other than DISABLED while DINDIS for the given port is cleared. Set DINDIS to disable

the input of a GPIO port. The pull-up, pull-down and glitch filter function can optionally be applied to the input, see Figure 24.2 Tristated Output with Optional Pull-up or Pull-down on page 687.

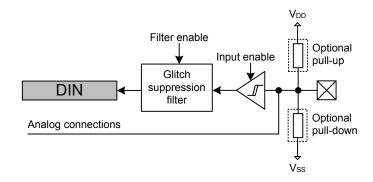


Figure 24.2. Tristated Output with Optional Pull-up or Pull-down

When MODEn is PUSHPULL or PUSHPULLALT, the pin operates in push-pull mode. In this mode, the pin can have alternate port control values and can be driven either high or low, dependent on the value of GPIO_Px_DOUT. The push-pull configuration is shown in Figure 24.3 Push-Pull Configuration on page 687.

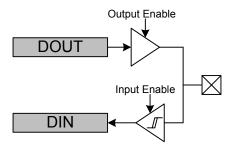


Figure 24.3. Push-Pull Configuration

When MODEn is WIREDOR or WIREDORPULLDOWN, the pin operates in open-source mode (with a pull-down resistor for WIREDORPULLDOWN). When driving a high value in open-source mode, the pull-down is disconnected to save power.

When the mode is prefixed with WIREDAND, the pin operates in open-drain mode as shown in Figure 24.4 Open-drain on page 687. In open-drain mode, the pin can have an input filter, a pull-up, alternate port control values or any combination of these. When driving a low value in open-drain mode, the pull-up is disconnected to save power.

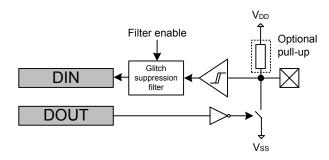


Figure 24.4. Open-drain

24.3.2 Alternate Port Control

The Alternate Port Control allows for additional flexibility of port level settings. A user may setup two different port configurations (normal and alternate modes) and select which is applied on a pin by pin bases. For example you may configure half of port A to use the slowest slew rate while the other half uses a faster slew rate.

Alternate port control is enabled when MODEn is set to any of the ALT enumerated modes (i.e., PUSHPULLALT). When MODEn is an alternate mode, the pin uses the alternate port control values specified in the DINDISALT and SLEWRATEALT fields in GPIO_Px_CTRL. In all other modes, the port control values are used from the DINDIS and SLEWRATE fields in GPIO_Px_CTRL.

24.3.3 Slew Rate

The slewrate can be applied to pins on a port-by-port basis. The slew rate applied to pins configured using normal MODEn settings can be controlled using the SLEWRATE fields in GPIO_Px_CTRL. The slewrate applied to pins configured using the alternate MODEn settings can be controlled using the SLEWRATEALT field.

The lowest slew rate setting has limited drive strength. That is the current is limited to about 1 mA. This setting provides slow switching and limited drive. A slew rate setting of 1 provides the slowest switching with full drive capability. The maximum recommended setting for most digital I/O is 6. A slew rate setting of 7 should only be used for high-speed clock signals, above 10 MHz. A setting of 7 should not be used on more than one pin per port. Please refer to the datasheet for GPIO rise and fall times.

24.3.4 Input Disable

The pin inputs can be disabled on a port-by-port basis. The input of pins configured using the normal MODEn settings can be disabled by setting DINDIS in GPIO_Px_CTRL. The input of pins configured using the alternate MODEn settings can be disabled by setting DINDISALT.

24.3.5 Configuration Lock

The GPIO configuration registers (GPIO_Px_CTRL, PIO_Px_MODEL, GPIO_xBUSALLOC, GPIO_EXTIPSELL, GPIO_EXTIPINSEL, GPIO_x_yROUTE, and GPIO_xROUTEEN) can be locked by writing any value other than 0xA534 to GPIO_LOCK. Writing the value 0xA534 to the GPIOx LOCK register unlocks the configuration registers.

24.3.6 EM2 Functionality

While all GPIO pins retain their state in EM2, only pins on port A and B remain fully functional in EM2. Digital peripherals which are active in EM2 must have their resources routed to pins on port A or B to function correctly in EM2. Analog peripherals may use any GPIO pin while in EM2 provided that the ABUS was configured prior to entering EM2. However, analog peripherals that are configured to scan multiple pins while in EM2 (such as the ADC) dynamically reconfigure the ABUS while in EM2 and thus must use only pins on port A and B.

24.3.7 EM4 Functionality

By default GPIO pins revert back to their reset state when EM4 is entered. The GPIO pins can be configured to retain the settings for output enable, output value, pull enable, and pull direction while in EM4.

EM4 GPIO retention is controlled with the EM4IORETMODE field in the EMU EM4CTRL register:

- Setting EM4IORETMODE to EM4EXIT will cause GPIO retention to persist while in EM4. GPIO state will be reset during wakeup.
- Setting EM4IORETMODE to SWUNLATCH will cause the GPIO retention to persist through EM4 and wakeup, until the EM4UNLATCH bit is written by software. When using SWUNLATCH, the GPIO register values are still reset on wakeup. To ensure the GPIO state does not change, software must re-write the GPIO registers before setting EM4UNLATCH and ending EM4 GPIO retention. Note that the GPIO state cannot be retained through an EM4 wakeup due to a reset (e.g., pin reset or POR reset) only non-reset methods of EM4 wakeup are supported (e.g., EM4WU IRQ or BURTC IRQ).

See the EMU chapter for additional documentation on EM4IORETMODE and the EM4UNLATCH bit.

24.3.8 EM4 Wakeup

It is possible to trigger a wake-up from EM4 using any of the selectable EM4WU GPIO pins. The wake-up request can be triggered through the pins by enabling the corresponding bit in the GPIO_EM4WUEN register. When EM4 wake-up is enabled for the pin, the input filter is enabled during EM4. This is done to avoid false wake-up caused by glitches. In addition, the polarity of the EM4 wake-up request can be selected using the GPIO_EXTILEVEL register.

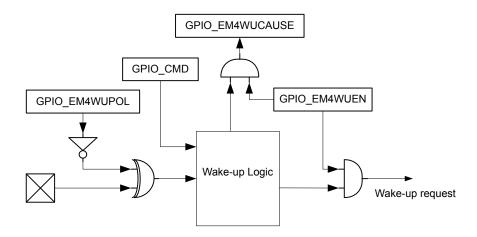


Figure 24.5. EM4 Wake-up Logic

The pins used for EM4 wake-up must be configured as inputs with glitch filters using the GPIO_Px_MODEL register. If the input is disabled and the wakeup polarity is low, a false wakeup will occur when entering EM4. If the input is enabled, the glitch filtered is disabled, and the polarity is set low, a glitch will occur when going into EM4 that will cause an immediate wake-up. Before going down to EM4, it is important to clear the wake-up logic by setting the GPIO_IFC bit, which clears the wake-up logic, including the GPIO_IF register. It is possible to determine which pin caused the EM4WU by reading the GPIO_IF register.

Each EM4WU signal is connected to a fixed pin. Refer to the Alternate Function Table in the device Datasheet for the location of each EM4 wakeup signal.

24.3.9 Debug Connections

24.3.9.1 JTAG Debug Connection

The JTAG Debug Port is a fixed location resource connected directly to specific GPIO pins. Refer to the Alternate Function Table in the device Datasheet for the location of the JTAG signals. By default TMS, TCK, TDO, and TDI pin connections are enabled with internal pull up, pull down, no pull, and pull up resistors, respectively. It is possible to disable these pin connections (and disable the pull resistors) by setting the SWDIOTMSPEN, SWCLKTCKPEN, TDOPEN, and TDIPEN bits in GPIO DEBUGROUTEPEN to 0.

24.3.9.2 Serial Wire Debug Connection

The SW Debug Port is a fixed location resource connected directly to specific GPIO pins. Refer to the Alternate Function Table in the device Datasheet for the location of the SW Debug port signals. The SWDIO and SWCLK pin connections are enabled by default with internal pull up and pull down resistors, respectively. It is possible to disable these pin connections (and disable the pull resistors) by setting the SWDIOTMSPEN and SWCLKTCKPEN bits in GPIO_DEBUGROUTEPEN to 0.

The Serial Wire Viewer pin, SWV, can be enabled by setting the SWVPEN bit in GPIO_TRACEROUTEPEN.

24.3.9.3 Disabling Debug Connections

When the debug pins are disabled, the device can no longer be accessed by a debugger. A reset will set the debug pins back to their enabled default state. The GPIO_DBGROUTEPEN register can only be updated when the debugger is disconnected from the system. Any attempts to modify GPIO_DBGROUTEPEN when the debugger is connected will not occur. If you do disable the debug pins, make sure you have at least a 3 second timeout at the start of your program code before you disable the debug pins. This way the debugger will have time to connect to the device after a reset and before the pins are disabled.

24.3.9.4 ETM Trace Connections

There is a single trace pin available on the device. One trace clock which can be enabled by setting the TRACECLKPEN bit-field in GPIO_TRACEROUTEPEN. The data pin can be enabled individually by setting TRACEDATA0PEN in GPIO_TRACEROUTEPEN. The trace pins are fixed location resources connected to specific pins. Refer to the Alternate Function Table in the device Datasheet for the location of the SW Debug port signals.

24.3.10 Interrupt Generation

24.3.10.1 Edge Interrupt Generation

The GPIO can generate an interrupt from any edge of the input of any GPIO pin on the device. The edge interrupts have asynchronous sense capability, enabling wake-up from energy modes as low as EM3, see Figure 24.6 Pin n Interrupt Generation on page 690.

Note: In EM2 and EM3, only pins on Port A and Port B are available for edge interrupts. All pins are available for edge interrupts in EM0 and EM1.

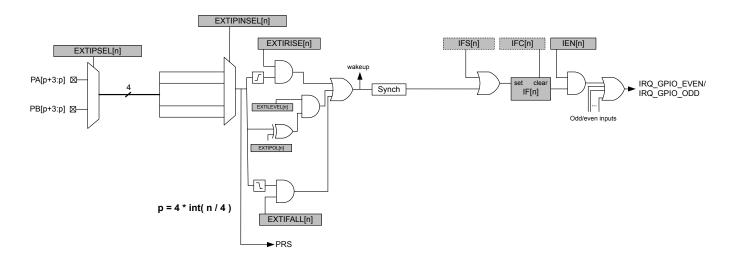


Figure 24.6. Pin n Interrupt Generation

The external pin interrupts are numbered starting with 0. Each interrupt has a corresponding enable bit in the GPIO_IEN register and an interrupt flag bit in the GPIO_IF register. Each interrupt may be used with one of four possible pins on any available port. First select the desired port for each interrupt using the corresponding EXTIPSELx field in the GPIO_EXTIPSELL register. (Some devices with many pins may also have a GPIO_EXTIPSELH register.)

Each interrupt can be mapped to one of four possible pins on the selected port. External interrupts EXTI0 through EXTI3 may be mapped to pins 0,1,2, or 3 on any available port. External interrupts EXTI4 through EXTI7 may be mapped to pins 4,5,6 or 7 on any available port.

Note: Note that while the EXTIEN field in the GPIO_IEN register has 15 bits, the number of useful bits is limited by the number of pins available in the widest port. If the widest port is 8 bits wide, only the first 8 external interrupts are useful.

The selected pin for each interrupt is the base plus the offset. The base for EXTI0 through EXTI3 is 0, while the base for interrupts EXTI4 through EXTI7 is 4. The base may be calculated by taking the interrupt number, dividing by four, then using only the integer portion of the quotient. (BASE = Integer(N/4)

The offset is selected using the corresponding field in the GPIO_EXTIPINSELL register, (Some devices with many pins may also have a GPIO_EXTIPINSELH register.) Subtract the base from the desired pin number to get the offset. For example, to map EXTI5 to pin 7 of PORTA, the base is 4 and the offset will be 3.

The GPIO_EXTIRISE[n] and GPIO_EXTIFALL[n] registers enable sensing of rising and falling edges. By setting the EXT[n] bit in GPIO_IEN, a high interrupt flag n, will trigger one of two interrupt lines. The even interrupt line is triggered by any enabled even numbered interrupt flag index, while the odd interrupt line is triggered by odd flag indexes. The interrupt flags can be set and cleared by software when writing the GPIO_IFS and GPIO_IFC registers. Since the external interrupts are asynchronous, they are sensitive to noise. To increase noise tolerance, the MODEx field(s) in the GPIO_Px_MODEL register, should be set to include glitch filtering for pins that have external interrupts enabled.

In addition to being an EM4 wake source, any of the EM4WU (EM4 wake-up) pins on the device may be used to generate level-sensitive interrupts in EM0, EM1, EM2, and EM3.

In order to enable the level interrupt, set the EM4WUIENn field in the GPIO_IEN register and the EM4WUENn field in the EM4WUEN register. The EM4WUPOLn field in the GPIO_EM4WUPOL register is used to set the desired polarity for the interrupt.

Upon a level interrupt occurring, the corresponding EM4WU index in the GPIO_IF register will be set along with the odd or even interrupt line depending on the index inside of GPIO_IF. For example, by setting the. EM4WU8 in GPIO_EXTILEVEL and EM4WU[8] in GPIO_IEN, the interrupt flag EM4WU[8] in GPIO_IF will be triggered by a high level on pin EM4WU8 and a interrupt request will be sent on IRQ_GPIO_EVEN.

The wake-up granularity of the level interrupts is based on the settings of the EM4WU field in the GPIO_IEN register and the EM4WUEN field in the GPIO_EM4WUEN register (see Table 24.2 Level Interrupt Energy Mode Wakeup on page 691).

EM4WUENn in EM4WUIENn in GPIO IEN **Energy Mode Wakeup** Interrupt **GPIO_EM4WUEN** 0 No Wake х No Interrupt 1 Wake from EM4 n No Interrupt 1 1 Wake from EM1, EM2, EM3, or Interrupt from EM0, EM1, EM2, EM4 or EM3

Table 24.2. Level Interrupt Energy Mode Wakeup

For example, to configure the device to wake up and generate an interrupt when PD02 (EM4WU9) is logic low:

- 1. Set bit 9 of EM4WUEN in the GPIO EM4WUEN register to '1'. This enables the asynchronous wake logic.
- 2. Set bit 9 of EM4WUIEN in the GPIO_IEN register to '1'. This enables routing of the wake signal to the GPIO_ODD IRQ.
- 3. Clear bit 9 of EM4WUPOL in the GPIO_EM4WUPOL register to '0'. This indicates that the interrupt should occur when a logic low level is detected at the pin.
- 4. Enable the GPIO.ODD IRQ. The ODD interrupt is used because the bit index of EM4WUIF in GPIO IF is odd.

24.3.11 Output to PRS

All pins within a group of four(0-3,4-7,8-11,12-15) from all ports are grouped together to form one PRS producer which outputs to the PRS. The pin from which the output should be taken is selected in the same fashion as the edge interrupts.

PRS output is not affected by the interrupt edge detection logic or gated by the IEN bits. See 24.3.10 Interrupt Generation for an illustration of where the PRS output signal is generated.

24.3.12 Peripheral Resource Routing

Most peripherals have resources that need to be connected to GPIO pins to function. For example, the I2C has SDA and SCL which need to be connected to pins for the I2C to communicate with other ICs. Resources come in three types. Fixed resources are hardwired to a pin and can only be accessed in that location. For example the LFXO LFXTAL_I and LFXTAL_O resources are only available on one pin each. Digital route-able resources are connected to pins through the 24.3.12.1 Digital Bus (DBUS) which allows for extremely flexible resource placement. Analog route-able resources are connected to pins though the 24.3.12.2 Analog Bus (ABUS) which provides extremely flexible resource placement.

The locations of fixed resources and the limitations of ABUS and DBUS on each device can be found in the device data sheet.

24.3.12.1 Digital Bus (DBUS)

The Digital Bus (DBUS) is an any-to-any switch matrix between peripheral resources and GPIO pins as shown in Figure 24.7 Digital Bus Interconnect on page 692. There are two DBUSes on the EFR32xG21 - one serving ports A and B and the other ports C and D. Not all peripherals have access to both DBUSes.

To connect a resource to a pin, first select the desired PORT and PIN in the GPIO_x_yROUTE register, where x is the peripheral name and y is the resource name. Once the pin is selected, the resource must be enabled by setting its enable bit in the appropriate GPIO_x_ROUTEEN register. For example, to route the TX resource of USART1 to PB3, set PORT to 0x1 and PIN to 0x3 in GPIO_USART1_TXROUTE. Then set the GPIO_USART1_ROUTEN.TXEN bit.

Any pin connected to a digital resource should be properly configured for that resource. For example USART1 TX should be configured as push-pull and USART1 RX should be configured as an input.

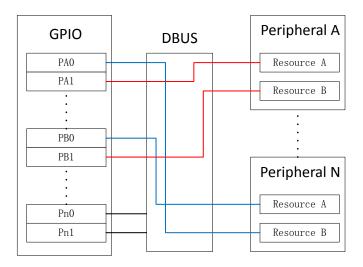


Figure 24.7. Digital Bus Interconnect

24.3.12.2 Analog Bus (ABUS)

Analog peripherals may be connected to any pins on port A, B, C, or D via the Analog Bus. There are three analog buses on the EFR32xG21: one dedicated to Port A (ABUSA), one dedicated to port B (ABUSB), and one that serves both ports C and D (ABUSCD). The specific pin and port selection for analog resources are configured in the analog peripherals. Refer to the respective analog peripheral chapter for this information. However, the GPIO block must be configured to grant the peripheral access to an ABUS before any connection can be made.

Up to two analog peripherals may be given access to an ABUS at any one time and the even/odd pins of each bus are configured independently. This means that a single bus may have up to four different analog peripherals connected to it: two on the even pins and two on the odd pins. The GPIO_ABUSXALLOC register, where x is the port, determines which peripherals have access to the bus. To grant a peripheral access to the bus even pins select it in either the EVEN0 or EVEN1 field. To grant a peripheral access to the bus odd pins select it in either the ODD0 or ODD1 fields.

When a differential connection is being used, positive inputs are restricted to the EVEN pins and negative inputs are restricted to the ODD pins. When a single ended connection is being used, the positive input is available on all pins.

Peripherals may be given access to as many buses as desired. For example the ADC may be given access to ABUSA, ABUSB, and ABUSCD allowing it to select any pin on ports A-D. If two peripherals select the same port and pin the ABUS will make both connections simultaneously, effectively connecting the two peripherals together.

Any pin connected to an analog resource should be configured to input DISABLED as described in 24.3.1 Pin Configuration

The process for configuring an analog peripheral to access a pin through the ABUS is as follows:

- Configure the desired analog port pins to input DISABLED mode in the corresponding GPIO_PORTx_MODEL/H register.
- Configure the corresponding GPIO_xBUSALLOC field to grant access to the desired peripheral on the desired ABUS.
- Configure the analog peripheral to select the desired port and channel as described in the peripheral chapter.

24.3.12.3 Pin Function Tables

This section details the functions and GPIO pins available on the most fully-featured devices in the EFR32xG21 family. Availability of GPIO may vary on smaller packages. Refer to the device datasheet for specific peripheral and GPIO availability. Fixed-pin peripheral resources are shown in Table 24.3 GPIO Fixed Pin Function Table on page 693, ABUS routing options are listed in Table 24.4 ABUS Routing Table on page 693, and DBUS routing options are listed in Table 24.5 DBUS Routing Table on page 693

Table 24.3. GPIO Fixed Pin Function Table

GPIO			Alternate Function	
PC00	GPIO.EM4WU6			
PC05	GPIO.EM4WU7			
PB01	GPIO.EM4WU3			
PA01	GPIO.SWCLK			
PA02	GPIO.SWDIO			
PA03	GPIO.SWV	GPIO.TDO	GPIO.TRACEDA- TA0	
PA04	GPIO.TDI	GPIO.TRACECLK		
PA05	GPIO.EM4WU0			
PD02	GPIO.EM4WU9			
PD01	LFXO.LFXTAL_I	LFXO.LF_EXTCLK		
PD00	LFXO.LFXTAL_O			

Table 24.4. ABUS Routing Table

Peripheral	Signal		PA		РВ		PC		PD	
		EVEN	ODD	EVEN	ODD	EVEN	ODD	EVEN	ODD	
ACMP0	ana_neg	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
	ana_pos	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
ACMP1	ana_neg	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
	ana_pos	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
IADC0	ana_neg	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
	ana_pos	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	

Table 24.5. DBUS Routing Table

Peripheral.Resource	PORT				
	PA	РВ	PC	PD	
ACMP0.DIGOUT	Available	Available	Available	Available	
ACMP1.DIGOUT	Available	Available	Available	Available	
CMU.CLKIN0			Available	Available	
CMU.CLKOUT0			Available	Available	

Peripheral.Resource	PORT			
	PA	РВ	PC	PD
CMU.CLKOUT1			Available	Available
CMU.CLKOUT2	Available	Available		
FRC.DCLK			Available	Available
FRC.DFRAME			Available	Available
FRC.DOUT			Available	Available
I2C0.SCL	Available	Available	Available	Available
I2C0.SDA	Available	Available	Available	Available
I2C1.SCL			Available	Available
I2C1.SDA			Available	Available
LETIMER0.OUT0	Available	Available		
LETIMER0.OUT1	Available	Available		
MODEM.ANT0	Available	Available	Available	Available
MODEM.ANT1	Available	Available	Available	Available
MODEM.DCLK	Available	Available		
MODEM.DIN	Available	Available		
MODEM.DOUT	Available	Available		
PRS.ASYNCH0	Available	Available		
PRS.ASYNCH1	Available	Available		
PRS.ASYNCH10			Available	Available
PRS.ASYNCH11			Available	Available
PRS.ASYNCH2	Available	Available		
PRS.ASYNCH3	Available	Available		
PRS.ASYNCH4	Available	Available		
PRS.ASYNCH5	Available	Available		
PRS.ASYNCH6			Available	Available
PRS.ASYNCH7			Available	Available
PRS.ASYNCH8			Available	Available
PRS.ASYNCH9			Available	Available
PRS.SYNCH0	Available	Available	Available	Available
PRS.SYNCH1	Available	Available	Available	Available
PRS.SYNCH2	Available	Available	Available	Available
PRS.SYNCH3	Available	Available	Available	Available
TIMER0.CC0	Available	Available	Available	Available
TIMER0.CC1	Available	Available	Available	Available
TIMER0.CC2	Available	Available	Available	Available
TIMER0.CDTI0	Available	Available	Available	Available

Peripheral.Resource		PC	DRT	
	PA	РВ	PC	PD
TIMER0.CDTI1	Available	Available	Available	Available
TIMER0.CDTI2	Available	Available	Available	Available
TIMER1.CC0	Available	Available	Available	Available
TIMER1.CC1	Available	Available	Available	Available
TIMER1.CC2	Available	Available	Available	Available
TIMER1.CDTI0	Available	Available	Available	Available
TIMER1.CDTI1	Available	Available	Available	Available
TIMER1.CDTI2	Available	Available	Available	Available
TIMER2.CC0	Available	Available		
TIMER2.CC1	Available	Available		
TIMER2.CC2	Available	Available		
TIMER2.CDTI0	Available	Available		
TIMER2.CDTI1	Available	Available		
TIMER2.CDTI2	Available	Available		
TIMER3.CC0			Available	Available
TIMER3.CC1			Available	Available
TIMER3.CC2			Available	Available
TIMER3.CDTI0			Available	Available
TIMER3.CDTI1			Available	Available
TIMER3.CDTI2			Available	Available
USART0.CLK	Available	Available	Available	Available
USARTO.CS	Available	Available	Available	Available
USARTO.CTS	Available	Available	Available	Available
USARTO.RTS	Available	Available	Available	Available
USART0.RX	Available	Available	Available	Available
USART0.TX	Available	Available	Available	Available
USART1.CLK	Available	Available		
USART1.CS	Available	Available		
USART1.CTS	Available	Available		
USART1.RTS	Available	Available		
USART1.RX	Available	Available		
USART1.TX	Available	Available		
USART2.CLK			Available	Available
USART2.CS			Available	Available
USART2.CTS			Available	Available
USART2.RTS			Available	Available

Peripheral.Resource	PORT				
	PA	РВ	PC	PD	
USART2.RX			Available	Available	
USART2.TX			Available	Available	

24.4 Synchronization

To avoid metastability in synchronous logic connected to the pins, all inputs are synchronized with double flip-flops. The flip-flops for the input data run on these HFBUSCLK. Consequently, when a pin changes state, the change will propagate to GPIO_Px_DIN after two 2 HFBUSCLK cycles. Synchronization (also running on the HFBUSCLK) is also added for interrupt input. To save power when the external interrupts or level interrupts are not used, the synchronization flip-flops for these can be turned off by clearing the EXTINT field in the GPIO_IEN register.

24.5 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	GPIO_PORTA_CTRL	RW	Port control
0x004	GPIO_PORTA_MODEL	RW	mode low
0x010	GPIO_PORTA_DOUT	RW	data out
0x014	GPIO_PORTA_DIN	RH	data in
0x030	GPIO_PORTB_CTRL	RW	Port control
0x034	GPIO_PORTB_MODEL	RW	mode low
0x040	GPIO_PORTB_DOUT	RW	data out
0x044	GPIO_PORTB_DIN	RH	data in
0x060	GPIO_PORTC_CTRL	RW	Port control
0x064	GPIO_PORTC_MODEL	RW	mode low
0x070	GPIO_PORTC_DOUT	RW	data out
0x074	GPIO_PORTC_DIN	RH	data in
0x090	GPIO_PORTD_CTRL	RW	Port control
0x094	GPIO_PORTD_MODEL	RW	mode low
0x0A0	GPIO_PORTD_DOUT	RW	data out
0x0A4	GPIO_PORTD_DIN	RH	data in
0x300	GPIO_LOCK	W	main
0x310	GPIO_GPIOLOCKSTATUS	RH	Lock Status
0x320	GPIO_ABUSALLOC	RW	A Bus allocation
0x324	GPIO_BBUSALLOC	RW	B Bus allocation
0x328	GPIO_CDBUSALLOC	RW	CD Bus allocation
0x400	GPIO_EXTIPSELL	RW	External Interrupt Port Select Low
0x408	GPIO_EXTIPINSELL	RW	External Interrupt Pin Select Low
0x410	GPIO_EXTIRISE	RW	External Interrupt Rising Edge Trigger
0x414	GPIO_EXTIFALL	RW	External Interrupt Falling Edge Trigger
0x420	GPIO_IF	RWH INTFLAG	Interrupt Flag
0x424	GPIO_IEN	RW	Interrupt Enable
0x42C	GPIO_EM4WUEN	RW	main
0x430	GPIO_EM4WUPOL	RW	New Register
0x440	GPIO_DBGROUTEPEN	RW	Debugger Route Pin enable
0x444	GPIO_TRACEROUTEPEN	RW	Trace Route Pin Enable
0x450	GPIO_ACMP0_ROUTEEN	RW	ACMP0 pin enable
0x454	GPIO_ACMP0_ACMPOUT- ROUTE	RW	ACMPOUT port/pin select
0x45C	GPIO_ACMP1_ROUTEEN	RW	ACMP1 pin enable

Offset	Name	Туре	Description
0x460	GPIO_ACMP1_ACMPOUT- ROUTE	RW	ACMPOUT port/pin select
0x468	GPIO_CMU_ROUTEEN	RW	CMU pin enable
0x46C	GPIO_CMU_CLKIN0ROUTE	RW	CLKIN0 port/pin select
0x470	GPIO_CMU_CLKOUT0ROUTE	RW	CLKOUT0 port/pin select
0x474	GPIO_CMU_CLKOUT1ROUTE	RW	CLKOUT1 port/pin select
0x478	GPIO_CMU_CLKOUT2ROUTE	RW	CLKOUT2 port/pin select
0x484	GPIO_FRC_ROUTEEN	RW	FRC pin enable
0x488	GPIO_FRC_DCLKROUTE	RW	DCLK port/pin select
0x48C	GPIO_FRC_DFRAMEROUTE	RW	DFRAME port/pin select
0x490	GPIO_FRC_DOUTROUTE	RW	DOUT port/pin select
0x498	GPIO_I2C0_ROUTEEN	RW	I2C0 pin enable
0x49C	GPIO_I2C0_SCLROUTE	RW	SCL port/pin select
0x4A0	GPIO_I2C0_SDAROUTE	RW	SDA port/pin select
0x4A8	GPIO_I2C1_ROUTEEN	RW	I2C1 pin enable
0x4AC	GPIO_I2C1_SCLROUTE	RW	SCL port/pin select
0x4B0	GPIO_I2C1_SDAROUTE	RW	SDA port/pin select
0x4B8	GPIO_LETIMER0_ROUTEEN	RW	LETIMER pin enable
0x4BC	GPIO_LETIMER0_OUT0ROUTE	RW	OUT0 port/pin select
0x4C0	GPIO_LETIMER0_OUT1ROUTE	RW	OUT1 port/pin select
0x4C8	GPIO_MODEM_ROUTEEN	RW	MODEM pin enable
0x4CC	GPIO_MODEM_ANT0ROUTE	RW	ANT0 port/pin select
0x4D0	GPIO_MODEM_ANT1ROUTE	RW	ANT1 port/pin select
0x4D4	GPIO_MODEM_DCLKROUTE	RW	DCLK port/pin select
0x4D8	GPIO_MODEM_DINROUTE	RW	DIN port/pin select
0x4DC	GPIO_MODEM_DOUTROUTE	RW	DOUT port/pin select
0x4E4	GPIO_PRS0_ROUTEEN	RW	PRS0 pin enable
0x4E8	GPIO_PRS0_ASYNCH0ROUTE	RW	ASYNCH0 port/pin select
0x4EC	GPIO_PRS0_ASYNCH1ROUTE	RW	ASYNCH1 port/pin select
0x4F0	GPIO_PRS0_ASYNCH2ROUTE	RW	ASYNCH2 port/pin select
0x4F4	GPIO_PRS0_ASYNCH3ROUTE	RW	ASYNCH3 port/pin select
0x4F8	GPIO_PRS0_ASYNCH4ROUTE	RW	ASYNCH4 port/pin select
0x4FC	GPIO_PRS0_ASYNCH5ROUTE	RW	ASYNCH5 port/pin select
0x500	GPIO_PRS0_ASYNCH6ROUTE	RW	ASYNCH6 port/pin select
0x504	GPIO_PRS0_ASYNCH7ROUTE	RW	ASYNCH7 port/pin select
0x508	GPIO_PRS0_ASYNCH8ROUTE	RW	ASYNCH8 port/pin select
0x50C	GPIO_PRS0_ASYNCH9ROUTE	RW	ASYNCH9 port/pin select

