

Table of Contents

Tab	le o	of Contents	1
List	of	Figures	18
List	of	Tables	26
1.	Sys	stem and memory architecture	30
1.	1.	ARM Cortex-M3 processor	30
1.	2.	System architecture	31
1.	3.	Memory map	35
	1.3.1	.1. Bit-banding	
	1.3.2	.2. On-chip SRAM memory	
	1.3.3	.3. On-chip Flash memory	
1.	4.	Boot configuration	39
1.	5.	Device electronic signature	39
	1.5.1	.1. Memory density information	40
	1.5.2	.2. Unique device ID (96 bits)	40
1.	6.	System configuration registers	41
2.	Ρον	wer control (PWR)	42
2.	1.	Introduction	42
2.	2.	Main features	42
2.	3.	Function description	42
	2.3.′	.1. Battery Backup domain	43
	2.3.2	.2. V_{DD}/V_{DDA} power domain	44
	2.3.3	.3. 1.2V power domain	46
	2.3.4	.4. Power saving modes	46
2.	4.	PWR registers	48
	2.4.′	.1. Power control register (PWR_CTLR)	48
	2.4.2	.2. Power status register (PWR_STR)	49
3.	Fla	ash Memory Controller (FMC)	51
3.	1.	Introduction	51
3.	2.	Main features	51
3.	3.	Function description	51
	~ ~ ~		
	3.3.	.1. Flash Memory Architecture	51

3.3.3.	Unlock the FMC_CMR register	52
3.3.4.	Page Erase	53
3.3.5.	Mass Erase	54
3.3.6.	Main Flash Programming	55
3.3.7.	Option bytes Erase	57
3.3.8.	Option bytes Programming	57
3.3.9.	Option bytes Description	58
3.3.10.	Page Erase/Program Protection	59
3.3.11.	Security Protection	59
3.4. FN	1C registers	60
3.4.1.	Flash reserved register (FMC_RESR)	60
3.4.2.	Flash unlock key register (FMC_UKEYR)	60
3.4.3.	Flash option byte operation unlock key register (FMC_OBKEYR)	61
3.4.4.	Flash control/status register (FMC_CSR)	61
3.4.5.	Flash command register (FMC_CMR)	62
3.4.6.	Flash command address register (FMC_AR)	63
3.4.7.	Flash option byte register (FMC_OPTR)	64
3.4.8.	Flash Page Erase/Program Protection register (FMC_WPR)	64
3.4.9.	Flash unlock key register2 (FMC_UKEYR2)	65
3.4.10.	Flash control/status register2 (FMC_CSR2)	65
3.4.11.	Flash command register2 (FMC_CMR2)	66
3.4.12.	Flash command address register2 (FMC_AR2)	67
3.4.13.	Flash wait state control register (FMC_WSCR)	67
3.4.14.	Flash Product reserved ID code register1 (FMC_RES_ID1)	68
3.4.15.	Flash Product reserved ID code register2 (FMC_RES_ID2)	68
4. Reset	and clock control unit (RCC)	70
Medium-,	, High- and X-density Reset and clock control unit (RCC)	
4.1. Re	set Control Unit (RCU)	
4.1.1.	Introduction	70
4.1.2.	Function Description	70
4.2. Clo	ock Control Unit (CCU)	
4.2.1.	Introduction	71
4.2.2.	Main features	73
4.2.3.	Function description	73
4.3. RC	C registers	
4.3.1.	Global Clock control register (RCC_GCCR)	76
4.3.2.	Global Clock configuration register (RCC_GCFGR)	77
4.3.3.	Global Clock interrupt register (RCC_GCIR)	80
4.3.4.	APB2 Reset Control Register (RCC_APB2RCR)	83
4.3.5.	APB1 Reset Control Register (RCC_APB1RCR)	86
4.3.6.	AHB Clock Control Register (RCC_AHBCCR)	89

4.3.	7. APB2 Clock Control Register (RCC_APB2CCR)	90
4.3.	8. APB1 clock Control Register (RCC_APB1CCR)	92
4.3.	9. Backup Domain Control Register (RCC_BDCR)	96
4.3.	10. Global Control/Status Register (RCC_GCSR)	97
4.3.	11. RCC Deep-sleep mode voltage register (RCC_DEEPSLEEP_VC)	
Conne	ectivity line devices: Reset and clock control unit (RCC)	100
4.4.	Reset Control Unit (RCU)	100
4.4.	1. Introduction	
4.4.	2. Function Description	
4.5.	Clock Control Unit (CCU)	101
4.5.	1. Introduction	
4.5.	2. Main features	
4.5.	3. Function description	
4.6.	RCC registers	106
4.6.	1. Global Clock control register (RCC_GCCR)	
4.6.	2. Global Clock configuration register (RCC_GCFGR)	
4.6.	3. Global Clock interrupt register (RCC_GCIR)	
4.6.	4. APB2 Reset Control Register (RCC_APB2RCR)	115
4.6.	5. APB1 Reset Control Register (RCC_APB1RCR)	
4.6.	6. AHB Clock Control Register (RCC_AHBCCR)	
4.6.	7. APB2 Clock Control Register (RCC_APB2CCR)	
4.6.	8. APB1 clock Control Register (RCC_APB1CCR)	
4.6.	9. Backup Domain Control Register (RCC_BDCR)	
4.6.	10. Global Control/Status Register (RCC_GCSR)	
4.6.	11. AHB Reset Control Register (RCC_AHBRCR)	
4.6.	12. Global Clock configuration register 2 (RCC_GCFGR2)	131
4.6.	13. RCC Deep-sleep mode voltage register (RCC_DEEPSLEEP_VC)	
5. Ge	neral-purpose and alternate-function I/Os	
5.1.	Introduction	135
5.2.	Main features	135
5.3.	Function description	135
5.3.	1. GPIO pin configuration	136
5.3.	2. External interrupt/wakeup lines	137
5.3.	3. Input configuration	137
5.3.	4. Analog configuration	
5.3.	5. Output configuration	
5.3.	6. Alternate functions (AF)	139
5.4.	Remapping function I/O and debug configuration	144
5.4.	1. Introduction	144
5.4.	2. Main features	144

5.4.3.	JTAG/SWD alternate function remapping	
5.4.4.	ADC AF remapping	145
5.4.5.	TIMER AF remapping	
5.4.6.	USART AF remapping	
5.4.7.	I2C1 AF remapping	
5.4.8.	SPI1 AF remapping	
5.4.9.	SPI3/I2S3 AF remapping	
5.4.10.	CAN1 AF remapping	
5.4.11.	CAN2 AF remapping	
5.4.12.	Ethernet alternate function remapping	150
5.4.13.	CLK pins AF remapping	
5.4.14.	GPIO locking function	150
5.5. GP	O registers	151
5.5.1.	GPIO port control register 1 (GPIOx_CTLR1) (x=AF,G)	
5.5.2.	GPIO port control register 2 (GPIOx_CTLR2) (x=AF,G)	
5.5.3.	GPIO port data input register (GPIOx_DIR) (x=AF,G)	
5.5.4.	GPIO port data output register (GPIOx_DOR) (x=AF,G)	
5.5.5.	GPIO port bit operation register (GPIOx_BOR) (x=AF,G)	
5.5.6.	GPIO port bit clear register (GPIOx_BCR) (x=AF,G)	
5.5.7.	GPIO port configuration lock register (GPIOx_LOCKR) (x=A,B)	
5.5.8.	Event control register (AFIO_ECR)	
5.5.9.	AFIO port configuration register 1 (AFIO_PCFR1)	
5.5.10.	EXTI source selection register 1 (AFIO_ESSR1)	
5.5.11.	EXTI source selection register 2 (AFIO_ESSR2)	
5.5.12.	EXTI source selection register 3 (AFIO_ESSR3)	
5.5.13.	EXTI source selection register 4 (AFIO_ESSR4)	
5.5.14.	AFIO port configuration register 2 (AFIO_PCFR2)	
6. CRC C	alculation Unit	
6.1 Inti	roduction	170
0.1. 111		
6.2. Ma	in feature	170
6.3. Fur	ection Description	171
6.4. CR0	C Register	171
6.4.1.	CRC Data Register (CRC_DTR)	
6.4.2.	CRC Free Data Register (CRC_FDTR)	
6.4.3.	CRC Control Register (CRC_CTLR)	
7. Interru	ipts and events	
71 Inte		17/
···· ····		14
7.2. Ma	in features	174
7.3. Fur	ection description	174
7.3.1.	NVIC and exception/interrupt processing	

	7.3.2.	External Interrupt and Event (EXTI)	
	7.4. EX	(TI registers	182
	7.4.1.	Interrupt enable register (EXTI_IER)	
	7.4.2.	Event enable register (EXTI_EER)	
	7.4.3.	Rising edge trigger enable register (EXTI_RTE)	
	7.4.4.	Falling edge trigger enable register (EXTI_FTE)	
	7.4.5.	Software interrupt event register (EXTI_SIE)	
	7.4.6.	Pending register (EXTI_PD)	