0x510 GPIO_PRS0_ASYNCH10ROUT RW ASYNCH10 port/pin select 0x514 GPIO_PRS0_ASYNCH10ROUTE RW ASYNCH11 port/pin select 0x518 GPIO_PRS0_SYNCH0ROUTE RW SYNCH1 port/pin select 0x520 GPIO_PRS0_SYNCH0ROUTE RW SYNCH1 port/pin select 0x524 GPIO_PRS0_SYNCH3ROUTE RW SYNCH3 port/pin select 0x524 GPIO_TIMER0_CCOROUTE RW SYNCH3 port/pin select 0x525 GPIO_TIMER0_CCOROUTE RW CC0 port/pin select 0x520 GPIO_TIMER0_CCOROUTE RW CC2 port/pin select 0x530 GPIO_TIMER0_CC2ROUTE RW CC2 port/pin select 0x531 GPIO_TIMER0_CC1ROUTE RW CD10 port/pin select 0x532 GPIO_TIMER0_CDTIROUTE RW CD110 port/pin select 0x540 GPIO_TIMER0_CDTIROUTE RW CD112 port/pin select 0x544 GPIO_TIMER1_COTROUTE RW CD112 port/pin select 0x550 GPIO_TIMER1_CC2ROUTE RW CC2 port/pin select 0x550 GPIO_TIMER1_CC2ROUTE RW </th <th>Offset</th> <th>Name</th> <th>Туре</th> <th>Description</th>	Offset	Name	Туре	Description
0x514 E GPIO_PRS0_SYNCH0ROUTE E RW ASYNCH11 port/pin select 0x518 GPIO_PRS0_SYNCH0ROUTE RW SYNCH0 port/pin select 0x51C GPIO_PRS0_SYNCH1ROUTE RW SYNCH2 port/pin select 0x520 GPIO_PRS0_SYNCH3ROUTE RW SYNCH3 port/pin select 0x524 GPIO_TIMER0_ROUTEEN RW SYNCH3 port/pin select 0x525 GPIO_TIMER0_CCTROUTE RW CC0 port/pin select 0x530 GPIO_TIMER0_CCTROUTE RW CC1 port/pin select 0x531 GPIO_TIMER0_CCTROUTE RW CC2 port/pin select 0x532 GPIO_TIMER0_CCTROUTE RW CC2 port/pin select 0x533 GPIO_TIMER0_CCTROUTE RW CDT10 port/pin select 0x540 GPIO_TIMER0_CDT1ROUTE RW CDT11 port/pin select 0x541 GPIO_TIMER0_CDT1ROUTE RW CDT12 port/pin select 0x542 GPIO_TIMER1_CCTROUTE RW CDT12 port/pin select 0x543 GPIO_TIMER1_CCRORUTE RW CC1 port/pin select 0x544 GPIO_TIMER1_CCRORUTE RW CC2 port/pin select 0x550 GPIO_TIMER1_CCRORUTE RW CC2 port/pin select 0x560 GPIO_TIMER1_CDT10ROUTE RW CDT10 port/pin select 0x560 GPIO_TIMER1_CDT10ROUTE RW CDT10 port/pin select 0x560 GPIO_TIMER2_CDT10ROUTE RW CDT12 port/pin select <tr< td=""><td>0x510</td><td></td><td>RW</td><td>ASYNCH10 port/pin select</td></tr<>	0x510		RW	ASYNCH10 port/pin select
0x51C GPIO_PRSO_SYNCHIROUTE RW SYNCH1 port/pin select 0x520 GPIO_PRSO_SYNCH2ROUTE RW SYNCH3 port/pin select 0x524 GPIO_PRSO_SYNCH3ROUTE RW SYNCH3 port/pin select 0x526 GPIO_TIMERO_CCOROUTE RW TIMERO pin enable 0x530 GPIO_TIMERO_CCOROUTE RW CC0 port/pin select 0x534 GPIO_TIMERO_CCTROUTE RW CC1 port/pin select 0x535 GPIO_TIMERO_CDTIOROUTE RW CC2 port/pin select 0x536 GPIO_TIMERO_CDTIROUTE RW CDTI0 port/pin select 0x540 GPIO_TIMERO_CDTI2ROUTE RW CDTI2 port/pin select 0x541 GPIO_TIMER1_COROUTE RW CDTI2 port/pin select 0x542 GPIO_TIMER1_COROUTE RW CC1 port/pin select 0x554 GPIO_TIMER1_COROUTE RW CC1 port/pin select 0x556 GPIO_TIMER1_COROUTE RW CC2 port/pin select 0x556 GPIO_TIMER1_COTIROUTE RW CDTI1 port/pin select 0x560 GPIO_TIMER2_COROUTE RW CDTI2	0x514	GPIO_PRS0_ASYNCH11ROUT	RW	ASYNCH11 port/pin select
0x520 GPIO_PRSO_SYNCH2ROUTE RW SYNCH2 port/pin select 0x524 GPIO_PRSO_SYNCH3ROUTE RW SYNCH3 port/pin select 0x520 GPIO_TIMERO_COROUTE RW TIMERO pin enable 0x530 GPIO_TIMERO_CCROROUTE RW CC0 port/pin select 0x534 GPIO_TIMERO_CCROUTE RW CC1 port/pin select 0x536 GPIO_TIMERO_CCTROUTE RW CC2 port/pin select 0x540 GPIO_TIMERO_CDTIROUTE RW CDTI0 port/pin select 0x541 GPIO_TIMERO_CDTIZROUTE RW CDTI2 port/pin select 0x542 GPIO_TIMER1_COTROUTE RW CC2 port/pin select 0x543 GPIO_TIMER1_CCRROUTE RW CC1 port/pin select 0x544 GPIO_TIMER1_CCRROUTE RW CC2 port/pin select 0x550 GPIO_TIMER1_CCRROUTE RW CC2 port/pin select 0x556 GPIO_TIMER1_CCTROUTE RW CDTI0 port/pin select 0x556 GPIO_TIMER2_CDTI0ROUTE RW CDTI1 port/pin select 0x560 GPIO_TIMER2_CDTI0ROUTE RW CC2	0x518	GPIO_PRS0_SYNCH0ROUTE	RW	SYNCH0 port/pin select
0x524 GPIO_PRSO_SYNCH3ROUTE RW SYNCH3 port/pin select 0x52C GPIO_TIMERO_CCOROUTE RW TIMERO pin enable 0x530 GPIO_TIMERO_CCOROUTE RW CC0 port/pin select 0x534 GPIO_TIMERO_CCTROUTE RW CC1 port/pin select 0x536 GPIO_TIMERO_CDTIOROUTE RW CC2 port/pin select 0x53C GPIO_TIMERO_CDTITROUTE RW CDTI1 port/pin select 0x540 GPIO_TIMERO_CDTITROUTE RW CDTI2 port/pin select 0x540 GPIO_TIMERO_CDTIEROUTE RW CDTI2 port/pin select 0x540 GPIO_TIMERI_ROUTEEN RW CDTI2 port/pin select 0x550 GPIO_TIMERI_CCOROUTE RW CC1 port/pin select 0x550 GPIO_TIMERI_CCROUTE RW CC2 port/pin select 0x550 GPIO_TIMERI_COTROUTE RW CDTI0 port/pin select 0x550 GPIO_TIMERI_CDTIROUTE RW CDTI1 port/pin select 0x550 GPIO_TIMERI_CDTIROUTE RW CDTI1 port/pin select 0x560 GPIO_TIMER2_COROUTE RW C	0x51C	GPIO_PRS0_SYNCH1ROUTE	RW	SYNCH1 port/pin select
0x52C GPIO_TIMERQ_ROUTEEN RW TIMERQ pin enable 0x530 GPIO_TIMERQ_CCOROUTE RW CC0 port/pin select 0x534 GPIO_TIMERQ_CCIROUTE RW CC1 port/pin select 0x536 GPIO_TIMERQ_CDTIOROUTE RW CC2 port/pin select 0x53C GPIO_TIMERQ_CDTIOROUTE RW CDTI0 port/pin select 0x54C GPIO_TIMERQ_CDTI2ROUTE RW CDTI1 port/pin select 0x54C GPIO_TIMERQ_CDTI2ROUTE RW CDTI2 port/pin select 0x55C GPIO_TIMERL_COROUTE RW CCD port/pin select 0x55C GPIO_TIMERL_COROUTE RW CC1 port/pin select 0x55C GPIO_TIMERL_COROUTE RW CC2 port/pin select 0x55C GPIO_TIMERL_COTROUTE RW CDTI2 port/pin select 0x56C GPIO_TIMERL_COTIROUTE RW CDTI2 port/pin select 0x56C GPIO_TIMERL_COTROUTE RW CDTI2 port/pin select 0x57C GPIO_TIMER2_COROUTE RW CC1 port/pin select 0x576 GPIO_TIMER2_COTROUTE RW CC2 port/p	0x520	GPIO_PRS0_SYNCH2ROUTE	RW	SYNCH2 port/pin select
0x550 GPIO_TIMERO_CCOROUTE RW CC0 port/pin select 0x534 GPIO_TIMERO_CC1ROUTE RW CC1 port/pin select 0x538 GPIO_TIMERO_CDTIOROUTE RW CC2 port/pin select 0x53C GPIO_TIMERO_CDTIOROUTE RW CDTI0 port/pin select 0x540 GPIO_TIMERO_CDTI2ROUTE RW CDTI1 port/pin select 0x544 GPIO_TIMERO_CDTI2ROUTE RW CDTI2 port/pin select 0x545 GPIO_TIMERT_ROUTEEN RW CDTI2 port/pin select 0x546 GPIO_TIMERT_CCROUTE RW CC2 port/pin select 0x550 GPIO_TIMERT_CCROUTE RW CC2 port/pin select 0x554 GPIO_TIMERT_CCROUTE RW CDTI0 port/pin select 0x556 GPIO_TIMERT_CDTI0ROUTE RW CDTI1 port/pin select 0x560 GPIO_TIMERT_CDTI1ROUTE RW CDTI12 port/pin select 0x564 GPIO_TIMER2_COTIQUTE RW CDTI2 port/pin select 0x570 GPIO_TIMER2_COROUTE RW C1 port/pin select 0x571 GPIO_TIMER2_COTIROUTE RW	0x524	GPIO_PRS0_SYNCH3ROUTE	RW	SYNCH3 port/pin select
0x534 GPIO_TIMERO_CC1ROUTE RW CC1 port/pin select 0x538 GPIO_TIMERO_CC2ROUTE RW CC2 port/pin select 0x53C GPIO_TIMERO_CDTIOROUTE RW CDTI0 port/pin select 0x540 GPIO_TIMERO_CDTI2ROUTE RW CDT11 port/pin select 0x544 GPIO_TIMERO_CDT12ROUTE RW CDT12 port/pin select 0x550 GPIO_TIMER1_ROUTEEN RW TIMER1 pin enable 0x551 GPIO_TIMER1_CC2ROUTE RW CC1 port/pin select 0x552 GPIO_TIMER1_CC2ROUTE RW CC2 port/pin select 0x553 GPIO_TIMER1_CC1ROUTE RW CDT10 port/pin select 0x554 GPIO_TIMER1_CC1ROUTE RW CDT10 port/pin select 0x555 GPIO_TIMER1_CDT11ROUTE RW CDT11 port/pin select 0x556 GPIO_TIMER2_CDT12ROUTE RW CDT12 port/pin select 0x560 GPIO_TIMER2_COROUTE RW CC2 port/pin select 0x570 GPIO_TIMER2_CC1ROUTE RW CC2 port/pin select 0x570 GPIO_TIMER2_CDT11ROUTE RW CD	0x52C	GPIO_TIMER0_ROUTEEN	RW	TIMER0 pin enable
0x538 GPIO_TIMERO_CCZROUTE RW CC2 port/pin select 0x53C GPIO_TIMERO_CDTIOROUTE RW CDTIO port/pin select 0x540 GPIO_TIMERO_CDTI1ROUTE RW CDTI1 port/pin select 0x544 GPIO_TIMERI_ROUTEEN RW TIMER1 pin enable 0x550 GPIO_TIMER1_CCOROUTE RW CC0 port/pin select 0x554 GPIO_TIMER1_CC1ROUTE RW CC1 port/pin select 0x556 GPIO_TIMER1_CC2ROUTE RW CC2 port/pin select 0x556 GPIO_TIMER1_CDTIOROUTE RW CDTI0 port/pin select 0x556 GPIO_TIMER1_CDTIOROUTE RW CDTI1 port/pin select 0x560 GPIO_TIMER1_CDTI1ROUTE RW CDTI12 port/pin select 0x560 GPIO_TIMER2_CDTI2ROUTE RW CDTI2 port/pin select 0x560 GPIO_TIMER2_CDTI2ROUTE RW CC1 port/pin select 0x570 GPIO_TIMER2_CC1ROUTE RW CC1 port/pin select 0x574 GPIO_TIMER2_CDTI2ROUTE RW CC2 port/pin select 0x570 GPIO_TIMER2_CDTI1ROUTE RW	0x530	GPIO_TIMERO_CCOROUTE	RW	CC0 port/pin select
0x53C GPIQ_TIMERQ_CDTIOROUTE RW CDTIQ port/pin select 0x540 GPIQ_TIMERQ_CDTITROUTE RW CDTI1 port/pin select 0x544 GPIQ_TIMERQ_CDTI2ROUTE RW CDTI2 port/pin select 0x54C GPIQ_TIMER1_ROUTEEN RW TIMER1 pin enable 0x550 GPIQ_TIMER1_CC1ROUTE RW CC0 port/pin select 0x554 GPIQ_TIMER1_CC2ROUTE RW CC2 port/pin select 0x558 GPIQ_TIMER1_CC2ROUTE RW CDTI0 port/pin select 0x550 GPIQ_TIMER1_CDTI0ROUTE RW CDTI1 port/pin select 0x560 GPIQ_TIMER1_CDTI1ROUTE RW CDTI1 port/pin select 0x564 GPIQ_TIMER1_CDTI2ROUTE RW CDTI2 port/pin select 0x565 GPIQ_TIMER2_COTIEROUTE RW CC0 port/pin select 0x560 GPIQ_TIMER2_CCOROUTE RW CC1 port/pin select 0x570 GPIQ_TIMER2_CC1ROUTE RW CC2 port/pin select 0x574 GPIQ_TIMER2_CCTROUTE RW CDTI0 port/pin select 0x580 GPIQ_TIMER3_COTICROUTE RW	0x534	GPIO_TIMER0_CC1ROUTE	RW	CC1 port/pin select
0x540 GPIO_TIMERQ_CDTI1ROUTE RW CDTI1 port/pin select 0x544 GPIO_TIMERQ_CDTI2ROUTE RW CDTI2 port/pin select 0x54C GPIO_TIMER1_ROUTEEN RW TIMER1 pin enable 0x550 GPIO_TIMER1_CC0ROUTE RW CC0 port/pin select 0x554 GPIO_TIMER1_CC1ROUTE RW CC1 port/pin select 0x558 GPIO_TIMER1_CC2ROUTE RW CDTI0 port/pin select 0x560 GPIO_TIMER1_CDTI0ROUTE RW CDTI1 port/pin select 0x560 GPIO_TIMER1_CDTI2ROUTE RW CDTI12 port/pin select 0x561 GPIO_TIMER2_CDTI2ROUTE RW CDTI12 port/pin select 0x562 GPIO_TIMER2_CCOROUTE RW CC0 port/pin select 0x563 GPIO_TIMER2_CCROUTE RW CC1 port/pin select 0x574 GPIO_TIMER2_CCTROUTE RW CC2 port/pin select 0x575 GPIO_TIMER2_CDTI0ROUTE RW CDTI0 port/pin select 0x580 GPIO_TIMER2_CDTI2ROUTE RW CDTI12 port/pin select 0x584 GPIO_TIMER3_COTI2ROUTE RW	0x538	GPIO_TIMER0_CC2ROUTE	RW	CC2 port/pin select
0x544 GPIO_TIMERQ_CDTIZROUTE RW CDTI2 port/pin select 0x54C GPIO_TIMER1_ROUTEEN RW TIMER1 pin enable 0x550 GPIO_TIMER1_CCOROUTE RW CC0 port/pin select 0x554 GPIO_TIMER1_CC1ROUTE RW CC1 port/pin select 0x558 GPIO_TIMER1_CDTIDROUTE RW CDTI0 port/pin select 0x560 GPIO_TIMER1_CDTI1ROUTE RW CDTI1 port/pin select 0x564 GPIO_TIMER1_CDTI2ROUTE RW CDTI2 port/pin select 0x560 GPIO_TIMER1_CDTI2ROUTE RW CDTI2 port/pin select 0x561 GPIO_TIMER2_CDTI2ROUTE RW CDTI2 port/pin select 0x562 GPIO_TIMER2_CCOROUTE RW CC1 port/pin select 0x570 GPIO_TIMER2_CCTROUTE RW CC2 port/pin select 0x574 GPIO_TIMER2_CCTROUTE RW CC2 port/pin select 0x575 GPIO_TIMER2_CDTI1ROUTE RW CDTI0 port/pin select 0x580 GPIO_TIMER2_CDTI1ROUTE RW CDTI1 port/pin select 0x584 GPIO_TIMER3_COROUTE RW	0x53C	GPIO_TIMER0_CDTI0ROUTE	RW	CDTI0 port/pin select
0x54C GPIO_TIMER1_ROUTEEN RW TIMER1 pin enable 0x550 GPIO_TIMER1_CCOROUTE RW CC0 port/pin select 0x554 GPIO_TIMER1_CC1ROUTE RW CC1 port/pin select 0x558 GPIO_TIMER1_CC2ROUTE RW CC2 port/pin select 0x55C GPIO_TIMER1_CDTIOROUTE RW CDTI0 port/pin select 0x560 GPIO_TIMER1_CDTI2ROUTE RW CDTI2 port/pin select 0x564 GPIO_TIMER1_CDTI2ROUTE RW CDTI2 port/pin select 0x560 GPIO_TIMER1_CDTI2ROUTE RW CDTI2 port/pin select 0x561 GPIO_TIMER2_COTICROUTE RW CC2 port/pin select 0x562 GPIO_TIMER2_CCTROUTE RW CC1 port/pin select 0x574 GPIO_TIMER2_CCTROUTE RW CDTI0 port/pin select 0x575 GPIO_TIMER2_CCDTIOROUTE RW CDTI0 port/pin select 0x570 GPIO_TIMER2_CDTIROUTE RW CDTI1 port/pin select 0x580 GPIO_TIMER3_COTIZEOUTE RW CDTI2 port/pin select 0x584 GPIO_TIMER3_CCROUTE RW	0x540	GPIO_TIMER0_CDTI1ROUTE	RW	CDTI1 port/pin select
0x550 GPIO_TIMER1_CC0ROUTE RW CC1 port/pin select 0x554 GPIO_TIMER1_CC1ROUTE RW CC2 port/pin select 0x558 GPIO_TIMER1_CC1ROUTE RW CD110 port/pin select 0x55C GPIO_TIMER1_CD110ROUTE RW CD111 port/pin select 0x560 GPIO_TIMER1_CD111ROUTE RW CD112 port/pin select 0x564 GPIO_TIMER1_CD112ROUTE RW CD112 port/pin select 0x566 GPIO_TIMER2_ROUTEEN RW TIMER2 pin enable 0x570 GPIO_TIMER2_CC0ROUTE RW CC1 port/pin select 0x574 GPIO_TIMER2_CC1ROUTE RW CC2 port/pin select 0x578 GPIO_TIMER2_CC2ROUTE RW CC2 port/pin select 0x570 GPIO_TIMER2_CC1ROUTE RW CD110 port/pin select 0x570 GPIO_TIMER2_CD110ROUTE RW CD110 port/pin select 0x580 GPIO_TIMER2_CD110ROUTE RW CD110 port/pin select 0x580 GPIO_TIMER2_CD112ROUTE RW CD112 port/pin select 0x584 GPIO_TIMER3_ROUTEEN RW CD112 port/pin select 0x589 GPIO_TIMER3_CC0ROUTE RW CC2 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CC112 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CD110 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CD110 port/pin select 0x590 GPIO_TIMER3_CD111ROUTE RW CD110 port/pin select	0x544	GPIO_TIMER0_CDTI2ROUTE	RW	CDTI2 port/pin select
0x554 GPIO_TIMER1_CC1ROUTE RW CC1 port/pin select 0x556 GPIO_TIMER1_CDTIOROUTE RW CDTI10 port/pin select 0x55C GPIO_TIMER1_CDTIOROUTE RW CDTI10 port/pin select 0x560 GPIO_TIMER1_CDTI1ROUTE RW CDTI12 port/pin select 0x564 GPIO_TIMER1_CDTI2ROUTE RW CDTI2 port/pin select 0x560 GPIO_TIMER2_ROUTEEN RW TIMER2 pin enable 0x570 GPIO_TIMER2_CC1ROUTE RW CC1 port/pin select 0x574 GPIO_TIMER2_CC1ROUTE RW CC2 port/pin select 0x578 GPIO_TIMER2_CC2ROUTE RW CC2 port/pin select 0x570 GPIO_TIMER2_CC1ROUTE RW CDTI10 port/pin select 0x570 GPIO_TIMER2_CDTI1ROUTE RW CDTI10 port/pin select 0x580 GPIO_TIMER2_CDTI1ROUTE RW CDTI10 port/pin select 0x580 GPIO_TIMER2_CDTI1ROUTE RW CDTI12 port/pin select 0x584 GPIO_TIMER3_ROUTEEN RW TIMER3 pin enable 0x590 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x594 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x594 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x595 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x596 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x597 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x598 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x599 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CD110 port/pin select 0x590 GPIO_TIMER3_CD111ROUTE RW CD110 port/pin select	0x54C	GPIO_TIMER1_ROUTEEN	RW	TIMER1 pin enable
0x55C GPIO_TIMER1_CC2ROUTE RW CC2 port/pin select 0x56C GPIO_TIMER1_CDTI0ROUTE RW CDTI10 port/pin select 0x56C GPIO_TIMER1_CDTI1ROUTE RW CDTI11 port/pin select 0x56C GPIO_TIMER1_CDTI1ROUTE RW CDTI12 port/pin select 0x56C GPIO_TIMER2_ROUTEEN RW TIMER2 pin enable 0x57C GPIO_TIMER2_CC0ROUTE RW CC2 port/pin select 0x574 GPIO_TIMER2_CC1ROUTE RW CC2 port/pin select 0x578 GPIO_TIMER2_CC2ROUTE RW CC2 port/pin select 0x57C GPIO_TIMER2_CDTI0ROUTE RW CDTI0 port/pin select 0x57C GPIO_TIMER2_CDTI0ROUTE RW CDTI0 port/pin select 0x58C GPIO_TIMER2_CDTI1ROUTE RW CDTI12 port/pin select 0x58C GPIO_TIMER2_CDTI2ROUTE RW CDTI22 port/pin select 0x58C GPIO_TIMER3_ROUTEEN RW TIMER3 pin enable 0x59C GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x59A GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x59B GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x59B GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x59C GPIO_TIMER3_CDTI2ROUTE RW CC2 port/pin select 0x59C GPIO_TIMER3_CDTI2ROUTE RW CC2 port/pin select 0x59C GPIO_TIMER3_CDTI1ROUTE RW CDTI12 port/pin select 0x59A GPIO_TIMER3_CDTI1ROUTE RW CDTI12 port/pin select 0x59A GPIO_TIMER3_CDTI1ROUTE RW CDTI12 port/pin select 0x5AA GPIO_TIMER3_CDTI2ROUTE RW CDTI12 port/pin select 0x5AA GPIO_TIMER3_CDTI2ROUTE RW CDTI12 port/pin select 0x5AA GPIO_TIMER3_CDTI2ROUTE RW CDTI12 port/pin select	0x550	GPIO_TIMER1_CC0ROUTE	RW	CC0 port/pin select
0x55C GPIO_TIMER1_CDTI0ROUTE RW CDTI0 port/pin select 0x560 GPIO_TIMER1_CDTI1ROUTE RW CDTI1 port/pin select 0x564 GPIO_TIMER1_CDT12ROUTE RW CDT12 port/pin select 0x566 GPIO_TIMER2_ROUTEEN RW TIMER2 pin enable 0x570 GPIO_TIMER2_CC0ROUTE RW CC0 port/pin select 0x574 GPIO_TIMER2_CC1ROUTE RW CC2 port/pin select 0x578 GPIO_TIMER2_CC2ROUTE RW CDT10 port/pin select 0x570 GPIO_TIMER2_CDT10ROUTE RW CDT10 port/pin select 0x571 GPIO_TIMER2_CDT10ROUTE RW CDT11 port/pin select 0x580 GPIO_TIMER2_CDT12ROUTE RW CDT12 port/pin select 0x581 GPIO_TIMER3_ROUTEEN RW TIMER3 pin enable 0x590 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x594 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x598 GPIO_TIMER3_CDT10ROUTE RW CDT10 port/pin select 0x590 GPIO_TIMER3_CDT11ROUTE RW CDT10 port/pin select 0x590 GPIO_TIMER3_CDT11ROUTE	0x554	GPIO_TIMER1_CC1ROUTE	RW	CC1 port/pin select
0x560 GPIO_TIMER1_CDT12ROUTE RW CDT11 port/pin select 0x564 GPIO_TIMER1_CDT12ROUTE RW CDT12 port/pin select 0x56C GPIO_TIMER2_ROUTEEN RW TIMER2 pin enable 0x570 GPIO_TIMER2_CCOROUTE RW CC0 port/pin select 0x574 GPIO_TIMER2_CC1ROUTE RW CC1 port/pin select 0x578 GPIO_TIMER2_CC2ROUTE RW CC2 port/pin select 0x570 GPIO_TIMER2_CDT10ROUTE RW CDT10 port/pin select 0x571 GPIO_TIMER2_CDT11ROUTE RW CDT11 port/pin select 0x580 GPIO_TIMER2_CDT12ROUTE RW CDT12 port/pin select 0x581 GPIO_TIMER3_ROUTEEN RW TIMER3 pin enable 0x582 GPIO_TIMER3_CC0ROUTE RW CC1 port/pin select 0x594 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x595 GPIO_TIMER3_CC2ROUTE RW CC2 port/pin select 0x590 GPIO_TIMER3_CDT10ROUTE RW CDT10 port/pin select 0x590 GPIO_TIMER3_CDT10ROUTE RW CDT11 port/pin select 0x590 GPIO_TIMER3_CDT12ROUTE <td< td=""><td>0x558</td><td>GPIO_TIMER1_CC2ROUTE</td><td>RW</td><td>CC2 port/pin select</td></td<>	0x558	GPIO_TIMER1_CC2ROUTE	RW	CC2 port/pin select
0x564 GPIO_TIMER1_CDTI2ROUTE RW TIMER2 pin enable 0x570 GPIO_TIMER2_CC0ROUTE RW CC1 port/pin select 0x574 GPIO_TIMER2_CC1ROUTE RW CC2 port/pin select 0x578 GPIO_TIMER2_CC2ROUTE RW CC2 port/pin select 0x570 GPIO_TIMER2_CC1ROUTE RW CC2 port/pin select 0x578 GPIO_TIMER2_CDTI0ROUTE RW CDTI0 port/pin select 0x580 GPIO_TIMER2_CDTI1ROUTE RW CDTI1 port/pin select 0x584 GPIO_TIMER2_CDTI2ROUTE RW CDTI2 port/pin select 0x585 GPIO_TIMER2_CDTI2ROUTE RW CDTI2 port/pin select 0x580 GPIO_TIMER3_ROUTEEN RW TIMER3 pin enable 0x590 GPIO_TIMER3_CC0ROUTE RW CC1 port/pin select 0x594 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x595 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x596 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x597 GPIO_TIMER3_CDTI0ROUTE RW CC2 port/pin select 0x598 GPIO_TIMER3_CDTI0ROUTE RW CDTI0 port/pin select 0x590 GPIO_TIMER3_CDTI0ROUTE RW CDTI0 port/pin select 0x591 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x592 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x593 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x5A4 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x5AC GPIO_USARTO_ROUTEEN RW USARTO pin enable	0x55C	GPIO_TIMER1_CDTI0ROUTE	RW	CDTI0 port/pin select
0x56C GPIO_TIMER2_ROUTEEN RW CC0 port/pin select 0x574 GPIO_TIMER2_CC1ROUTE RW CC1 port/pin select 0x574 GPIO_TIMER2_CC2ROUTE RW CC2 port/pin select 0x578 GPIO_TIMER2_CC2ROUTE RW CC2 port/pin select 0x57C GPIO_TIMER2_CDTIOROUTE RW CDTI0 port/pin select 0x580 GPIO_TIMER2_CDTI1ROUTE RW CDTI1 port/pin select 0x584 GPIO_TIMER2_CDTI2ROUTE RW CDTI2 port/pin select 0x58C GPIO_TIMER3_ROUTEEN RW TIMER3 pin enable 0x590 GPIO_TIMER3_CC0ROUTE RW CC0 port/pin select 0x594 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x595 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x598 GPIO_TIMER3_CC2ROUTE RW CC2 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x591 GPIO_TIMER3_CC2ROUTE RW CC2 port/pin select 0x592 GPIO_TIMER3_CDTI1ROUTE RW CDTI0 port/pin select 0x593 GPIO_TIMER3_CDTI1ROUTE RW CDTI0 port/pin select 0x540 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x544 GPIO_TIMER3_CDTI1ROUTE RW CDTI2 port/pin select 0x544 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x545 GPIO_USART0_ROUTEEN RW USART0 pin enable	0x560	GPIO_TIMER1_CDTI1ROUTE	RW	CDTI1 port/pin select
0x570 GPIO_TIMER2_CC0ROUTE RW CC0 port/pin select 0x574 GPIO_TIMER2_CC1ROUTE RW CC1 port/pin select 0x578 GPIO_TIMER2_CC2ROUTE RW CC2 port/pin select 0x570 GPIO_TIMER2_CDTI0ROUTE RW CDTI0 port/pin select 0x580 GPIO_TIMER2_CDTI1ROUTE RW CDTI1 port/pin select 0x584 GPIO_TIMER2_CDT12ROUTE RW CDTI2 port/pin select 0x585 GPIO_TIMER3_ROUTEEN RW TIMER3 pin enable 0x590 GPIO_TIMER3_CC0ROUTE RW CC0 port/pin select 0x594 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x595 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x596 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x597 GPIO_TIMER3_CDT10ROUTE RW CDT10 port/pin select 0x598 GPIO_TIMER3_CDT10ROUTE RW CDT10 port/pin select 0x500 GPIO_TIMER3_CDT10ROUTE RW CDT10 port/pin select 0x501 GPIO_TIMER3_CDT10ROUTE RW CDT11 port/pin select 0x502 GPIO_TIMER3_CDT11ROUTE RW CDT11 port/pin select 0x503 GPIO_TIMER3_CDT12ROUTE RW CDT12 port/pin select 0x504 GPIO_TIMER3_CDT12ROUTE RW CDT12 port/pin select 0x505 GPIO_TIMER3_CDT12ROUTE RW CDT12 port/pin select 0x506 GPIO_USART0_ROUTEEN RW USART0 pin enable	0x564	GPIO_TIMER1_CDTI2ROUTE	RW	CDTI2 port/pin select
0x574 GPIO_TIMER2_CC1ROUTE RW CC1 port/pin select 0x578 GPIO_TIMER2_CC2ROUTE RW CC2 port/pin select 0x57C GPIO_TIMER2_CDTIOROUTE RW CDTI0 port/pin select 0x580 GPIO_TIMER2_CDTI1ROUTE RW CDTI1 port/pin select 0x584 GPIO_TIMER2_CDTI2ROUTE RW CDTI2 port/pin select 0x58C GPIO_TIMER3_ROUTEEN RW TIMER3 pin enable 0x590 GPIO_TIMER3_CC0ROUTE RW CC1 port/pin select 0x594 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x598 GPIO_TIMER3_CC2ROUTE RW CC2 port/pin select 0x59C GPIO_TIMER3_CDTI0ROUTE RW CDTI0 port/pin select 0x5A0 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x5A4 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x5AC GPIO_USARTO_ROUTEEN RW USARTO pin enable	0x56C	GPIO_TIMER2_ROUTEEN	RW	TIMER2 pin enable
0x578 GPIO_TIMER2_CC2ROUTE RW CC2 port/pin select 0x57C GPIO_TIMER2_CDTI0ROUTE RW CDTI1 port/pin select 0x580 GPIO_TIMER2_CDTI1ROUTE RW CDTI2 port/pin select 0x584 GPIO_TIMER2_CDTI2ROUTE RW CDTI2 port/pin select 0x58C GPIO_TIMER3_ROUTEEN RW TIMER3 pin enable 0x590 GPIO_TIMER3_CC0ROUTE RW CC0 port/pin select 0x594 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x598 GPIO_TIMER3_CC2ROUTE RW CC2 port/pin select 0x590 GPIO_TIMER3_CC1ROUTE RW CC2 port/pin select 0x591 GPIO_TIMER3_CC2ROUTE RW CC2 port/pin select 0x592 GPIO_TIMER3_CC1ROUTE RW CDTI0 port/pin select 0x593 GPIO_TIMER3_CDTI0ROUTE RW CDTI0 port/pin select 0x504 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x505 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x506 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x507 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x508 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x509 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x509 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x509 GPIO_USARTO_ROUTEEN RW USARTO pin enable	0x570	GPIO_TIMER2_CC0ROUTE	RW	CC0 port/pin select
0x57C GPIO_TIMER2_CDTI0ROUTE RW CDTI0 port/pin select 0x580 GPIO_TIMER2_CDTI1ROUTE RW CDTI1 port/pin select 0x584 GPIO_TIMER2_CDTI2ROUTE RW CDTI2 port/pin select 0x58C GPIO_TIMER3_ROUTEEN RW TIMER3 pin enable 0x590 GPIO_TIMER3_CC0ROUTE RW CC0 port/pin select 0x594 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x598 GPIO_TIMER3_CC2ROUTE RW CDTI0 port/pin select 0x59C GPIO_TIMER3_CDTI0ROUTE RW CDTI0 port/pin select 0x5A0 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x5A4 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x5AC GPIO_USARTO_ROUTEEN RW USARTO pin enable	0x574	GPIO_TIMER2_CC1ROUTE	RW	CC1 port/pin select
0x580 GPIO_TIMER2_CDTI1ROUTE RW CDTI1 port/pin select 0x584 GPIO_TIMER2_CDTI2ROUTE RW CDTI2 port/pin select 0x58C GPIO_TIMER3_ROUTEEN RW TIMER3 pin enable 0x590 GPIO_TIMER3_CC0ROUTE RW CC0 port/pin select 0x594 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x598 GPIO_TIMER3_CC2ROUTE RW CC2 port/pin select 0x59C GPIO_TIMER3_CDTI0ROUTE RW CDTI0 port/pin select 0x5A0 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x5A4 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x5AC GPIO_USART0_ROUTEEN RW USART0 pin enable	0x578	GPIO_TIMER2_CC2ROUTE	RW	CC2 port/pin select
0x584 GPIO_TIMER2_CDTI2ROUTE RW CDTI2 port/pin select 0x58C GPIO_TIMER3_ROUTEEN RW TIMER3 pin enable 0x590 GPIO_TIMER3_CC0ROUTE RW CC0 port/pin select 0x594 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x598 GPIO_TIMER3_CC2ROUTE RW CC2 port/pin select 0x59C GPIO_TIMER3_CDTI0ROUTE RW CDTI0 port/pin select 0x5A0 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x5A4 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x5AC GPIO_USART0_ROUTEEN RW USART0 pin enable	0x57C	GPIO_TIMER2_CDTI0ROUTE	RW	CDTI0 port/pin select
0x58C GPIO_TIMER3_ROUTEEN RW TIMER3 pin enable 0x590 GPIO_TIMER3_CC0ROUTE RW CC0 port/pin select 0x594 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x598 GPIO_TIMER3_CC2ROUTE RW CC2 port/pin select 0x59C GPIO_TIMER3_CDTI0ROUTE RW CDTI0 port/pin select 0x5A0 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x5A4 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x5AC GPIO_USART0_ROUTEEN RW USART0 pin enable	0x580	GPIO_TIMER2_CDTI1ROUTE	RW	CDTI1 port/pin select
0x590 GPIO_TIMER3_CC0ROUTE RW CC0 port/pin select 0x594 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x598 GPIO_TIMER3_CC2ROUTE RW CC2 port/pin select 0x59C GPIO_TIMER3_CDTI0ROUTE RW CDTI0 port/pin select 0x5A0 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x5A4 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x5AC GPIO_USARTO_ROUTEEN RW USART0 pin enable	0x584	GPIO_TIMER2_CDTI2ROUTE	RW	CDTI2 port/pin select
0x594 GPIO_TIMER3_CC1ROUTE RW CC1 port/pin select 0x598 GPIO_TIMER3_CC2ROUTE RW CC2 port/pin select 0x59C GPIO_TIMER3_CDTI0ROUTE RW CDTI0 port/pin select 0x5A0 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x5A4 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x5AC GPIO_USART0_ROUTEEN RW USART0 pin enable	0x58C	GPIO_TIMER3_ROUTEEN	RW	TIMER3 pin enable
0x598 GPIO_TIMER3_CC2ROUTE RW CC2 port/pin select 0x59C GPIO_TIMER3_CDTI0ROUTE RW CDTI0 port/pin select 0x5A0 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x5A4 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x5AC GPIO_USART0_ROUTEEN RW USART0 pin enable	0x590	GPIO_TIMER3_CC0ROUTE	RW	CC0 port/pin select
0x59C GPIO_TIMER3_CDTI0ROUTE RW CDTI0 port/pin select 0x5A0 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x5A4 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x5AC GPIO_USART0_ROUTEEN RW USART0 pin enable	0x594	GPIO_TIMER3_CC1ROUTE	RW	CC1 port/pin select
0x5A0 GPIO_TIMER3_CDTI1ROUTE RW CDTI1 port/pin select 0x5A4 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x5AC GPIO_USART0_ROUTEEN RW USART0 pin enable	0x598	GPIO_TIMER3_CC2ROUTE	RW	CC2 port/pin select
0x5A4 GPIO_TIMER3_CDTI2ROUTE RW CDTI2 port/pin select 0x5AC GPIO_USART0_ROUTEEN RW USART0 pin enable	0x59C	GPIO_TIMER3_CDTI0ROUTE	RW	CDTI0 port/pin select
0x5AC GPIO_USART0_ROUTEEN RW USART0 pin enable	0x5A0	GPIO_TIMER3_CDTI1ROUTE	RW	CDTI1 port/pin select
	0x5A4	GPIO_TIMER3_CDTI2ROUTE	RW	CDTI2 port/pin select
0x5B0 GPIO_USART0_CSROUTE RW CS port/pin select	0x5AC	GPIO_USART0_ROUTEEN	RW	USART0 pin enable
	0x5B0	GPIO_USART0_CSROUTE	RW	CS port/pin select

Offset	Name	Туре	Description
0x5B4	GPIO_USART0_CTSROUTE	RW	CTS port/pin select
0x5B8	GPIO_USART0_RTSROUTE	RW	RTS port/pin select
0x5BC	GPIO_USART0_RXROUTE	RW	RX port/pin select
0x5C0	GPIO_USART0_CLKROUTE	RW	CLK port/pin select
0x5C4	GPIO_USART0_TXROUTE	RW	TX port/pin select
0x5CC	GPIO_USART1_ROUTEEN	RW	USART1 pin enable
0x5D0	GPIO_USART1_CSROUTE	RW	CS port/pin select
0x5D4	GPIO_USART1_CTSROUTE	RW	CTS port/pin select
0x5D8	GPIO_USART1_RTSROUTE	RW	RTS port/pin select
0x5DC	GPIO_USART1_RXROUTE	RW	RX port/pin select
0x5E0	GPIO_USART1_CLKROUTE	RW	CLK port/pin select
0x5E4	GPIO_USART1_TXROUTE	RW	TX port/pin select
0x5EC	GPIO_USART2_ROUTEEN	RW	USART2 pin enable
0x5F0	GPIO_USART2_CSROUTE	RW	CS port/pin select
0x5F4	GPIO_USART2_CTSROUTE	RW	CTS port/pin select
0x5F8	GPIO_USART2_RTSROUTE	RW	RTS port/pin select
0x5FC	GPIO_USART2_RXROUTE	RW	RX port/pin select
0x600	GPIO_USART2_CLKROUTE	RW	CLK port/pin select
0x604	GPIO_USART2_TXROUTE	RW	TX port/pin select
0x1000	GPIO_PORTA_CTRL_SET	RW	Port control
0x1004	GPIO_PORTA_MODEL_SET	RW	mode low
0x1010	GPIO_PORTA_DOUT_SET	RW	data out
0x1014	GPIO_PORTA_DIN_SET	RH	data in
0x1030	GPIO_PORTB_CTRL_SET	RW	Port control
0x1034	GPIO_PORTB_MODEL_SET	RW	mode low
0x1040	GPIO_PORTB_DOUT_SET	RW	data out
0x1044	GPIO_PORTB_DIN_SET	RH	data in
0x1060	GPIO_PORTC_CTRL_SET	RW	Port control
0x1064	GPIO_PORTC_MODEL_SET	RW	mode low
0x1070	GPIO_PORTC_DOUT_SET	RW	data out
0x1074	GPIO_PORTC_DIN_SET	RH	data in
0x1090	GPIO_PORTD_CTRL_SET	RW	Port control
0x1094	GPIO_PORTD_MODEL_SET	RW	mode low
0x10A0	GPIO_PORTD_DOUT_SET	RW	data out
0x10A4	GPIO_PORTD_DIN_SET	RH	data in
0x1300	GPIO_LOCK_SET	W	main
0x1310	GPIO_GPIOLOCKSTATUS_SET	RH	Lock Status

Offset	Name	Туре	Description
0x1320	GPIO_ABUSALLOC_SET	RW	A Bus allocation
0x1324	GPIO_BBUSALLOC_SET	RW	B Bus allocation
0x1328	GPIO_CDBUSALLOC_SET	RW	CD Bus allocation
0x1400	GPIO_EXTIPSELL_SET	RW	External Interrupt Port Select Low
0x1408	GPIO_EXTIPINSELL_SET	RW	External Interrupt Pin Select Low
0x1410	GPIO_EXTIRISE_SET	RW	External Interrupt Rising Edge Trigger
0x1414	GPIO_EXTIFALL_SET	RW	External Interrupt Falling Edge Trigger
0x1420	GPIO_IF_SET	RWH INTFLAG	Interrupt Flag
0x1424	GPIO_IEN_SET	RW	Interrupt Enable
0x142C	GPIO_EM4WUEN_SET	RW	main
0x1430	GPIO_EM4WUPOL_SET	RW	New Register
0x1440	GPIO_DBGROUTEPEN_SET	RW	Debugger Route Pin enable
0x1444	GPIO_TRACEROUTEPEN_SET	RW	Trace Route Pin Enable
0x1450	GPIO_ACMP0_ROUTEEN_SET	RW	ACMP0 pin enable
0x1454	GPIO_ACMP0_ACMPOUT- ROUTE_SET	RW	ACMPOUT port/pin select
0x145C	GPIO_ACMP1_ROUTEEN_SET	RW	ACMP1 pin enable
0x1460	GPIO_ACMP1_ACMPOUT- ROUTE_SET	RW	ACMPOUT port/pin select
0x1468	GPIO_CMU_ROUTEEN_SET	RW	CMU pin enable
0x146C	GPIO_CMU_CLKIN0ROUTE_SE	RW	CLKIN0 port/pin select
0x1470	GPIO_CMU_CLKOUT0ROUTE_ SET	RW	CLKOUT0 port/pin select
0x1474	GPIO_CMU_CLKOUT1ROUTE_ SET	RW	CLKOUT1 port/pin select
0x1478	GPIO_CMU_CLKOUT2ROUTE_ SET	RW	CLKOUT2 port/pin select
0x1484	GPIO_FRC_ROUTEEN_SET	RW	FRC pin enable
0x1488	GPIO_FRC_DCLKROUTE_SET	RW	DCLK port/pin select
0x148C	GPIO_FRC_DFRAME- ROUTE_SET	RW	DFRAME port/pin select
0x1490	GPIO_FRC_DOUTROUTE_SET	RW	DOUT port/pin select
0x1498	GPIO_I2C0_ROUTEEN_SET	RW	I2C0 pin enable
0x149C	GPIO_I2C0_SCLROUTE_SET	RW	SCL port/pin select
0x14A0	GPIO_I2C0_SDAROUTE_SET	RW	SDA port/pin select
0x14A8	GPIO_I2C1_ROUTEEN_SET	RW	I2C1 pin enable
0x14AC	GPIO_I2C1_SCLROUTE_SET	RW	SCL port/pin select
0x14B0	GPIO_I2C1_SDAROUTE_SET	RW	SDA port/pin select

Offset	Name	Туре	Description
0x14B8	GPIO_LETIMER0_ROU- TEEN_SET	RW	LETIMER pin enable
0x14BC	GPIO_LETIM- ER0_OUT0ROUTE_SET	RW	OUT0 port/pin select
0x14C0	GPIO_LETIM- ER0_OUT1ROUTE_SET	RW	OUT1 port/pin select
0x14C8	GPIO_MODEM_ROUTEEN_SET	RW	MODEM pin enable
0x14CC	GPIO_MO- DEM_ANTOROUTE_SET	RW	ANT0 port/pin select
0x14D0	GPIO_MO- DEM_ANT1ROUTE_SET	RW	ANT1 port/pin select
0x14D4	GPIO_MO- DEM_DCLKROUTE_SET	RW	DCLK port/pin select
0x14D8	GPIO_MODEM_DIN- ROUTE_SET	RW	DIN port/pin select
0x14DC	GPIO_MODEM_DOUT- ROUTE_SET	RW	DOUT port/pin select
0x14E4	GPIO_PRS0_ROUTEEN_SET	RW	PRS0 pin enable
0x14E8	GPIO_PRS0_ASYNCH0ROUTE _SET	RW	ASYNCH0 port/pin select
0x14EC	GPIO_PRS0_ASYNCH1ROUTE _SET	RW	ASYNCH1 port/pin select
0x14F0	GPIO_PRS0_ASYNCH2ROUTE _SET	RW	ASYNCH2 port/pin select
0x14F4	GPIO_PRS0_ASYNCH3ROUTE _SET	RW	ASYNCH3 port/pin select
0x14F8	GPIO_PRS0_ASYNCH4ROUTE _SET	RW	ASYNCH4 port/pin select
0x14FC	GPIO_PRS0_ASYNCH5ROUTE _SET	RW	ASYNCH5 port/pin select
0x1500	GPIO_PRS0_ASYNCH6ROUTE _SET	RW	ASYNCH6 port/pin select
0x1504	GPIO_PRS0_ASYNCH7ROUTE _SET	RW	ASYNCH7 port/pin select
0x1508	GPIO_PRS0_ASYNCH8ROUTE _SET	RW	ASYNCH8 port/pin select
0x150C	GPIO_PRS0_ASYNCH9ROUTE _SET	RW	ASYNCH9 port/pin select
0x1510	GPIO_PRS0_ASYNCH10ROUT E_SET	RW	ASYNCH10 port/pin select
0x1514	GPIO_PRS0_ASYNCH11ROUT E_SET	RW	ASYNCH11 port/pin select
0x1518	GPIO_PRS0_SYNCH0ROUTE_ SET	RW	SYNCH0 port/pin select
0x151C	GPIO_PRS0_SYNCH1ROUTE_ SET	RW	SYNCH1 port/pin select

Offset	Name	Туре	Description
0x1520	GPIO_PRS0_SYNCH2ROUTE_ SET	RW	SYNCH2 port/pin select
0x1524	GPIO_PRS0_SYNCH3ROUTE_ SET	RW	SYNCH3 port/pin select
0x152C	GPIO_TIMER0_ROUTEEN_SET	RW	TIMER0 pin enable
0x1530	GPIO_TIM- ERO_CCOROUTE_SET	RW	CC0 port/pin select
0x1534	GPIO_TIM- ER0_CC1ROUTE_SET	RW	CC1 port/pin select
0x1538	GPIO_TIM- ER0_CC2ROUTE_SET	RW	CC2 port/pin select
0x153C	GPIO_TIM- ER0_CDTI0ROUTE_SET	RW	CDTI0 port/pin select
0x1540	GPIO_TIM- ER0_CDTI1ROUTE_SET	RW	CDTI1 port/pin select
0x1544	GPIO_TIM- ER0_CDTI2ROUTE_SET	RW	CDTI2 port/pin select
0x154C	GPIO_TIMER1_ROUTEEN_SET	RW	TIMER1 pin enable
0x1550	GPIO_TIM- ER1_CC0ROUTE_SET	RW	CC0 port/pin select
0x1554	GPIO_TIM- ER1_CC1ROUTE_SET	RW	CC1 port/pin select
0x1558	GPIO_TIM- ER1_CC2ROUTE_SET	RW	CC2 port/pin select
0x155C	GPIO_TIM- ER1_CDTI0ROUTE_SET	RW	CDTI0 port/pin select
0x1560	GPIO_TIM- ER1_CDTI1ROUTE_SET	RW	CDTI1 port/pin select
0x1564	GPIO_TIM- ER1_CDTI2ROUTE_SET	RW	CDTI2 port/pin select
0x156C	GPIO_TIMER2_ROUTEEN_SET	RW	TIMER2 pin enable
0x1570	GPIO_TIM- ER2_CC0ROUTE_SET	RW	CC0 port/pin select
0x1574	GPIO_TIM- ER2_CC1ROUTE_SET	RW	CC1 port/pin select
0x1578	GPIO_TIM- ER2_CC2ROUTE_SET	RW	CC2 port/pin select
0x157C	GPIO_TIM- ER2_CDTI0ROUTE_SET	RW	CDTI0 port/pin select
0x1580	GPIO_TIM- ER2_CDTI1ROUTE_SET	RW	CDTI1 port/pin select
0x1584	GPIO_TIM- ER2_CDTI2ROUTE_SET	RW	CDTI2 port/pin select
0x158C	GPIO_TIMER3_ROUTEEN_SET	RW	TIMER3 pin enable
0x1590	GPIO_TIM- ER3_CC0ROUTE_SET	RW	CC0 port/pin select

Offset	Name	Туре	Description
0x1594	GPIO_TIM- ER3_CC1ROUTE_SET	RW	CC1 port/pin select
0x1598	GPIO_TIM- ER3_CC2ROUTE_SET	RW	CC2 port/pin select
0x159C	GPIO_TIM- ER3_CDTI0ROUTE_SET	RW	CDTI0 port/pin select
0x15A0	GPIO_TIM- ER3_CDTI1ROUTE_SET	RW	CDTI1 port/pin select
0x15A4	GPIO_TIM- ER3_CDTI2ROUTE_SET	RW	CDTI2 port/pin select
0x15AC	GPIO_USART0_ROU- TEEN_SET	RW	USART0 pin enable
0x15B0	GPIO_USARTO_CSROUTE_SE T	RW	CS port/pin select
0x15B4	GPIO_USARTO_CTSROUTE_S ET	RW	CTS port/pin select
0x15B8	GPIO_USARTO_RTSROUTE_S ET	RW	RTS port/pin select
0x15BC	GPIO_USART0_RXROUTE_SE T	RW	RX port/pin select
0x15C0	GPIO_USART0_CLKROUTE_SE T	RW	CLK port/pin select
0x15C4	GPIO_USARTO_TXROUTE_SET	RW	TX port/pin select
0x15CC	GPIO_USART1_ROU- TEEN_SET	RW	USART1 pin enable
0x15D0	GPIO_USART1_CSROUTE_SE T	RW	CS port/pin select
0x15D4	GPIO_USART1_CTSROUTE_S ET	RW	CTS port/pin select
0x15D8	GPIO_USART1_RTSROUTE_S ET	RW	RTS port/pin select
0x15DC	GPIO_USART1_RXROUTE_SE T	RW	RX port/pin select
0x15E0	GPIO_USART1_CLKROUTE_SE T	RW	CLK port/pin select
0x15E4	GPIO_USART1_TXROUTE_SET	RW	TX port/pin select
0x15EC	GPIO_USART2_ROU- TEEN_SET	RW	USART2 pin enable
0x15F0	GPIO_USART2_CSROUTE_SE T	RW	CS port/pin select
0x15F4	GPIO_USART2_CTSROUTE_S ET	RW	CTS port/pin select
0x15F8	GPIO_USART2_RTSROUTE_S ET	RW	RTS port/pin select
0x15FC	GPIO_USART2_RXROUTE_SE T	RW	RX port/pin select

Offset	Name	Туре	Description
0x1600	GPIO_USART2_CLKROUTE_SE	RW	CLK port/pin select
0.4004	T TO THE TYPOUTE OF T	D)4/	
0x1604	GPIO_USART2_TXROUTE_SET	RW	TX port/pin select
0x2000	GPIO_PORTA_CTRL_CLR	RW	Port control
0x2004	GPIO_PORTA_MODEL_CLR	RW	mode low
0x2010	GPIO_PORTA_DOUT_CLR	RW	data out
0x2014	GPIO_PORTA_DIN_CLR	RH	data in
0x2030	GPIO_PORTB_CTRL_CLR	RW	Port control
0x2034	GPIO_PORTB_MODEL_CLR	RW	mode low
0x2040	GPIO_PORTB_DOUT_CLR	RW	data out
0x2044	GPIO_PORTB_DIN_CLR	RH	data in
0x2060	GPIO_PORTC_CTRL_CLR	RW	Port control
0x2064	GPIO_PORTC_MODEL_CLR	RW	mode low
0x2070	GPIO_PORTC_DOUT_CLR	RW	data out
0x2074	GPIO_PORTC_DIN_CLR	RH	data in
0x2090	GPIO_PORTD_CTRL_CLR	RW	Port control
0x2094	GPIO_PORTD_MODEL_CLR	RW	mode low
0x20A0	GPIO_PORTD_DOUT_CLR	RW	data out
0x20A4	GPIO_PORTD_DIN_CLR	RH	data in
0x2300	GPIO_LOCK_CLR	W	main
0x2310	GPIO_GPIOLOCKSTATUS_CLR	RH	Lock Status
0x2320	GPIO_ABUSALLOC_CLR	RW	A Bus allocation
0x2324	GPIO_BBUSALLOC_CLR	RW	B Bus allocation
0x2328	GPIO_CDBUSALLOC_CLR	RW	CD Bus allocation
0x2400	GPIO_EXTIPSELL_CLR	RW	External Interrupt Port Select Low
0x2408	GPIO_EXTIPINSELL_CLR	RW	External Interrupt Pin Select Low
0x2410	GPIO_EXTIRISE_CLR	RW	External Interrupt Rising Edge Trigger
0x2414	GPIO_EXTIFALL_CLR	RW	External Interrupt Falling Edge Trigger
0x2420	GPIO_IF_CLR	RWH INTFLAG	Interrupt Flag
0x2424	GPIO_IEN_CLR	RW	Interrupt Enable
0x242C	GPIO_EM4WUEN_CLR	RW	main
0x2430	GPIO_EM4WUPOL_CLR	RW	New Register
0x2440	GPIO_DBGROUTEPEN_CLR	RW	Debugger Route Pin enable
0x2444	GPIO_TRACEROUTEPEN_CLR	RW	Trace Route Pin Enable
0x2450	GPIO_ACMP0_ROUTEEN_CLR	RW	ACMP0 pin enable
0x2454	GPIO_ACMP0_ACMPOUT- ROUTE_CLR	RW	ACMPOUT port/pin select
0x245C	GPIO_ACMP1_ROUTEEN_CLR	RW	ACMP1 pin enable

Offset	Name	Туре	Description
0x2460	GPIO_ACMP1_ACMPOUT- ROUTE_CLR	RW	ACMPOUT port/pin select
0x2468	GPIO_CMU_ROUTEEN_CLR	RW	CMU pin enable
0x246C	GPIO_CMU_CLKIN0ROUTE_CLR	RW	CLKIN0 port/pin select
0x2470	GPIO_CMU_CLKOUT0ROUTE_ CLR	RW	CLKOUT0 port/pin select
0x2474	GPIO_CMU_CLKOUT1ROUTE_ CLR	RW	CLKOUT1 port/pin select
0x2478	GPIO_CMU_CLKOUT2ROUTE_ CLR	RW	CLKOUT2 port/pin select
0x2484	GPIO_FRC_ROUTEEN_CLR	RW	FRC pin enable
0x2488	GPIO_FRC_DCLKROUTE_CLR	RW	DCLK port/pin select
0x248C	GPIO_FRC_DFRAME- ROUTE_CLR	RW	DFRAME port/pin select
0x2490	GPIO_FRC_DOUTROUTE_CLR	RW	DOUT port/pin select
0x2498	GPIO_I2C0_ROUTEEN_CLR	RW	I2C0 pin enable
0x249C	GPIO_I2C0_SCLROUTE_CLR	RW	SCL port/pin select
0x24A0	GPIO_I2C0_SDAROUTE_CLR	RW	SDA port/pin select
0x24A8	GPIO_I2C1_ROUTEEN_CLR	RW	I2C1 pin enable
0x24AC	GPIO_I2C1_SCLROUTE_CLR	RW	SCL port/pin select
0x24B0	GPIO_I2C1_SDAROUTE_CLR	RW	SDA port/pin select
0x24B8	GPIO_LETIMER0_ROU- TEEN_CLR	RW	LETIMER pin enable
0x24BC	GPIO_LETIM- ERO_OUTOROUTE_CLR	RW	OUT0 port/pin select
0x24C0	GPIO_LETIM- ER0_OUT1ROUTE_CLR	RW	OUT1 port/pin select
0x24C8	GPIO_MODEM_ROUTEEN_CLR	RW	MODEM pin enable
0x24CC	GPIO_MO- DEM_ANT0ROUTE_CLR	RW	ANT0 port/pin select
0x24D0	GPIO_MO- DEM_ANT1ROUTE_CLR	RW	ANT1 port/pin select
0x24D4	GPIO_MO- DEM_DCLKROUTE_CLR	RW	DCLK port/pin select
0x24D8	GPIO_MODEM_DIN- ROUTE_CLR	RW	DIN port/pin select
0x24DC	GPIO_MODEM_DOUT- ROUTE_CLR	RW	DOUT port/pin select
0x24E4	GPIO_PRS0_ROUTEEN_CLR	RW	PRS0 pin enable
0x24E8	GPIO_PRS0_ASYNCH0ROUTE _CLR	RW	ASYNCH0 port/pin select
0x24EC	GPIO_PRS0_ASYNCH1ROUTE _CLR	RW	ASYNCH1 port/pin select

Offset	Name	Туре	Description
0x24F0	GPIO_PRS0_ASYNCH2ROUTE _CLR	RW	ASYNCH2 port/pin select
0x24F4	GPIO_PRS0_ASYNCH3ROUTE _CLR	RW	ASYNCH3 port/pin select
0x24F8	GPIO_PRS0_ASYNCH4ROUTE _CLR	RW	ASYNCH4 port/pin select
0x24FC	GPIO_PRS0_ASYNCH5ROUTE _CLR	RW	ASYNCH5 port/pin select
0x2500	GPIO_PRS0_ASYNCH6ROUTE _CLR	RW	ASYNCH6 port/pin select
0x2504	GPIO_PRS0_ASYNCH7ROUTE _CLR	RW	ASYNCH7 port/pin select
0x2508	GPIO_PRS0_ASYNCH8ROUTE _CLR	RW	ASYNCH8 port/pin select
0x250C	GPIO_PRS0_ASYNCH9ROUTE _CLR	RW	ASYNCH9 port/pin select
0x2510	GPIO_PRS0_ASYNCH10ROUT E_CLR	RW	ASYNCH10 port/pin select
0x2514	GPIO_PRS0_ASYNCH11ROUT E_CLR	RW	ASYNCH11 port/pin select
0x2518	GPIO_PRS0_SYNCH0ROUTE_ CLR	RW	SYNCH0 port/pin select
0x251C	GPIO_PRS0_SYNCH1ROUTE_ CLR	RW	SYNCH1 port/pin select
0x2520	GPIO_PRS0_SYNCH2ROUTE_ CLR	RW	SYNCH2 port/pin select
0x2524	GPIO_PRS0_SYNCH3ROUTE_ CLR	RW	SYNCH3 port/pin select
0x252C	GPIO_TIMER0_ROUTEEN_CLR	RW	TIMER0 pin enable
0x2530	GPIO_TIM- ER0_CC0ROUTE_CLR	RW	CC0 port/pin select
0x2534	GPIO_TIM- ER0_CC1ROUTE_CLR	RW	CC1 port/pin select
0x2538	GPIO_TIM- ER0_CC2ROUTE_CLR	RW	CC2 port/pin select
0x253C	GPIO_TIM- ER0_CDTI0ROUTE_CLR	RW	CDTI0 port/pin select
0x2540	GPIO_TIM- ER0_CDTI1ROUTE_CLR	RW	CDTI1 port/pin select
0x2544	GPIO_TIM- ER0_CDTI2ROUTE_CLR	RW	CDTI2 port/pin select
0x254C	GPIO_TIMER1_ROUTEEN_CLR	RW	TIMER1 pin enable
0x2550	GPIO_TIM- ER1_CC0ROUTE_CLR	RW	CC0 port/pin select
0x2554	GPIO_TIM- ER1_CC1ROUTE_CLR	RW	CC1 port/pin select

Offset	Name	Туре	Description
0x2558	GPIO_TIM- ER1_CC2ROUTE_CLR	RW	CC2 port/pin select
0x255C	GPIO_TIM- ER1_CDTI0ROUTE_CLR	RW	CDTI0 port/pin select
0x2560	GPIO_TIM- ER1_CDTI1ROUTE_CLR	RW	CDTI1 port/pin select
0x2564	GPIO_TIM- ER1_CDTI2ROUTE_CLR	RW	CDTI2 port/pin select
0x256C	GPIO_TIMER2_ROUTEEN_CLR	RW	TIMER2 pin enable
0x2570	GPIO_TIM- ER2_CC0ROUTE_CLR	RW	CC0 port/pin select
0x2574	GPIO_TIM- ER2_CC1ROUTE_CLR	RW	CC1 port/pin select
0x2578	GPIO_TIM- ER2_CC2ROUTE_CLR	RW	CC2 port/pin select
0x257C	GPIO_TIM- ER2_CDTI0ROUTE_CLR	RW	CDTI0 port/pin select
0x2580	GPIO_TIM- ER2_CDTI1ROUTE_CLR	RW	CDTI1 port/pin select
0x2584	GPIO_TIM- ER2_CDTI2ROUTE_CLR	RW	CDTI2 port/pin select
0x258C	GPIO_TIMER3_ROUTEEN_CLR	RW	TIMER3 pin enable
0x2590	GPIO_TIM- ER3_CC0ROUTE_CLR	RW	CC0 port/pin select
0x2594	GPIO_TIM- ER3_CC1ROUTE_CLR	RW	CC1 port/pin select
0x2598	GPIO_TIM- ER3_CC2ROUTE_CLR	RW	CC2 port/pin select
0x259C	GPIO_TIM- ER3_CDTI0ROUTE_CLR	RW	CDTI0 port/pin select
0x25A0	GPIO_TIM- ER3_CDTI1ROUTE_CLR	RW	CDTI1 port/pin select
0x25A4	GPIO_TIM- ER3_CDTI2ROUTE_CLR	RW	CDTI2 port/pin select
0x25AC	GPIO_USART0_ROU- TEEN_CLR	RW	USART0 pin enable
0x25B0	GPIO_USARTO_CSROUTE_CL R	RW	CS port/pin select
0x25B4	GPIO_USART0_CTSROUTE_CL R	RW	CTS port/pin select
0x25B8	GPIO_USART0_RTSROUTE_CL R	RW	RTS port/pin select
0x25BC	GPIO_USART0_RXROUTE_CL R	RW	RX port/pin select
0x25C0	GPIO_USART0_CLKROUTE_CLR	RW	CLK port/pin select

Offset	Name	Туре	Description
0x25C4	GPIO_USART0_TXROUTE_CLR	RW	TX port/pin select
0x25CC	GPIO_USART1_ROU- TEEN_CLR	RW	USART1 pin enable
0x25D0	GPIO_USART1_CSROUTE_CLR	RW	CS port/pin select
0x25D4	GPIO_USART1_CTSROUTE_CLR	RW	CTS port/pin select
0x25D8	GPIO_USART1_RTSROUTE_CLR	RW	RTS port/pin select
0x25DC	GPIO_USART1_RXROUTE_CL R	RW	RX port/pin select
0x25E0	GPIO_USART1_CLKROUTE_CLR	RW	CLK port/pin select
0x25E4	GPIO_USART1_TXROUTE_CLR	RW	TX port/pin select
0x25EC	GPIO_USART2_ROU- TEEN_CLR	RW	USART2 pin enable
0x25F0	GPIO_USART2_CSROUTE_CLR	RW	CS port/pin select
0x25F4	GPIO_USART2_CTSROUTE_CLR	RW	CTS port/pin select
0x25F8	GPIO_USART2_RTSROUTE_CLR	RW	RTS port/pin select
0x25FC	GPIO_USART2_RXROUTE_CL R	RW	RX port/pin select
0x2600	GPIO_USART2_CLKROUTE_CLR	RW	CLK port/pin select
0x2604	GPIO_USART2_TXROUTE_CLR	RW	TX port/pin select
0x3000	GPIO_PORTA_CTRL_TGL	RW	Port control
0x3004	GPIO_PORTA_MODEL_TGL	RW	mode low
0x3010	GPIO_PORTA_DOUT_TGL	RW	data out
0x3014	GPIO_PORTA_DIN_TGL	RH	data in
0x3030	GPIO_PORTB_CTRL_TGL	RW	Port control
0x3034	GPIO_PORTB_MODEL_TGL	RW	mode low
0x3040	GPIO_PORTB_DOUT_TGL	RW	data out
0x3044	GPIO_PORTB_DIN_TGL	RH	data in
0x3060	GPIO_PORTC_CTRL_TGL	RW	Port control
0x3064	GPIO_PORTC_MODEL_TGL	RW	mode low
0x3070	GPIO_PORTC_DOUT_TGL	RW	data out
0x3074	GPIO_PORTC_DIN_TGL	RH	data in
0x3090	GPIO_PORTD_CTRL_TGL	RW	Port control
0x3094	GPIO_PORTD_MODEL_TGL	RW	mode low
0x30A0	GPIO_PORTD_DOUT_TGL	RW	data out

Offset	Name	Туре	Description
0x30A4	GPIO_PORTD_DIN_TGL	RH	data in
0x3300	GPIO_LOCK_TGL	W	main
0x3310	GPIO_GPIOLOCKSTATUS_TGL	RH	Lock Status
0x3320	GPIO_ABUSALLOC_TGL	RW	A Bus allocation
0x3324	GPIO_BBUSALLOC_TGL	RW	B Bus allocation
0x3328	GPIO_CDBUSALLOC_TGL	RW	CD Bus allocation
0x3400	GPIO_EXTIPSELL_TGL	RW	External Interrupt Port Select Low
0x3408	GPIO_EXTIPINSELL_TGL	RW	External Interrupt Pin Select Low
0x3410	GPIO_EXTIRISE_TGL	RW	External Interrupt Rising Edge Trigger
0x3414	GPIO_EXTIFALL_TGL	RW	External Interrupt Falling Edge Trigger
0x3420	GPIO_IF_TGL	RWH INTFLAG	Interrupt Flag
0x3424	GPIO_IEN_TGL	RW	Interrupt Enable
0x342C	GPIO_EM4WUEN_TGL	RW	main
0x3430	GPIO_EM4WUPOL_TGL	RW	New Register
0x3440	GPIO_DBGROUTEPEN_TGL	RW	Debugger Route Pin enable
0x3444	GPIO_TRACEROUTEPEN_TGL	RW	Trace Route Pin Enable
0x3450	GPIO_ACMP0_ROUTEEN_TGL	RW	ACMP0 pin enable
0x3454	GPIO_ACMP0_ACMPOUT- ROUTE_TGL	RW	ACMPOUT port/pin select
0x345C	GPIO_ACMP1_ROUTEEN_TGL	RW	ACMP1 pin enable
0x3460	GPIO_ACMP1_ACMPOUT- ROUTE_TGL	RW	ACMPOUT port/pin select
0x3468	GPIO_CMU_ROUTEEN_TGL	RW	CMU pin enable
0x346C	GPIO_CMU_CLKIN0ROUTE_TG	RW	CLKIN0 port/pin select
0x3470	GPIO_CMU_CLKOUT0ROUTE_ TGL	RW	CLKOUT0 port/pin select
0x3474	GPIO_CMU_CLKOUT1ROUTE_ TGL	RW	CLKOUT1 port/pin select
0x3478	GPIO_CMU_CLKOUT2ROUTE_ TGL	RW	CLKOUT2 port/pin select
0x3484	GPIO_FRC_ROUTEEN_TGL	RW	FRC pin enable
0x3488	GPIO_FRC_DCLKROUTE_TGL	RW	DCLK port/pin select
0x348C	GPIO_FRC_DFRAME- ROUTE_TGL	RW	DFRAME port/pin select
0x3490	GPIO_FRC_DOUTROUTE_TGL	RW	DOUT port/pin select
0x3498	GPIO_I2C0_ROUTEEN_TGL	RW	I2C0 pin enable
0x349C	GPIO_I2C0_SCLROUTE_TGL	RW	SCL port/pin select
0x34A0	GPIO_I2C0_SDAROUTE_TGL	RW	SDA port/pin select
0x34A8	GPIO_I2C1_ROUTEEN_TGL	RW	I2C1 pin enable

Offset	Name	Туре	Description
0x34AC	GPIO_I2C1_SCLROUTE_TGL	RW	SCL port/pin select
0x34B0	GPIO_I2C1_SDAROUTE_TGL	RW	SDA port/pin select
0x34B8	GPIO_LETIMER0_ROU- TEEN_TGL	RW	LETIMER pin enable
0x34BC	GPIO_LETIM- ER0_OUT0ROUTE_TGL	RW	OUT0 port/pin select
0x34C0	GPIO_LETIM- ER0_OUT1ROUTE_TGL	RW	OUT1 port/pin select
0x34C8	GPIO_MODEM_ROUTEEN_TGL	RW	MODEM pin enable
0x34CC	GPIO_MO- DEM_ANT0ROUTE_TGL	RW	ANT0 port/pin select
0x34D0	GPIO_MO- DEM_ANT1ROUTE_TGL	RW	ANT1 port/pin select
0x34D4	GPIO_MO- DEM_DCLKROUTE_TGL	RW	DCLK port/pin select
0x34D8	GPIO_MODEM_DIN- ROUTE_TGL	RW	DIN port/pin select
0x34DC	GPIO_MODEM_DOUT- ROUTE_TGL	RW	DOUT port/pin select
0x34E4	GPIO_PRS0_ROUTEEN_TGL	RW	PRS0 pin enable
0x34E8	GPIO_PRS0_ASYNCH0ROUTE _TGL	RW	ASYNCH0 port/pin select
0x34EC	GPIO_PRS0_ASYNCH1ROUTE _TGL	RW	ASYNCH1 port/pin select
0x34F0	GPIO_PRS0_ASYNCH2ROUTE _TGL	RW	ASYNCH2 port/pin select
0x34F4	GPIO_PRS0_ASYNCH3ROUTE _TGL	RW	ASYNCH3 port/pin select
0x34F8	GPIO_PRS0_ASYNCH4ROUTE _TGL	RW	ASYNCH4 port/pin select
0x34FC	GPIO_PRS0_ASYNCH5ROUTE _TGL	RW	ASYNCH5 port/pin select
0x3500	GPIO_PRS0_ASYNCH6ROUTE _TGL	RW	ASYNCH6 port/pin select
0x3504	GPIO_PRS0_ASYNCH7ROUTE _TGL	RW	ASYNCH7 port/pin select
0x3508	GPIO_PRS0_ASYNCH8ROUTE _TGL	RW	ASYNCH8 port/pin select
0x350C	GPIO_PRS0_ASYNCH9ROUTE _TGL	RW	ASYNCH9 port/pin select
0x3510	GPIO_PRS0_ASYNCH10ROUT E_TGL	RW	ASYNCH10 port/pin select
0x3514	GPIO_PRS0_ASYNCH11ROUT E_TGL	RW	ASYNCH11 port/pin select
0x3518	GPIO_PRS0_SYNCH0ROUTE_ TGL	RW	SYNCH0 port/pin select

Offset	Name	Туре	Description
0x351C	GPIO_PRS0_SYNCH1ROUTE_ TGL	RW	SYNCH1 port/pin select
0x3520	GPIO_PRS0_SYNCH2ROUTE_ TGL	RW	SYNCH2 port/pin select
0x3524	GPIO_PRS0_SYNCH3ROUTE_ TGL	RW	SYNCH3 port/pin select
0x352C	GPIO_TIMER0_ROUTEEN_TGL	RW	TIMER0 pin enable
0x3530	GPIO_TIM- ER0_CC0ROUTE_TGL	RW	CC0 port/pin select
0x3534	GPIO_TIM- ER0_CC1ROUTE_TGL	RW	CC1 port/pin select
0x3538	GPIO_TIM- ER0_CC2ROUTE_TGL	RW	CC2 port/pin select
0x353C	GPIO_TIM- ER0_CDTI0ROUTE_TGL	RW	CDTI0 port/pin select
0x3540	GPIO_TIM- ER0_CDTI1ROUTE_TGL	RW	CDTI1 port/pin select
0x3544	GPIO_TIM- ER0_CDTI2ROUTE_TGL	RW	CDTI2 port/pin select
0x354C	GPIO_TIMER1_ROUTEEN_TGL	RW	TIMER1 pin enable
0x3550	GPIO_TIM- ER1_CC0ROUTE_TGL	RW	CC0 port/pin select
0x3554	GPIO_TIM- ER1_CC1ROUTE_TGL	RW	CC1 port/pin select
0x3558	GPIO_TIM- ER1_CC2ROUTE_TGL	RW	CC2 port/pin select
0x355C	GPIO_TIM- ER1_CDTI0ROUTE_TGL	RW	CDTI0 port/pin select
0x3560	GPIO_TIM- ER1_CDTI1ROUTE_TGL	RW	CDTI1 port/pin select
0x3564	GPIO_TIM- ER1_CDTI2ROUTE_TGL	RW	CDTI2 port/pin select
0x356C	GPIO_TIMER2_ROUTEEN_TGL	RW	TIMER2 pin enable
0x3570	GPIO_TIM- ER2_CC0ROUTE_TGL	RW	CC0 port/pin select
0x3574	GPIO_TIM- ER2_CC1ROUTE_TGL	RW	CC1 port/pin select
0x3578	GPIO_TIM- ER2_CC2ROUTE_TGL	RW	CC2 port/pin select
0x357C	GPIO_TIM- ER2_CDTI0ROUTE_TGL	RW	CDTI0 port/pin select
0x3580	GPIO_TIM- ER2_CDTI1ROUTE_TGL	RW	CDTI1 port/pin select
0x3584	GPIO_TIM- ER2_CDTI2ROUTE_TGL	RW	CDTI2 port/pin select
0x358C	GPIO_TIMER3_ROUTEEN_TGL	RW	TIMER3 pin enable

Offset	Name	Туре	Description
0x3590	GPIO_TIM- ER3_CC0ROUTE_TGL	RW	CC0 port/pin select
0x3594	GPIO_TIM- ER3_CC1ROUTE_TGL	RW	CC1 port/pin select
0x3598	GPIO_TIM- ER3_CC2ROUTE_TGL	RW	CC2 port/pin select
0x359C	GPIO_TIM- ER3_CDTI0ROUTE_TGL	RW	CDTI0 port/pin select
0x35A0	GPIO_TIM- ER3_CDTI1ROUTE_TGL	RW	CDTI1 port/pin select
0x35A4	GPIO_TIM- ER3_CDTI2ROUTE_TGL	RW	CDTI2 port/pin select
0x35AC	GPIO_USART0_ROU- TEEN_TGL	RW	USART0 pin enable
0x35B0	GPIO_USART0_CSROUTE_TG	RW	CS port/pin select
0x35B4	GPIO_USART0_CTSROUTE_T GL	RW	CTS port/pin select
0x35B8	GPIO_USART0_RTSROUTE_T GL	RW	RTS port/pin select
0x35BC	GPIO_USART0_RXROUTE_TG L	RW	RX port/pin select
0x35C0	GPIO_USART0_CLKROUTE_T GL	RW	CLK port/pin select
0x35C4	GPIO_USART0_TXROUTE_TGL	RW	TX port/pin select
0x35CC	GPIO_USART1_ROU- TEEN_TGL	RW	USART1 pin enable
0x35D0	GPIO_USART1_CSROUTE_TG	RW	CS port/pin select
0x35D4	GPIO_USART1_CTSROUTE_T GL	RW	CTS port/pin select
0x35D8	GPIO_USART1_RTSROUTE_T GL	RW	RTS port/pin select
0x35DC	GPIO_USART1_RXROUTE_TG L	RW	RX port/pin select
0x35E0	GPIO_USART1_CLKROUTE_T GL	RW	CLK port/pin select
0x35E4	GPIO_USART1_TXROUTE_TGL	RW	TX port/pin select
0x35EC	GPIO_USART2_ROU- TEEN_TGL	RW	USART2 pin enable
0x35F0	GPIO_USART2_CSROUTE_TG	RW	CS port/pin select
0x35F4	GPIO_USART2_CTSROUTE_T GL	RW	CTS port/pin select
0x35F8	GPIO_USART2_RTSROUTE_T GL	RW	RTS port/pin select

Offset	Name	Туре	Description
0x35FC	GPIO_USART2_RXROUTE_TG	RW	RX port/pin select
0x3600	GPIO_USART2_CLKROUTE_T GL	RW	CLK port/pin select
0x3604	GPIO_USART2_TXROUTE_TGL	RW	TX port/pin select

24.6 Register Description

24.6.1 GPIO_PORTA_CTRL - Port control

Offset															Ві	t Po	ositi	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset				000							0x4									0 0 0							0×4					
Access				₩ M							R M									\ \ \ \ \							S. N					
Name				DINDISALT							SLEWRATEALT									DINDIS							SLEWRATE					

Bit	Name	Reset	Access	Description
Bit	- Name	Reset	A00033	Description
31:29	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
28	DINDISALT	0x0	RW	Data In Disable Alt
	Data input disable for po	rt pins using a	alternate modes.	
27:23	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
22:20	SLEWRATEALT	0x4	RW	Slew Rate Alt
	Slewrate limit for port pin	s using altern	ate modes. High	ner values provide faster slew rates.
19:13	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
12	DINDIS	0x0	RW	Data In Disable
	Data input disable for po	rt pins not usi	ng alternate mo	des.
11:7	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
6:4	SLEWRATE	0x4	RW	Slew Rate
	Slewrate limit for port pin	s not using al	ternate modes.	Higher values provide faster slew rates.
3:0	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-

24.6.2 GPIO_PORTA_MODEL - mode low

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	6	5	4	8	2	_	0
Reset	0×0							2	3			2	2			2	OXO			2	2			2	2	•	0x0					
Access		RW .								2	2			2	<u> </u>			2	<u>}</u>			8			SA SA					7	<u>}</u>	
Name					and CN	NOUN NOUN NOUN NOUN NOUN NOUN NOUN NOUN			ADON R	2 2 2 2 2 2			Z	Ù		MODE3				MODE2					MOD T	<u> </u>		MODE0				

Bit	Name	Reset Access	Description
31:28	Reserved	To ensure compatibility wi ventions	th future devices, always write bits to 0. More information in 1.2 Con-
27:24	MODE6	0x0 RW	MODE n
	MODE n		
	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	1	INPUT	Input enabled. Filter if DOUT is set.
	2	INPUTPULL	Input enabled. DOUT determines pull direction.
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPULL	Push-pull output.
	5	PUSHPULLALT	Push-pull using alternate control.
	6	WIREDOR	Wired-or output.
	7	WIREDORPULLDOWN	Wired-or output with pull-down.
	8	WIREDAND	Open-drain output.
	9	WIREDANDFILTER	Open-drain output with filter.
	10	WIREDANDPULLUP	Open-drain output with pullup.
	11	WIREDANDPULLUPFIL- TER	Open-drain output with filter and pullup.
	12	WIREDANDALT	Open-drain output using alternate control.
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDANDALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANDALTPULLUP- FILTER	Open-drain output using alternate control with filter and pullup.
23:20	MODE5	0x0 RW	MODE n
	MODE n		
	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	1	INPUT	Input enabled. Filter if DOUT is set.
	2	INPUTPULL	Input enabled. DOUT determines pull direction.

Bit	Name	Reset Access	Description
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPULL	Push-pull output.
	5	PUSHPULLALT	Push-pull using alternate control.
	6	WIREDOR	Wired-or output.
	7	WIREDORPULLDOWN	Wired-or output with pull-down.
	8	WIREDAND	Open-drain output.
	9	WIREDANDFILTER	Open-drain output with filter.
	10	WIREDANDPULLUP	Open-drain output with pullup.
	11	WIREDANDPULLUPFIL- TER	Open-drain output with filter and pullup.
	12	WIREDANDALT	Open-drain output using alternate control.
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDANDALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANDALTPULLUP- FILTER	Open-drain output using alternate control with filter and pullup.
19:16	MODE4	0x0 RW	MODE n
	MODE n		
	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	1	INPUT	Input enabled. Filter if DOUT is set.
	2	INPUTPULL	Input enabled. DOUT determines pull direction.
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPULL	Push-pull output.
	5	PUSHPULLALT	Push-pull using alternate control.
	6	WIREDOR	Wired-or output.
	7	WIREDORPULLDOWN	Wired-or output with pull-down.
	8	WIREDAND	Open-drain output.
	9	WIREDANDFILTER	Open-drain output with filter.
	10	WIREDANDPULLUP	Open-drain output with pullup.
	11	WIREDANDPULLUPFIL- TER	Open-drain output with filter and pullup.
	12	WIREDANDALT	Open-drain output using alternate control.
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDANDALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANDALTPULLUP- FILTER	Open-drain output using alternate control with filter and pullup.
15:12	MODE3	0x0 RW	MODE n
	MODE n		

Bit	Name	Reset Access	Description
	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	1	INPUT	Input enabled. Filter if DOUT is set.
	2	INPUTPULL	Input enabled. DOUT determines pull direction.
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPULL	Push-pull output.
	5	PUSHPULLALT	Push-pull using alternate control.
	6	WIREDOR	Wired-or output.
	7	WIREDORPULLDOWN	Wired-or output with pull-down.
	8	WIREDAND	Open-drain output.
	9	WIREDANDFILTER	Open-drain output with filter.
	10	WIREDANDPULLUP	Open-drain output with pullup.
	11	WIREDANDPULLUPFIL- TER	Open-drain output with filter and pullup.
	12	WIREDANDALT	Open-drain output using alternate control.
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDANDALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANDALTPULLUP- FILTER	Open-drain output using alternate control with filter and pullup.
11:8	MODE2	0x0 RW	MODE -
		0.00 1000	MODE n
	MODE n	OXO IXVV	MODE II
		Mode	Description
	MODE n		
	MODE n Value	Mode	Description
	MODE n Value	Mode DISABLED	Description Input disabled. Pullup if DOUT is set.
	MODE n Value 0 1	Mode DISABLED INPUT	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set.
	MODE n Value 0 1 2	Mode DISABLED INPUT INPUTPULL	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction.
	MODE n Value 0 1 2 3	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction.
	MODE n Value 0 1 2 3 4	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output.
	MODE n Value 0 1 2 3 4 5	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control.
	MODE n Value 0 1 2 3 4 5	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output.
	MODE n Value 0 1 2 3 4 5 6 7	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR WIREDORPULLDOWN	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output. Wired-or output with pull-down.
	MODE n Value 0 1 2 3 4 5 6 7	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR WIREDORPULLDOWN WIREDAND	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output. Wired-or output with pull-down. Open-drain output.
	MODE n Value 0 1 2 3 4 5 6 7 8	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR WIREDORPULLDOWN WIREDAND WIREDANDFILTER	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output. Wired-or output with pull-down. Open-drain output with filter.
	MODE n Value 0 1 2 3 4 5 6 7 8 9 10	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR WIREDORPULLDOWN WIREDAND WIREDANDFILTER WIREDANDPULLUPFIL-	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output. Wired-or output with pull-down. Open-drain output with filter. Open-drain output with pullup.
	MODE n Value 0 1 2 3 4 5 6 7 8 9 10 11	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR WIREDAND WIREDAND WIREDANDFILTER WIREDANDPULLUPFILTER	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output. Wired-or output with pull-down. Open-drain output with filter. Open-drain output with pullup. Open-drain output with filter and pullup.

Bit	Name	Reset	Access	Description
	14	WIREDAND	DALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDAND FILTER	OALTPULLUP-	Open-drain output using alternate control with filter and pullup.
7:4	MODE1	0x0	RW	MODE n
	MODE n			
	Value	Mode		Description
	0	DISABLED		Input disabled. Pullup if DOUT is set.
	1	INPUT		Input enabled. Filter if DOUT is set.
	2	INPUTPULI	L	Input enabled. DOUT determines pull direction.
	3	INPUTPULI	LFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPULL	-	Push-pull output.
	5	PUSHPULL	ALT	Push-pull using alternate control.
	6	WIREDOR		Wired-or output.
	7	WIREDORF	PULLDOWN	Wired-or output with pull-down.
	8	WIREDAND)	Open-drain output.
	9	WIREDAND	FILTER	Open-drain output with filter.
	10	WIREDAND	PULLUP	Open-drain output with pullup.
	11	WIREDAND TER	PULLUPFIL-	Open-drain output with filter and pullup.
	12	WIREDAND	DALT	Open-drain output using alternate control.
	13	WIREDAND	DALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDAND	DALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDAND FILTER	OALTPULLUP-	Open-drain output using alternate control with filter and pullup.
3:0	MODE0	0x0	RW	MODE n
	MODE n			
	Value	Mode		Description
	0	DISABLED		Input disabled. Pullup if DOUT is set.
	1	INPUT		Input enabled. Filter if DOUT is set.
	2	INPUTPULI	<u></u>	Input enabled. DOUT determines pull direction.
	3	INPUTPULI	LFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPULL	-	Push-pull output.
	5	PUSHPULL	.ALT	Push-pull using alternate control.
				Wired-or output.
	6	WIREDOR		
	6 7		PULLDOWN	Wired-or output with pull-down.
				·

Bit	Name	Reset Access	Description
	10	WIREDANDPULLUP	Open-drain output with pullup.
	11	WIREDANDPULLUPFIL- TER	Open-drain output with filter and pullup.
	12	WIREDANDALT	Open-drain output using alternate control.
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDANDALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANDALTPULLUP FILTER	Open-drain output using alternate control with filter and pullup.

24.6.3 GPIO_PORTA_DOUT - data out

Offset															Bi	t Po	siti	on														
0x010	3,	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	3	2	_	0
Reset			<u>'</u>											•					•						•				0X0			
Access																													RW			
Name																													DOUT			

Bit	Name	Reset	Access	Description
31:7	Reserved	To ensure ventions	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
6:0	DOUT	0x0	RW	Data output
	Ddata output			

24.6.4 GPIO_PORTA_DIN - data in

Offset	Bit Position	
0x014	31 31 31 31 31 31 31 31 31 31 31 31 31 3	0 0 4 8 0 - 0
Reset		0×0
Access		<u>~</u>
Name		NO

Bit	Name	Reset	Access	Description						
31:7	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Cor						
6:0	DIN	0x0	R	Data input						
	Data input									

24.6.5 GPIO_PORTB_CTRL - Port control

Offset	Bit Position																															
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset			•	0x0		•	•				0x4	•		•						0X0				•			0x4					
Access				₩ M							R M									R W							R≪					
Name				DINDISALT							SLEWRATEALT									DINDIS							SLEWRATE					

Bit	Name	Reset	Access	Description
31:29	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
28	DINDISALT	0x0	RW	Data In Disable Alt
	Data input disable for po	rt pins using a	alternate modes.	
27:23	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
22:20	SLEWRATEALT	0x4	RW	Slew Rate Alt
	Slewrate limit for port pir	ns using altera	ante modes. High	ner values representer faster slewrates.
19:13	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
12	DINDIS	0x0	RW	Data In Disable
	Data input disable for po	rt pins not usi	ng alternate mod	des.
11:7	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-
6:4	SLEWRATE	0x4	RW	Slew Rate
	Slewrate limit for port pir	ns using not a	Iterante modes.	Higher values representer faster slewrates.
3:0	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in 1.2 Con-

24.6.6 GPIO_PORTB_MODEL - mode low

Offset	Bit Position		
0x034	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7 6 7	8 2 - 0
Reset		0×0	0×0
Access		RW	RW
Name		MODE1	МОБЕО

Bit	Name	Reset Access	Description
31:8	Reserved		th future devices, always write bits to 0. More information in 1.2 Con
7:4	MODE1	0x0 RW	MODE n
	MODE n		
	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	1	INPUT	Input enabled. Filter if DOUT is set.
	2	INPUTPULL	Input enabled. DOUT determines pull direction.
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPULL	Push-pull output.
	5	PUSHPULLALT	Push-pull using alternate control.
	6	WIREDOR	Wired-or output.
	7	WIREDORPULLDOWN	Wired-or output with pull-down.
	8	WIREDAND	Open-drain output.
	9	WIREDANDFILTER	Open-drain output with filter.
	10	WIREDANDPULLUP	Open-drain output with pullup.
	11	WIREDANDPULLUPFIL- TER	Open-drain output with filter and pullup.
	12	WIREDANDALT	Open-drain output using alternate control.
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDANDALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANDALTPULLUP- FILTER	Open-drain output using alternate control with filter and pullup.
3:0	MODE0	0x0 RW	MODE n
	MODE n		
	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	1	INPUT	Input enabled. Filter if DOUT is set.
	2	INPUTPULL	Input enabled. DOUT determines pull direction.

Bit	Name	Reset Access	Description
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPULL	Push-pull output.
	5	PUSHPULLALT	Push-pull using alternate control.
	6	WIREDOR	Wired-or output.
	7	WIREDORPULLDOWN	Wired-or output with pull-down.
	8	WIREDAND	Open-drain output.
	9	WIREDANDFILTER	Open-drain output with filter.
	10	WIREDANDPULLUP	Open-drain output with pullup.
	11	WIREDANDPULLUPFIL- TER	Open-drain output with filter and pullup.
	12	WIREDANDALT	Open-drain output using alternate control.
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDANDALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANDALTPULLUP- FILTER	Open-drain output using alternate control with filter and pullup.