8.	Direc	t memory access controller (DMA)	
	8.1. In	troduction	185
	8.2. M	ain features	185
	8.3. Fi	nction description	186
	8.3.1.	DMA transfers	
	8.3.2.	Arbitration among channels	
	8.3.3.	Next address generation algorithm	
	8.3.4.	Circulation mode	
	8.3.5.	Memory to memory mode	
	8.3.6.	Interrupt requests	
	8.3.7.	DMA channel configuration procedure	
	8.3.8.	DMA Request Mapping	
	8.4. D	VA registers	
	8.4.1.	DMA interrupt status register (DMA_IFR)	
	8.4.2.	DMA interrupt flag clear register (DMA_ICR)	
	8.4.3.	DMA channel x control register (DMA_CTLRx)	
	8.4.4.	DMA channel x remain counter (DMA_RCNTx)	
	8.4.5.	DMA channel x peripheral base address register (DMA_PBARx)	
	8.4.6.	DMA channel x memory base address register (DMA_MBARx)	
9.	Time	r (TIMERx)	
	9.1. A	dvanced timer (TIMER 1 and TIMER8)	197
	9.1.1.	Introduction	
	9.1.2.	Main features	
	9.1.3.	Function description	
	9.1.4.	TIMER1 /TIMER8registers	226
1	9.2. G	eneral timers (TIMER2 to TIMER5)	249
	9.2.1.	Introduction	249
	9.2.2.	Main features	249
	9.2.3.	Function description	249
	9.2.4.	TIMER2 to TIMER5 registers	
	9.3. Ba	asic timer (TIMER6 and TIMER7)	288

9.3.2.	Main features	
9.3.3.	Function description	
9.3.4.	TIMER6/7 registers	291
9.4. Ge	neral timer (TIMER9 and TIMER12)	295
9.4.1.	Introduction	295
9.4.2.	Main features	295
9.4.3.	Function description	
9.4.4.	TIMER9/TIMER12 registers	
9.5. Ge	neral timer (TIMER10/11/13/14)	330
9.5.1.	Introduction	
9.5.2.	Main features	
9.5.3.	Function description	
9.5.4.	TIMER10/11/13/14 registers	
10. Eth	ernet (ETH)	
10.1.	Introduction	356
10.2.	Main features	356
10.2.1.	Block Diagram	
10.2.2.	MAC 802.3 Ethernet Packet	
10.2.3.	Ethernet pins	358
10.3.	Function description	360
10.3.1.	Interface configuration	
10.3.2.	MAC	
MFD		
10.3.3.	MAC statistics counters: MSC	
10.3.4.	Wake Up Management: WUM	
10.3.5.	Precision time protocol: PTP	
10.3.6.	DMA controller	
10.3.7.	Ethernet interrupts	403
10.4.	Ethernet register descriptions	405
10.4.1.	Ethernet MAC configuration register (ETH_MAC_CFR)	405
10.4.2.	Ethernet MAC frame filter register (ETH_MAC_FRMFR)	407
10.4.3.	Ethernet MAC hash list high register (ETH_MAC_HLHR)	409
10.4.4.	Ethernet MAC hash list low register (ETH_MAC_HLLR)	409
10.4.5.	Ethernet MAC PHY address register (ETH_MAC_PHYAR)	410
10.4.6.	Ethernet MAC MII data register (ETH_MAC_PHYDR)	411
10.4.7.	Ethernet MAC flow control register (ETH_MAC_FCTLR)	411
10.4.8.	Ethernet MAC flow control threshold register (ETH_MAC_FCTHR)	413
10.4.9.	Ethernet MAC VLAN tag register (ETH_MAC_VLTR)	414
10.4.10	 Ethernet MAC remote wakeup frame filter register (ETH_MAC_RWFFR) 	414
10.4.11	. Ethernet MAC WUM register (ETH_MAC_WUMR)	415
10.4.12	2. Ethernet MAC interrupt status register (ETH_MAC_ISR)	416

6

10.4.13.	Ethernet MAC interrupt mask register (ETH_MAC_IMR)	417
10.4.14.	Ethernet MAC address 0 high register (ETH_MAC_ADDR0H)	417
10.4.15.	Ethernet MAC address 0 low register (ETH_MAC_ADDR0L)	418
10.4.16.	Ethernet MAC address 1 high register (ETH_MAC_ADDR1H)	418
10.4.17.	Ethernet MAC address1 low register (ETH_MAC_ADDR1L)	419
10.4.18.	Ethernet MAC address 2 high register (ETH_MACADDR2H)	419
10.4.19.	Ethernet MAC address 2 low register (ETH_MACADDR2L)	420