24.6.7 GPIO_PORTB_DOUT - data out

Offset															Bi	t Po	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	8	7	9	2	4	က	7	_	0
Reset			•		•	•	•	•	•			•		•	•										•	•	•	•		•	5	OXO
Access																															2	 } Y
Name																															5	000

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure ventions	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	DOUT	0x0	RW	Data output
	Ddata output			

24.6.8 GPIO_PORTB_DIN - data in

Offset															Bi	t Po	siti	on													
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Reset																															0x0
Access																															K
Name																															DIN

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure ventions	e compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
1:0	DIN	0x0	R	Data input
	Data input			

24.6.9 GPIO_PORTC_CTRL - Port control

Offset															Bi	t Po	siti	on														
0x060	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	œ	7	9	5	4	3	2	1	0
Reset		•		0x0					'		0x4							•		0×0							0x4					
Access				RW							₩ M									R W							₩ M					
Name				DINDISALT							SLEWRATEALT									DINDIS							SLEWRATE					

Bit	Name	Reset	Access	Description
31:29	Reserved	To ensure co	ompatibility with	future devices, always write bits to 0. More information in 1.2 Con-
28	DINDISALT	0x0	RW	Data In Disable Alt
	Data input disable for por	t pins using a	Iternate modes.	
27:23	Reserved	To ensure co	ompatibility with	future devices, always write bits to 0. More information in 1.2 Con-
22:20	SLEWRATEALT	0x4	RW	Slew Rate Alt
	Slewrate limit for port pin	s using altera	nte modes. High	er values representer faster slewrates.
19:13	Reserved	To ensure co	ompatibility with	future devices, always write bits to 0. More information in 1.2 Con-
12	DINDIS	0x0	RW	Data In Disable
	Data input disable for por	t pins not usir	ng alternate mod	les.
11:7	Reserved	To ensure co	ompatibility with	future devices, always write bits to 0. More information in 1.2 Con-
6:4	SLEWRATE	0x4	RW	Slew Rate
	Slewrate limit for port pin	s using not alt	terante modes. I	Higher values representer faster slewrates.
3:0	Reserved	To ensure co	ompatibility with	future devices, always write bits to 0. More information in 1.2 Con-

24.6.10 GPIO_PORTC_MODEL - mode low

Offset															Bi	t Po	sitio	on														
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	_	0
Reset										2	2			Š	e S			2	OXO			OXO	2			Ç	2			2	2	
Access										2	≥ Y			2	≥ Y			2	<u>}</u>			Š.				2	≥ Y			<u> </u>	2	
Name										1 C C V	П				MODE4				MODES			MODE?	 			L	MODE			CHCCM		

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure ventions	compatibility witl	n future devices, always write bits to 0. More information in 1.2 Con-
23:20	MODE5	0x0	RW	MODE n
	MODE n			
	Value	Mode		Description
	0	DISABLED)	Input disabled. Pullup if DOUT is set.
	1	INPUT		Input enabled. Filter if DOUT is set.
	2	INPUTPUL	L	Input enabled. DOUT determines pull direction.
	3	INPUTPUL	LFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPUL	L	Push-pull output.
	5	PUSHPUL	LALT	Push-pull using alternate control.
	6	WIREDOR		Wired-or output.
	7	WIREDOR	PULLDOWN	Wired-or output with pull-down.
	8	WIREDAN	D	Open-drain output.
	9	WIREDAN	DFILTER	Open-drain output with filter.
	10	WIREDAN	DPULLUP	Open-drain output with pullup.
	11	WIREDAN TER	DPULLUPFIL-	Open-drain output with filter and pullup.
	12	WIREDAN	DALT	Open-drain output using alternate control.
	13	WIREDAN	DALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDAN	DALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDAN FILTER	DALTPULLUP-	Open-drain output using alternate control with filter and pullup.
19:16	MODE4	0x0	RW	MODE n
	MODE n			
	Value	Mode		Description
	0	DISABLED)	Input disabled. Pullup if DOUT is set.
	1	INPUT		Input enabled. Filter if DOUT is set.
	2	INPUTPUL	.L	Input enabled. DOUT determines pull direction.

Bit	Name	Reset Access	Description
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPULL	Push-pull output.
	5	PUSHPULLALT	Push-pull using alternate control.
	6	WIREDOR	Wired-or output.
	7	WIREDORPULLDOWN	Wired-or output with pull-down.
	8	WIREDAND	Open-drain output.
	9	WIREDANDFILTER	Open-drain output with filter.
	10	WIREDANDPULLUP	Open-drain output with pullup.
	11	WIREDANDPULLUPFIL- TER	Open-drain output with filter and pullup.
	12	WIREDANDALT	Open-drain output using alternate control.
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDANDALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANDALTPULLUP- FILTER	Open-drain output using alternate control with filter and pullup.
15:12	MODE3	0x0 RW	MODE n
	MODE n		
	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	1	INPUT	Input enabled. Filter if DOUT is set.
	2	INPUTPULL	Input enabled. DOUT determines pull direction.
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPULL	Push-pull output.
	5	PUSHPULLALT	Push-pull using alternate control.
	6	WIREDOR	Wired-or output.
	7	WIREDORPULLDOWN	Wired-or output with pull-down.
	8	WIREDAND	Open-drain output.
	9	WIREDANDFILTER	Open-drain output with filter.
	10	WIREDANDPULLUP	Open-drain output with pullup.
	11	WIREDANDPULLUPFIL- TER	Open-drain output with filter and pullup.
	12	WIREDANDALT	Open-drain output using alternate control.
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDANDALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANDALTPULLUP- FILTER	Open-drain output using alternate control with filter and pullup.
11:8	MODE2	0x0 RW	MODE n
	MODE n		

Bit	Name	Reset Access	Description
	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	1	INPUT	Input enabled. Filter if DOUT is set.
	2	INPUTPULL	Input enabled. DOUT determines pull direction.
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPULL	Push-pull output.
	5	PUSHPULLALT	Push-pull using alternate control.
	6	WIREDOR	Wired-or output.
	7	WIREDORPULLDOWN	Wired-or output with pull-down.
	8	WIREDAND	Open-drain output.
	9	WIREDANDFILTER	Open-drain output with filter.
	10	WIREDANDPULLUP	Open-drain output with pullup.
	11	WIREDANDPULLUPFIL- TER	Open-drain output with filter and pullup.
	12	WIREDANDALT	Open-drain output using alternate control.
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDANDALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANDALTPULLUP- FILTER	Open-drain output using alternate control with filter and pullup.
7:4	MODE1	0x0 RW	MODE n
	WODET	0.00 1111	MODE II
	MODE n	OXC TXVI	MODE II
		Mode	Description
	MODE n		
	MODE n	Mode	Description
	MODE n Value	Mode DISABLED	Description Input disabled. Pullup if DOUT is set.
	MODE n Value 0 1	Mode DISABLED INPUT	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set.
	MODE n Value 0 1	Mode DISABLED INPUT INPUTPULL	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction.
	MODE n Value 0 1 2 3	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction.
	MODE n Value 0 1 2 3 4	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output.
	MODE n Value 0 1 2 3 4 5	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control.
	MODE n Value 0 1 2 3 4 5	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output.
	MODE n Value 0 1 2 3 4 5 6 7	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR WIREDORPULLDOWN	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output. Wired-or output with pull-down.
	MODE n Value 0 1 2 3 4 5 6 7	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR WIREDORPULLDOWN WIREDAND	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output. Wired-or output with pull-down. Open-drain output.
	MODE n Value 0 1 2 3 4 5 6 7 8	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR WIREDORPULLDOWN WIREDAND WIREDANDFILTER	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output. Wired-or output with pull-down. Open-drain output with filter.
	MODE n Value 0 1 2 3 4 5 6 7 8 9 10	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR WIREDORPULLDOWN WIREDAND WIREDANDFILTER WIREDANDPULLUPFIL-	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output. Wired-or output with pull-down. Open-drain output with filter. Open-drain output with pullup.
	MODE n Value 0 1 2 3 4 5 6 7 8 9 10 11	Mode DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR WIREDORPULLDOWN WIREDAND WIREDANDFILTER WIREDANDPULLUP WIREDANDPULLUPFILTER	Description Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output. Wired-or output with pull-down. Open-drain output with filter. Open-drain output with pullup. Open-drain output with filter and pullup.

Bit	Name	Reset Access	Description
	14	WIREDANDALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANDALTPULLUP- FILTER	Open-drain output using alternate control with filter and pullup.
3:0	MODE0	0x0 RW	MODE n
	MODE n		
	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	1	INPUT	Input enabled. Filter if DOUT is set.
	2	INPUTPULL	Input enabled. DOUT determines pull direction.
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPULL	Push-pull output.
	5	PUSHPULLALT	Push-pull using alternate control.
	6	WIREDOR	Wired-or output.
	7	WIREDORPULLDOWN	Wired-or output with pull-down.
	8	WIREDAND	Open-drain output.
	9	WIREDANDFILTER	Open-drain output with filter.
	10	WIREDANDPULLUP	Open-drain output with pullup.
	11	WIREDANDPULLUPFILTER	Open-drain output with filter and pullup.
	12	WIREDANDALT	Open-drain output using alternate control.
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDANDALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANDALTPULLUP- FILTER	Open-drain output using alternate control with filter and pullup.

24.6.11 GPIO_PORTC_DOUT - data out

Offset															Bi	t Po	sitio	on														
0x070	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	1	10	6	8	7	9	2	4	က	2	_	0
Reset		•	•		•	•																	·						2	2		
Access																													2	<u>}</u>		
Name																													5	5		

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
5:0	DOUT	0x0	RW	Data output
	Ddata output			

24.6.12 GPIO_PORTC_DIN - data in

Offset	Bit Position	
0x074	31 39 39 39 39 39 39 39 39 39 39 39 39 39	0 4 6 0 - 0
Reset		0×0
Access		<u>~</u>
Name		<u>Z</u>

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
5:0	DIN	0x0	R	Data input
	Data input			

24.6.13 GPIO_PORTD_CTRL - Port control

Offset															Bi	t Po	siti	on														
0x090	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	_	0
Reset				0x0							0x4					•		•	•	000				•	•		0x4	•				
Access				RW							ΑW									₽							X ≪					
Name				DINDISALT							SLEWRATEALT									DINDIS							SLEWRATE					

		_		
Bit	Name	Reset	Access	Description
31:29	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
28	DINDISALT	0x0	RW	Data In Disable Alt
	Data input disable for po	ort pins using a	alternate modes	
27:23	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
22:20	SLEWRATEALT	0x4	RW	Slew Rate Alt
	Slewrate limit for port pir	ns using altera	ante modes. Hig	her values representer faster slewrates.
19:13	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
12	DINDIS	0x0	RW	Data In Disable
	Data input disable for po	ort pins not us	ing alternate mo	des.
11:7	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
6:4	SLEWRATE	0x4	RW	Slew Rate
	Slewrate limit for port pir	ns using not a	Iterante modes.	Higher values representer faster slewrates.
3:0	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-

24.6.14 GPIO_PORTD_MODEL - mode low

Offset															Bi	t Po	sitio	on														
0x094	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	_	0
Reset														Š	OXO			2	OXO			2	8			ć	2			2	2	
Access														2	<u>}</u>			2	<u>}</u>			Š				2	≥ Y			<u> </u>	2	
Name															NO N				MODES			MODE?)			L	MODE					

Bit	Name	Reset Access	Description
31:20	Reserved	To ensure compatibility wi ventions	th future devices, always write bits to 0. More information in 1.2 Con
19:16	MODE4	0x0 RW	MODE n
	MODE n		
	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	1	INPUT	Input enabled. Filter if DOUT is set.
	2	INPUTPULL	Input enabled. DOUT determines pull direction.
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPULL	Push-pull output.
	5	PUSHPULLALT	Push-pull using alternate control.
	6	WIREDOR	Wired-or output.
	7	WIREDORPULLDOWN	Wired-or output with pull-down.
	8	WIREDAND	Open-drain output.
	9	WIREDANDFILTER	Open-drain output with filter.
	10	WIREDANDPULLUP	Open-drain output with pullup.
	11	WIREDANDPULLUPFIL- TER	Open-drain output with filter and pullup.
	12	WIREDANDALT	Open-drain output using alternate control.
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDANDALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANDALTPULLUP- FILTER	Open-drain output using alternate control with filter and pullup.
15:12	MODE3	0x0 RW	MODE n
	MODE n		
	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	1	INPUT	Input enabled. Filter if DOUT is set.
	2	INPUTPULL	Input enabled. DOUT determines pull direction.

Bit	Name	Reset Access	Description
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPULL	Push-pull output.
	5	PUSHPULLALT	Push-pull using alternate control.
	6	WIREDOR	Wired-or output.
	7	WIREDORPULLDOWN	Wired-or output with pull-down.
	8	WIREDAND	Open-drain output.
	9	WIREDANDFILTER	Open-drain output with filter.
	10	WIREDANDPULLUP	Open-drain output with pullup.
	11	WIREDANDPULLUPFIL- TER	Open-drain output with filter and pullup.
	12	WIREDANDALT	Open-drain output using alternate control.
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDANDALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANDALTPULLUP- FILTER	Open-drain output using alternate control with filter and pullup.
11:8	MODE2	0x0 RW	MODE n
	MODE n		
	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	1	INPUT	Input enabled. Filter if DOUT is set.
	2	INPUTPULL	Input enabled. DOUT determines pull direction.
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPULL	Push-pull output.
	5	PUSHPULLALT	Push-pull using alternate control.
	6	WIREDOR	Wired-or output.
	7	WIREDORPULLDOWN	Wired-or output with pull-down.
	8	WIREDAND	Open-drain output.
	9	WIREDANDFILTER	Open-drain output with filter.
	10	WIREDANDPULLUP	Open-drain output with pullup.
	11	WIREDANDPULLUPFIL- TER	Open-drain output with filter and pullup.
	12	WIREDANDALT	Open-drain output using alternate control.
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDANDALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANDALTPULLUP- FILTER	Open-drain output using alternate control with filter and pullup.
7:4	MODE1	0x0 RW	MODE n
	MODE n		

Bit	Name	Reset Access	Description
	Value	Mode	Description
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	1	INPUT	Input enabled. Filter if DOUT is set.
	2	INPUTPULL	Input enabled. DOUT determines pull direction.
	3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction.
	4	PUSHPULL	Push-pull output.
	5	PUSHPULLALT	Push-pull using alternate control.
	6	WIREDOR	Wired-or output.
	7	WIREDORPULLDOWN	Wired-or output with pull-down.
	8	WIREDAND	Open-drain output.
	9	WIREDANDFILTER	Open-drain output with filter.
	10	WIREDANDPULLUP	Open-drain output with pullup.
	11	WIREDANDPULLUPFIL- TER	Open-drain output with filter and pullup.
	12	WIREDANDALT	Open-drain output using alternate control.
	13	WIREDANDALTFILTER	Open-drain output using alternate control with filter.
	14	WIREDANDALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANDALTPULLUP- FILTER	Open-drain output using alternate control with filter and pullup.
3:0	MODE0	0x0 RW	MODE n
	MODE n		
	Value	Mode	Description
	Value 0	Mode DISABLED	Description Input disabled. Pullup if DOUT is set.
	0	DISABLED	Input disabled. Pullup if DOUT is set.
	0	DISABLED INPUT	Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set.
	0 1 2	DISABLED INPUT INPUTPULL	Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction.
	0 1 2 3	DISABLED INPUT INPUTPULL INPUTPULLFILTER	Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction.
	0 1 2 3 4	DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL	Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output.
	0 1 2 3 4 5	DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT	Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control.
	0 1 2 3 4 5	DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR	Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output.
	0 1 2 3 4 5 6 7	DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR WIREDORPULLDOWN	Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output. Wired-or output with pull-down.
	0 1 2 3 4 5 6 7	DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR WIREDORPULLDOWN WIREDAND	Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output. Wired-or output with pull-down. Open-drain output.
	0 1 2 3 4 5 6 7 8 9	DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR WIREDORPULLDOWN WIREDAND WIREDANDFILTER	Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output. Wired-or output with pull-down. Open-drain output. Open-drain output with filter.
	0 1 2 3 4 5 6 7 8 9	DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR WIREDORPULLDOWN WIREDAND WIREDANDFILTER WIREDANDPULLUPFIL-	Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output. Wired-or output with pull-down. Open-drain output. Open-drain output with filter. Open-drain output with pullup.
	0 1 2 3 4 5 6 7 8 9 10	DISABLED INPUT INPUTPULL INPUTPULLFILTER PUSHPULL PUSHPULLALT WIREDOR WIREDORPULLDOWN WIREDAND WIREDANDFILTER WIREDANDPULLUP WIREDANDPULLUPFILTER	Input disabled. Pullup if DOUT is set. Input enabled. Filter if DOUT is set. Input enabled. DOUT determines pull direction. Input enabled with filter. DOUT determines pull direction. Push-pull output. Push-pull using alternate control. Wired-or output. Wired-or output with pull-down. Open-drain output with filter. Open-drain output with pullup. Open-drain output with filter and pullup.

Bit	Name	Reset	Access	Description
	14	WIREDAND	DALTPULLUP	Open-drain output using alternate control with pullup.
	15	WIREDANI FILTER	DALTPULLUP-	Open-drain output using alternate control with filter and pullup.

24.6.15 GPIO_PORTD_DOUT - data out

Offset															Ві	t Po	siti	on														
0x0A0	31	30	29	78	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset																														0×0		
Access																														X ≪		
Name																														DOUT		

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
4:0	DOUT	0x0	RW	Data output
	Ddata output			

24.6.16 GPIO_PORTD_DIN - data in

Offset	Bit Position		
0x0A4	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 6 7	4 % % F O
Reset			0×0
Access			ď
Name			Z O

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
4:0	DIN	0x0	R	Data input
	Data input			

24.6.17 GPIO_LOCK - main

Offset	Bit Position	
0x300	33 30 37 47 51 51 51 51 51 51 51 51 51 51 51 51 51	0 7 0
Reset	0xA534	
Access	>	
Name	LOCKKEY	

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
15:0	LOCKKEY	0xA534	W	Configuration Lock Key
		alue than the unlock figuration registers.		configuration registers. Write the unlock code to unlock (See text for
	Value	Mode		Description
	42292	UNLOCK		

24.6.18 GPIO_GPIOLOCKSTATUS - Lock Status

Offset															Ві	it Po	siti	on														
0x310	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	8	7	9	2	4	က	7	_	0
Reset													•	•								•									•	0x0
Access																																~
Name																																LOCK

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in a ventions 0 LOCK 0x0 R GPIO LOCK Status Value Mode Description 0 UNLOCKED	Bit	Name	Reset	Access	Description
Value Mode Description 0 UNLOCKED	31:1	Reserved		compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
0 UNLOCKED	0	LOCK	0x0	R	GPIO LOCK Status
0 UNLOCKED					
		Value	Mode		Description
1 LOOKED		0	UNLOCK	ΞD	
1 LOCKED		1	LOCKED		

24.6.19 GPIO_ABUSALLOC - A Bus allocation

Offset												Bi	t Po	sitio	on													
0x320	30 30 29	28	27	26	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	0	8	7	9	5	4	3	7	- 0
Reset				0x0							2	OXO							2	2							0x0	
Access				RW							2	<u>}</u>							<u> </u>	2							RW	
Name				AODD1						000	ACCIO							AEVEN1								AEVENO		

Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
27:24	AODD1	0x0	RW	A Bus Odd 1
	peripheral allocati	on to A Bus Odd 1		
	Value	Mode		Description
	0	TRISTATE		The bus is not allocated
	1	ADC0		The bus is allocated to ADC0
	2	ACMP0		The bus is allocated to ACMP0
	3	ACMP1		The bus is allocated to ACMP1
	15	DEBUG		DEBUG mode, bus allocated to all clients
23:20	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
19:16	AODD0	0x0	RW	A Bus Odd 0
	peripheral allocati	on to A Bus Odd 0		
	Value	Mode	,	Description
	0	TRISTATE		The bus is not allocated
	1	ADC0		The bus is allocated to ADC0
	2	ACMP0		The bus is allocated to ACMP0
	3	ACMP1		The bus is allocated to ACMP1
	14	DIAGA		The bus is allocated to DIAGA
	15	DEBUG		DEBUG mode, bus allocated to all clients
15:12	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
11:8	AEVEN1	0x0	RW	A Bus Even 1
	peripheral allocati	on to A Bus Even 1		
	Value	Mode		Description
	0	TRISTATE		The bus is not allocated
	1	ADC0		The bus is allocated to ADC0

Bit	Name	Reset	Access	Description
	2	ACMP0		The bus is allocated to ACMP0
	3	ACMP1		The bus is allocated to ACMP1
	15	DEBUG		DEBUG mode, bus allocated to all clients
7:4	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
3:0	AEVEN0	0x0	RW	A Bus Even 0
	peripheral allocati	on to A Bus Even (0	
	Value	Mode		Description
	0	TRISTATI	E	The bus is not allocated
	1	ADC0		The bus is allocated to ADC0
	2	ACMP0		The bus is allocated to ACMP0
	3	ACMP1		The bus is allocated to ACMP1
	14	DIAGA		The bus is allocated to DIAGA
	15	DEBUG		DEBUG mode, bus allocated to all clients

24.6.20 GPIO_BBUSALLOC - B Bus allocation

Offset															Bi	t Po	siti	on														
0x324	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	19	6	œ	7	9	2	4	က	2	_	0
Reset						2	OXO							2	OXO							2	OXO							2	2	
Access						2	<u>}</u>							2	<u>}</u>							2	<u>}</u>							<u> </u>	<u>}</u>	
Name						נייט	0000							000	00000							7/10/17								BEVEND	>	

Name	Reset	Access	Description
Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
BODD1	0x0	RW	B Bus Odd 1
peripheral allocati	on to B Bus Odd 1		
Value	Mode		Description
0	TRISTATE	Ξ	The bus is not allocated
1	ADC0		The bus is allocated to ADC0
2	ACMP0		The bus is allocated to ACMP0
3	ACMP1		The bus is allocated to ACMP1
15	DEBUG		DEBUG mode, bus allocated to all clients
Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
BODD0	0x0	RW	B Bus Odd 0
peripheral allocation	on to B Bus Odd 0		
Value	Mode		Description
0	TRISTATE	<u> </u>	The bus is not allocated
1	ADC0		The bus is allocated to ADC0
2	ACMP0		The bus is allocated to ACMP0
3	ACMP1		The bus is allocated to ACMP1
15	DEBUG		DEBUG mode, bus allocated to all clients
Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
BEVEN1	0x0	RW	B Bus Even 1
peripheral allocation	on to B Bus Even 1	I	
Value	Mode		Description
0	TRISTATE	<u> </u>	The bus is not allocated
1	ADC0		The bus is allocated to ADC0
'	71200		
	Reserved BODD1 peripheral allocation Value 0 1 2 3 15 Reserved BODD0 peripheral allocation Value 0 1 2 3 15 Reserved BEVEN1 peripheral allocation Value 0	Reserved BODD1 Ox0 peripheral allocation to B Bus Odd 1 Value Mode TRISTATE ADC0 ACMP0 ACMP1 To ensure ventions BODD0 Peripheral allocation to B Bus Odd 0 Value Mode Tristate To ensure ventions BODD0 Value Mode TRISTATE ADC0 ACMP1 To ensure ventions ACMP1 To ensure ventions ACMP1 ADC0 ACMP0 ACMP0 ACMP0 ACMP0 ACMP0 ACMP0 ACMP0 BEVEN1 DEBUG To ensure ventions BEVEN1 Ox0 peripheral allocation to B Bus Even 1 Value Mode TRISTATE Mode To ensure ventions	Reserved To ensure compatibility wentions BODD1 0x0 RW peripheral allocation to B Bus Odd 1 Value Mode TRISTATE ADC0 ACMP0 ACMP1 To ensure compatibility wentions BODD0 Ox0 RW peripheral allocation to B Bus Odd 0 Value Mode TRISTATE ADC0 ACMP1 To ensure compatibility wentions BODD0 TRISTATE ADC0 ACMP0 ACMP0 ACMP0 ACMP0 ACMP0 ACMP0 ACMP1 To ensure compatibility wentions BODD0 Reserved Tristate To ensure compatibility wentions BODD0 Reserved Tristate ADC0 ACMP1 To ensure compatibility wentions BEVEN1 DEBUG Reserved To ensure compatibility wentions BEVEN1 NOO RW Peripheral allocation to B Bus Even 1 Value Mode TRISTATE

Bit	Name	Reset	Access	Description
	3	ACMP1		The bus is allocated to ACMP1
	15	DEBUG		DEBUG mode, bus allocated to all clients
7:4	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
3:0	BEVEN0	0x0	RW	B Bus Even 0
	peripheral allocati	on to B Bus Even ()	
	Value	Mode		Description
	0	TRISTATE	<u> </u>	The bus is not allocated
	1	ADC0		The bus is allocated to ADC0
	2	ACMP0		The bus is allocated to ACMP0
	3	ACMP1		The bus is allocated to ACMP1
	15	DEBUG		DEBUG mode, bus allocated to all clients

24.6.21 GPIO_CDBUSALLOC - CD Bus allocation

Offset															Bi	t Po	siti	on														
0x328	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset						2) X							Š) X					•		2) X							2	3	
Access						\ 0	2							2	<u>}</u>							2	<u>}</u>							Š	2	
Name						ניייי	מחסחס								מממממ								∐ > ∐							CDEVEND		

Bit	Name	Reset A	Access	Description
31:28	Reserved	To ensure conventions	mpatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
27:24	CDODD1	0x0 I	RW	CD Bus Odd 1
	peripheral allocati	on to CD Bus Odd 1		
	Value	Mode		Description
	0	TRISTATE		The bus is not allocated
	1	ADC0		The bus is allocated to ADC0
	2	ACMP0		The bus is allocated to ACMP0
	3	ACMP1		The bus is allocated to ACMP1
	15	DEBUG		DEBUG mode, bus allocated to all clients
23:20	Reserved	To ensure conventions	mpatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
19:16	CDODD0	0x0 I	RW	CD Bus Odd 0
	peripheral allocation	on to CD Bus Odd 0		
	Value	Mode		Description
	0	TRISTATE		The bus is not allocated
	1	ADC0		The bus is allocated to ADC0
	2	ACMP0		The bus is allocated to ACMP0
	3	ACMP1		The bus is allocated to ACMP1
	12	PMON		The bus is allocated to Process Monitor
	15	DEBUG		DEBUG mode, bus allocated to all clients
15:12	Reserved	To ensure conventions	mpatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
11:8	CDEVEN1	0x0 I	RW	CD Bus Even 1
	peripheral allocation	on to CD Bus Even 1		
	Value	Mode		Description
	0	TRISTATE		The bus is not allocated
	1	ADC0		The bus is allocated to ADC0

Bit	Name	Reset	Access	Description
	2	ACMP0		The bus is allocated to ACMP0
	3	ACMP1		The bus is allocated to ACMP1
	15	DEBUG		DEBUG mode, bus allocated to all clients
7:4	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
3:0	CDEVEN0	0x0	RW	CD Bus Even 0
	peripheral allocation	on to CD Bus Ever	n 0	
	Value	Mode		Description
	0	TRISTATE	Ξ	The bus is not allocated
	1	ADC0		The bus is allocated to ADC0
	2	ACMP0		The bus is allocated to ACMP0
	3	ACMP1		The bus is allocated to ACMP1
	12	PMON		The bus is allocated to Process Monitor
	13	EFUSE		The bus is allocated for EFUSE programming voltage
	15	DEBUG		DEBUG mode, bus allocated to all clients

24.6.22 GPIO_EXTIPSELL - External Interrupt Port Select Low

Offset															Bi	t Po	sitio	on													
0x400	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	19	6	8	7	9	5	4	დ (7	- 0
Reset			2	2			ç	e X			2	OX O			2	2		•	ç	Š			ć	S S		•	2	2	·		0x0
Access			٥	<u>}</u>			2	<u>}</u>			2	<u>}</u>			2	<u>}</u>			2	≥ Y			Š	≥ Y			8	^^			Z.
Name			TYTIDGE! 7	ITSEL			L 0	=			3 11001FVL	IIPOEL			EVTIDOE! 4	1			c I J 2 CI T X L					EXIIPSELZ			EXTIDGE! 1				EXTIPSELO

Bit	Name	Reset	Access	Description
31:30	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
29:28	EXTIPSEL7	0x0	RW	External Interrupt Port Select
	Port select for exte	rnal interrupt 7 (E)	XTI7).	
	Value	Mode		Description
	0	PORTA		Port A group selected
	1	PORTB		Port B group selected
	2	PORTC		Port C group selected
	3	PORTD		Port D group selected
27:26	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
25:24	EXTIPSEL6	0x0	RW	External Interrupt Port Select
	Port select for exte	rnal interrupt 6 (E)	XTI6).	
	Value	Mode		Description
	0	PORTA		Port A group selected
	1	PORTB		Port B group selected
	2	PORTC		Port C group selected
	3	PORTD		Port D group selected
23:22	Reserved	To ensure ventions	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
21:20	EXTIPSEL5	0x0	RW	External Interrupt Port Select
	Port select for exte	rnal interrupt 5 (E)	XTI5).	
	Value	Mode		Description
	0	PORTA		Port A group selected
	1	PORTB		Port B group selected
	2	PORTC		Port C group selected
	3	PORTD		Port D group selected

Bit	Name	Reset	Access	Description
19:18	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
17:16	EXTIPSEL4	0x0	RW	External Interrupt Port Select
	Port select for exte	rnal interrupt 4 (E	XTI4).	
	Value	Mode	,	Description
	0	PORTA		Port A group selected
	1	PORTB		Port B group selected
	2	PORTC		Port C group selected
	3	PORTD		Port D group selected
15:14	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
13:12	EXTIPSEL3	0x0	RW	External Interrupt Port Select
	Port select for exte	rnal interrupt 3 (E	XTI3).	
	Value	Mode		Description
	0	PORTA		Port A group selected
	1	PORTB		Port B group selected
	2	PORTC		Port C group selected
	3	PORTD		Port D group selected
11:10	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
9:8	EXTIPSEL2	0x0	RW	External Interrupt Port Select
	Port select for exte	rnal interrupt 2 (E	XTI2).	
	Value	Mode		Description
	0	PORTA		Port A group selected
	1	PORTB		Port B group selected
	2	PORTC		Port C group selected
	3	PORTD		Port D group selected
7:6	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
5:4	EXTIPSEL1	0x0	RW	External Interrupt Port Select
	Port select for exte	rnal interrupt 1 (E	XTI1).	
	Value	Mode		Description
	0	PORTA		Port A group selected
	1	PORTB		Port B group selected
	2	PORTC		Port C group selected
	3	PORTD		Port D group selected

Bit	Name	Reset	Access	Description
3:2	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
1:0	EXTIPSEL0	0x0	RW	External Interrupt Port Select
	Port select for exte	rnal interrupt 0 (E	XTI0).	
	Value	Mode		Description
	0	PORTA		Port A group selected
	1	PORTB		Port B group selected
	2	PORTC		Port C group selected
	3	PORTD		Port D group selected

24.6.23 GPIO_EXTIPINSELL - External Interrupt Pin Select Low

Offset															Bi	t Po	sitio	on													
0x408	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	- 0
Reset			2	3		•	Ş	OXO		•	Š	e S		•	2	2		•	2	OXO		•	ć	e S		•	2	OXO			0x0
Access			<u> </u>	2			2	<u>}</u>			2	<u>}</u>			٥	2			2	<u>}</u>			Š	<u>}</u>			Š	<u>}</u>			RW
Name			EXTIDINICEI 7	1			9 HSMIGHA					EVILLINGERS			EXTIBINISE! 4				CHIBINISH	LINOEL							₽				EXTIPINSELO

Name	Reset	Access	Description
Reserved			vith future devices, always write bits to 0. More information in 1.2 Con-
EXTIPINSEL7	0x0	RW	External Interrupt Pin select
OFFSET select for E	External Interrupt 7	7 (EXTI7). (Se	ee text for additional information.)
Value	Mode		Description
0	OFFSET0		OFFSET=0
1	OFFSET1		OFFSET=1
2	OFFSET2		OFFSET=2
3	OFFSET3		OFFSET=3
Reserved	To ensure o	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
EXTIPINSEL6	0x0	RW	External Interrupt Pin select
OFFSET select for E	External Interrupt 6	6 (EXTI6). (Se	ee text for additional information.)
Value	Mode		Description
0	OFFSET0		OFFSET=0
1	OFFSET1		OFFSET=1
2	OFFSET2		OFFSET=2
3	OFFSET3		OFFSET=3
Reserved	To ensure o	compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-
EXTIPINSEL5	0x0	RW	External Interrupt Pin select
OFFSET select for E	External Interrupt 5	5 (EXTI5). (Se	ee text for additional information.)
Value	Mode		Description
0	OFFSET0		OFFSET=0
1	OFFSET1		OFFSET=1
2	OFFSET2		OFFSET=2
3	OFFSET3		OFFSET=3
	EXTIPINSEL7 OFFSET select for I Value 0 1 2 3 Reserved EXTIPINSEL6 OFFSET select for I Value 0 1 2 3 Reserved EXTIPINSEL5 OFFSET select for I Value 1 2 3 Reserved	Reserved EXTIPINSEL7 Ox0 OFFSET select for External Interrupt of the select for Ex	Reserved To ensure compatibility ventions EXTIPINSEL7 Ox0 RW OFFSET select for External Interrupt 7 (EXTI7). (Set Value Mode O OFFSET0 1 OFFSET1 2 OFFSET2 3 OFFSET3 Reserved To ensure compatibility ventions EXTIPINSEL6 Ox0 RW OFFSET select for External Interrupt 6 (EXTI6). (Set Value Mode O OFFSET2 3 OFFSET3 Reserved To ensure compatibility ventions EXTIPINSEL6 OFFSET1 COFFSET3 Reserved To ensure compatibility ventions EXTIPINSEL5 OFFSET3 Reserved To ensure compatibility ventions EXTIPINSEL5 OFFSET3 EXTIPINSEL5 OX0 RW OFFSET3 CoffSET1 OFFSET1 OFFSET1 OFFSET1 OFFSET1

Bit	Name	Reset	Access	Description
19:18	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
17:16	EXTIPINSEL4	0x0	RW	External Interrupt Pin select
	OFFSET select for I	External Interrupt	: 4 (EXTI4). (S€	ee text for additional information.)
	Value	Mode		Description
	0	OFFSET0		OFFSET=0
	1	OFFSET1		OFFSET=1
	2	OFFSET2		OFFSET=2
	3	OFFSET3		OFFSET=3
15:14	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
13:12	EXTIPINSEL3	0x0	RW	External Interrupt Pin select
	OFFSET select for I	External Interrupt	: 3 (EXTI3). (S€	ee text for additional information.)
	Value	Mode		Description
	0	OFFSET0		OFFSET=0
	1	OFFSET1		OFFSET=1
	2	OFFSET2		OFFSET=2
	3	OFFSET3		OFFSET=3
11:10	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
9:8	EXTIPINSEL2	0x0	RW	External Interrupt Pin select
	OFFSET select for I	External Interrupt	2 (EXTI2). (Se	ee text for additional information.)
	Value	Mode		Description
	0	OFFSET0		OFFSET=0
	1	OFFSET1		OFFSET=1
	2	OFFSET2		OFFSET=2
	3	OFFSET3		OFFSET=3
7:6	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
5:4	EXTIPINSEL1	0x0	RW	External Interrupt Pin select
	OFFSET select for I	External Interrupt	: 1 (EXTI1). (S€	ee text for additional information.)
	Value	Mode		Description
	0	OFFSET0		OFFSET=0
	1	OFFSET1		OFFSET=1
	2	OFFSET2		OFFSET=2

Bit	Name	Reset	Access	Description
ы	Name	Reset	Access	Description
3:2	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
1:0	EXTIPINSEL0	0x0	RW	External Interrupt Pin select
	OFFSET select for E	External Interrupt	0 (EXTI0). (S€	ee text for additional information.)
	Value	Mode		Description
	0	OFFSET0		OFFSET=0
	1	OFFSET1		OFFSET=1
	2	OFFSET2		OFFSET=2
	3	OFFSET3		OFFSET=3

24.6.24 GPIO_EXTIRISE - External Interrupt Rising Edge Trigger

Offset															Bi	t Po	siti	on														
0x410	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	စ	8	7	9	5	4	က	2	_	0
Reset		•	•	•	•							•																>	2		·	
Access																												2	2			
Name																												EXTIDICE				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
7:0	EXTIRISE	0x0	RW	EXT Int Rise
	External Interrupt n Risi	ng Edge Trigg	jer Enable	

24.6.25 GPIO_EXTIFALL - External Interrupt Falling Edge Trigger

Offset															Bi	t Po	siti	on														
0x414	33	30	29	28	27	26	25	24	23	22	2	20	19	18	17	16	15	4	13	12	7	10	ဝ	∞	7	9	2	4	3	2	_	0
Reset			•																									Š	2			
Access																												NA NA	:			
Name																												EXTIFALL				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
7:0	EXTIFALL	0x0	RW	EXT Int FALL
	External Interrupt n Fallii	ng Edge Trigg	jer Enable	

24.6.26 GPIO_IF - Interrupt Flag

Offset	Bit Position	
0x420	30 31 31 31 31 31 31 31 31 31 31 31 31 31	11 0 0 8 1 0 8 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reset	0×0	0×0
Access	RW W	RW
Name	EM4WU	EX

Bit	Name	Reset	Access	Description
31:16	EM4WU	0x0	RW	EM4 wake up
15:0	EXT	0x0	RW	External Pin Flag
	External Pin interrupt fla	g		

24.6.27 GPIO_IEN - Interrupt Enable

Offset			WUIEN DXO													t Po	siti	on														
0x424	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		000														•								ć	e X			•	•	•	•	
Access		XX W																					2	} Ƴ								
Name									М О У															I I								

Bit	Name	Reset	Access	Description
31:16	EM4WUIEN	0x0	RW	EM4 Wake Up Interrupt En
15:0	EXTIEN	0x0	RW	External Pin Enable
	External Pin interrupt en	able		

24.6.28 GPIO_EM4WUEN - main

Offset															Bi	t Po	siti	on														
0x42C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	3	2	_	0
Reset										>	OX O																					
Access										<u> </u>	<u>}</u>																					
Name					EM4WUEN RW 0:																											

Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
27:16	EM4WUEN	0x0	RW	EM4 wake up enable
	Write 1 to enable EM4	wake up requ	est, write 0 to o	lisable EM4 wake up request
15:0	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-

24.6.29 GPIO_EM4WUPOL - New Register

Offset															Bi	t Po	siti	on														
0x430	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	ω	7	9	5	4	3	2	_	0
Reset			•			•	000																									
Access							\text{\delta}{\text{\delta}}																									
Name											EINI4W OP OL																					

Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
27:16	EM4WUPOL	0x0	RW	EM4 Wake-Up Polarity
	EM4 Wakeup Polarity			
15:0	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-

24.6.30 GPIO_DBGROUTEPEN - Debugger Route Pin enable

Offset															Ві	it Po	siti	on														
0x440	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•	•		•	•	•				•			•		•	•	•	•				•			•	•) K	0x1	0X	0×1
Access																													₹	RW	Z.	RW
Name																													TDIPEN	TDOPEN	SWDIOTMSPEN	SWCLKTCKPEN

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure ventions	compatibility wit	th future devices, always write bits to 0. More information in 1.2 Con-
3	TDIPEN	0x1	RW	JTAG Test Debug Input Pin Enable
	Enable JTAG TDI conn	ection to pin.		
2	TDOPEN	0x1	RW	JTAG Test Debug Output Pin Enable
	Enable JTAG TDO con	nection to pin.		
1	SWDIOTMSPEN	0x1	RW	Route Location 0
	can no longer be acces pin, make sure you hav	sed by a debue at least a 3	igger. A reset w second timeout	connection to pin. WARNING: When the pin is disabled, the device ill set the pin back to a default state as enabled. If you disable this at the start of your program code before you disable the pin. This iter a reset before the pin is disabled.
0	SWCLKTCKPEN	0x1	RW	Route Pin Enable
	be accessed by a debu	gger. A reset vecond timeout	will set the pin b at the start of yo	n. WARNING: When the pin is disabled, the device can no longer ack to a default state as enabled. If you disable this pin, make sure our program code before you disable the pin. This way, the debugre the pin is disabled.

24.6.31 GPIO_TRACEROUTEPEN - Trace Route Pin Enable

Offset	Bit Position		
0x444	3 4 5 6 9 8 8 7 7 8 8 8 7 9 8 8 7 9 8 8 7 9 8 8 7 9 8 8 7 9 8 8 8 7 9 9 9 9	2 - 0	_ >
Reset		000	2
Access		WA WA	> Y
Name		TRACEDATA0PEN TRACECLKPEN SWV/PEN	NII LA MA

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
2	TRACEDATA0PEN	0x0	RW	Trace Data0 Pin Enable
1	TRACECLKPEN	0x0	RW	Trace Clk Pin Enable
0	SWVPEN	0x0	RW	Serial Wire Viewer Output Pin Enable

24.6.32 GPIO_ACMP0_ROUTEEN - ACMP0 pin enable

Offset															Ві	it Po	siti	on														
0x450	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	∞	7	9	2	4	က	2	_	0
Reset					•	•																										0x0
Access																																RW
Name																																ACMPOUTPEN

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensur ventions		with future devices, always write bits to 0. More information in 1.2 Con-
0	ACMPOUTPEN	0x0	RW	ACMPOUT pin enable control bit

24.6.33 GPIO_ACMP0_ACMPOUTROUTE - ACMPOUT port/pin select

Offset															Bi	t Po	siti	on													
0x454	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Reset			•		•						•			Š	e X					•		•	•		•		•		•	•	0x0
Access														2	<u>}</u>																RW
Name														2	≧																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	ACMPOUT pin select register
15:2	Reserved	To ensure ventions	compatibility \	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	ACMPOUT port select register

24.6.34 GPIO_ACMP1_ROUTEEN - ACMP1 pin enable

Offset															Ві	it Po	siti	on														
0x45C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	7	_	0
Reset		'	'		'		'		'		'		'	<u>'</u>		'		'	•	•		'	•	'		'			'			0x0
Access																																RW W
Name																																ACMPOUTPEN

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensur ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
0	ACMPOUTPEN	0x0	RW	ACMPOUT pin enable control bit

24.6.35 GPIO_ACMP1_ACMPOUTROUTE - ACMPOUT port/pin select

Offset															Bi	t Po	siti	on													
0x460	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	2	4	က	2	- 0
Reset			•		•						•			2	e e							•					•				0x0
Access														2	<u>}</u>																RW
Name														2	≧																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility (with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	ACMPOUT pin select register
15:2	Reserved	To ensure ventions	compatibility (with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	ACMPOUT port select register

24.6.36 GPIO_CMU_ROUTEEN - CMU pin enable

Offset															В	it Po	siti	on														
0x468	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	9	6	ω	7	9	5	4	က	2	_	0
Reset																														0x0	0x0	0x0
Access																														₩ M	₩	₩ M
Name																														CLKOUT2PEN	CLKOUT1PEN	CLKOUT0PEN

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
2	CLKOUT2PEN	0x0	RW	CLKOUT2 pin enable control bit
1	CLKOUT1PEN	0x0	RW	CLKOUT1 pin enable control bit
0	CLKOUT0PEN	0x0	RW	CLKOUT0 pin enable control bit

24.6.37 GPIO_CMU_CLKIN0ROUTE - CLKIN0 port/pin select

Offset															Ві	t Po	siti	on													
0x46C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Reset			•		'						•			Š	e X					'		'					'		'	1	0x0
Access														2	<u>}</u>																RW W
Name														2	≧																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CLKIN0 pin select register
15:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CLKIN0 port select register

24.6.38 GPIO_CMU_CLKOUT0ROUTE - CLKOUT0 port/pin select

Offset															Bi	t Pc	siti	on														
0x470	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset				•	•			•			•	•		>	2			•	•	•	•										5	OXO
Access														<u> </u>	<u> </u>																2	
Name														2																	Faca	Z D

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CLKOUT0 pin select register
15:2	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CLKOUT0 port select register

24.6.39 GPIO_CMU_CLKOUT1ROUTE - CLKOUT1 port/pin select

Offset															Bi	t Po	siti	on													
0x474	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	တ	8	7	9	5	4	က	2	- 0
Reset			•		•			•			•			2	e e			•	•		•			•			•				0x0
Access														2	<u>}</u>																RW
Name														2	≧																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CLKOUT1 pin select register
15:2	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CLKOUT1 port select register

24.6.40 GPIO_CMU_CLKOUT2ROUTE - CLKOUT2 port/pin select

Offset															Bi	t Pc	siti	on														
0x478	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•	•	•			•			•	•		>	2			•													5	OXO
Access														<u> </u>	<u> </u>																2	
Name														2																	Faca	Z D

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CLKOUT2 pin select register
15:2	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CLKOUT2 port select register

24.6.41 GPIO_FRC_ROUTEEN - FRC pin enable

Offset															Bi	t Po	siti	on														
0x484	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	∞	7	9	2	4	က	2	_	0
Reset		•	•		•					•	•			•	•			•		•						•	•		•	0x0	0x0	0x0
Access																														RW	¥ M	W.
Name																														DOUTPEN	DFRAMEPEN	DCLKPEN

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
2	DOUTPEN	0x0	RW	DOUT pin enable control bit
1	DFRAMEPEN	0x0	RW	DFRAME pin enable control bit
0	DCLKPEN	0x0	RW	DCLK pin enable control bit

24.6.42 GPIO_FRC_DCLKROUTE - DCLK port/pin select

Offset															Bi	t Pc	siti	on														
0x488	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•	•	•	•	•		•			•	•		>	2			•	•	•	•							•		•	2	200
Access														2	<u> </u>																20	
Name														2	=																Taga	Ž D

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	DCLK pin select register
15:2	Reserved	To ensur ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	DCLK port select register

24.6.43 GPIO_FRC_DFRAMEROUTE - DFRAME port/pin select

Offset															Bi	t Po	siti	on													
0x48C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	တ	8	7	9	5	4	က	2	1 0
Reset			•		•			•			•			2	e e			•	•		•			•			•				0x0
Access														2	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	DFRAME pin select register
15:2	Reserved	To ensure ventions	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	DFRAME port select register

24.6.44 GPIO_FRC_DOUTROUTE - DOUT port/pin select

Offset															Bi	t Pc	siti	on													
0x490	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	- 0
Reset														2	2			•									•				0x0
Access														20	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	DOUT pin select register
15:2	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	DOUT port select register

24.6.45 GPIO_I2C0_ROUTEEN - I2C0 pin enable

Offset															Bi	t Po	siti	on														
0x498	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset		•				•			'					•				•										•			0X0	0x0
Access																															W.	RW
Name																															SDAPEN	SCLPEN

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure o	compatibility witl	n future devices, always write bits to 0. More information in 1.2 Con-
1	SDAPEN	0x0	RW	SDA pin enable control bit
0	SCLPEN	0x0	RW	SCL pin enable control bit

24.6.46 GPIO_I2C0_SCLROUTE - SCL port/pin select

Offset															Bi	t Po	siti	on														
0x49C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset		•	•	•	'	•					•			2	2	•		•									•	•			2	OXO
Access														2	Ž																2	<u>}</u>
Name														2	<u> </u>																Taga	ב כ

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	SCL pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	SCL port select register

24.6.47 GPIO_I2C0_SDAROUTE - SDA port/pin select

Offset															Bi	t Po	siti	on													
0x4A0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	1 0
Reset			•		•	•		•			•			2	e e							•					•			•	0x0
Access														2	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	SDA pin select register
15:2	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	SDA port select register

24.6.48 GPIO_I2C1_ROUTEEN - I2C1 pin enable

Offset															Bi	t Po	siti	on														
0x4A8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	1	0
Reset		'	'		'		•		•		•		•			•			•	•		•				•					0×0	0x0
Access																															RW	S N
Name																															SDAPEN	SCLPEN

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
1	SDAPEN	0x0	RW	SDA pin enable control bit
0	SCLPEN	0x0	RW	SCL pin enable control bit

24.6.49 GPIO_I2C1_SCLROUTE - SCL port/pin select

Offset															Bi	t Po	siti	on													
0x4AC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	ဝ	8	7	9	2	4	က	2	1 0
Reset			•	•	•			•			•			2	e e			•	•					•			•				0x0
Access														2	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	SCL pin select register
15:2	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	SCL port select register

24.6.50 GPIO_I2C1_SDAROUTE - SDA port/pin select

Offset															Bi	t Pc	siti	on														
0x4B0	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset							•							2	2													•			2,0	2
Access														2	<u>}</u>																2	<u> </u>
Name														2	<u> </u>																Face	Ž D

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	SDA pin select register
15:2	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	SDA port select register

24.6.51 GPIO_LETIMER0_ROUTEEN - LETIMER pin enable

Offset															Bi	t Po	siti	on														
0x4B8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	9	5	4	က	2	_	0
Reset			•		'									'				'	•	'						'	'	•			000	0x0
Access																															₩ M	₩ M
Name																															OUT1PEN	OUTOPEN

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure o	compatibility witi	n future devices, always write bits to 0. More information in 1.2 Con-
1	OUT1PEN	0x0	RW	OUT1 pin enable control bit
0	OUT0PEN	0x0	RW	OUT0 pin enable control bit

24.6.52 GPIO_LETIMER0_OUT0ROUTE - OUT0 port/pin select

Offset															Bi	t Po	siti	on													
0x4BC	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	စ	∞	7	9	5	4	က	7	- 0
Reset			•		•					•				2	Š							•	•	•	•						0x0
Access														>	<u>}</u>																Z X
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensur ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	OUT0 pin select register
15:2	Reserved	To ensur	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	OUT0 port select register

24.6.53 GPIO_LETIMER0_OUT1ROUTE - OUT1 port/pin select

Offset															Bi	t Po	siti	on													
0x4C0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Reset			•		•						•			Š	e X							•	•		•		•				0x0
Access														Š	<u>}</u>																RW
Name														2	≧																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility witi	n future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	OUT1 pin select register
15:2	Reserved	To ensure ventions	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	OUT1 port select register

24.6.54 GPIO_MODEM_ROUTEEN - MODEM pin enable

Offset															Ві	t Po	siti	on														
0x4C8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset		'	'		'				•		•			'	'	'		'	•			'		•		•			0x0	0×0	0×0	0x0
Access																													₽	RW	RW	₩ M
Name																													DOUTPEN	DCLKPEN	ANT1PEN	ANTOPEN

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure o	compatibility witl	h future devices, always write bits to 0. More information in 1.2 Con-
3	DOUTPEN	0x0	RW	DOUT pin enable control bit
2	DCLKPEN	0x0	RW	DCLK pin enable control bit
1	ANT1PEN	0x0	RW	ANT1 pin enable control bit
0	ANT0PEN	0x0	RW	ANT0 pin enable control bit

24.6.55 GPIO_MODEM_ANT0ROUTE - ANT0 port/pin select

Offset															Bi	t Po	siti	on													
0x4CC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	- 0
Reset			•		•		•	•			•			2	e e							•					•				0x0
Access														20	<u>}</u>																AW.
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	ANT0 pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	ANT0 port select register

24.6.56 GPIO_MODEM_ANT1ROUTE - ANT1 port/pin select

Offset															Bi	t Pc	siti	on														
0x4D0	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset							•							2	2													•			0	2
Access														2	<u>}</u>																710	2
Name														2	<u> </u>																TaOa	

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	ANT1 pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	ANT1 port select register

24.6.57 GPIO_MODEM_DCLKROUTE - DCLK port/pin select

Offset															Bi	t Po	siti	on													
0x4D4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Reset			•		•						•			Š	e X							•	•		•		•				0x0
Access														Š	<u>}</u>																RW
Name														2	≧																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility witi	n future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	DCLK pin select register
15:2	Reserved	To ensure ventions	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	DCLK port select register

24.6.58 GPIO_MODEM_DINROUTE - DIN port/pin select

Offset															Bi	t Pc	siti	on														
0x4D8	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset							•							2	2			•	•									•			2	2
Access														2	<u>}</u>																20	<u> </u>
Name														2	<u> </u>																Taga	Ž D

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	DIN pin select register
15:2	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	DIN port select register

24.6.59 GPIO_MODEM_DOUTROUTE - DOUT port/pin select

Offset															Bi	t Po	siti	on													
0x4DC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Reset		•			•		•	•			•			2	OX O			•				•		•	•	•	•	•			0x0
Access														2	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	DOUT pin select register
15:2	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	DOUT port select register

24.6.60 GPIO_PRS0_ROUTEEN - PRS0 pin enable

Offset															Bi	t Po	siti	on														
0x4E4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	æ	7	9	2	4	က	2	_	0
Reset			•				'						'		'		000	0×0	000	000	0x0	000	0x0	0×0	0x0	000	0×0	0×0	000	0x0	000	0x0
Access																	₩.	Z.	₩ M	₩ M	RW	₩ M	RW	W.	W.	₩ M	W.	W.	W M	W.	W M	R W
Name																	SYNCH3PEN	SYNCH2PEN	SYNCH1PEN	SYNCHOPEN	ASYNCH11PEN	ASYNCH10PEN	ASYNCH9PEN	ASYNCH8PEN	ASYNCH7PEN	ASYNCH6PEN	ASYNCH5PEN	ASYNCH4PEN	ASYNCH3PEN	ASYNCH2PEN	ASYNCH1PEN	ASYNCHOPEN

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
15	SYNCH3PEN	0x0	RW	SYNCH3 pin enable control bit
14	SYNCH2PEN	0x0	RW	SYNCH2 pin enable control bit
13	SYNCH1PEN	0x0	RW	SYNCH1 pin enable control bit
12	SYNCH0PEN	0x0	RW	SYNCH0 pin enable control bit
11	ASYNCH11PEN	0x0	RW	ASYNCH11 pin enable control bit
10	ASYNCH10PEN	0x0	RW	ASYNCH10 pin enable control bit
9	ASYNCH9PEN	0x0	RW	ASYNCH9 pin enable control bit
8	ASYNCH8PEN	0x0	RW	ASYNCH8 pin enable control bit
7	ASYNCH7PEN	0x0	RW	ASYNCH7 pin enable control bit
6	ASYNCH6PEN	0x0	RW	ASYNCH6 pin enable control bit
5	ASYNCH5PEN	0x0	RW	ASYNCH5 pin enable control bit
4	ASYNCH4PEN	0x0	RW	ASYNCH4 pin enable control bit
3	ASYNCH3PEN	0x0	RW	ASYNCH3 pin enable control bit

Bit	Name	Reset	Access	Description
2	ASYNCH2PEN	0x0	RW	ASYNCH2 pin enable control bit
1	ASYNCH1PEN	0x0	RW	ASYNCH1 pin enable control bit
0	ASYNCH0PEN	0x0	RW	ASYNCH0 pin enable control bit

24.6.61 GPIO_PRS0_ASYNCH0ROUTE - ASYNCH0 port/pin select

Offset															Bi	t Pc	siti	on													
0x4E8	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	7	10	တ	8	7	9	2	4	က	2	- 0
Reset				•				•			•			Š	e e	•		•	•					•			•				0x0
Access														2	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	ASYNCH0 pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	ASYNCH0 port select register

24.6.62 GPIO_PRS0_ASYNCH1ROUTE - ASYNCH1 port/pin select

Offset															Bi	t Po	siti	on													
0x4EC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	2	4	က	2	1 0
Reset			•		•			•			•			2	e e							•					•			•	0x0
Access														20	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	ASYNCH1 pin select register
15:2	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	ASYNCH1 port select register

24.6.63 GPIO_PRS0_ASYNCH2ROUTE - ASYNCH2 port/pin select

Offset															Bi	t Pc	siti	on														
0x4F0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset						•	•							>	2													•	•		2	2
Access														<u> </u>	<u> </u>																<u> </u>	^^
Name														2																	Taga	5

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	ASYNCH2 pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	ASYNCH2 port select register

24.6.64 GPIO_PRS0_ASYNCH3ROUTE - ASYNCH3 port/pin select

Offset															Bi	t Po	siti	on													
0x4F4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	- 0
Reset			•		•			•			•			2	e e							•					•				0x0
Access														2	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	ASYNCH3 pin select register
15:2	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	ASYNCH3 port select register

24.6.65 GPIO_PRS0_ASYNCH4ROUTE - ASYNCH4 port/pin select

Offset															Bi	t Pc	siti	on														
0x4F8	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	1	0
Reset			•	•	•	•					•	•		>	2												•				2	3
Access														<u> </u>	<u>}</u>																<u> </u>	 }
Name														2	<u> </u>																TaOa	5

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	ASYNCH4 pin select register
15:2	Reserved	To ensur ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	ASYNCH4 port select register

24.6.66 GPIO_PRS0_ASYNCH5ROUTE - ASYNCH5 port/pin select

Offset															Bi	t Po	siti	on													
0x4FC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	- 0
Reset			•	•	•			•			•			2	e e							•					•				0x0
Access														2	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	ASYNCH5 pin select register
15:2	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	ASYNCH5 port select register

24.6.67 GPIO_PRS0_ASYNCH6ROUTE - ASYNCH6 port/pin select

Offset															Bi	t Pc	siti	on														
0x500	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•	•	•	•					•	•		>	2																2	2
Access														2	<u>}</u>																2	2
Name														2	=																Taga	

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	ASYNCH6 pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	ASYNCH6 port select register

24.6.68 GPIO_PRS0_ASYNCH7ROUTE - ASYNCH7 port/pin select

Offset															Bi	t Po	siti	on													
0x504	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	1 0
Reset			•		•			•			•			2	e e							•					•			•	0x0
Access														20	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	ASYNCH7 pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	ASYNCH7 port select register

24.6.69 GPIO_PRS0_ASYNCH8ROUTE - ASYNCH8 port/pin select

Offset															Bi	t Pc	siti	on														
0x508	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	1	0
Reset			•	•	•	•					•	•		>	2												•				2	2
Access														2	<u>}</u>																2	<u> </u>
Name														2	<u> </u>																TaOa	5

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	ASYNCH8 pin select register
15:2	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	ASYNCH8 port select register

24.6.70 GPIO_PRS0_ASYNCH9ROUTE - ASYNCH9 port/pin select

Offset															Bi	t Po	siti	on													
0x50C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	- 0
Reset			•		•						•			2	e e							•					•				0x0
Access														2	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	ASYNCH9 pin select register
15:2	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	ASYNCH9 port select register

24.6.71 GPIO_PRS0_ASYNCH10ROUTE - ASYNCH10 port/pin select

Offset															Bi	t Pc	siti	on														
0x510	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•	•	•			•			•	•		>	2			•	•	•	•										5	OXO
Access														<u> </u>	<u> </u>																2	
Name														2																	Faca	Z D

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	ASYNCH10 pin select register
45.0	December	T		to factorize de vise a characteristic to 0 Mars information in 1000
15:2	Reserved	ventions	сотратынту witi	h future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	ASYNCH10 port select register

24.6.72 GPIO_PRS0_ASYNCH11ROUTE - ASYNCH11 port/pin select

Offset															Bi	t Po	siti	on													
0x514	31	30	29	28	27	26	25	24	23	22	2	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	- 0
Reset			•		'							•		Š	Š												'		'	1	0x0
Access														2	<u>}</u>																RW
Name														2	≧																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	ASYNCH11 pin select register
15:2	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	ASYNCH11 port select register

24.6.73 GPIO_PRS0_SYNCH0ROUTE - SYNCH0 port/pin select

Offset															Bi	t Pc	siti	on														
0x518	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	1	0
Reset		'	'	'	'			•	•					>	2	•		•	•										•		2	2
Access														<u> </u>	<u> </u>																<u> </u>	
Name														2																	TaOa	5

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	SYNCH0 pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	SYNCH0 port select register

24.6.74 GPIO_PRS0_SYNCH1ROUTE - SYNCH1 port/pin select

Offset															Bi	t Po	siti	on													
0x51C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	- 0
Reset			•		•						•			2	e e							•					•				0x0
Access														2	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility (with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	SYNCH1 pin select register
15:2	Reserved	To ensure ventions	compatibility (with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	SYNCH1 port select register

24.6.75 GPIO_PRS0_SYNCH2ROUTE - SYNCH2 port/pin select

Offset															Bi	t Pc	siti	on														
0x520	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•	•	•			•			•	•		>	2			•													2	2
Access														<u> </u>	<u>}</u>																<u>}</u>	2
Name														2																	Taga	

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	SYNCH2 pin select register
15:2	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	SYNCH2 port select register

24.6.76 GPIO_PRS0_SYNCH3ROUTE - SYNCH3 port/pin select

Offset															Bi	t Po	siti	on													
0x524	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	တ	8	7	9	5	4	က	2	- 0
Reset			•		•						•			2	e e			•	•					•			•				0x0
Access														2	<u>}</u>																RW
Name														2	≧																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	SYNCH3 pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	SYNCH3 port select register

24.6.77 GPIO_TIMER0_ROUTEEN - TIMER0 pin enable

Offset															Ві	t Po	siti	on														
0x52C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	တ	8	7	9	5	4	က	2	_	0
Reset			•		'		'						'	•	'	<u>'</u>	•			'							0x0	0x0	000	0×0	0x0	0x0
Access																											RW	RW	₩ M	RW	W.	RW W
Name																											CDTI2PEN	CDT11PEN	CDTIOPEN	CC2PEN	CC1PEN	CCOPEN

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
5	CDTI2PEN	0x0	RW	CDTI2 pin enable control bit
4	CDTI1PEN	0x0	RW	CDTI1 pin enable control bit
3	CDTI0PEN	0x0	RW	CDTI0 pin enable control bit
2	CC2PEN	0x0	RW	CC2 pin enable control bit
1	CC1PEN	0x0	RW	CC1 pin enable control bit
0	CC0PEN	0x0	RW	CC0 pin enable control bit

24.6.78 GPIO_TIMER0_CC0ROUTE - CC0 port/pin select

Offset															Bi	t Po	siti	on													
0x530	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	8	7	9	5	4	က	2	- 0
Reset		•	•		•						•			ç	Š	•			•								•	•	•		0x0
Access														2	≩																RW
Name														2	<u>Z</u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CC0 pin select register
15:2	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CC0 port select register

24.6.79 GPIO_TIMER0_CC1ROUTE - CC1 port/pin select

Offset															Bi	t Pc	siti	on													
0x534	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	- 0
Reset														,	OXO			•									•				0x0
Access														2	<u>}</u>																RW
Name														2	=																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CC1 pin select register
15:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CC1 port select register

24.6.80 GPIO_TIMER0_CC2ROUTE - CC2 port/pin select

Offset															Bi	t Po	siti	on													
0x538	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	∞	7	9	5	4	က	2	- 0
Reset		•	•		•	•					•			Š	Š	•						•		•	•		•		•		0x0
Access														Š	≩																RW
Name														2	<u>Z</u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CC2 pin select register
15:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CC2 port select register

24.6.81 GPIO_TIMER0_CDTI0ROUTE - CDTI0 port/pin select

Offset															Bi	t Pc	siti	on														
0x53C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset							•							2	2													•			2	2
Access														2	<u>}</u>																20	<u> </u>
Name														2	<u> </u>																Taga	Ž D

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CCC0 pin select register
15:2	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CCC0 port select register

24.6.82 GPIO_TIMER0_CDTI1ROUTE - CDTI1 port/pin select

Offset															Bi	t Po	siti	on													
0x540	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	- 0
Reset			•	'	•	'		•	•		•			Š	Š												'		'	1	0x0
Access														2	<u>}</u>																RW
Name														2	≧																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure o	compatibility witl	h future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CCC1 pin select register
15:2	Reserved	To ensure o	compatibility witl	h future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CCC1 port select register

24.6.83 GPIO_TIMER0_CDTI2ROUTE - CDTI2 port/pin select

Offset															Bi	t Pc	siti	on														
0x544	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•	•	•	•					•	•		>	2			•	•	•	•								•		2	2
Access								2	<u>}</u>																2	2						
Name														2	=																Taga	

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CCC2 pin select register
15:2	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CCC2 port select register

24.6.84 GPIO_TIMER1_ROUTEEN - TIMER1 pin enable

Offset	Bit Position
0x54C	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Reset	000 000
Access	R R R R R R R R R R
Name	CDTI2PEN CDT11PEN CDT11PEN CC2PEN CC2PEN CC2PEN CC3PEN CC3PEN CC3PEN

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
5	CDTI2PEN	0x0	RW	CDTI2 pin enable control bit
4	CDTI1PEN	0x0	RW	CDTI1 pin enable control bit
3	CDTI0PEN	0x0	RW	CDTI0 pin enable control bit
2	CC2PEN	0x0	RW	CC2 pin enable control bit
1	CC1PEN	0x0	RW	CC1 pin enable control bit
0	CC0PEN	0x0	RW	CC0 pin enable control bit

24.6.85 GPIO_TIMER1_CC0ROUTE - CC0 port/pin select

Offset															Bi	t Po	siti	on													
0x550	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Reset			•		•		•	•			•			2	e e			•	•			•	•	•	•	•	•		•		0x0
Access														2	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility wit	th future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CC0 pin select register
15:2	Reserved	To ensure ventions	compatibility wit	th future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CC0 port select register

24.6.86 GPIO_TIMER1_CC1ROUTE - CC1 port/pin select

Offset															Bi	t Pc	siti	on														
0x554	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•	•	•	•		•			•	•		>	2																2	2
Access									2	<u>}</u>																2	<u> </u>					
Name														2																	Taga	5

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CC1 pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CC1 port select register

24.6.87 GPIO_TIMER1_CC2ROUTE - CC2 port/pin select

Offset															Bi	t Po	siti	on													
0x558	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Reset		•	•		•				•		•			Š	Š	•						•	•		•		•	•	•		0x0
Access														Š	≩																RW
Name														2	<u>Z</u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CC2 pin select register
15:2	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CC2 port select register

24.6.88 GPIO_TIMER1_CDTI0ROUTE - CDTI0 port/pin select

Offset															Bi	t Pc	siti	on														
0x55C	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•	•	•	•					•	•		>	2			•											•		2	2
Access								2	<u>}</u>																2	2						
Name														2	=																Taga	

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CCC0 pin select register
15:2	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CCC0 port select register

24.6.89 GPIO_TIMER1_CDTI1ROUTE - CDTI1 port/pin select

Offset															Bi	t Po	siti	on													
0x560	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	- 0
Reset			•		•						•			2	e e							•					•				0x0
Access														2	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CCC1 pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CCC1 port select register

24.6.90 GPIO_TIMER1_CDTI2ROUTE - CDTI2 port/pin select

Offset															Bi	t Pc	siti	on														
0x564	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•	•	•			•			•	•		>	2			•													2	2
Access														2	<u>}</u>																2	<u> </u>
Name														2	=																Taga	5

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CCC2 pin select register
15:2	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CCC2 port select register

24.6.91 GPIO_TIMER2_ROUTEEN - TIMER2 pin enable

Offset															Bi	t Po	siti	on														
0x56C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	æ	7	9	2	4	က	2	_	0
Reset			1		1								•	'	•			•		•							0X0	0x0	0X0	0x0	0x0	0x0
Access																											Z N	RW	₩	₽	RW	₩ M
Name																											CDT12PEN	CDT11PEN	CDTIOPEN	CC2PEN	CC1PEN	CC0PEN

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
5	CDTI2PEN	0x0	RW	CDTI2 pin enable control bit
4	CDTI1PEN	0x0	RW	CDTI1 pin enable control bit
3	CDTI0PEN	0x0	RW	CDTI0 pin enable control bit
2	CC2PEN	0x0	RW	CC2 pin enable control bit
1	CC1PEN	0x0	RW	CC1 pin enable control bit
0	CC0PEN	0x0	RW	CC0 pin enable control bit

24.6.92 GPIO_TIMER2_CC0ROUTE - CC0 port/pin select

Offset															Bi	t Po	siti	on													
0x570	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	8	7	9	5	4	က	2	- 0
Reset		•	•		•				•		•			ç	Š	•		•									•		•		0x0
Access														2	≩																RW
Name														2	<u>Z</u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CC0 pin select register
15:2	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CC0 port select register

24.6.93 GPIO_TIMER2_CC1ROUTE - CC1 port/pin select

Offset															Bi	t Pc	siti	on													
0x574	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	1 0
Reset						•		•						2	OXO			•									•				0x0
Access														2	<u>}</u>																A W
Name														2																	PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CC1 pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CC1 port select register

24.6.94 GPIO_TIMER2_CC2ROUTE - CC2 port/pin select

Offset															Bi	t Po	siti	on													
0x578	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	8	7	9	5	4	က	2	- 0
Reset		•	•		•						•			ç	Š	•			•								•		•		0x0
Access														Š	≩																RW
Name														2	<u>Z</u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CC2 pin select register
15:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CC2 port select register

24.6.95 GPIO_TIMER2_CDTI0ROUTE - CDTI0 port/pin select

Offset															Bi	t Pc	siti	on														
0x57C	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•	•	•	•				•	•		>	2																2	2	
Access														2	<u>}</u>																2	2
Name														2	=																Taga	

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CCC0 pin select register
15:2	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CCC0 port select register

24.6.96 GPIO_TIMER2_CDTI1ROUTE - CDTI1 port/pin select

Offset															Bi	t Po	siti	on													
0x580	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Reset														2	e e							•					•				0x0
Access														2	<u>}</u>																RW
Name														2	≧																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CCC1 pin select register
15:2	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CCC1 port select register

24.6.97 GPIO_TIMER2_CDTI2ROUTE - CDTI2 port/pin select

Offset															Bi	t Pc	siti	on														
0x584	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	1	0
Reset														>	2														•		2	2
Access														2	<u>}</u>																2	<u> </u>
Name														2	<u> </u>																TaOa	5

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CCC2 pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CCC2 port select register

24.6.98 GPIO_TIMER3_ROUTEEN - TIMER3 pin enable

Offset	Bit Position
0x58C	33 30 31 4 5 5 5 6 7 7 8 8 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Reset	0 0 0 0 0 0
Access	
Name	CDTI2PEN CDTI1PEN CDTI1PEN CC2PEN CC2PEN CC2PEN

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
5	CDTI2PEN	0x0	RW	CDTI2 pin enable control bit
4	CDTI1PEN	0x0	RW	CDTI1 pin enable control bit
3	CDTI0PEN	0x0	RW	CDTI0 pin enable control bit
2	CC2PEN	0x0	RW	CC2 pin enable control bit
1	CC1PEN	0x0	RW	CC1 pin enable control bit
0	CC0PEN	0x0	RW	CC0 pin enable control bit

24.6.99 GPIO_TIMER3_CC0ROUTE - CC0 port/pin select

Offset															Bi	t Po	siti	on													
0x590	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Reset														2	e e			•	•			•	•	•	•	•	•		•		0x0
Access														2	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CC0 pin select register
15:2	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CC0 port select register

24.6.100 GPIO_TIMER3_CC1ROUTE - CC1 port/pin select

Offset															Bi	t Pc	siti	on														
0x594	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	1	0
Reset			•	•	•	•					•	•		>	2												•				2	3
Access														2	<u>}</u>																2	<u> </u>
Name														2	<u> </u>																TaOa	5

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CC1 pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CC1 port select register

24.6.101 GPIO_TIMER3_CC2ROUTE - CC2 port/pin select

Offset															Bi	t Po	siti	on													
0x598	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	- 0
Reset			•	'	•	'			•		•			Š	Š												'		'	1	0x0
Access														2	<u>}</u>																RW
Name														2	≧																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CC2 pin select register
15:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CC2 port select register

24.6.102 GPIO_TIMER3_CDTI0ROUTE - CDTI0 port/pin select

Offset		Bit Position																														
0x59C	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset							•							2	2			•													0	2
Access														2	<u>}</u>																710	2
Name														2	<u> </u>																TaOa	

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CCC0 pin select register
15:2	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CCC0 port select register

24.6.103 GPIO_TIMER3_CDTI1ROUTE - CDTI1 port/pin select

Offset		Bit Position																													
0x5A0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	- 0
Reset			•		•						•			2	e e							•					•				0x0
Access														2	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CCC1 pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CCC1 port select register

24.6.104 GPIO_TIMER3_CDTI2ROUTE - CDTI2 port/pin select

Offset		Bit Position																														
0x5A4	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	1	0
Reset			•	•	•	•					•	•		>	2												•		•		2	2
Access														2	<u>}</u>																2	2
Name														2	<u> </u>																TaOa	5

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CCC2 pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CCC2 port select register

24.6.105 GPIO_USART0_ROUTEEN - USART0 pin enable

Offset	Bit Position					
0x5AC	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4	3	2	-	0
Reset		0x0	0x0	0x0	000	000
Access		RW	RW	RW	RW W	Z.
Name		TXPEN	CLKPEN	RXPEN	TSPE	CSPEN

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
4	TXPEN	0x0	RW	TX pin enable control bit
3	CLKPEN	0x0	RW	CLK pin enable control bit
2	RXPEN	0x0	RW	RX pin enable control bit
1	RTSPEN	0x0	RW	RTS pin enable control bit
0	CSPEN	0x0	RW	CS pin enable control bit

24.6.106 GPIO_USART0_CSROUTE - CS port/pin select

Offset															Bi	t Po	siti	on														
0x5B0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	0	8	7	9	2	4	က	2	~ c	>
Reset			•	•	•	•								2	<u> </u>	•		•									•	•		•	0x0	
Access														2	<u> </u>																RW	_
Name														2	<u> </u>																PORT	

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CS pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CS port select register

24.6.107 GPIO_USART0_CTSROUTE - CTS port/pin select

Offset															Bi	t Po	siti	on													
0x5B4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	တ	8	7	9	5	4	က	2	- 0
Reset			•		•			•			•			2	e e			•	•		•			•			•				0x0
Access														2	<u>}</u>																RW
Name														2	≧																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility w	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CTS pin select register
15:2	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CTS port select register

24.6.108 GPIO_USART0_RTSROUTE - RTS port/pin select

Offset															Bi	t Pc	siti	on													
0x5B8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	- 0
Reset						•		•						>	2			•									•				0x0
Access														2	<u>}</u>																₩ M
Name														2																	PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility (with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	RTS pin select register
15:2	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	RTS port select register

24.6.109 GPIO_USART0_RXROUTE - RX port/pin select

Offset															Bi	t Po	siti	on													
0x5BC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	တ	8	7	9	5	4	က	2	- 0
Reset			•		•			•			•			2	e e						•			•			•				0x0
Access														2	<u>}</u>																A W
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	RX pin select register
15:2	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	RX port select register

24.6.110 GPIO_USART0_CLKROUTE - CLK port/pin select

Offset															Bi	t Pc	siti	on													
0x5C0	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	- 0
Reset						•	•							2	OXO			•													0x0
Access														2	<u>}</u>																RW
Name														2																	PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	SCLK pin select register
15:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	SCLK port select register

24.6.111 GPIO_USART0_TXROUTE - TX port/pin select

Offset															Bi	t Po	siti	on													
0x5C4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	∞	7	9	5	4	က	2	- 0
Reset		•	•		•						•			Š	Š	•						•		•	•		•	•	•		0x0
Access														2	≩																RW
Name														2	<u>Z</u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	TX pin select register
15:2	Reserved	To ensure ventions	compatibility \	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	TX port select register

24.6.112 GPIO_USART1_ROUTEEN - USART1 pin enable

Offset															Bi	t Po	siti	on														
0x5CC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	7	_	0
Reset		'	'	•	'				•		•		'	'		•			•	•		'			•	•		0x0	0x0	0x0	0×0	0x0
Access																												₩ M	₹	W M M	₩ M	₩ M
Name																												TXPEN	CLKPEN	RXPEN	RTSPEN	CSPEN

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
4	TXPEN	0x0	RW	TX pin enable control bit
3	CLKPEN	0x0	RW	CLK pin enable control bit
2	RXPEN	0x0	RW	RX pin enable control bit
1	RTSPEN	0x0	RW	RTS pin enable control bit
0	CSPEN	0x0	RW	CS pin enable control bit

24.6.113 GPIO_USART1_CSROUTE - CS port/pin select

Offset															Bi	t Po	siti	on													
0x5D0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	2	- 0
Reset			•		•		•				•			Š	e X							•	•		•		•				0x0
Access														Š	<u>}</u>																RW
Name														2	≧																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CS pin select register
15:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CS port select register

24.6.114 GPIO_USART1_CTSROUTE - CTS port/pin select

Offset															Bi	t Pc	siti	on														
0x5D4	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	1	0
Reset			•	•	•	•					•	•		>	2												•				2	2
Access														2	<u>}</u>																2	<u> </u>
Name														2	<u> </u>																TaOa	5

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CTS pin select register
15:2	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CTS port select register

24.6.115 GPIO_USART1_RTSROUTE - RTS port/pin select

Offset															Bi	t Pc	siti	on													
0x5D8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	က	2	- 0
Reset		•						•			•			2	OX O				•			•			•	•		•		•	0x0
Access														20	<u>}</u>																A W
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility wit	th future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	RTS pin select register
15:2	Reserved	To ensure ventions	compatibility wit	th future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	RTS port select register

24.6.116 GPIO_USART1_RXROUTE - RX port/pin select

Offset															Bi	t Pc	siti	on													
0x5DC	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Reset						•								2	OXO			•													0x0
Access														2	<u>}</u>																₩ M
Name														2																	PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	RX pin select register
15:2	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	RX port select register

24.6.117 GPIO_USART1_CLKROUTE - CLK port/pin select

Offset															Bi	t Pc	siti	on													
0x5E0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	က	2	- 0
Reset		•									•			2	OX O				•			•			•	•		•		•	0x0
Access														2	<u>}</u>																A W
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	SCLK pin select register
15:2	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	SCLK port select register

24.6.118 GPIO_USART1_TXROUTE - TX port/pin select

Offset															Bi	t Pc	siti	on														
0x5E4	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset							•							2	2														•		2	2
Access														2	<u>}</u>																20	<u> </u>
Name														2	<u> </u>																Taga	Ž D

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	TX pin select register
15:2	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	TX port select register

24.6.119 GPIO_USART2_ROUTEEN - USART2 pin enable

Offset	Bit Position				
0x5EC	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4	က	2	- 0
Reset		0x0	0x0	0x0	000
Access		RW	Z.		R W
Name		TXPEN	CLKPEN	XPEN	RTSPEN

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
4	TXPEN	0x0	RW	TX pin enable control bit
3	CLKPEN	0x0	RW	CLK pin enable control bit
2	RXPEN	0x0	RW	RX pin enable control bit
1	RTSPEN	0x0	RW	RTS pin enable control bit
0	CSPEN	0x0	RW	CS pin enable control bit

24.6.120 GPIO_USART2_CSROUTE - CS port/pin select

Offset															Bi	t Po	siti	on														
0x5F0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	0	8	7	9	2	4	က	2	_	0
Reset		•	•	•	•									2	<u> </u>	•		•								•	•	•	•	•	OXO	8
Access														2	<u> </u>																\ \ \ \ \	2
Name														2	<u> </u>																PORT	5

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CS pin select register
15:2	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CS port select register

24.6.121 GPIO_USART2_CTSROUTE - CTS port/pin select

Offset															Bi	t Po	siti	on													
0x5F4	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	- 0
Reset			•		•						•			2	e e							•					•				0x0
Access														2	<u>}</u>																RW
Name														2	≧																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility w	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	CTS pin select register
15:2	Reserved	To ensure ventions	compatibility w	vith future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	CTS port select register

24.6.122 GPIO_USART2_RTSROUTE - RTS port/pin select

Offset															Bi	t Pc	siti	on														
0x5F8	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	1	0
Reset			•	•	•	•					•	•		>	2												•				2	3
Access														2	<u>}</u>																2	<u> </u>
Name														2	<u> </u>																TaOa	5

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	RTS pin select register
15:2	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	RTS port select register

24.6.123 GPIO_USART2_RXROUTE - RX port/pin select

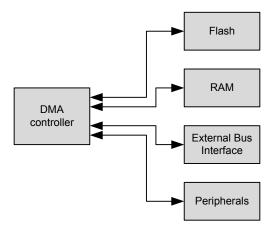
Offset															Bi	t Po	siti	on													
0x5FC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	ဝ	∞	7	9	5	4	က	2	- 0
Reset														Š) X			•		'							'		'	1	0x0
Access														Š	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility wit	th future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	RX pin select register
15:2	Reserved	To ensure ventions	compatibility wit	th future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	RX port select register

24.6.124 GPIO_USART2_CLKROUTE - CLK port/pin select

Offset															Bi	t Pc	siti	on														
0x600	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•		•	•	•					•	•		>	2												•		•		5	OXO
Access														<u> </u>	<u> </u>																2	
Name														2																	Faca	Z D

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	SCLK pin select register
15:2	Reserved	To ensure ventions	compatibility w	rith future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	SCLK port select register


24.6.125 GPIO_USART2_TXROUTE - TX port/pin select

Offset															Bi	t Po	siti	on													
0x604	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	5	4	က	2	1 0
Reset			•		•			•			•			2	e e							•					•			•	0x0
Access														2	<u>}</u>																RW
Name														2	<u> </u>																PORT

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensur ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
19:16	PIN	0x0	RW	TX pin select register
15:2	Reserved	To ensur ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1:0	PORT	0x0	RW	TX port select register

25. LDMA - Linked DMA

Quick Facts

What?