10.4.20.	Ethernet MAC address 3 high register (ETH_MAC_ADDR3H)	421
10.4.21.	Ethernet MAC address 3 low register (ETH_MAC_ADDR3L)	421
10.4.22.	Ethernet MSC control register (ETH_MSC_CTLR)	422
10.4.23.	Ethernet MSC receive interrupt status register (ETH_MSC_RISR)	422
10.4.24.	Ethernet MSC transmit interrupt status register (ETH_MSC_TISR)	423
10.4.25.	Ethernet MSC receive interrupt mask register (ETH_MSC_RIMR)	424
10.4.26.	Ethernet MSC transmit interrupt mask register (ETH_MSC_TIMR)	425
10.4.27.	Ethernet MSC transmitted good frames after a single collision counter register	
(ETH_MSC	C_SCCNT)	426
10.4.28.	Ethernet MSC transmitted good frames after more than a single collision counter regist	ter
(ETH_MSC	C_MSCCNT)	426
10.4.29.	Ethernet MSC transmitted good frames counter register (ETH_MSC_TGFCNT)	426
10.4.30.	Ethernet MSC received frames with CRC error counter register (ETH_MSC_RFCECN	T)
	427	
10.4.31.	Ethernet MSC received frames with alignment error counter register	
(ETH_MSC	C_RFAECNT)	427
(ETH_MSC 10.4.32.	Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT)	427 428
(ETH_MSC 10.4.32. 10.4.33.	Ethernet PTP time stamp control register (ETH_PTP_TSCTLR)	427 428 428
(ETH_MSC 10.4.32. 10.4.33. 10.4.34.	C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR)	427 428 428 429
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35.	C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR) Ethernet PTP time stamp high register (ETH_PTP_TMSHR)	427 428 428 429 430
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35. 10.4.36.	C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR) Ethernet PTP time stamp high register (ETH_PTP_TMSHR) Ethernet PTP time stamp low register (ETH_PTP_TMSLR)	427 428 428 429 430 430
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35. 10.4.36. 10.4.37.	C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR) Ethernet PTP time stamp high register (ETH_PTP_TMSHR) Ethernet PTP time stamp low register (ETH_PTP_TMSLR) Ethernet PTP time stamp high update register (ETH_PTP_TMSHUR)	427 428 428 429 430 430 430
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35. 10.4.36. 10.4.37. 10.4.38.	C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR) Ethernet PTP time stamp high register (ETH_PTP_TMSHR) Ethernet PTP time stamp low register (ETH_PTP_TMSLR) Ethernet PTP time stamp high update register (ETH_PTP_TMSHUR) Ethernet PTP time stamp high update register (ETH_PTP_TMSLUR)	427 428 429 430 430 430 431
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35. 10.4.36. 10.4.37. 10.4.38. 10.4.39.	C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR) Ethernet PTP time stamp high register (ETH_PTP_TMSHR) Ethernet PTP time stamp low register (ETH_PTP_TMSLR) Ethernet PTP time stamp high update register (ETH_PTP_TMSLR) Ethernet PTP time stamp low update register (ETH_PTP_TMSLUR) Ethernet PTP time stamp low update register (ETH_PTP_TMSLUR)	427 428 429 430 430 430 431 431
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35. 10.4.36. 10.4.37. 10.4.38. 10.4.39. 10.4.40.	C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR) Ethernet PTP time stamp high register (ETH_PTP_TMSHR) Ethernet PTP time stamp low register (ETH_PTP_TMSLR) Ethernet PTP time stamp high update register (ETH_PTP_TMSLR) Ethernet PTP time stamp low update register (ETH_PTP_TMSLUR) Ethernet PTP time stamp low update register (ETH_PTP_TMSLUR) Ethernet PTP time stamp addend register (ETH_PTP_TSACNT) Ethernet PTP expected time high register (ETH_PTP_ETHR)	427 428 429 430 430 430 431 431 431