The LDMA controller can move data without CPU intervention, effectively reducing the energy consumption for a data transfer.

Why?

The LDMA can perform data transfers more energy efficiently than the CPU and allows autonomous operation in low energy modes.

How?

The LDMA controller has multiple highly configurable, prioritized DMA channels. A linked list of flexible descriptors makes it possible to tailor the controller to the specific needs of an application.

25.1 Introduction

The Linked Direct Memory Access (LDMA) controller performs memory transfer operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes while still routing data to memory and peripherals. For example, moving data from the ADC to memory.

25.1.1 Features

- · Flexible Source and Destination transfers
 - · Memory-to-memory
 - · Memory-to-peripheral
 - · Peripheral-to-memory
 - · Peripheral-to-peripheral
- · DMA transfers triggered by peripherals, software, or linked list
- · Single or multiple data transfers for each peripheral or software request
- · Inter-channel and hardware event synchronization via trigger and wait functions
- · Supports single or multiple descriptors
 - · Single descriptor
 - · Linked list of descriptors
 - · Circular and ping-pong buffers
 - · Scatter-Gather
 - Looping
 - · Pause and restart triggered by other channels
 - · Sophisticated flow control which can function without CPU interaction
- · Channel arbitration includes:
 - · Fixed priority
 - · Simple round robin
 - · Round robin with programmable multiple interleaved entries for higher priority requesters
- · Programmable data size and source and destination address strides
- · Programmable interrupt generation at the end of each DMA descriptor execution
- · Little-endian/big-endian conversion
- · DMA write-immediate function

25.2 Block Diagram

An overview of the LDMA and the modules it interacts with is shown in Figure 25.1 LDMA Block Diagram on page 806.

Figure 25.1. LDMA Block Diagram

The Linked DMA Controller consists of three main parts

- · A DMA core that executes transfers and communicates status to the core
- · A channel select block that routes peripheral DMA requests and acknowledge signals to the DMA
- · A set of internal channel configuration registers for tracking the progress of each DMA channel

The DMA has access to all system memory through the AHB bus and the AHB->APB bridge. It can load channel descriptors from memory with no CPU intervention.

25.3 Functional Description

The Linked DMA Controller is highly flexible. It is capable of transferring data between peripherals and memory without involvement from the processor core. This can be used to increase system performance by off-loading the processor from copying large amounts of data or avoiding frequent interrupts to service peripherals needing more data or having available data. It can also be used to reduce the system energy consumption by making the LDMA work autonomously with some EM2/3 peripherals for data transfer without having to wake up the processor core from sleep.

The Linked DMA Controller has 24 independent channels. Each of these channels can be connected to any of the available peripheral DMA transfer request input sources by writing to the channel configuration registers, see 25.3.2 Channel Configuration. In addition, each channel can also be triggered directly by software, which is useful for memory-to-memory transfers.

The channel descriptors determine what the Linked DMA Controller will do when it receives DMA transfer request. The initial descriptor is written directly to the LDMA's channel registers. If desired, the initial descriptor can link to additional linked descriptors stored in memory (RAM or Flash). Alternatively, software may also load the initial descriptor by writing the descriptor address to the LDMA_CHx_LINK register and then setting the corresponding bit the LDMA_LINKLOAD register.

Before enabling a channel, the software must take care to properly configure the channel registers including the link address and any linked descriptors. When a channel is triggered, the Linked DMA Controller will perform the memory transfers as specified by the descriptors. A descriptor contains the memory address to read from, the memory address to write to, link address of the next descriptor, the number of bytes to be transferred, etc. The channel descriptor is described in detail in 25.3.7 Channel descriptor data structure.

The Linked DMA Controller supports both fixed priority and round robin arbitration. The number of fixed and round robin channels is programmable. For round robin channels, the number of arbitration slots requested for each channel is programmable. Using this scheme, it is possible to ensure that timing-critical transfers are serviced on time.

DMA transfers take place by reading a block of data at a time from the source, storing it in the LDMA's local FIFO, then writing the block out to the destination from the FIFO. Interrupts may optionally be signaled to the CPU's interrupt controller at the end of any DMA transfer or at the completion of a descriptor if the DONEIFSEN bit is set. An AHB error will always generate an interrupt.

25.3.1 Channel Descriptor

Each DMA channel has descriptor registers. A transfer can be initialized by software writing to the registers or by the DMA itself copying a descriptor from RAM to memory. When using a linked list of descriptors the first descriptor should be initialized by the CPU. The DMA itself will then copy linked descriptors to its descriptor registers as required. In addition to manually initializing the first transfer, software may also cause the LDMA to load the initial descriptor by writing the descriptor address to the LDMA_CHx_LINK register and then setting the corresponding bit the LDMA_LINKLOAD register.

The contents of the descriptor registers are dynamically updated during the DMA transfer. The contents of descriptors in memory are not edited by the controller.

Some descriptor field values are only used for linked descriptors. For example, the SRCMODE and DSTMODE bits of the LDMA_CHx_CTRL registers determine if a linked descriptor is using relative or absolute addressing. Software writes to the address registers will always use absolute addressing and never set these bits. Therefore, these bits are read only.

25.3.1.1 DMA Transfer Size

A DMA transfer is the smallest unit of data that can be transfered by the LDMA. The LDMA supports byte, half-word and word sized transfers. The SIZE field in the LDMA_CHx_CTRL register specifies the data width of one DMA transfer.

25.3.1.2 Source/Destination Increments

The SRCINC and DSTINC in the LDMA_CHx_CTRL register determines the increment between DMA transfers. The increment is in units of DMA transfers and using an increment size of 1 will transfer contiguous bytes, half-words, or words depending on the value of the SIZE field. Multiple unit increments are useful for transferring or packing/unpacking alligned data. For example using an increment of 4 with a size of BYTE will transfer word aligned bytes. An increment of 2 units with a size of HALFWORD is suitable for the transfer of word aligned half-word data. The LDMA can also pack or unpack data by using a different increment size for source and destination. For example - to convert from word aligned byte data (unpacked) to contiguous byte data (packed), set the SIZE to BYTE, SRCINC to 4, and DSTINC to 1.

SIZE may also be set to NONE which will cause the LDMA to read or write the same location for every DMA transfer. This is usefull for accessing peripheral FIFO or data registers.

25.3.1.3 Block Size

The block size defines the amount of data transferred in one arbitration. It consists of one or more DMA transfers. See 25.3.6.1 Arbitration Priority for more details.

25.3.1.4 Transfer Count

The descriptor transfer count defines how many DMA transfers to perform. The number of bytes transferred by the descripter will depend on both the transfer count XFERCNT and the SIZE field settings. TOTAL_BYTES = XFERCNT * SIZE

25.3.1.5 Descriptor List

A descriptor list consists of one or more descriptors which are executed serially. This list may be a simple sequence of descriptors, a loop of descriptors, or a combination of the two.

Each descriptor in the list can be one of several types.

- Single Transfer descriptor: Transfers TOTAL_BYTES of data and then stops.
- · Linked Transfer descriptor: Transfers TOTAL_BYTES of data and then loads the next linked descriptor.
- Loop Transfer descriptor: Transfers TOTAL BYTES of data and performs loop control (see 25.3.2.2 Loop Counter).
- Sync descriptor: Handle synchronization of the list with other entities (see 25.3.7.2 SYNC descriptor structure).
- WRI descriptor: Writes a value to a location in memory (see 25.3.7.3 WRI descriptor structure).

25.3.1.6 Addresses

Before initiating a transfer, software should write the source address, destination address, and if applicable the link address to the descriptor registers. Alternatively, software may load a descriptor from memory by writing the descriptor address to the LDMA_CHx_LINK register and setting the corresponding bit in the LDMA_LINKLOAD register.

During a DMA transfer, the DMA source and destination address registers are pointers to the next transfer address. The LDMA will update the SRC and DST addresses after each transfer. If software halts a DMA transfer by clearing the enable bit, the SRC and DST addresses will indicate the next transfer address.

When a descriptor is finished the DMA will either halt or load the next (linked) descriptor depending on the value of the LINK field in the LDMA_Chx_LINK register. After loading a linked descriptor, the descriptor registers will reflect the content of the loaded descriptor. Note that the linked descriptor must be word aligned in memory. The two least significant bits of the LDMA_CHx_LINK register are used by the LINK and LINKMODE bits. The two least significant bits of the link address are always zero.

25.3.1.7 Addressing Modes

The DMA descriptors support absolute addressing or relative addressing. When using relative addressing, the offset is relative to the current contents of the respective address registers. Regardless of the descriptor addressing modes, the address registers always indicate the absolute address. For example, when loading a descriptor using relative SRC addressing, the LDMA will add the descriptor source address (offset) to the contents of the SRCADDR register (base address). After loading, the SRCADDR register will indicate the absolute address of the loaded descriptor.

The initial descriptor must use absolute addressing. The LDMA will ignore the DSTMODE, SRCMODE, and LINKMODE bits for the initial descriptor and interpret the addresses as an absolute addresses.

Relative addressing is most useful for the link address. The initial descriptor will indicate the absolute address of the linked descriptors in memory. The linked descriptors might be an array of structures. In this case the offset between descriptors is constant and is always 4 words or 16 bytes (each descriptor has 4 words). The LINK address is not incremented or decremented after each transfer. Thus, a relative offset of 0x10 may be used for all linked descriptors.

The source and destination addresses also support relative addressing. When using relative addressing with the source or destination address registers, the LDMA adds the relative offset to the current contents of the respective address register. Since the source and destination addresses are normally incremented after each transfer, the final address will point to one unit past the last transfer. Thus, an offset of zero will give the next sequential data address.

See the example 25.4.6 2D Copy for an common use of relative addressing.

25.3.1.8 Byte Swap

Enabling byte swap reverses the endianness of the incoming source data read into the LDMA's FIFO. Byte swap is only valid for transfer sizes of word and half-word. Note that linked structure reads are not byte swapped.

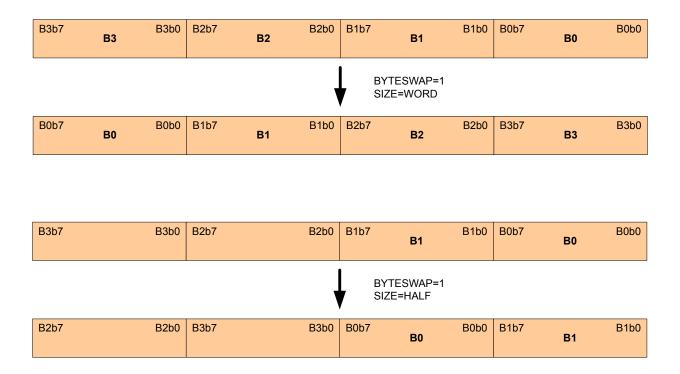


Figure 25.2. Word and Half-Word Endian Byte Swap Examples

25.3.1.9 DMA Size and Source/Destination Increment Programming

The DMA channels' SIZE, SRCINC, and DSTINC bit-fields are programmed to best utilize memory resources. They provide a means for memory packing and unpacking, as well as for matching the size of data being transmitted to or received from an IO peripheral. The following figure shows how 32-bit words of data are read from a memory source into the DMA's internal transfer FIFO, and then written out to the memory destination. The memory organization in bytes is shown as well as the first read to and write from the DMA's FIFO.

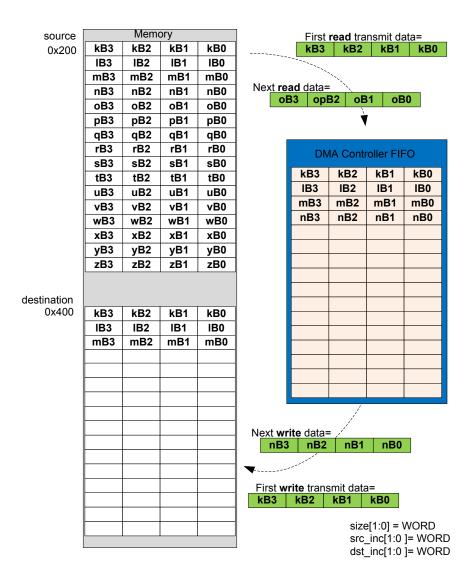


Figure 25.3. Memory-to-Memory Transfer WORD Size Example

The next example shows four variations of half-word sized transfers, with all possible combinations of half- and full-word source and destination increments. Note that when the size and source/destination increments are all configured for half-word, the resulting DMA transfer organization is equivalent to the full-word sized transfer in the previous example. The difference is that the half-word configuration requires twice as many DMA transfers.

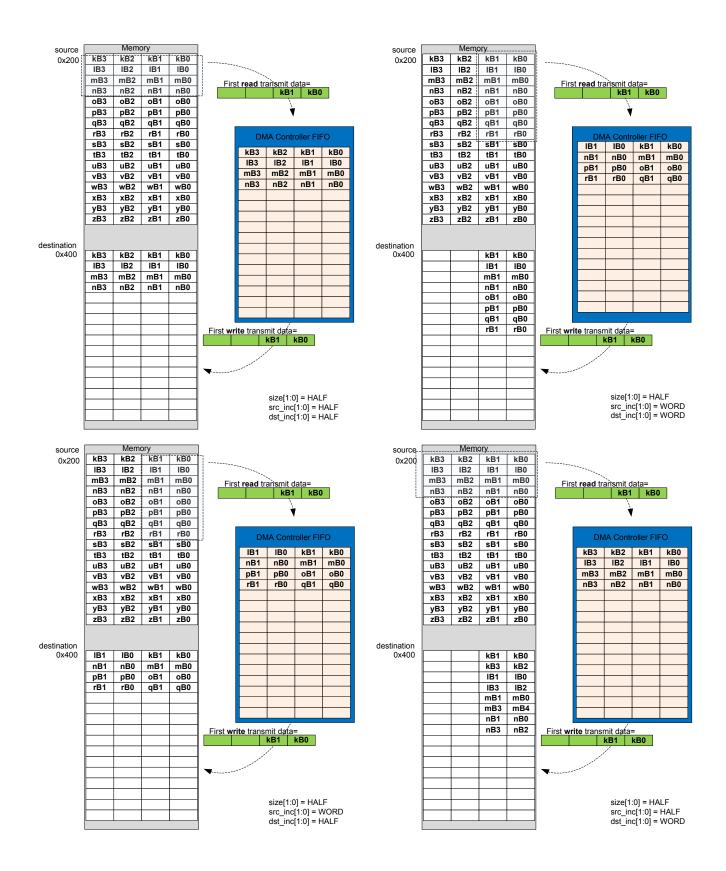


Figure 25.4. Memory-to-Memory Transfer HALF Size Examples

Fields SRCINCSIGN and DSTINCSIGN allow for address decrement. These can be used to mirror an image, for example, in the pixel copy application.

25.3.2 Channel Configuration

Each DMA channel has associated configuration and loop counter registers for controlling direction of address increment, arbitration slots, and descriptor looping.

25.3.2.1 Address Increment/Decrement

Normally DMA transfers increment the source and destination addresses after each DMA transfer. Each channel is also capable of decrementing the source and/or destination addresses after each DMA transfer. This may be useful for flipping an array or copying data from tail to head. For example, a data packet might be prepared as an array of data with increasing addresses and then transmitted from the highest address to the lowest address, from tail to head.

After reset the SRCINCSIGN and DSTINCSIGN bits in the LDMA_CHx_CFG register are cleared causing the source and destination addresses to increment after each transfer. If the SRCINCSIGN bit is set , the DMA will decrement the source address after each transfer. If the DSTINCSIGN bit in the LDMA_CHx_CFG register is set , the DMA will decrement the destination address after each transfer. Setting only one of these bits will flip the data. Setting both bits will copy from tail to head, but will not flip the data.

The SRCINCSIGN and DSTINCSIGN bits apply to all descriptors used by that channel. Software should take care to set the starting source and/or destination address to the highest data address when decrementing.

25.3.2.2 Loop Counter

Each channel has a LDMA_CHx_LOOP register that includes a loop counter field. To use looping, software should initialize the loop counter with the desired number of repetitions before enabling the transfer. A descriptor with the DECLOOPCNT bit set to TRUE will repeat the loop and decrement the loop counter until LOOPCNT = 0.

For a looping descriptor, with DECLOOPCNT=1, the LINK address in the LDMA_CHx_LINK register is used as the loop address. While LOOPCNT is greater than zero, the descriptor will execute and then the LDMA will load the next descriptor using the address specified in the LDMA_CHx_LINK register. This feature enables looping of multiple descriptors. To repeat a single descriptor, the LINK address of the descriptor should point to itself.

After LOOPCNT reaches zero, if the LINK bit in the descriptor LINK word is clear the transfer stops. If the LINK bit is set, the LDMA will load the next sequential descriptor located immediately following the looping descriptor. The behavior of the LINK bit is different for a looping descriptor. This is necessary because the LINK address is re-purposed as the loop address for a looping descriptor.

Note that LOOPCNT sets the number of repeats, not the number of iterations. The total number of loop iterations will be LOOPCNT plus 1. Normally, the LOOPCNT should be set to one or more repeats.

Also note that because there is only one LOOPCNT per channel, software intervention is required to update the LOOPCNT if a sequence of transfers contains multiple loops. It is also possible to use a write immediate DMA data transfer to update the LDMA CHx LOOP register.

25.3.3 Channel Select Configuration

The channel select block determines which peripheral request signal connects to each DMA channel.

This configuration is done by software through the SOURCESEL and SIGSEL fields of the LDMA_CHn_REQSEL register. SOURCE-SEL selects the peripheral and SIGSEL picks which DMA request signals to use from the selected peripheral. Please refer to 25.5 LDMA Source Selection Details for more information.

25.3.4 Starting a transfer

A transfer may be started by software, a peripheral request, or a descriptor load.

Software may initiate a transfer by setting the bit for the desired channel in the LDMA_SREQ register. In this case the channel should set SOURCESEL to NONE to prevent unintentional triggering of the channel by a peripheral.

A peripheral may trigger the channel by configuring the peripheral source and signal as described in 25.3.3 Channel Select Configuration

The LDMA may also be configured to begin a transfer immediately after a new descriptor is loaded by setting the STRUCTREQ field of the LDMA CHx CTRL register or descriptor word.

This configuration is done by software through the SOURCESEL and SIGSEL fields of the LDMA_CHn_REQSEL register. SOURCE-SEL selects the peripheral and SIGSEL picks which DMA request signals to use from the selected peripheral.

25.3.4.1 Peripheral Transfer Requests

By default peripherals issue a Single Request (SREQ) when any data is present. For peripherals with a data buffer or FIFO this occurs any time the FIFO is not empty. Upon receiving an SREQ the LDMA will perform one DMA transfer and stop till another request is made.

It is generally more efficient to wait for a peripheral to accumulate data and transfer in a burst. This both reduces overhead of the DMA engine and allows EM2 peripherals to save power by using the LDMA less often. To enable this set the IGNORESREQ bit in the LDMA_CHx_CTRL register (or descriptor) which will cause the LDMA to ignore SREQ's and wait for a full Request (REQ) signal. When the REQ is received the entire descriptor will be executed. For most peripherals with a FIFO the REQ signal is set when the FIFO is full, or a predetermined threshold has been reached. See the individual peripheral chapters for more information.

25.3.5 Managing Transfer Errors

LDMA transfer errors are normally managed using interrupts. Software should clear the ERROR flag in the bit in the LDMA_IF register and enable error interrupts by setting the ERROR bit in the LDMA_IEN register before initiating a DMA transfer.

The LDMA interrupt handler should check the ERROR flag bit in the LDMA_IF register. If the ERROR flag bit is set, it should then read the CHERROR field in the LDMA_STATUS register to determine the errant channel. The interrupt handler should reset the channel and clear the ERROR flag bit in the LDMA_IF register before returning.

25.3.6 Arbitration

While multiple channels are configured simultaneously the LDMA engine can only be actively copying data for one channel at a time. Arbitration determines which channel is being serviced at any point in time. The LDMA will choose a channel through arbitration, transfer BLOCK_SIZE elements of that channel and then arbitrate again choosing another channel to service. This allows high priority channels to be serviced while lower priority channels are in the middle of a transfer.

25.3.6.1 Arbitration Priority

There are two modes in determining priority when the controller arbitrates: fixed priority and round robin priority.

In fixed priority mode, channel 0 has the highest priority. As the channel number increases, the priority decreases. When the LDMA controller is idle or when a transfer completes, the highest priority channel with an active request is granted the transfer. This mode guarantees smallest latency for the highest priority requesters. It is best suited for systems where peak bandwidth is well below LDMA controller's maximum ability to serve. The drawback of this mode is the possibility of starvation for lowest priority requesters.

In the round robin priority mode, each active requesting channel is serviced in the order of priority. A late arriving request on a higher priority channel will not get serviced until the next round. This mode minimizes the risk of starving low-priority latency-tolerant requesters. The drawback of this mode is higher risk of starving low-latency requesters.

The NUMFIXED field in the LDMA_CTRL register determines which channels are fixed priority and which are round robin. Channels lower than NUMFIXED are fixed priority while those above it are round robin. A value of 0x0 implies all channels are round robin. A value of 0x4 implies channels 0 through 3 are fixed priority and 4 through 7 are round robin. A value of 7 implies that channels 0 through 6 are fixed and channel 7 is round robin. This is functionally equivalent to having 8 fixed priority channels.

Fixed priority channels always take priority over round robin. As long as NUMFIXED is greater than 0, there is a possibility that a higher priority channel can starve the remaining channels.

To address the drawbacks of using fixed priority or round robin priority the LDMA implements the concept of arbitration slots. This allows for channels to have high bandwidth and low latency while preventing starvation of latency tolerant low priority channels.

Each channel has a two bit ARBSLOT field in its LDM_CHx_CFG register. This field only applies to channels marked as round robin (determined by NUMFIXED). The channels in the same arbitration slot are treated equally with round robin scheduling. Channels marked with a higher arbitration slot will get serviced more frequently. By default all channels are placed in arbitration slot 1.

Every time the channels in slot 1 get serviced the channels in slot 2 get serviced twice, those in slot 4 get serviced 4 times, and those in slot 8 get serviced 7 times. The specific arbitration allocation can be seen by the following table. The highest arbitration slot is serviced every other arbitration cycle, allowing for low latency response. If there are no requests from channels in arbitration slot then that slot is immediately skipped.

Table 25.1. Arbitration Slot Order

Arbslot order	8	4	8	2	8	4	8	1	8	4	8	2	8	4
Arbslot1								1						
Arbslot2				1								1		
Arbslot4		1				1				1				1
Arbslot8	1		1		1		1		1		1		1	

The top row shows the order at which the arbitration slots are executed. The remaining part of the table shows a more visual interpretation of the arbitration order.

For example, if we have one low latency channel (CHNL0) and two latency tolerant channels (CHNL1 and CHNL2). We could use the following settings.

LDMA CTRL.NUMFIXED = 0; set round robin for all channels.

CHNL0_CFG.ARBSLOTS = TWO;

CHNL1 CFG.ARBSLOTS = ONE;

CHNL2_CFG.ARBSLOTS = ONE;

If all channels are constantly requesting transfers, then the arbitration order is: CHNL0, CHNL1, CHNL0, CHNL1, CHNL0, CHNL1, CHNL0, CHNL2, CHNL0, etc

Note, there are no channels assigned to arbitration slot four or eight in this example, so those slots are skipped and the final sequence is ARBSLOT2, ARBSLOT1, ARBSLOT2, ARBSLOT1, etc...

Channel 1 and Channel 2 are selected in round robin order when arbitration slot 1 is executed.

If we replace the ARBSLOTS value for channel 0 with EIGHT, then the sequence would look like the following:

CHNL0, CHNL0, CHNL0, CHNL1, CHNL1, CHNL0, CHNL0, CHNL2, CHNL0, CHNL0, CHNL0, CHNL0, CHNL1, etc.

25.3.6.2 DMA Transfer Arbitration

In addition to the inter channel arbitration, software can configure when the controller arbitrates during a DMA transfer. This provides reduced latency to higher priority channels when configuring low priority transfers with more arbitration cycles.

The LDMA provides four bits that configure how many DMA transfers occur before it re-arbitrates. These bits are known as the BLOCK-SIZE bits and they map to the arbitration rate as shown below. For example, if BLOCKSIZE = 4 then the arbitration rate is 6, that is, the controller arbitrates every 6 DMA transfers.

Table 25.2 AHB bus transfer arbitration interval on page 815 lists the arbitration rates.

Table 25.2. AHB bus transfer arbitration interval

BLOCKSIZE	Arbitrate After x DMA transfers
0	x = 1
1	x = 2
2	x = 3
3	x = 4
4	x = 6
5	x = 8
6	x = 12
7	x = 16
8	x = 24
9	x = 32
10	x = 64
11	x = 128
12	x = 256
13	x = 512
14	x = 1024
15	x = lock

Note: Software must take care not to assign a low-priority channel with a large BLOCKSIZE because this prevents the controller from servicing high-priority requests, until it re-arbitrates.

The number of DMA transfers that need to be done is specified by the user in XFERCNT. When XFERCNT > BLOCKSIZE and is not an integer multiple of BLOCKSIZE then the controller always performs sequences of BLOCKSIZE transfers until XFERCNT < BLOCKSIZE remain to be transferred. The controller performs the remaining XFERCNT transfers at the end of the DMA cycle.

Software must store the value of the BLOCKSIZE bits in the channel control data structure. See 25.3.7.1 XFER descriptor structure for more information about the location of the BLOCKSIZE bits in the data structure.

25.3.7 Channel descriptor data structure

Each channel descriptor consists of four 32-bit words:

- · CTRL control word contains information like transfer count and block size.
- SRC source address points to where to copy data from
- · DST destination address points to where to copy data to
- · LINK link address points to where to load the next linked descriptor

These words map directly to the LDMA_CHx_CTRL, LDMA_CHx_SRC, LDMA_CHx_DST, and LDMA_CHx_LINK registers. The usage of the SRC and DST fields may differ depending on the structure type

There are three different types of descriptor data structures: XFER, SYNC, and WRI

25.3.7.1 XFER descriptor structure

This descriptor defines a typical data transfer which may be a Normal, Link, or Loop transfer.

Only this structure type can be written directly into LDMA's registers by the CPU. All descriptors may be linked to. Please refer to the register descriptions for additional information.

For specifying XFER structure type, set STRUCTTYPE to 0. Please see the peripheral register descriptions for information on the fields in this structure.

Name															Bi	t Po	sitio	on														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	ω	7	9	2	4	ဗ	2	1	0
CTRL	STR STR STR																															
SRC																																
DST															D	STA	ADD	R														
LINK														L	INKA	ADD	R														LINK	LINKMODE

25.3.7.2 SYNC descriptor structure

This descriptor defines an intra-channel synchronizing structure. It allows the channel to wait for some external stimulus before continuing on to the next descriptor. This structure is also used to provide stimulus to another channel to indicate that it may continue.

For example channel 1 may be configured to transfer a header into a buffer while channel 2 is simultaneously transferring data into the same structure. When channel 1 has completed it can wait for a sync signal from channel 2 before transferring the now complete buffer to a peripheral.

Synch descriptors do nothing until a condition is met. The condition is formed by the SYNCTRIG field in the LDMA_SYNC register and the MATCHEN and MATCHVAL fields of the descriptor. When (SYNCTRIG & MATCHEN) == (MATCHVAL & MATCHEN) the next descriptor is loaded. In addition to waiting for the condition a Link descriptor can set or clear bits in SYNCTRIG to meet the conditions of another channel and cause it to continue. The CPU also has the ability to set and clear the SYNCTRIG bits from software.

This structure type can only be linked in from memory.

For specifying SYNC structure type, set STRUCTTYPE to 1.

Name															В	it Pc	ositio	on														
	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	8	7	9	2	4	3	2	_	0
CTRL				ı	1				ı	1	1	DONEIFSEN					ı														STRIICTTYPE	200
SRC													•																			
DST																																
LINK			LINKADDR Name Description STRUCTTYPE Descriptor Type																LINK	LINKMODE												
Bit			Name Description																													
1:0			5	STR	UCT	TYF	Έ					D	esc	ript	or T	/pe																
			٦	This	field	l indi	cate	s wl	hich	type	of o	desc	ripto	r thi	s is.	It m	ust k	oe 1	for a	a SY	′NC	des	cript	or.								
20				OON	IEIF	SEN						D	one	if S	et ir	ndic	ator															
			l	f se	the	inte	rrup	t flag	g wil	be	set v	wher	des	scrip	otor o	comp	plete	S.														
15:	8		5	SYN	CCL	.R						S	ync	Triç	gger	Cle	ar															
			a	a giv are l	en b	oit, a ed w	one ith a	sho one	ould e. Th	be lo	ade nc t	espored to	the er cle	corr ear f	espo unct	ndir ion (ng bi can d	t. Se	et is be ι	give	n p	riorit	y ove	er cle	ear i	f bo	th co	rres	pone	ding	bits	
7:0			5	SYN	CSE	ΞT						S	ync	Triç	gger	Set	İ															
			t g	o th	e co set fu	rresp	on c	ling an c	bit. S	Set i be u	s giv	oond en p whe	riori	ty o	ver o	clear	if bo	oth c	orre	spo	ndir	ng bi	ts ar	e loa	adec	d wit	h a c	ne.	The	syn	c trig	g-
15:	8		N	ИΑТ	CHE	ΞN						S	ync	Triç	gger	Ma	tch I	Enak	ole													
												TRIC (SYI															link	ed [OMA	stru	cture	Э
7:0			N	ИΑТ	CH\	/AL						S	ync	Triç	gger	Ma	tch \	/alu	е													

Bit	Name	Description
-//	INGILLE	Describilion

This bit-field serves as the SYNCTRIG match value. A sync match triggers the load of the next linked DMA structure as specified by link_mode, when: (SYNCTRIG & MATCHEN) == (MATCHVAL & MATCHEN).

25.3.7.3 WRI descriptor structure

This descriptor defines a write-immediate structure. This allows a list of descriptors to write a value to a register or memory location. For example, if a channel wishes to perform two loops in a descriptor sequence a WRI may be used to program the loop count for the second loop.

This structure type can only be linked in from memory.

For specifying WRI structure type, set STRUCTTYPE to 2.

Name															Ві	it Pc	siti	on														
	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	9	6	8	7	9	2	4	3	2	_	0
CTRL												DONEIFSEN																			STRICTTYBE	-
SRC		DSTADDR																														
DST															С	STA	ADD	R														
LINK														L	INK	ADD	R														LINK	LINKMODE

Bit	Name	Description
1:0	STRUCTTYPE	Descriptor Type
	This field indicates which type of descriptor this is. It must be 2 for a WRI descriptor.	
20	DONEIFSEN	Done if Set indicator
	If set the interrupt flag will be set when descriptor completes.	
31:0	IMMVAL	Immediate Value for Write
	This bit-field specifies the immediate data value that is to be written to the address pointed to by DSTADDR. Only one write occurs for WRI structures.	
31:0	DSTADDR	Address to write
	This bit-field specifies the address the immediate data should be written to.	

25.3.8 Interaction with the EMU

The LDMA interacts with the Energy Management Unit (EMU) to allow transfers from a low energy peripheral while in EM2.

When using the ADC in EM2 or EM3 the EMU can wake up the LDMA as needed to allow data transfers to occur.

25.3.9 Interrupts

The LDMA_IF Interrupt flag register contains one DONE bit for each channel and one combined ERROR bit. When enabled, these interrupts are available as interrupts to the M33 core. They are combined into one interrupt vector, DMA_INT. If the interrupt for the DMA is enabled in the ARM M33 core, an interrupt will be made if one or more of the interrupt flags in LDMA_IF and their corresponding bits in LDMA IEN are set.

When a descriptor finishes execution the interrupt flag for that channel will be set if the DONEIFSEN field of the LDMA_CHx_LOOP register is set. If LINK and DONEIFSEN are both set when the descriptor completes the interrupt and the linked descriptor will be immediately loaded. When the final descriptor in a linked list (LINK = 0) is finished the interrupt flag is always set regardless of the state of DONEIFSEN.

25.3.10 Debugging

For a peripheral request DMA transfer, if software sets a bit for a channel in the LDMA_DBGHALT register then the DMA will halt during a debug halt and the SRC and DST registers in the debug window will show the transfer in progress. Otherwise, during debug halt the DMA will continue to run and complete the entire transfer causing the descriptor registers to indicate the transfer has completed.

25.4 Examples

This section provides examples of common LDMA usage. All examples assume the LDMA is in the reset state with the channel being configured disabled and LDAM CHx CFG, LDMA CHx LOOP, and LDMA CHx LINK cleared.

25.4.1 Single Direct Register DMA Transfer

This simple example uses only the Channel Descriptor registers directly and does not use linking. Software writes directly to the LDMA channel registers. This example does not use a memory based descriptor list.

This example is suitable for most simple transfers that are limited to transferring one block of data. It supports anything that can be done using a single descriptor. This includes endian conversion and packing/unpacking data. Channel 0 is used for this example.

The LDMA will be used to copy 127 contiguous half words (254 bytes) from 0x0 to 0x1000. It will allow arbitration every 4 transfers and is triggered by a CPU write to the LDMA_SWREQ register. The CH0 interrupt flag will be set when the transfer completes since the descriptor does not link to another descriptor.

- Configure LDMA_CH0_CTRL
 - DSTMODE = 0 (absolute)
 - SRCMODE = 0 (absolute)
 - SIZE = HALFWORD (16 bits)
 - DSTINC = 0 (1 half-word)
 - SRCINC = 0 (1 half-word)
 - DECLOOPCNT=0 (unused)
 - REQMODE = 1 (one request transfers all data)
 - BLOCKSIZE = 3 (4 transfers)
 - BYTESWAP=0 (no byte swap)
 - XFERCNT=127 (transfer 127 half words)
 - STRUCTTPYE=0 (TRANSFER)
- Write source address to LDMA CH0 SRC register
- · Write destination address to LDMA CH0 DST register
- Configure the LDMA_CH0REQSEL register for the desired peripheral or select none for a memory-to-memory transfer
- Clear and enable interrupts.
 - Write a 1 to bit 0 of the LDMA_IFC register to clear the CH0 DONE flag
 - · Write a 1 to bit 0 of the LDMA IEN register to enable the CH0 interrupt
- Write a 1 to bit 0 of the LDMA CHEN register to enable CH0

The REQMODE field is normally cleared to zero for a peripheral request transfer and will transfer the specified block size for each peripheral request. The REQMODE may be set to 1 for a memory-to-memory transfer or any time it is desired for a single DMA request to initiate complete transfer.

25.4.2 Descriptor Linked List

This example shows how to use a Linked List of descriptors. Each descriptor has a link address which points to the next descriptor in the list. A descriptor may be removed from the Linked list by altering the Link address of the one before it to point to the one after it. Descriptor Linked lists are useful when handling an array of buffers for communication data. For example, a bad packet can be removed from a receiver queue by simply removing the descriptor from the linked list.

Software loads the first descriptor into the DMA by writing the descriptor address to LDMA_CHx_LINK and setting the bit for that channel in the LDMA_LINKLOAD register. This method is preferred when using a linked list in memory since it treats the first descriptor just like all the others. However, it is also allowed for software to write the first descriptor directly to the LDMA registers.

In this example 4 descriptors are executed in series, the interrupt flag is set after the 2nd and 4th (last) descriptors have completed.

- · Prepare a list of descriptors using the XFER structure type in RAM
- · Initialize the CTRL, SRC, and DST members as desired
 - Setting STRUCTREQ in the CTRL word for descriptors 2-4 will cause them to begin transferring data as soon as they are loaded.
- Write 0x00000013 to the LINK member of all but the last descriptor
 - LINKMODE = 1 (relative addressing)
 - LINK = 1 (Link to the next descriptor)
 - LINKADDR = 0x00000010 (size of descriptor)
- · Set the DONEIFSEN bit in the CTRL member of the 2nd structure so that the interrupt flag will be set when it completes
- Write 0x00000000 to the LINK member of the last descriptor
 - LINK = 0 (Do not link to the next descriptor)
 - LINKMODE = 0 (don't care)
 - LINKADDR = 0x00000000 (don't care)

Each descriptor now points to the start of the next descriptor as shown on the left in Figure 25.5 Descriptor Linked List on page 820. To remove a descriptor from the linked list modify the LINK address of the descriptor of the one before to point to the one after. For example to remove the third descriptor, add 0x00000010 to the LINK register of the second descriptor. The second descriptor will now point to the forth descriptor and skip over the third descriptor as shown on the right in Figure 25.5 Descriptor Linked List on page 820.

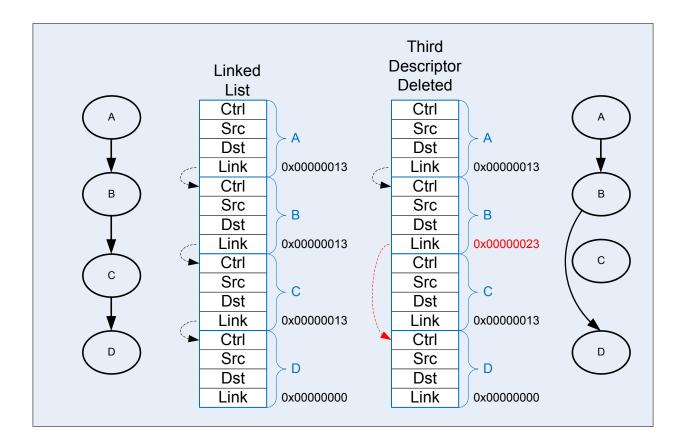


Figure 25.5. Descriptor Linked List

To start execution of the linked list of descriptors:

- · Write the absolute address of the first descriptor to the LINKADR field of the LDMA_CH0_LINK register
- Set the LINK bit of LDMA_CH0_LINK register.
- Configure the LDMA_CH0REQSEL register for the desired peripheral or select none for memory-to-memory
- · Clear and enable interrupts as desired
- · Set bit 0 in the LDMA LINKLOAD register to initiate loading and execution of the first descriptor

Alternatively, software can manually copy the first descriptor contents to the LDMA_CH0_CTRL, LDMA_CH0_SRC, LDMA_CH0_DST, and LDMA_CH0_LINK registers and then enable the channel in the LDMA_CHEN register.

25.4.3 Single Descriptor Looped Transfer

This example demonstrates how to use looping using a single descriptor. This method allows a single DMA transfer to be repeated a specified number of times. The looping descriptor is stored in memory and reloaded by hardware. After a specified number of iterations, the transfer stops.

CH0 is setup to copy 4 words from the ADC FIFO into a 15 word buffer at 0x1000. It repeats 4 times to fill the entire 16 word buffer. An interrupt will fire when the entire 16 words have been transferred.

Initialize the Linked descriptor in memory as follows:

- · Configure CTRL member
 - DSTMODE = 0 (absolute)
 - SRCMODE = 0 (absolute)
 - SIZE = WORD
 - DSTINC = 0 (1 WORD)
 - SRCINC = 3 (0 WORDS)
 - · DECLOOPCNT=1 (decrement loop count)
 - REQMODE=1 (Use XFERCNT)
 - BLOCKSIZE = 4 (4 words)
 - BYTESWAP=0 (no swap)
 - XFERCNT= 4 (4 words)
 - STRUCTTPYE=0 (TRANSFER)
 - · IGNORESREQ=1 (ignore single requests)
- Write the address ADC0_SINGLEDATA register to the SRC member
- · Write 0x1000 address to DST member
- · Configure the LINK member
 - LINK = 0 (stop after loop)
 - MODE = 1 (relative link address)
 - LINKADDR = 0 (point to ourself)
- · Configure the Channel
 - · Write the desired number of repeats to the LDMA CH0 LOOP register
 - SOURCESEL in LDMA_CH0REQSEL = ADC0 (select the ADC)
 - SIG in LDMA_CH0REQSEL = ADC0SCAN (select the scan conversion request)
- · Clear and enable interrupts
- · Load the descriptor using LINKLOAD as described in 25.4.2 Descriptor Linked List

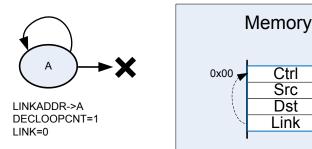
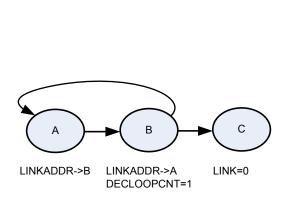


Figure 25.6. Single Descriptor Looped Transfer


link addr->A

Note that the looping descriptor must be stored in memory, because it must load itself from the link address in memory on each iteration.