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35. 10.4.36. 10.4.37. 10.4.38. 10.4.39. 10.4.40. 10.4.41.	C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR) Ethernet PTP time stamp high register (ETH_PTP_TMSHR) Ethernet PTP time stamp low register (ETH_PTP_TMSLR) Ethernet PTP time stamp high update register (ETH_PTP_TMSLR) Ethernet PTP time stamp low update register (ETH_PTP_TMSLUR) Ethernet PTP time stamp addend register (ETH_PTP_TMSLUR) Ethernet PTP time stamp addend register (ETH_PTP_TSACNT) Ethernet PTP expected time high register (ETH_PTP_ETHR)	427 428 429 430 430 430 431 431 431 432 432
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35. 10.4.36. 10.4.37. 10.4.38. 10.4.39. 10.4.40. 10.4.41. 10.4.42.	C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR) Ethernet PTP time stamp high register (ETH_PTP_TMSHR) Ethernet PTP time stamp low register (ETH_PTP_TMSLR) Ethernet PTP time stamp high update register (ETH_PTP_TMSLR) Ethernet PTP time stamp low update register (ETH_PTP_TMSLUR) Ethernet PTP time stamp addend register (ETH_PTP_TMSLUR) Ethernet PTP time stamp addend register (ETH_PTP_TSACNT) Ethernet PTP expected time high register (ETH_PTP_ETHR) Ethernet PTP expected time low register (ETH_PTP_ETLR)	427 428 429 430 430 430 431 431 431 432 432
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35. 10.4.36. 10.4.37. 10.4.38. 10.4.39. 10.4.40. 10.4.41. 10.4.42. 10.4.43.	C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR) Ethernet PTP time stamp high register (ETH_PTP_TMSHR) Ethernet PTP time stamp low register (ETH_PTP_TMSLR) Ethernet PTP time stamp high update register (ETH_PTP_TMSLR) Ethernet PTP time stamp low update register (ETH_PTP_TMSLR) Ethernet PTP time stamp addend register (ETH_PTP_TMSLUR) Ethernet PTP time stamp addend register (ETH_PTP_TASCNT) Ethernet PTP expected time high register (ETH_PTP_ETHR) Ethernet PTP expected time low register (ETH_PTP_ETLR) Ethernet DMA bus control register (ETH_DMA_BCR) Ethernet DMA transmit poll enable register (ETH_DMA_TPER)	427 428 429 430 430 430 431 431 432 432 433
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35. 10.4.36. 10.4.37. 10.4.38. 10.4.39. 10.4.40. 10.4.41. 10.4.41. 10.4.42. 10.4.43. 10.4.44.	 C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR) Ethernet PTP time stamp high register (ETH_PTP_TMSHR) Ethernet PTP time stamp low register (ETH_PTP_TMSLR) Ethernet PTP time stamp high update register (ETH_PTP_TMSHUR) Ethernet PTP time stamp low update register (ETH_PTP_TMSLUR) Ethernet PTP time stamp addend register (ETH_PTP_TASLUR) Ethernet PTP time stamp addend register (ETH_PTP_TSACNT) Ethernet PTP expected time high register (ETH_PTP_ETLR) Ethernet DMA bus control register (ETH_DMA_BCR) Ethernet DMA receive poll enable register (ETH_DMA_RPER) 	427 428 429 430 430 430 431 431 432 432 433 434
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35. 10.4.36. 10.4.36. 10.4.38. 10.4.39. 10.4.40. 10.4.40. 10.4.41. 10.4.42. 10.4.43. 10.4.43.	 C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR) Ethernet PTP time stamp high register (ETH_PTP_TMSHR) Ethernet PTP time stamp low register (ETH_PTP_TMSLR) Ethernet PTP time stamp high update register (ETH_PTP_TMSLR) Ethernet PTP time stamp low update register (ETH_PTP_TMSLUR) Ethernet PTP time stamp addend register (ETH_PTP_TMSLUR) Ethernet PTP expected time high register (ETH_PTP_ETHR) Ethernet PTP expected time low register (ETH_PTP_ETLR) Ethernet DMA bus control register (ETH_DMA_BCR) Ethernet DMA receive poll enable register (ETH_DMA_RPER) Ethernet DMA_RDTAR) 	427 428 429 430 430 430 431 431 432 432 433 434 435
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35. 10.4.36. 10.4.37. 10.4.38. 10.4.39. 10.4.40. 10.4.40. 10.4.41. 10.4.42. 10.4.43. 10.4.44. 10.4.45. 10.4.46.	 C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR) Ethernet PTP time stamp high register (ETH_PTP_TMSHR) Ethernet PTP time stamp low register (ETH_PTP_TMSLR) Ethernet PTP time stamp low update register (ETH_PTP_TMSHUR) Ethernet PTP time stamp low update register (ETH_PTP_TMSLUR) Ethernet PTP time stamp addend register (ETH_PTP_TMSLUR) Ethernet PTP time stamp addend register (ETH_PTP_TSACNT) Ethernet PTP expected time high register (ETH_PTP_ETLR) Ethernet DMA bus control register (ETH_DMA_BCR) Ethernet DMA receive poll enable register (ETH_DMA_RPER) Ethernet DMA transmit descriptor table address register (ETH_DMATDTAR) 	427 428 429 430 430 430 431 431 432 432 433 434 435 435 435
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35. 10.4.36. 10.4.37. 10.4.38. 10.4.39. 10.4.40. 10.4.40. 10.4.41. 10.4.42. 10.4.43. 10.4.43. 10.4.45. 10.4.45. 10.4.47.	C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR) Ethernet PTP time stamp high register (ETH_PTP_TMSHR) Ethernet PTP time stamp low register (ETH_PTP_TMSLR) Ethernet PTP time stamp high update register (ETH_PTP_TMSHUR) Ethernet PTP time stamp low update register (ETH_PTP_TMSLUR) Ethernet PTP time stamp addend register (ETH_PTP_TASCNT) Ethernet PTP time stamp addend register (ETH_PTP_TASCNT) Ethernet PTP time stamp addend register (ETH_PTP_ETHR) Ethernet PTP expected time high register (ETH_PTP_ETHR) Ethernet PTP expected time low register (ETH_DMA_BCR) Ethernet DMA bus control register (ETH_DMA_BCR) Ethernet DMA receive poll enable register (ETH_DMA_RPER) Ethernet DMA receive descriptor table address register (ETH_DMA_RDTAR) Ethernet DMA transmit descriptor table address register (ETH_DMATDTAR) Ethernet DMA status register (ETH_DMA_STR)	427 428 429 430 430 430 431 431 432 433 433 433 435 435 436
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35. 10.4.36. 10.4.37. 10.4.38. 10.4.39. 10.4.40. 10.4.40. 10.4.41. 10.4.42. 10.4.43. 10.4.44. 10.4.45. 10.4.45. 10.4.46. 10.4.47. 10.4.48.	