25.4.4 Descriptor List with Looping

This example uses a descriptor list in memory with looping over multiple descriptors. This example also uses the looping feature and continues on with the next sequential descriptor after looping completes.

The descriptor list in memory is shown in figure Figure 25.7 Descriptor List with Looping on page 823. Descriptor A links to descriptor B. Descriptor B has the DECLOOPCNT bit enabled and loops back to the start of descriptor A. The LINK address of descriptor B is used for the loop address. The LINK bit is set to indicate that execution will continue after completion of looping. Once the LOOPCNT reaches zero, the LDMA will load descriptor C. Descriptor C must be located immediately following descriptor B.

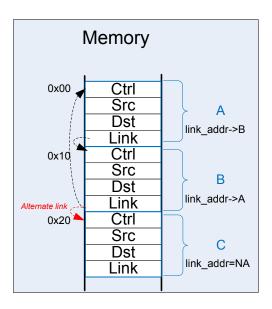


Figure 25.7. Descriptor List with Looping

Initialization is similar to the single looping descriptor with the following modifications.

- · Set the LINK bit in descriptors A and B
- write the address of descriptor A into the LIKADDRESS of descriptor B
- · write the address of descriptor B into the LIKADDRESS of descriptor A
- · Descriptor C must be located immediately after descriptor B in memory

25.4.5 Simple Inter-Channel Synchronization

The LDMA controller features synchronization structures which allow differing channels and/or hardware events to pause a DMA sequence, and wait for a synchronizing event to restart it.

In this example DMA channel 0 and 1 are tasked with the transfer of different sets of data. Channel 0 has two transfer structures, and channel 1 just one, but channel 0 must wait until channel 1 has completed its transfer before it starts its second transfer structure.

Pausing channel 0 is accomplished by inserting a sync wait structure between the two transfer structures. This sync structure waits on SYNCTRIG[7] to be set by a sync set/clear structure which is controlled by channel 1. Sync structures do not transfer data, they can only set, clear, or wait to match the SYNCTRIG[7:0] bits. Note that sync structures cannot decrement loop counter.

```
LDMA SYNC
    SYNCTRIG=0x0 (at time 0)
LDMA_CH0
    Structure A @ 0x00
                                    Structure B @ 0x10
                                                                         Structure C @ 0x20
    CTRL
                                        CTRL
                                                                             CTRL
       STRUCTTYPE=XFER
                                            STRUCTTYPE=SYNC
                                                                                 STRUCTTYPE=XFER
    T.TNK
                                        T.TNK
                                                                             LINK
        LINKADDR[29:0]=0x00000004
                                            LINKADDR[29:0]=0x00000008
                                                                                 LINKADDR[29:0]=NA
        LINK=1
                                            LINK=1
                                                                                 LINK=0
                                        DST
                                            MATCHEN=0×80
                                             MATCHVAL=0x80 (waits for SYNCTRIG[7]=1)
LDMA_CH1
    Structure Y @ 0x30
                                    Structure Z @ 0x40
                                         CTRL
    CTRL
        STRUCTTYPE=XFER
                                            STRUCTTYPE=SYNC
    LINK
                                        LINK
        LINKADDR[29:0]=0x00000010
                                            LINKADDR=NA
                                            LINK=0
                                         SRC
                                            SRCCLR=0x0
                                             SRCSET=0x80 (sets SYNCTRIG[7])
```

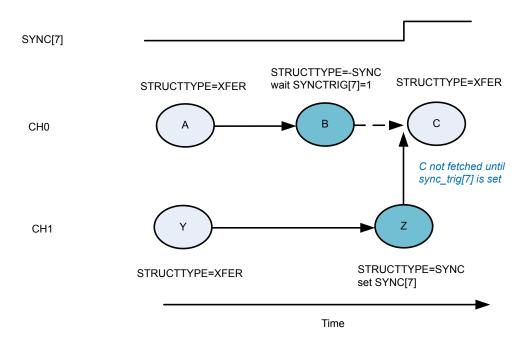


Figure 25.8. Simple Intra-channel Synchronization Example

Both A and Y effectively start at the same time. A finishes earlier, then it links to B, which waits for the SYNCTRIG[7] bit to be set before loading C. Y finishes after B is loaded, and it links to sync structure Z, which sets the SYNCTRIG[7] bit. Channel 0 responds to the trigger set by loading C for the final data transfer.

25.4.6 2D Copy

The LDMA can easily perform a 2D copy using a descriptor list with looping. This set up is visualized in Figure 25.9 2D copy on page 826.

For an application working with graphics, this would mean the ability to copy a rectangle of a given width and height from one picture to another.

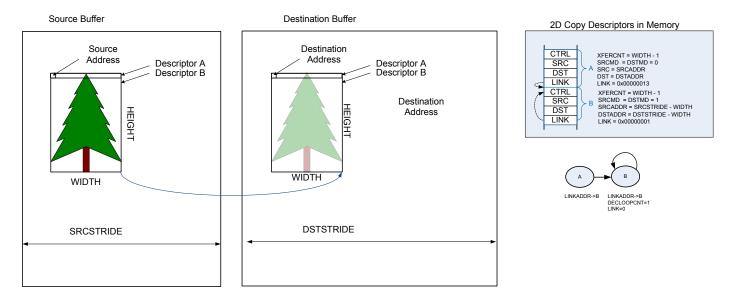


Figure 25.9. 2D copy

The first descriptor will use absolute addressing mode and the source and destination addresses should point to the desired target addresses. The first descriptor will copy only the first row. The XFERCNT of the first descriptor is set to the desired width minus one.

- CTRL
 - XFERCNT = WIDTH 1
 - SRCMD = 0 (absolute)
 - DSTMD = 0 (absolute)
- SRCADDR = target source address
- DSTADDR = target destination address
- LINK = 0x00000013
 - LINK=1
 - LINKMD=1
 - LINKADDR=0x00000010 (point to next descriptor)

The second descriptor will use relative addressing and the source and destination addresses are set to the desired offset. After the completion of the first descriptor, the address registers will point to the last address transferred. Thus, the width must be subtracted from the stride to get the offset. The second descriptor uses looping and the link register has not offset.

- CTRL
 - XFERCNT = WIDTH 1
 - SRCMD = 1 (relative)
 - DSTMD = 1 (relative)
 - DECLOOPCNT = 1
- SRCADDR = desired source offset (SRCSTRIDE-WIDTH)
- DSTADDR = desired destination offset (DSTSTRIDE-WIDTH)
- LINK = 0x00000001
 - · LINK=0
 - LINKMD=1 (relative)
 - LINKADDR=0x000000000 (no offset)

Because the first descriptor already transferred one row, the number of looping repeats should be the desired height minus two. Therefore, LOOPCNT should be set to HEIGHT minus two before initiating the transfer.

This same method is easily extended to copy multiple rectangles by linking descriptors together. To initialize the LDMA_CHx_LOOP register, precede each descriptor pair described above with a write immediate descriptor which writes the desired value to the LOOPCNT field of the LDMA_CHx_LOOP register.

25.4.7 Ping-Pong

Communication peripherals often use ping-pong buffers. Ping-pong buffers allow the CPU to process data in one buffer while a peripheral transmits or receives data in the other buffer.

Both transmit and receive ping-pong buffers are easily implemented using the LDMA. In either case, this requires two descriptors as shown in Figure 25.10 Infinite Ping-Pong Example on page 828. The LINKADDR field of the LINK member should point to the other descriptor. Using two adjacent descriptors and relative link addressing ensures the descriptors are easily reloadable.

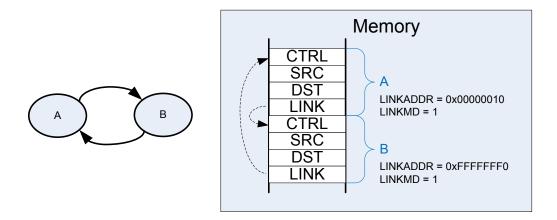


Figure 25.10. Infinite Ping-Pong Example

A **receiver** ping-pong buffer controller consists of two buffers and two descriptors stored in memory that point to the two buffers. Once initialized, as the peripheral receives data, it will fill the first buffer. Once the first buffer is full, it will link automatically to the second buffer and generate an interrupt. Software will then process the data in the first buffer while the LDMA is transferring data to the second buffer. For a receiver ping-pong buffer each descriptor should link to the other descriptor. The link bit should be set to provide infinite ping pong between the two buffers. The DONIFS bit in each descriptor should be set to generate an interrupt on the completion of each descriptor.

- · Descriptor A
 - CTRL
 - DONEIFS = 1
 - · other settings as desired
 - SRCADDR = peripheral source address
 - DSTADDR = memory destination address
 - LINK = 0x00000013
 - LINKADDR = 0x00000010 (next descriptor)
 - LINK = 1 (link to next descriptor)
 - LINKMD = 1 (relative addressing)
- Descriptor B
 - CTRL
 - · DONEIFS = 1
 - · other settings as desired
 - SRCADDR = peripheral source address
 - DSTADDR = memory destination address
 - LINK = 0xFFFFFFF3
 - LINKADDR = 0xFFFFFF0 (previous descriptor)
 - LINK = 1 (link to previous descriptor)
 - LINKMD = 1 (relative addressing)

For **transmitter** ping-pong buffer, software will fill the first buffer and then initiate the DMA transfer. The LDMA will transmit the first buffer data while software is filling the second buffer. In this case, the two descriptors should point to each other, but not automatically

continue to the second buffer. The LINK bit should be cleared to zero. Once software has loaded the first buffer, it will use the LINK-LOAD bit to load the first descriptor and transmit the data. The DONIFS need not be set in each descriptor. The DMA will stop and then generate an interrupt at the completion of each descriptor.

- · Descriptor A
 - CTRL
 - DONEIFS = 0
 - other settings as desired
 - SRCADDR = memory source address
 - DSTADDR = peripheral destination address
 - LINK = 0x00000013
 - LINKADDR = 0x00000010 (next descriptor)
 - LINK = 0 (link to next descriptor)
 - LINKMD = 1 (relative addressing)
- · Descriptor B
 - CTRL
 - · DONEIFS = 0
 - · other settings as desired
 - · SRCADDR = memory source address
 - DSTADDR = peripheral destination address
 - LINK = 0xFFFFFF3
 - LINKADDR = 0xFFFFFF0 (previous descriptor)
 - LINK = 0 (link to previous descriptor)
 - LINKMD = 1 (relative addressing)

25.4.8 Scatter-Gather

Scatter-Gather in general refers to a process that copies data from multiple locations scattered in memory and gathers the data to a single location in memory, or vice versa. A simple descriptor list allows data gathering. For example, data from a discontiguous list of buffers might be copied to a contiguous sequential array of buffers. The inverse is also possible when a sequential array of buffers is scattered to a discontiguous list of available buffers. See section 25.4.2 Descriptor Linked List.

Some DMAs which only have two descriptors implement scatter-gather by using one descriptor to modify the other descriptor. While it is possible to implement this same behavior using the LDMA, it is much more straight-forward to just use a simple descriptor list.

25.5 LDMA Source Selection Details

25.5.1 LDMA Source Selection Details

Table 25.3. LDMA Source Selection Details

SOURCESEL	Source Name	SIGSEL	Request Signal Name
0x0	LDMAXBAR	0x0	LDMAXBAR_DMA_PRSREQ0
		0x1	LDMAXBAR_DMA_PRSREQ1
0x1	TIMER0	0x0	TIMER0_DMA_CC0
		0x1	TIMER0_DMA_CC1
		0x2	TIMER0_DMA_CC2
		0x3	TIMER0_DMA_UFOF
0x2	TIMER1	0x0	TIMER1_DMA_CC0
		0x1	TIMER1_DMA_CC1
		0x2	TIMER1_DMA_CC2
		0x3	TIMER1_DMA_UFOF
0x3	USART0	0x0	USART0_DMA_RXDATAV
		0x1	USART0_DMA_RXDATAVRIGHT
		0x2	USART0_DMA_TXBL
		0x3	USART0_DMA_TXBLRIGHT
		0x4	USARTO_DMA_TXEMPTY
0x4	USART1	0x0	USART1_DMA_RXDATAV
		0x1	USART1_DMA_RXDATAVRIGHT
		0x2	USART1_DMA_TXBL
		0x3	USART1_DMA_TXBLRIGHT
		0x4	USART1_DMA_TXEMPTY
0x5	USART2	0x0	USART2_DMA_RXDATAV
		0x1	USART2_DMA_RXDATAVRIGHT
		0x2	USART2_DMA_TXBL
		0x3	USART2_DMA_TXBLRIGHT
		0x4	USART2_DMA_TXEMPTY
0x6	I2C0	0x0	I2C0_DMA_RXDATAV
		0x1	I2C0_DMA_TXBL
0x7	I2C1	0x0	I2C1_DMA_RXDATAV
		0x1	I2C1_DMA_TXBL
0xB	IADC0	0x0	IADC0_DMA_IADC_SCAN
		0x1	IADC0_DMA_IADC_SINGLE
0xC	MSC	0x0	MSC_DMA_WDATA

SOURCESEL	Source Name	SIGSEL	Request Signal Name
0xD	TIMER2	0x0	TIMER2_DMA_CC0
		0x1	TIMER2_DMA_CC1
		0x2	TIMER2_DMA_CC2
		0x3	TIMER2_DMA_UFOF
0xE	TIMER3	0x0	TIMER3_DMA_CC0
		0x1	TIMER3_DMA_CC1
		0x2	TIMER3_DMA_CC2
		0x3	TIMER3_DMA_UFOF

25.6 Register Map

The offset register address is relative to the registers base address.

0x000 L	LDMA_IPVERSION	R	DMA Channel Request Clear Register
0x004 L	LDMA_EN	RW	DMA module enable disable Register
0x008 L	LDMA_CTRL	RW	DMA Control Register
0x00C L	LDMA_STATUS	RH	DMA Status Register
0x010 L	LDMA_SYNCSWSET	W	DMA Sync Trig Sw Set Register
0x014 L	LDMA_SYNCSWCLR	W	DMA Sync Trig Sw Clear register
0x018 L	LDMA_SYNCHWEN	RW	DMA Sync HW trigger enable register
0x01C L	LDMA_SYNCHWSEL	RW	DMA Sync HW trigger selection register
0x020 L	LDMA_SYNCSTATUS	RH	DMA Sync Trigger Status Register
0x024 L	LDMA_CHEN	W	DMA Channel Enable Register
0x028 L	LDMA_CHDIS	W	DMA Channel Disable Register
0x02C L	LDMA_CHSTATUS	RH	DMA Channel Status Register
0x030 L	LDMA_CHBUSY	RH	DMA Channel Busy Register
0x034 L	LDMA_CHDONE	RWH INTFLAG	DMA Channel Linking Done Register (Si
0x038 L	LDMA_DBGHALT	RW	DMA Channel Debug Halt Register
0x03C L	LDMA_SWREQ	W	DMA Channel Software Transfer Request
0x040 L	LDMA_REQDIS	RW	DMA Channel Request Disable Register
0x044 L	LDMA_REQPEND	RH	DMA Channel Requests Pending Register
0x048 L	LDMA_LINKLOAD	W	DMA Channel Link Load Register
0x04C L	LDMA_REQCLEAR	W	DMA Channel Request Clear Register
0x050 L	LDMA_IF	RWH INTFLAG	Interrupt Flag Register
0x054 L	LDMA_IEN	RW	Interrupt Enable Register
0x05C L	LDMA_CHx_CFG	RW	Channel Configuration Register
0x060 L	LDMA_CHx_LOOP	RWH	Channel Loop Counter Register
0x064 L	LDMA_CHx_CTRL	RWH	Channel Descriptor Control Word Register
0x068 L	LDMA_CHx_SRC	RWH	Channel Descriptor Source Data Addres
0x06C L	LDMA_CHx_DST	RWH	Channel Descriptor Destination Data A
0x070 L	LDMA_CHx_LINK	RWH	Channel Descriptor Link Structure Add
0x1000 L	LDMA_IPVERSION_SET	R	DMA Channel Request Clear Register
0x1004 L	LDMA_EN_SET	RW	DMA module enable disable Register
0x1008 L	LDMA_CTRL_SET	RW	DMA Control Register
0x100C L	LDMA_STATUS_SET	RH	DMA Status Register
0x1010 L	LDMA_SYNCSWSET_SET	W	DMA Sync Trig Sw Set Register
0x1014 L	LDMA_SYNCSWCLR_SET	W	DMA Sync Trig Sw Clear register
0x1018 L	LDMA_SYNCHWEN_SET	RW	DMA Sync HW trigger enable register

Offset	Name	Туре	Description
0x101C	LDMA_SYNCHWSEL_SET	RW	DMA Sync HW trigger selection register
0x1020	LDMA_SYNCSTATUS_SET	RH	DMA Sync Trigger Status Register
0x1024	LDMA_CHEN_SET	w	DMA Channel Enable Register
0x1028	LDMA_CHDIS_SET	w	DMA Channel Disable Register
0x102C	LDMA_CHSTATUS_SET	RH	DMA Channel Status Register
0x1030	LDMA_CHBUSY_SET	RH	DMA Channel Busy Register
0x1034	LDMA_CHDONE_SET	RWH INTFLAG	DMA Channel Linking Done Register (Si
0x1038	LDMA_DBGHALT_SET	RW	DMA Channel Debug Halt Register
0x103C	LDMA_SWREQ_SET	W	DMA Channel Software Transfer Request
0x1040	LDMA_REQDIS_SET	RW	DMA Channel Request Disable Register
0x1044	LDMA_REQPEND_SET	RH	DMA Channel Requests Pending Register
0x1048	LDMA_LINKLOAD_SET	W	DMA Channel Link Load Register
0x104C	LDMA_REQCLEAR_SET	W	DMA Channel Request Clear Register
0x1050	LDMA_IF_SET	RWH INTFLAG	Interrupt Flag Register
0x1054	LDMA_IEN_SET	RW	Interrupt Enable Register
0x105C	LDMA_CHx_CFG_SET	RW	Channel Configuration Register
0x1060	LDMA_CHx_LOOP_SET	RWH	Channel Loop Counter Register
0x1064	LDMA_CHx_CTRL_SET	RWH	Channel Descriptor Control Word Register
0x1068	LDMA_CHx_SRC_SET	RWH	Channel Descriptor Source Data Addres
0x106C	LDMA_CHx_DST_SET	RWH	Channel Descriptor Destination Data A
0x1070	LDMA_CHx_LINK_SET	RWH	Channel Descriptor Link Structure Add
0x2000	LDMA_IPVERSION_CLR	R	DMA Channel Request Clear Register
0x2004	LDMA_EN_CLR	RW	DMA module enable disable Register
0x2008	LDMA_CTRL_CLR	RW	DMA Control Register
0x200C	LDMA_STATUS_CLR	RH	DMA Status Register
0x2010	LDMA_SYNCSWSET_CLR	W	DMA Sync Trig Sw Set Register
0x2014	LDMA_SYNCSWCLR_CLR	W	DMA Sync Trig Sw Clear register
0x2018	LDMA_SYNCHWEN_CLR	RW	DMA Sync HW trigger enable register
0x201C	LDMA_SYNCHWSEL_CLR	RW	DMA Sync HW trigger selection register
0x2020	LDMA_SYNCSTATUS_CLR	RH	DMA Sync Trigger Status Register
0x2024	LDMA_CHEN_CLR	W	DMA Channel Enable Register
0x2028	LDMA_CHDIS_CLR	W	DMA Channel Disable Register
0x202C	LDMA_CHSTATUS_CLR	RH	DMA Channel Status Register
0x2030	LDMA_CHBUSY_CLR	RH	DMA Channel Busy Register
0x2034	LDMA_CHDONE_CLR	RWH INTFLAG	DMA Channel Linking Done Register (Si
0x2038	LDMA_DBGHALT_CLR	RW	DMA Channel Debug Halt Register
0x203C	LDMA_SWREQ_CLR	W	DMA Channel Software Transfer Request

Offset	Name	Туре	Description
0x2040	LDMA_REQDIS_CLR	RW	DMA Channel Request Disable Register
0x2044	LDMA_REQPEND_CLR	RH	DMA Channel Requests Pending Register
0x2048	LDMA_LINKLOAD_CLR	W	DMA Channel Link Load Register
0x204C	LDMA_REQCLEAR_CLR	W	DMA Channel Request Clear Register
0x2050	LDMA_IF_CLR	RWH INTFLAG	Interrupt Flag Register
0x2054	LDMA_IEN_CLR	RW	Interrupt Enable Register
0x205C	LDMA_CHx_CFG_CLR	RW	Channel Configuration Register
0x2060	LDMA_CHx_LOOP_CLR	RWH	Channel Loop Counter Register
0x2064	LDMA_CHx_CTRL_CLR	RWH	Channel Descriptor Control Word Register
0x2068	LDMA_CHx_SRC_CLR	RWH	Channel Descriptor Source Data Addres
0x206C	LDMA_CHx_DST_CLR	RWH	Channel Descriptor Destination Data A
0x2070	LDMA_CHx_LINK_CLR	RWH	Channel Descriptor Link Structure Add
0x3000	LDMA_IPVERSION_TGL	R	DMA Channel Request Clear Register
0x3004	LDMA_EN_TGL	RW	DMA module enable disable Register
0x3008	LDMA_CTRL_TGL	RW	DMA Control Register
0x300C	LDMA_STATUS_TGL	RH	DMA Status Register
0x3010	LDMA_SYNCSWSET_TGL	W	DMA Sync Trig Sw Set Register
0x3014	LDMA_SYNCSWCLR_TGL	W	DMA Sync Trig Sw Clear register
0x3018	LDMA_SYNCHWEN_TGL	RW	DMA Sync HW trigger enable register
0x301C	LDMA_SYNCHWSEL_TGL	RW	DMA Sync HW trigger selection register
0x3020	LDMA_SYNCSTATUS_TGL	RH	DMA Sync Trigger Status Register
0x3024	LDMA_CHEN_TGL	W	DMA Channel Enable Register
0x3028	LDMA_CHDIS_TGL	W	DMA Channel Disable Register
0x302C	LDMA_CHSTATUS_TGL	RH	DMA Channel Status Register
0x3030	LDMA_CHBUSY_TGL	RH	DMA Channel Busy Register
0x3034	LDMA_CHDONE_TGL	RWH INTFLAG	DMA Channel Linking Done Register (Si
0x3038	LDMA_DBGHALT_TGL	RW	DMA Channel Debug Halt Register
0x303C	LDMA_SWREQ_TGL	W	DMA Channel Software Transfer Request
0x3040	LDMA_REQDIS_TGL	RW	DMA Channel Request Disable Register
0x3044	LDMA_REQPEND_TGL	RH	DMA Channel Requests Pending Register
0x3048	LDMA_LINKLOAD_TGL	W	DMA Channel Link Load Register
0x304C	LDMA_REQCLEAR_TGL	W	DMA Channel Request Clear Register
0x3050	LDMA_IF_TGL	RWH INTFLAG	Interrupt Flag Register
0x3054	LDMA_IEN_TGL	RW	Interrupt Enable Register
0x305C	LDMA_CHx_CFG_TGL	RW	Channel Configuration Register
0x3060	LDMA_CHx_LOOP_TGL	RWH	Channel Loop Counter Register
0x3064	LDMA_CHx_CTRL_TGL	RWH	Channel Descriptor Control Word Register

Offset	Name	Туре	Description
0x3068	LDMA_CHx_SRC_TGL	RWH	Channel Descriptor Source Data Addres
0x306C	LDMA_CHx_DST_TGL	RWH	Channel Descriptor Destination Data A
0x3070	LDMA_CHx_LINK_TGL	RWH	Channel Descriptor Link Structure Add

25.7 Register Description

25.7.1 LDMA_IPVERSION - DMA Channel Request Clear Register

Offset		Bit Position																														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	စ	∞	7	9	5	4	3	7	_	0
Reset			•		•	•																						2	8		•	
Access																												Ω				
N																												NOIS	5			
Name																												PVFR	-			

Bit	Name	Reset	Access	Description							
31:8	Reserved	To ensure o	n future devices, always write bits to 0. More information in 1.2 Con-								
7:0	IPVERSION	0x0	0x0 R DMA Request Clear								
	The read only IPVERSIC modules with different va	ON field gives the version for this module. There may be minor software changes required for alues of IPVERSION.									

25.7.2 LDMA_EN - DMA module enable disable Register

Offset	Bit Position	
0x004	33 4 5 6 6 6 7 8 8 8 9 9 10	0
Reset		0×0
Access		A M
Name		Z E N

Bit	Name	Reset	Access	Description							
31:1	Reserved	To ensure o	h future devices, always write bits to 0. More information in 1.2 Con-								
0	EN	0x0	0x0 RW LDMA module enable and disable register								
		es the module. Software should write to CONFIG type registers before setting the ENABLE bit. o SYNC type registers only after setting the ENABLE bit.									

25.7.3 LDMA_CTRL - DMA Control Register

Offset		Bit Position																														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset	0x0					0x1E								•	•	•										•		•				
Access	₩ M					W M																										
Name	CORERST					NUMFIXED																										

Bit	Name	Reset	Access	Description								
31	CORERST	0x0	RW	Reset DMA controller								
	Trigger a reset of the L	DMA controlle	IA controller core without losing register configuration									
30:29	Reserved	To ensure ventions	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 ventions									
28:24	NUMFIXED	0x1E	RW	Number of Fixed Priority Channels								
			•	ation channels. Channels CH0 though CH(n-1) are fixed, and chan- the field value. The reset value will give all fixed channels.								
23:0	Reserved	To ensure ventions	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions									

25.7.4 LDMA_STATUS - DMA Status Register

Offset															Ві	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	စ	∞	7	9	5	4	က	2	_	0
Reset				0X TF 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2										0x10				•				0×0		•			0×0				0x0	0×0
Access		ν ×												22								~					~				~	2
Name													FIFOLEVEL								CHERROR					CHGRANT				ANYREQ	ANYBUSY	

Bit	Name	Reset	Access	Description
31:29	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
28:24	CHNUM	0x1F	R	Number of Channels
	The value of CHNUN	1 always reads	the total numb	er of channels present for this instance of the DMA controller module.
23:21	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
20:16	FIFOLEVEL	0x10	R	FIFO Level
	The value of FIFOLE this register will read			entries currently in the FIFO. (Note when all channels are disabled, the FIFO.)
15:13	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
12:8	CHERROR	0x0	R	Errant Channel Number
	When the ERROR flag a transfer error.	ag is set in the I	LDMA_IF regis	ter, the CHERROR field will indicate the most recent channel to have
7:3	CHGRANT	0x0	R	Granted Channel Number
	The value of this field is zero.	d indicates the d	currently active	channel or last active channel. Note that the reset value for this field
2	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
1	ANYREQ	0x0	R	Any DMA Channel Request Pending
	The value of this bit	will be TRUE (1) if any reques	ts are pending
0	ANYBUSY	0x0	R	Any DMA Channel Busy
	The value of this bit v	will be TRUE (1) if one or more	e DMA channels are actively transferring data

25.7.5 LDMA_SYNCSWSET - DMA Sync Trig Sw Set Register

Offset	Bit Position	
0x010	31 31 32 33 33 34 35 35 35 35 35 35 35 35 35 35 35 35 35	r 9 r 4 r 7 r 0
Reset		0×0
Access		>
Name		SYNCSWSET

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
7:0	SYNCSWSET	0x0	W	DMA SYNC Software Trigger Set
	Sets the corresponding I	oit in the SYN	CSTATUS.SYN	CTRIG field to value 1.

25.7.6 LDMA_SYNCSWCLR - DMA Sync Trig Sw Clear register

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset														•								•						ć	2			
Access																												3	>			
Name																													SYNCSWCLK			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
7:0	SYNCSWCLR	0x0	W	DMA SYNC Software Trigger Clear
	Clears the corresponding	g bit in the SY	NCSTATUS.SY	NCTRIG field to value 0.

25.7.7 LDMA_SYNCHWEN - DMA Sync HW trigger enable register

Offset		Bit Po	sition	
0x018	31 30 29 28 27 27 26 25 27	23 22 21 20 20 19 17 17	6 9 9 8	r 9 & 4 & 2 t 0
Reset		0×0		0×0
Access		RW		RW
Name		SYNCCLREN		SYNCSETEN

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
23:16	SYNCCLREN	0x0	RW	Hardware Sync Trigger Clear Enable
	Enables the corresp [23:16].	onding bit in the	SYNCSTATU	S.SYNCTRIG field to be cleared by PRS channel 7-0, mapping to bits
15:8	Reserved	To ensure ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
7:0	SYNCSETEN	0x0	RW	Hardware Sync Trigger Set Enable
	Enables the corresp [7:0].	onding bit in the	SYNCSTATU	S.SYNCTRIG field to be set by PRS channel 7-0, mapping to bits

25.7.8 LDMA_SYNCHWSEL - DMA Sync HW trigger selection register

Offset															Ві	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	-	0
Reset			•				'					Š) X					'		'			<u>'</u>			'		5	3			
Access												2	<u>}</u>															2	2			
Name													TINCCLRED																-			

D:4	Nama	Pasat	A	Description
Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
23:16	SYNCCLREDGE	0x0	RW	Hardware Sync Trigger Clear Edge Select
	Select rising or falling	edge detection	n on PRS to clea	ar trigger.
	Value	Mode		Description
	0	RISE		Use rising edge detection
	1	FALL		Use falling edge detection
15:8	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
7:0	SYNCSETEDGE	0x0	RW	Hardware Sync Trigger Set Edge Select
	Select rising or falling	edge detection	n on PRS to set	trigger.
	Value	Mode		Description
	0	RISE		Use rising edge detection
	1	FALL		Use falling edge detection

25.7.9 LDMA_SYNCSTATUS - DMA Sync Trigger Status Register

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	တ	8	7	9	5	4	က	2	_	0
Reset					•			•	•	•	•	•	•			•	•		•	•			•					2	2			
Access																												۵	۲			
Name																												CIGEONA	2			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
7:0	SYNCTRIG	0x0	R	sync trig status
	Reflects the status of set SYNC structures. Setting			(SYNCSWSET/SYNCSWCLR), hardware (PRS), and loading nce over clearing.

25.7.10 LDMA_CHEN - DMA Channel Enable Register

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	8	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	7	_	0
Reset								•										•	•									2	Š			
Access																												}	>			
Name																																

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility witl	n future devices, always write bits to 0. More information in 1.2 Con-
7:0	CHEN	0x0	W	Channel Enables
	Setting one of these bits	will enable th	e respective DN	1A channel, wirting zeros has no effect

25.7.11 LDMA_CHDIS - DMA Channel Disable Register

Offset															Bi	t Po	sitio	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Reset							•																					Ç	OX O			
Access																												>	>			
Name																												0	₽			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
7:0	CHDIS	0x0	W	DMA Channel disable
	Setting one of these bits	will disable o	f the channels, v	wrting zero has no effect

25.7.12 LDMA_CHSTATUS - DMA Channel Status Register

Offset															Bi	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	7	0
Reset																												2	e e			
Access																												0	צ			
Name																												OLITATOLIO	_			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility witi	n future devices, always write bits to 0. More information in 1.2 Con-
7:0	CHSTATUS	0x0	R	DMA Channel Status
	The value of this bit will I	pe TRUE (1) i	f one or more D	MA channels are enabled

25.7.13 LDMA_CHBUSY - DMA Channel Busy Register

Offset	Bit Position	
0x030	33 34 35 36 37 38 39 30 30 31 32 33 34 35 36 37 41 41 41 41 41 41 41 41 41 42 43 44 44 44 45 46 46 47 48 48 49 40 40 40 40 40 40 40 40 40 40 40 40 41 42 43 44 44 45 46 47 48 48 49 40 40 40 40 41 41 <th>7 9 2 4 8 2 1 0</th>	7 9 2 4 8 2 1 0
Reset		0×0
Access		α
Name		BUSY

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensur ventions	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
7:0	BUSY	0x0	R	Channels Busy
	The bits of this field	read 1 when the	e correspondin	g channel is busy.

25.7.14 LDMA_CHDONE - DMA Channel Linking Done Register (Si...

Offset															Ві	t Po	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset		'	'		'									'		'	•	'	•					'	0X0	000	0×0	0×0	000	0x0	0X0	0x0
Access																									S.	₩ W	₩ M	₽	₩ W	₽	W.	RW
Name																									CHDONE7	CHDONE6	CHDONE5	CHDONE4	CHDONE3	CHDONE2	CHDONE1	CHDONE0

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
7	CHDONE7	0x0	RW	DMA Channel Link done intr flag
	Each DMA channel sets	s the correspo	nding bit in this	register when the entire transfer is done.
6	CHDONE6	0x0	RW	DMA Channel Link done intr flag
	Each DMA channel sets	s the correspo	nding bit in this	register when the entire transfer is done.
5	CHDONE5	0x0	RW	DMA Channel Link done intr flag
	Each DMA channel sets	s the correspo	nding bit in this	register when the entire transfer is done.
4	CHDONE4	0x0	RW	DMA Channel Link done intr flag
	Each DMA channel sets	s the correspo	nding bit in this	register when the entire transfer is done.
3	CHDONE3	0x0	RW	DMA Channel Link done intr flag
	Each DMA channel sets	s the correspo	nding bit in this	register when the entire transfer is done.
2	CHDONE2	0x0	RW	DMA Channel Link done intr flag
	Each DMA channel sets	s the correspo	nding bit in this	register when the entire transfer is done.
1	CHDONE1	0x0	RW	DMA Channel Link done intr flag
	Each DMA channel sets	s the correspo	nding bit in this	register when the entire transfer is done.
0	CHDONE0	0x0	RW	DMA Channel Link done intr flag
	Each DMA channel sets	s the correspo	nding bit in this	register when the entire transfer is done.

25.7.15 LDMA_DBGHALT - DMA Channel Debug Halt Register

Offset	Bit Position	
0x038	1 1 <th>L 0 0 4 0 0 0</th>	L 0 0 4 0 0 0
Reset		0×0
Access		RW
Name		DBGHALT

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
7:0	DBGHALT	0x0	RW	DMA Debug Halt
	Setting one of these bits halted. This may be usef			DMA channel's peripheral request when debugging and the CPU is ire.

25.7.16 LDMA_SWREQ - DMA Channel Software Transfer Request...

Offset															Bi	t Pc	siti	on														
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	3	2	_	0
Reset																												Š	Š			
Access																												7	>			
Name																													SWK DIAWK DI			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
7:0	SWREQ	0x0	W	Software Transfer Requests
	Setting one of these bits	s will trigger a	DMA transfer for	or the corresponding channel. Writing zeros has no effect.

25.7.17 LDMA_REQDIS - DMA Channel Request Disable Register

Offset	Bit Position	
0x040	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	r 0
Reset		0×0
Access		RW
Name		REQDIS

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
7:0	REQDIS	0x0	RW	DMA Request Disables
	Setting one of these bits ripheral requests will be	•	eripheral reques	sts for the corresponding channel. When cleared any pending pe-

25.7.18 LDMA_REQPEND - DMA Channel Requests Pending Register

														Bi	t Po	siti	on														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
																											2	2			
																											Δ	۷			
																												<u></u>			
																												7			
	31	30 31	31 30 30 29	31 30 31 31 32 30 31 31 31 31 31 31 31 31 31 31 31 31 31	31 30 29 28 27	30 30 23 27 27 26 26 27	31 30 30 27 28 26 26 26 26 27 25	31 30 30 27 27 28 28 28 29 27 27 24	31 30 30 27 28 27 28 28 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	31 32 33 34 35 36 37 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37	31 30 22 24 25 27 27 28 27 28 27 28 27 28 27 28 27 28 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	31 30 30 31 31 32 32 32 32 32 32 32 32 32 32 32 32 32	31 30 22 24 25 25 26 27 28 27 28 29 30 40 40 40 40 40 40 40 40 40 40 40 40 40	31 32 31 32 32 34 36 37 38 37 38 30 31 31 31 31 31 31 31 31 31 31 31 31 31				Bit Position 3.1 5.2 5.3 5.4 5.4 5.5 6.4 6.4 6.4 6.4 6.4										31 31 31 31 31 31 31 31 31 31 31 31 31 3		R 0x0 3 4 5 5 6 7 7 8 8 8 7 9 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11	R 000 3 4 5 6 7 7 8 8 8 7 7 9 8 8 7 9 9 9 9

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
7:0	REQPEND	0x0	R	DMA Requests Pending
	When a DMA channel ha	as a pending p	peripheral reque	st the corresponding REQPEND bit will read 1.

25.7.19 LDMA_LINKLOAD - DMA Channel Link Load Register

Offset															Bi	t Po	siti	on														
0x048	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset		•	•	•				•			•			•		•	•		•	•		•					•	2	3		,	
Access																												}	>			
																												ם אַ כ	5			
Name																												NK I				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
7:0	LINKLOAD	0x0	W	DMA Link Loads
	Setting one of these bits nel. This empowers softw			DMA channel to load the next DMA structure and enable the channee of descriptors.

25.7.20 LDMA_REQCLEAR - DMA Channel Request Clear Register

Offset															Bi	t Po	siti	on														
0x04C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset																												2	3			
Access																												}	>			
Name																													ζ			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
7:0	REQCLEAR	0x0	W	DMA Request Clear
	Setting one of these bits	will clear any	internally regist	ered transfer requests for the corresponding channel.

25.7.21 LDMA_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x050	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ဝ	8	7	9	2	4	က	7	_	0
Reset	000		•		<u>'</u>				'		'		'												0×0	0x0	0x0	0×0	0×0	000	0×0	0x0
Access	S.																								RW	RW	ZW W	W.	R M	R M	W.	RW
Name	ERROR																								DONE7	DONE6	DONE5	DONE4	DONE3	DONE2	DONE1	DONE0

Bit	Name	Reset	Access	Description
31	ERROR	0x0	RW	Error Flag
	Set to 1 on an Error			
30:8	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Con-
7	DONE7	0x0	RW	DMA Structure Operation Done Interrupt F
	When a channel complet	tes a transfer	or sync operation	on, the corresponding DONE bit is set in the LDMA_IF register.
6	DONE6	0x0	RW	DMA Structure Operation Done Interrupt F
	When a channel complete	tes a transfer	or sync operation	on, the corresponding DONE bit is set in the LDMA_IF register.
5	DONE5	0x0	RW	DMA Structure Operation Done Interrupt F
	When a channel complete	tes a transfer	or sync operation	on, the corresponding DONE bit is set in the LDMA_IF register.
4	DONE4	0x0	RW	DMA Structure Operation Done Interrupt F
	When a channel complet	tes a transfer	or sync operation	on, the corresponding DONE bit is set in the LDMA_IF register.
3	DONE3	0x0	RW	DMA Structure Operation Done Interrupt F
	When a channel complet	tes a transfer	or sync operation	on, the corresponding DONE bit is set in the LDMA_IF register.
2	DONE2	0x0	RW	DMA Structure Operation Done Interrupt F
	When a channel complet	tes a transfer	or sync operation	on, the corresponding DONE bit is set in the LDMA_IF register.
1	DONE1	0x0	RW	DMA Structure Operation Done Interrupt F
	When a channel comple	tes a transfer	or sync operation	on, the corresponding DONE bit is set in the LDMA_IF register.
0	DONE0	0x0	RW	DMA Structure Operation Done Interrupt F
	When a channel complet	tes a transfer	or sync operation	on, the corresponding DONE bit is set in the LDMA_IF register.

25.7.22 LDMA_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x054	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	3	2	_	0
Reset	0x0				'									•			•											>	2			
Access	Z.																											Ž	2			
Name	ERROR																											HUOUHU				

Bit	Name	Reset	Access	Description
31	ERROR	0x0	RW	Enable or disable the error interrupt
	This is the bitfield	to enable the link o	lone interrupt	
30:8	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
7:0	CHDONE	0x0	RW	Enable or disable the done interrupt
	This is the bitfield	to enable the AHB	bus error inte	errupt

25.7.23 LDMA_CHx_CFG - Channel Configuration Register

Offset															Bi	t Po	siti	on														
0x05C	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	14	13	12	7	10	6	∞	7	9	5	4	က	2	_	0
Reset						•					000	0x0			2	OXO				•							•				•	
Access											₩ M	W.			2	<u>۸</u>																
Name											DSTINCSIGN	SRCINCSIGN			ABBCI OTC	5																

Bit	Name	Reset	Access	Description
31:22	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
21	DSTINCSIGN	0x0	RW	Destination Address Increment Sign
	0: Increment destina	ation address, 1:	Decrement de	estination address
	Value	Mode		Description
	0	POSITIVE	Ī	Increment destination address
	1	NEGATIV	Έ	Decrement destination address
20	SRCINCSIGN	0x0	RW	Source Address Increment Sign
	0: Increment source	address, 1: Dec	crement source	e address
	Value	Mode		Description
	0	POSITIVE	Ξ	Increment source address
	1	NEGATIV	Έ	Decrement source address
19:18	Reserved	To ensure	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-
17:16	ARBSLOTS	0x0	RW	Arbitration Slot Number Select
	For channels using	round robin arbit	tration, this bit-	field is used to select the number of slots in the round robin queue.
	Value	Mode		Description
	0	ONE		One arbitration slot selected
	1	TWO		Two arbitration slots selected
	2	FOUR		Four arbitration slots selected
	3	EIGHT		Eight arbitration slots selected
15:0	Reserved	To ensure	e compatibility	with future devices, always write bits to 0. More information in 1.2 Con-

25.7.24 LDMA_CHx_LOOP - Channel Loop Counter Register

Offset															Bi	t Po	siti	on														
0x060	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	က	7	_	0
Reset			•	•			•					•				•		•					•					() X		•	
Access																												i	≷			
Name																													LOOPCNI			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure o	compatibility witi	h future devices, always write bits to 0. More information in 1.2 Con-
7:0	LOOPCNT	0x0	RW	Linked Structure Sequence Loop Counter
	This bit-field specifies the fore using a looping desc		terations when ι	ising looping descriptors. Software should write to LOOPCNT be-

25.7.25 LDMA_CHx_CTRL - Channel Descriptor Control Word Register

Offset															Bi	t Po	siti	on														
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	က	2	1	0
Reset	000	000	2	3	2	OX O	2	Š	000	0x0	000	0x0		2	OX O		0×0		•	•			0x0		•		•	•	000		2	S S
Access	<u>~</u>	2	20	2	20	<u>}</u>	2	<u>}</u>	Z.	RW	₩ M	R		2	<u>}</u>		₩ M						RW						2		2	 } Ľ
Name	DSTMODE	SRCMODE	CNITOC		SIZE	7	O O	SKCINC	IGNORESREQ	DECLOOPCNT	REQMODE	DONEIEN		100Kg17E			BYTESWAP						XFERCNT						STRUCTREQ		STPICTTYPE	_ _ _ _

	SRCI DSTI	SRCI IGNC DECL	DON BLOC	BYTE	XFEF	STRI	STRU
			'				
Bit	Name	Reset /	Access	Description			
31	DSTMODE	0x0 F	₹	Destination Add	Iressing Mode		
		e destination address			s. After loading a linked d r. Note that the first desc		
	Value	Mode		Description			
	0	ABSOLUTE		The DSTADDR fi address of the de	ield of LDMA_CHx_DST estination data.	contains the abs	olute
	1	RELATIVE		The DSTADDR for offset of the desti	ield of LDMA_CHx_DST ination data.	contains the rela	ıtive
30	SRCMODE	0x0	₹	Source Address	sing Mode		
					er loading a linked descr lat the first descriptor alv		
	Value	Mode		Description			
	0	ABSOLUTE		The SRCADDR f address of the sc	ield of LDMA_CHx_SRC ource data.	contains the ab	solute
	1	RELATIVE		The SRCADDR f offset of the sour	ield of LDMA_CHx_SRC ce data.	contains the rela	ative
29:28	DSTINC	0x0 F	₹W	Destination Add	Iress Increment Size		
					ement the destination ac and can be a byte, half-v		unit of
	-						
	Value	Mode		Description			
	Value 0	Mode ONE			ation address by one uni	it data size after e	each
				Increment destination	ation address by one uni		
	0	ONE		Increment destination write Increment destination write		t data sizes after	each

Bit	Name	Reset	Access	Description
27:26	SIZE	0x0	RW	Unit Data Transfer Size
	This field specifies the	ne size of data t	ransferred.	
	Value	Mode		Description
	0	BYTE		Each unit transfer is a byte
	1	HALFWO	RD	Each unit transfer is a half-word
	2	WORD		Each unit transfer is a word
25:24	SRCINC	0x0	RW	Source Address Increment Size
				ata addresses to increment the source address after each unit of data e SIZE bit-field and can be a byte, half-word or word.
	Value	Mode		Description
	0	ONE		Increment source address by one unit data size after each read
	1	TWO		Increment source address by two unit data sizes after each read
	2	FOUR		Increment source address by four unit data sizes after each read
	3	NONE		Do not increment the source address. In this mode reads are made from a fixed source address, for example reading FIFO.
23	IGNORESREQ	0x0	RW	Ignore Sreq
	The channel arbiter	will ignore single	e requests (SRE	(Q) and only respond to multiple requests (REQ) when this bit is set.
22	DECLOOPCNT	0x0	RW	Decrement Loop Count
	When using looping, scriptor execution.	, setting this bit	will decrement t	ne LOOPCNT field in the LDMA_CHx_LOOP register after each de-
21	REQMODE	0x0	RW	DMA Request Transfer Mode Select
	Selects the DMA Re	quest Transfer ı	mode.	
	Value	Mode		Description
	0	BLOCK		The LDMA transfers one BLOCKSIZE per transfer request.
	1			
	·	ALL		One transfer request transfers all units as defined by the XFRCNT field.
20	DONEIEN	ALL 0x0	RW	
20	DONEIEN	0x0 et the interrupt fl	ag when the tra	XFRCNT field.
20	DONEIEN Setting this bit will se	0x0 et the interrupt fl	ag when the tra	DMA Operation Done Interrupt Flag Set En
	DONEIEN Setting this bit will se synchronized in the BLOCKSIZE	0x0 et the interrupt fl case of a SYNC	ag when the tra transfer.	DMA Operation Done Interrupt Flag Set En nsfer is done, or linked in the case where the LINK bit is set, or
	DONEIEN Setting this bit will se synchronized in the BLOCKSIZE	0x0 et the interrupt fl case of a SYNC	ag when the tra transfer.	DMA Operation Done Interrupt Flag Set En nsfer is done, or linked in the case where the LINK bit is set, or Block Transfer Size
	DONEIEN Setting this bit will se synchronized in the BLOCKSIZE This bit-field controls	0x0 et the interrupt fl case of a SYNC 0x0 s the number of	ag when the tra transfer.	DMA Operation Done Interrupt Flag Set En Insfer is done, or linked in the case where the LINK bit is set, or Block Transfer Size ers per arbitration cycle
	DONEIEN Setting this bit will se synchronized in the BLOCKSIZE This bit-field controls Value	0x0 et the interrupt fl case of a SYNC 0x0 s the number of	ag when the tra transfer.	DMA Operation Done Interrupt Flag Set En Insfer is done, or linked in the case where the LINK bit is set, or Block Transfer Size Pers per arbitration cycle Description
	DONEIEN Setting this bit will se synchronized in the BLOCKSIZE This bit-field controls Value	0x0 et the interrupt fl case of a SYNC 0x0 s the number of Mode UNIT1	ag when the tra transfer.	DMA Operation Done Interrupt Flag Set En Insfer is done, or linked in the case where the LINK bit is set, or Block Transfer Size Inster arbitration cycle Description One unit transfer per arbitration

Bit	Name	Reset	Access	Description
	4	UNIT6		Six unit transfers per arbitration
	5	UNIT8		Eight unit transfers per arbitration
	7	UNIT16		Sixteen unit transfers per arbitration
	9	UNIT32		32 unit transfers per arbitration
	10	UNIT64		64 unit transfers per arbitration
	11	UNIT128		128 unit transfers per arbitration
	12	UNIT256		256 unit transfers per arbitration
	13	UNIT512		512 unit transfers per arbitration
	14	UNIT1024		1024 unit transfers per arbitration
	15	ALL		Transfer all units as specified by the XFRCNT field
15	BYTESWAP	0x0	RW	Endian Byte Swap
	For word and half-word	transfers, set	ting this bit will s	swap all bytes of each word or half-word.
14:4	XFERCNT	0x0	RW	DMA Unit Data Transfer Count
	Specifies number of un should be one less that			bytes) to transfer, as determined by the SIZE field. The value written
3	STRUCTREQ	0x0	R	Structure DMA Transfer Request
	Structure Transfer Req	uest		
2	Reserved	To ensure ventions	compatibility wi	th future devices, always write bits to 0. More information in 1.2 Con-
1:0	STRUCTTYPE	0x0	RW	DMA Structure Type
	DMA Structure type			
	Value	Mode		Description
	0	TRANSFE	R	DMA transfer structure type selected.
	1	SYNCHRO	NIZE	Synchronization structure type selected.
	2	WRITE		Write immediate value structure type selected.

25.7.26 LDMA_CHx_SRC - Channel Descriptor Source Data Addres...

Offset															Bi	t Po	siti	on														
0x068	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	က	2	_	0
Reset		0 0 0																														
Access																																
Name																90000	2															

Bit	Name	Reset	Access	Description
31:0	SRCADDR	0x0	RW	Source Data Address

Writing to this register sets the source address. Reading from this register during a DMA transfer will indicate the next source read address. The value of this register is incremented or decremented with each source read.

25.7.27 LDMA_CHx_DST - Channel Descriptor Destination Data A...

Offset															Bi	t Po	siti	on														
0x06C	33	30	59	28	27	26	25	24	23	22	21	20	19	8	17	16	15	14	13	12	7	10	ဝ	∞	7	9	2	4	က	2	_	0
Reset) 0 0 >																															
Access																2	2															
Name																GLANDE	2															

Bit	Name	Reset	Access	Description
31:0	DSTADDR	0x0	RW	Destination Data Address
				Reading from this register during a DMA transfer will indicate the gister is incremented or decremented with each destination write.

25.7.28 LDMA_CHx_LINK - Channel Descriptor Link Structure Add...

Offset															Bi	t Po	siti	on														
0x070	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	7	_	0
Reset		•													2	2															0x0	0x0
Access															///	2															ZW W	œ
Name															פריאאוי	ι,															LINK	LINKMODE

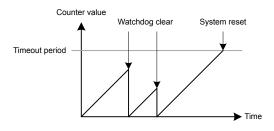
Bit	Name	Reset	Access	Description
31:2	LINKADDR	0x0	RW	Link Structure Address
				ted descriptor to this register. When a linked descriptor is loaded, it this register will reflect the address of the next linked descriptor.
1	LINK	0x0	RW	Link Next Structure
				T set, the DMA will load the next linked descriptor. If the next linked ne next linked descriptor.
0	LINKMODE	0x0	R	Link Structure Addressing Mode
	•	•		descriptors. After loading a linked descriptor, reading this field will indi- criptor. Note that the first descriptor always uses absolute addressing
	Value			D 10
	Value	Mode		Description
	0	ABSOLU	TE	The LINKADDR field of LDMA_CHx_LINK contains the absolute address of the linked descriptor.

25.8 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	LDMAXBAR_CHx_REQSEL	RW	Channel Peripheral Request Select Reg
0x1000	LDMAXBAR_CHx_RE- QSEL_SET	RW	Channel Peripheral Request Select Reg
0x2000	LDMAXBAR_CHx_RE- QSEL_CLR	RW	Channel Peripheral Request Select Reg
0x3000	LDMAXBAR_CHx_RE- QSEL_TGL	RW	Channel Peripheral Request Select Reg

25.9 Register Description


25.9.1 LDMAXBAR_CHx_REQSEL - Channel Peripheral Request Select Reg...

Offset															Bi	t Pc	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•		•								Ç	e N	•	•		•					•	•	•	•		•		ć	OXO	<u> </u>
Access													Ž	≥ Y																Ž	} Ľ	
Name														SOURCESEL																Ü	SIGSEL	

Bit	Name	Reset	Access	Description
31:22	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
21:16	SOURCESEL	0x0	RW	Source Select
	Select input source to	DMA channel.		
15:4	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
3:0	SIGSEL	0x0	RW	Signal Select
	Select input signal to D	MA channel.		

26. WDOG - Watch Dog Timer

Quick Facts

What?

The WDOG (Watchdog Timer) resets the system in case of a fault condition, and can be enabled in all energy modes as long as the low frequency clock source is available.

Why?

If a software failure or external event renders the MCU unresponsive, a Watchdog timeout will reset the system to a known, safe state..

How?

An enabled Watchdog Timer implements a configurable timeout period. If the CPU fails to re-start the Watchdog Timer before it times out, a full system reset will be triggered. The Watchdog consumes insignificant power, and allows the device to remain safely in low energy modes for up to 256 seconds at a time.

26.1 Introduction

The purpose of the watchdog timer is to generate a reset in case of a system failure to increase application reliability. The failure can be caused by a variety of events, such as an ESD pulse or a software failure.

26.2 Features

- · Clock input from selectable oscillators
 - · Internal 32 kHz LFRCO oscillator
 - Internal 1 kHz ULFRCO oscillator
 - External 32.768 kHz LFXO XTAL oscillator
 - · HCLK divided by 1024
- Configurable timeout period from 9 to 256k watchdog clock cycles
- Individual selection to keep running or freeze when entering EM2 DeepSleep or EM3 Stop
- · Selection to keep running or freeze when entering debug mode
- Selection to block the CPU from entering Energy Mode 4
- · Configurable warning interrupt at 25%,50%, or 75% of the timeout period
- Configurable window interrupt at 12.5%,25%,37.5%,50%,62.5%,75%,87.5% of the timeout period
- · Timeout interrupt
- · PRS as a watchdog clear
- Interrupt for the event where a PRS rising edge is absent before a software reset

26.3 Functional Description

The watchdog is enabled by setting the EN bit in WDOGn_EN. When enabled, the watchdog counts up to the period value configured through the PERSEL field in WDOGn_CFG. If the watchdog timer is not cleared to 0 (by writing a 1 to the CLEAR bit in WDOGn_CMD) before the period is reached, the chip is reset. If a timely clear command is issued, the timer starts counting up from 0 again. The watchdog can optionally be locked by writing anything other than UNLOCK code in WDOGn_LOCK. Once locked, it cannot be disabled or reconfigured by software.

When the EN bit in WDOGn_EN cleared to 0, the watchdog counter is reset.

26.3.1 Clock Source

Four clock sources are available for use with the watchdog, through the CLKSEL field in CMU_WDOGn_CFG. The selected oscillator source automatically starts when the watchdog is enabled. To prevent accidental change of the clock selection, CMU_WDOGLOCK can be written anything other than UNLOCK code. Also, respective oscillator has locks to prevent accidental disabling of oscillators. The PERSEL field in WDOGn_CFG is used to divide the selected watchdog clock, and the timeout for the watchdog timer can be calculated with the formula:

$$T_{TIMEOUT} = [2^{(PERSEL+3)} + 1] / f$$

where f is the frequency of the selected clock.

Users must clear EM2RUN and EM3RUN when the selected clock source is HFCLKDIV1024.

26.3.2 Debug Functionality

The watchdog timer can either keep running or be frozen when the device is halted by a debugger. This configuration is done through the DEBUGRUN bit in WDOGn_CFG. When code execution is resumed, the watchdog will continue counting where it left off.

26.3.3 Energy Mode Handling

The watchdog timer can be configured to either keep on running or freeze when entering EM2 DeepSleep or EM3 Stop. The configuration is done individually for each energy mode in the EM2RUN and EM3RUN bits in WDOGn_CFG. When the watchdog has been frozen and is re-entering an energy mode where it is running, the watchdog timer will continue counting where it left off. For the watchdog there is no difference between EM0 Active and EM1 Sleep. The watchdog does not run in EM4. If EM4BLOCK in WDOGn_CFG is set, the CPU will be prevented from entering EM4 by software request.

26.3.4 Warning Interrupt

The watchdog implements a warning interrupt which can be configured to occur at approximately 25%, 50%, or 75% of the timeout period through the WARNSEL field of the WDOGn_CFG register. This interrupt can be used to wake up the cpu for clearing the watchdog. The warning point for the watchdog timer can be calculated with the formula:

$$T_{WARNING} = [2^{(PERSEL+3)} + 1]*WARNSEL / 4 / f$$

where f is the frequency of the selected clock.

When the watchdog is enabled, it is recommended to clear the watchdog before changing WARNSEL.

26.3.5 Window Interrupt

This interrupt occurs when the watchdog is cleared below a certain threshold. This threshold is given by the formula:

$$T_{WINDOW} = [2^{(PERSEL+3)} + 1]*WARNSEL / 8 / f$$

where f is the frequency of the selected clock.

This value will be approximately 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, or 87.5% of the timeout value based on the WINSEL field of the WDOGn_CFG. Figure 26.2 WDOG Warning, Window, and Timeout on page 860 illustrates the warning, the window, and the timeout interrupts. Also, it shows where the prs rising edge needs to happen. The prs edge detection feature is discussed later.

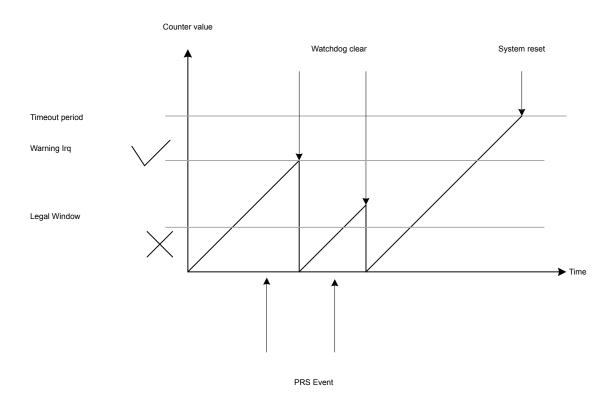


Figure 26.2. WDOG Warning, Window, and Timeout

26.3.6 PRS as Watchdog Clear

A PRS channel (selected by register PRS_CONSUMER_WDOGn_SRC0) can be used to clear the watchdog counter. To enable this feature, CLRSRC must be set to 1. Figure 26.2 PRS Clearing WDOG on page 861 shows how the PRS channel takes over the WDOG clear function. Clearing the WDOG with the PRS is mutually exclusive of clearing the WDT by software.

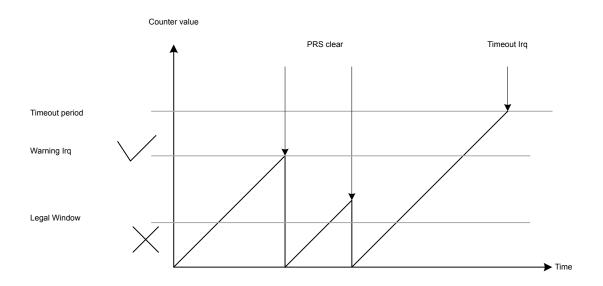


Figure 26.2. PRS Clearing WDOG

26.3.7 PRS Rising Edge Monitoring

PRS channels can be used to monitor multiple processes. The first and second channel are selected by PRS_CONSUM-ER_WDOGn_SRC0 and PRS_CONSUMER_WDOGn_SRC1, respectively. If enabled, every time the watch dog timer is cleared the PRS channels are checked and any channel which has not seen an event can trigger an interrupt.

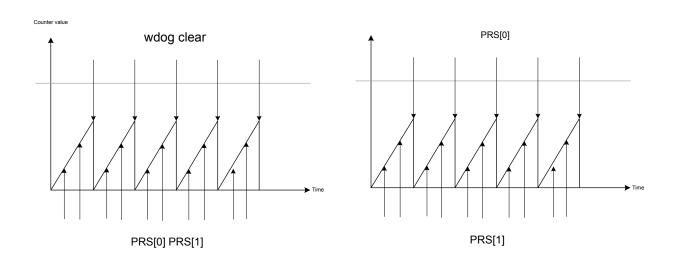


Figure 26.3. PRS Edge Monitoring in WDOG

26.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	WDOG_IPVERSION	R	IP Version Register
0x004	WDOG_EN	RW ENABLE	Enable Register
0x008	WDOG_CFG	RW CONFIG	Configuration Register
0x00C	WDOG_CMD	W LFSYNC	Command Register
0x014	WDOG_STATUS	RH	Status Register
0x018	WDOG_IF	RWH INTFLAG	Interrupt Flag Register
0x01C	WDOG_IEN	RW	Interrupt Enable Register
0x020	WDOG_LOCK	W	Lock Register
0x024	WDOG_SYNCBUSY	RH	Synchronization Busy Register
0x1000	WDOG_IPVERSION_SET	R	IP Version Register
0x1004	WDOG_EN_SET	RW ENABLE	Enable Register
0x1008	WDOG_CFG_SET	RW CONFIG	Configuration Register
0x100C	WDOG_CMD_SET	W LFSYNC	Command Register
0x1014	WDOG_STATUS_SET	RH	Status Register
0x1018	WDOG_IF_SET	RWH INTFLAG	Interrupt Flag Register
0x101C	WDOG_IEN_SET	RW	Interrupt Enable Register
0x1020	WDOG_LOCK_SET	w	Lock Register
0x1024	WDOG_SYNCBUSY_SET	RH	Synchronization Busy Register
0x2000	WDOG_IPVERSION_CLR	R	IP Version Register
0x2004	WDOG_EN_CLR	RW ENABLE	Enable Register
0x2008	WDOG_CFG_CLR	RW CONFIG	Configuration Register
0x200C	WDOG_CMD_CLR	W LFSYNC	Command Register
0x2014	WDOG_STATUS_CLR	RH	Status Register
0x2018	WDOG_IF_CLR	RWH INTFLAG	Interrupt Flag Register
0x201C	WDOG_IEN_CLR	RW	Interrupt Enable Register
0x2020	WDOG_LOCK_CLR	W	Lock Register
0x2024	WDOG_SYNCBUSY_CLR	RH	Synchronization Busy Register
0x3000	WDOG_IPVERSION_TGL	R	IP Version Register
0x3004	WDOG_EN_TGL	RW ENABLE	Enable Register
0x3008	WDOG_CFG_TGL	RW CONFIG	Configuration Register
0x300C	WDOG_CMD_TGL	W LFSYNC	Command Register
0x3014	WDOG_STATUS_TGL	RH	Status Register
0x3018	WDOG_IF_TGL	RWH INTFLAG	Interrupt Flag Register
0x301C	WDOG_IEN_TGL	RW	Interrupt Enable Register
0x3020	WDOG_LOCK_TGL	W	Lock Register

Offset	Name	Туре	Description
0x3024	WDOG_SYNCBUSY_TGL	RH	Synchronization Busy Register

26.5 Register Description

26.5.1 WDOG_IPVERSION - IP Version Register

Offset															Bi	t Po	sitio	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	ω	7	9	2	4	က	2	_	0
Reset					•					•		•		•		>	2		•		•		•	•	•							
Access																۵	۷															
Name																IDVEDVION																

Bit	Name	Reset	Access	Description
31:0	IPVERSION	0x0	R	IP Version
	The read only IPVERSION modules with different values	0		this module. There may be minor software changes required for

26.5.2 WDOG_EN - Enable Register

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	9	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																																0×0
Access																																RW
Name																																EN

Bit	Name	Reset	Access	Description							
31:1	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in 1.2 Co							
0	EN	0x0	Module Enable								
	The ENABLE bit enables the module. Software should write to CONFIG type registers before setting the ENABLE bit. Software should write to SYNC type registers only after setting the ENABLE bit.										

26.5.3 WDOG_CFG - Configuration Register

Offset		Bit Position																														
0x008	31	30	29	28	27	26	25	24	22 22 23 20 20 20				19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	က	2	-	0
Reset			000			1	2	e e						0×F									0×0	0×0	3			000	0x0	0x0	0x0	0x0
Access			R ≷				2	} Y					RW								₩ M	R R R						% M	% M	RW	RW W	
Name			WINSEL					WAKINGEL							render							PRS1MISSRSTEN	PRSOMISSRSTEN	WDOGRSTDIS				DEBUGRUN	EM4BLOCK	EM3RUN	EM2RUN	CLRSRC

Bit	Name	Reset	Access	Description									
31	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in ventions											
30:28	WINSEL	0x0	RW	WDOG Illegal Window Select									
	Select WDOG illegal	limit.											
	Value	Mode		Description									
	0	DIS		Disabled.									
	1	SEL1		Window timeout is 12.5% of the Timeout.									
	2	SEL2		Window timeout is 25% of the Timeout.									
	3	SEL3		Window timeout is 37.5% of the Timeout.									
	4	SEL4		Window timeout is 50% of the Timeout.									
	5	SEL5		Window timeout is 62.5% of the Timeout.									
	6	SEL6		Window timeout is 75.5% of the Timeout.									
	7	SEL7		Window timeout is 87.5% of the Timeout.									
27:26	Reserved	To ensure	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 C ventions										
25:24	WARNSEL	0x0	RW	WDOG Warning Period Select									
	Select WDOG warning timeout period.												
	Value	Mode		Description									
	0	DIS		Disable									
	1	SEL1		Warning timeout is 25% of the Timeout.									
	2	SEL2		Warning timeout is 50% of the Timeout.									
	3	SEL3		Warning timeout is 75% of the Timeout.									
23:20	Reserved	To ensure ventions	e compatibility v	vith future devices, always write bits to 0. More information in 1.2 Con-									
19:16	PERSEL	0xF	RW	WDOG Timeout Period Select									
	Select WDOG timeout period.												

Bit	Name	Reset	Access	Description
	Value	Mode		Description
	0	SEL0		Timeout period of 9 wdog cycles
	1	SEL1		Timeout period of 17 wdog cycles
	2	SEL2		Timeout period of 33 wdog cycles
	3	SEL3		Timeout period of 65 wdog cycles
	4	SEL4		Timeout period of 129 wdog cycles
	5	SEL5		Timeout period of 257 wdog cycles
	6	SEL6		Timeout period of 513 wdog cycles
	7	SEL7		Timeout period of 1k wdog cycles
	8	SEL8		Timeout period of 2k wdog cycles
	9	SEL9		Timeout period of 4k wdog cycles
	10	SEL10		Timeout period of 8k wdog cycles
	11	SEL11		Timeout period of 16k wdog cycles
	12	SEL12		Timeout period of 32k wdog cycles
	13	SEL13		Timeout period of 64k wdog cycles
	14	SEL14		Timeout period of 128k wdog cycles
	15	SEL15		Timeout period of 256k wdog cycles
15:11	Reserved	To ensure ventions	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
10	PRS1MISSRSTEN	0x0	RW	PRS Src1 Missing Event WDOG Reset
	When set, a PRS Source	e 1 missing e	vent will trigger	a WDOG reset.
9	PRS0MISSRSTEN	0x0	RW	PRS Src0 Missing Event WDOG Reset
	When set, a PRS Source	e 0 missing e	vent will trigger	a WDOG reset.
8	WDOGRSTDIS	0x0	RW	WDOG Reset Disable
	Disable WDOG reset or	utput.		
	Value	Mode		Description
	0	EN		A timeout will cause a WDOG reset
	1	DIS		A timeout will not cause a WDOG reset
7:5	Reserved	To ensure ventions	compatibility with	h future devices, always write bits to 0. More information in 1.2 Con-
4	DEBUGRUN	0x0	RW	Debug Mode Run
	Set to keep WDOG runi	ning in debug	mode.	
	Value	Mode		Description
	0	DISABLE		WDOG timer is frozen in debug mode
	1	ENABLE		WDOG timer is running in debug mode
3	EM4BLOCK	0x0	RW	EM4 Block

Bit	Name	Reset	Access	Description
	Set to disallow EN	//4 entry by softwar	re.	
	Value	Mode		Description
	0	DISABLE		EM4 can be entered by software. See EMU for detailed description.
	1	ENABLE		EM4 cannot be entered by software.
2	EM3RUN	0x0	RW	EM3 Run
	Set to keep WDO	G running in EM3.		
	Value	Mode		Description
	0	DISABLE		WDOG timer is frozen in EM3.
	1	ENABLE		WDOG timer is running in EM3.
1	EM2RUN	0x0	RW	EM2 Run
	Set to keep WDO	G running in EM2.		
	Value	Mode		Description
	0	DISABLE		WDOG timer is frozen in EM2.
	1	ENABLE		WDOG timer is running in EM2.
0	CLRSRC	0x0	RW	WDOG Clear Source
	Select WDOG cle	ar source.		
	Value	Mode		Description
	0	SW		A write to the clear bit will clear the WDOG counter
	1	PRSSRC	0	A rising edge on the PRS Source 0 will clear the WDOG counter

26.5.4 WDOG_CMD - Command Register

Offset															Bi	t Pc	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•	•	•	•											•	•														0x0
Access																																>
Name																																CLEAR

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure ventions	compatibility w	ith future devices, always write bits to 0. More information in 1.2 Con-
0	CLEAR	0x0	W	WDOG Timer Clear
	Clear WDOG time	r. The bit must be	written 4 WDO	G cycles before the timeout.
	Value	Mode		Description
	0	UNCHAN	GED	WDOG timer is unchanged.
	1	CLEARED)	WDOG timer is cleared to 0.

26.5.5 WDOG_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	-	0
Reset	0x0		•	•		•	•		•				•	•	•	•		•								•	•		•		·	
Access	2																															
Name	LOCK																															

Bit	Name	Reset	Access	Description
31	LOCK	0x0	R	WDOG Configuration Lock Status
	Status of all lockat	ole WDOG register	S.	
	Value	Mode		Description
	0	UNLOCKE	:D	All WDOG lockable registers are unlocked.
	1	LOCKED		All WDOG lockable registers are locked.
30:0	Reserved	To ensure ventions	compatibility	with future devices, always write bits to 0. More information in 1.2 Con-

26.5.6 WDOG_IF - Interrupt Flag Register

Offset															Ві	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	စ	8	7	9	5	4	က	2	_	0
Reset			•		•		•				•					•		•				•		•	•	•	•	0X0	0x0	0×0	0X0	0x0
Access																												W.	ZW W	RW	ZW W	RW
Name																												PEM1	PEM0	NIM	WARN	TOUT

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure ventions	compatibility wit	h future devices, always write bits to 0. More information in 1.2 Con-
4	PEM1	0x0	RW	PRS Src1 Event Missing Interrupt Flag
	Set when a WDOG clea	r happens be	fore a prs event	has been detected on PRS Source one.
3	PEM0	0x0	RW	PRS Src0 Event Missing Interrupt Flag
	Set when a WDOG clea	r happens be	fore a prs event	has been detected on PRS Source zero.
2	WIN	0x0	RW	WDOG Window Interrupt Flag
	Set when a WDOG clea	r happens be	low the window	limit value.
1	WARN	0x0	RW	WDOG Warning Timeout Interrupt Flag
	Set when a WDOG war	ning timeout h	as occurred.	
0	TOUT	0x0	RW	WDOG Timeout Interrupt Flag
	Set when a WDOG time	out has occur	rred.	

26.5.7 WDOG_IEN - Interrupt Enable Register

Offset															Ві	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	9	17	16	15	4	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Reset					•		•					•				•	•			•	•	•			•			0x0	0x0	0x0	0x0	0x0
Access																												RW	W.	₩.	W.	RW
Name																												PEM1	PEMO	NIN	WARN	TOUT

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure ventions	compatibility wit	th future devices, always write bits to 0. More information in 1.2 Con-
4	PEM1	0x0	RW	PRS Src1 Event Missing Interrupt Enable
	Enable/disable the PEN	/11 interrupt.		
3	PEM0	0x0	RW	PRS Src0 Event Missing Interrupt Enable
	Enable/disable the PEN	/10 interrupt.		
2	WIN	0x0	RW	WDOG Window Interrupt Enable
	Enable/disable the WIN	I interrupt.		
1	WARN	0x0	RW	WDOG Warning Timeout Interrupt Enable
	Enable/disable the WAI	RN interrupt.		
0	TOUT	0x0	RW	WDOG Timeout Interrupt Enable
	Enable/disable the TOL	JT interrupt.		

26.5.8 WDOG_LOCK - Lock Register

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset																								L	UXABES							
Access																								3	>							
Name																								\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	LOCKNEY							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure ventions	compatibility v	with future devices, always write bits to 0. More information in 1.2 Con-
15:0	LOCKKEY	0xABE8	W	WDOG Configuration Lock
	Write any other valued code to unlock.	lue than the unlock	code to lock	WDOG_EN, WDOD_CFG registers from editing. Write the unlock
	Value	Mode		Description
	0	LOCK		Lock WDOG lockable registers
	44008	UNLOCK		Unlock WDOG lockable registers

26.5.9 WDOG_SYNCBUSY - Synchronization Busy Register

Offset	Bit Position						
0x024	4 1 <th>e 2 –</th> <th>0</th>	e 2 –	0				
Reset			0x0				
Access			~				
Name			CMD				

Bit	Name	Reset	Access	Description	
31:1	Reserved	To ensure ventions	To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conventions		
0	CMD	0x0	R	Sync Busy for Cmd Register	
	CMD bitfield sync is busy when set.				

27. Revision History

Revision 0.8

August, 2020

Updated SE Secure Element Subsystem to describe Secure Vault features.

Revision 0.7

August, 2020

- Corrected number of 16-bit Timer/Counters (TIMER) to 3 in 2.3 MCU Features overview.
- Corrected number of TIMER peripherals to 4 in Table 2.2 EFR32xG21 Timers Overview on page 36.
- · Added a note to to warn about potentially weak encryption methods.

Revision 0.6

June, 2020

- HFXO: added mention of clipped sine wave support.
- · 24. GPIO General Purpose Input/Output: Corrected port and pin setting for example

Revision 0.5

August, 2019

- Updated block diagram in EFR32xG21 Wireless Gecko and Figure 2.1 EFR32xG21 System-On-Chip Block Diagram on page 28.
- · Added security bullet list to 2.1 Introduction.
- Removed reference to Wake on Radio in 2.1 Introduction and Appendix 1. Abbreviations.
- Removed AES bullet list from 2.3 MCU Features overview.
- Added security bullet list to 2.3 MCU Features overview.
- · Added 2.4 Security Features.
- Added 2.4.1 Secure Boot with Root of Trust and Secure Loader (RTSL).
- · Updated .
- Removed section 2.15 Data Encryption and Authentication.
- Updated ARM Cortex-M33 IP revision number in 3.1 Introduction to r0p3.
- Updated flash lock bit locations in "Why" section of 6. MSC Memory System Controller .
- · Clarified UD and ME erase lock behavior in 6.3.11.2 Flash Lock.
- Corrected UDLOCKBIT description in 6.8.13 MSC_MISCLOCKWORD Mass erase lock word to read "User Data Lock."
- Changed reset value of MELOCKBIT in 6.8.13 MSC MISCLOCKWORD Mass erase lock word to 0x0.
- Clarified description of ERASEMAIN0 in 6.8.4 MSC_WRITECMD Write Command Register.
- Updated 8.3.2 Switching Clock Source, 9.2.3.5 On-Demand Clocking, and 9.3.3.2 On-Demand Clocking.
- Updated register descriptions in sections 9.4.4 Register Map and 9.4.5 Register Description.
- · Updated available features list in in .
- · Removed section 11.2 Features.
- · Added .
- · Added 12.3.4 Power Domains.
- Removed section 15.3.7 Compatibility.
- Added note regarding using CSSETUP with AUTOCS in asynchronous mode to 20.3.2.17 Single Data-link with External Driver.
- · Added 24.3.12.3 Pin Function Tables.
- · Wording, spelling, and grammar fixes.

Revision 0.4

April, 2019

- · First version for public release.
- · Updated front page and figures.
- · Updated SE chapter.
- Added access mode "H" to registers that are modified by hardware.
- · Added descriptions to bit fields missing descriptions.
- · Added calibration frequency information to HFRCO chapter.
- · Wording, spelling, and grammar fixes.

Revision 0.3

December, 2018

- · Added chapter and sub-chapters for Oscillators HFXO, HFRCO, DPLL, LFXO, LFRCO and FSRCO.
- · Rewrote and edited GPIO chapter.
- · Added DMA crossbar information and register descriptions.
- · Wording, spelling, and grammar fixes.

Revision 0.2

June, 2018

- · Reviewed each chapter and corrected errors.
- · Wording, spelling, and grammar fixes.

Revision 0.1

February, 2018

Initial Release

Appendix 1. Abbreviations

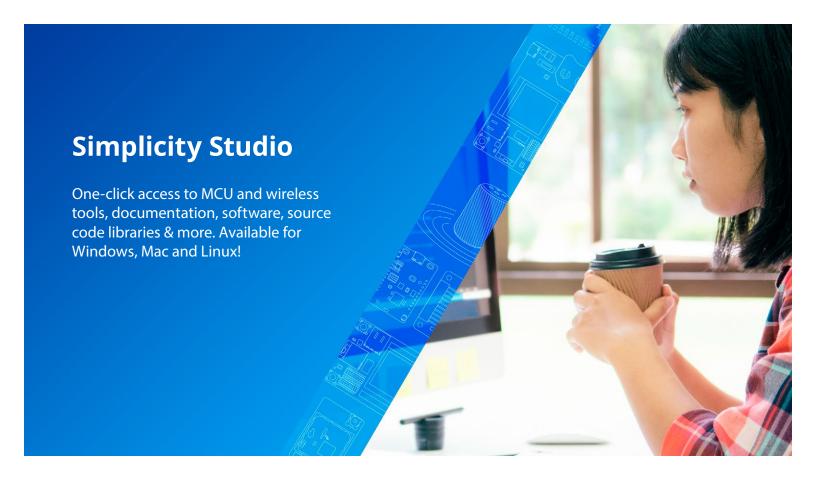

This section lists abbreviations used in this document.

Table 1.1. Abbreviations

Abbreviation	Description
ADC	Analog to Digital Converter
AES	Advanced Encryption Standard
AFC	Automatic Frequency Control
AGC	Automatic Gain Control
АНВ	AMBA Advanced High-performance Bus. AMBA is short for "Advanced Microcontroller Bus Architecture".
APB	AMBA Advanced Peripheral Bus. AMBA is short for "Advanced Microcontroller Bus Architecture".
APC	Automatic Power Control
ASK	Amplitude Shift Keying
BLE	Bluetooth Low Energy
BLE-LR	Bluetooth Low Energy Long Range
BR	Baud Rate
ВТ	Bandwidth Time product
BUFC	Buffer Controller
BW	Bandwidth
CBC	Cipher Block Chaining (AES mode of operation)
CBC-MAC	Cipher Block Chaining - Message Authentication Code (AES mode of operation)
CC	Compare / Capture
CCA	Clear Channel Assessment
CFB	Cipher Feedback (AES mode of operation)
CHF	Channel Filter
CLK	Clock
CM3	ARM Cortex-M3
CM4	ARM Cortex-M4
CMD	Command
CMU	Clock Management Unit
CRC	Cyclic Redundancy Check
CTR	Counter mode (AES mode of operation)
CTRL	Control
DBG	Debug
DC	Direct Current
DEC	Decimator
DEMOD	Demodulator

Abbreviation	Description
DSA	Detection of Signal Arrival
DSSS	Direct Sequence Spread Spectrum
ECB	Electronic Code Book (AES mode of operation)
EFM32	Energy Friendly Microcontroller
EFR32	Wireless Gecko
EM	Energy Mode
EMU	Energy Management Unit
FEC	Forward Error Correction
FIR	Finite Impulse Response
FRC	Frame Controller
FSK	Frequency Shift Keying
GFSK	Gaussian Frequency Shift Keying
GMSK	Gaussian Minimum Shift Keying
GPIO	General Purpose Input / Output
HFRCO	High Frequency RC Oscillator
HFXO	High Frequency Crystal Oscillator
HW	Hardware
Hz	Hertz
IF	Intermediate Frequency
ISR	Interrupt Service Routine
LFRCO	Low Frequency RC Oscillator
LFXO	Low Frequency Crystal Oscillator
LNA	Low Noise Amplifier
LO	Local Oscillator
MOD	Modulator
MODEM	Modulator and Demodulator
MSK	Minimum Shift Keying
NRZ	Non Return to Zero
NVIC	Nested Vector Interrupt Controller
OFB	Output Feedback Mode (AES mode of operation)
OOK	On Off Keying
OQPSK	Offset Quadrature Phase Shift Keying
OSR	Over-Sampling Ratio
PA	Power Amplifier
PD	Power Down
PHY	Physical Layer
PROTIMER	Protocol Timer

Abbreviation	Description
PRS	Peripheral Reflex System
PWM	Pulse Width Modulation
RAC	Radio Controller
RAM	Random Access Memory
RF	Radio Frequency
RMU	Reset Management Unit
RSM	Radio State Machine
RSSI	Received Signal Strength Indicator
RTC	Real Time Counter
RX	Receive
SEQ	Radio Sequencer
SPI	Serial Peripheral Interface
SRC	Sample Rate Converter
STIMER	Sequencer Timer
SW	Software
SYNTH	Synthesizer
TX	Transmit
XTAL	Crystal

www.silabs.com/simplicity

Quality www.silabs.com/quality

Support & Community www.silabs.com/community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required, or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, EZRadioPRO®, Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701