C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR) Ethernet PTP time stamp high register (ETH_PTP_TMSHR) Ethernet PTP time stamp low register (ETH_PTP_TMSLR) Ethernet PTP time stamp high update register (ETH_PTP_TMSLR) Ethernet PTP time stamp low update register (ETH_PTP_TMSLUR) Ethernet PTP time stamp low update register (ETH_PTP_TMSLUR) Ethernet PTP time stamp addend register (ETH_PTP_TASCNT) Ethernet PTP expected time high register (ETH_PTP_ETLR) Ethernet PTP expected time low register (ETH_PTP_ETLR) Ethernet DMA bus control register (ETH_DMA_BCR) Ethernet DMA receive poll enable register (ETH_DMA_RPER) Ethernet DMA receive descriptor table address register (ETH_DMA_RDTAR) Ethernet DMA transmit descriptor table address register (ETH_DMATDTAR) Ethernet DMA transmit descriptor table address register (ETH_DMATDTAR) Ethernet DMA control register (ETH_DMA_CTLR)	427 428 429 430 430 431 431 432 432 433 434 435 435 435 435 435 435
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35. 10.4.36. 10.4.37. 10.4.38. 10.4.39. 10.4.40. 10.4.40. 10.4.41. 10.4.42. 10.4.43. 10.4.43. 10.4.45. 10.4.45. 10.4.46. 10.4.47. 10.4.48. 10.4.49.	C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR) Ethernet PTP time stamp high register (ETH_PTP_TMSHR) Ethernet PTP time stamp low register (ETH_PTP_TMSLR) Ethernet PTP time stamp high update register (ETH_PTP_TMSHUR) Ethernet PTP time stamp low update register (ETH_PTP_TMSLUR) Ethernet PTP time stamp addend register (ETH_PTP_TMSLUR) Ethernet PTP time stamp addend register (ETH_PTP_TASLUR) Ethernet PTP time stamp addend register (ETH_PTP_TASLUR) Ethernet PTP expected time high register (ETH_PTP_ETHR) Ethernet PTP expected time low register (ETH_PTP_ETLR) Ethernet DMA bus control register (ETH_DMA_BCR) Ethernet DMA transmit poll enable register (ETH_DMA_RPER) Ethernet DMA receive poll enable register (ETH_DMA_RPER) Ethernet DMA ransmit descriptor table address register (ETH_DMA_RDTAR) Ethernet DMA transmit descriptor table address register (ETH_DMA_RDTAR) Ethernet DMA control register (ETH_DMA_CTLR) Ethernet DMA interrupt enable register (ETH_DMA_IER)	427 428 429 430 430 430 431 431 432 433 433 433 433 435 435 435 436 437 440 443
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35. 10.4.36. 10.4.37. 10.4.38. 10.4.39. 10.4.40. 10.4.40. 10.4.41. 10.4.42. 10.4.43. 10.4.44. 10.4.45. 10.4.46. 10.4.47. 10.4.48. 10.4.49. 10.4.50.	C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR) Ethernet PTP subsecond increment register (ETH_PTP_SSINCR) Ethernet PTP time stamp high register (ETH_PTP_TMSHR) Ethernet PTP time stamp low register (ETH_PTP_TMSLR) Ethernet PTP time stamp low update register (ETH_PTP_TMSLUR) Ethernet PTP time stamp addend register (ETH_PTP_TMSLUR) Ethernet PTP time stamp addend register (ETH_PTP_TSACNT) Ethernet PTP expected time high register (ETH_PTP_ETHR) Ethernet PTP expected time low register (ETH_PTP_ETLR) Ethernet DMA bus control register (ETH_DMA_BCR) Ethernet DMA transmit poll enable register (ETH_DMA_RPER) Ethernet DMA receive descriptor table address register (ETH_DMA_RDTAR) Ethernet DMA transmit descriptor table address register (ETH_DMA_RDTAR) Ethernet DMA transmit descriptor table address register (ETH_DMA_RDTAR) Ethernet DMA control register (ETH_DMA_STR) Ethernet DMA interrupt enable register (ETH_DMA_IER) Ethernet DMA interrupt enable register (ETH_DMA_IER)	427 428 429 430 430 431 431 432 433 434 435 435 435 435 435 435 435 435
(ETH_MSC 10.4.32. 10.4.33. 10.4.34. 10.4.35. 10.4.36. 10.4.37. 10.4.38. 10.4.39. 10.4.40. 10.4.40. 10.4.41. 10.4.42. 10.4.43. 10.4.43. 10.4.45. 10.4.45. 10.4.46. 10.4.47. 10.4.48. 10.4.49. 10.4.50.	C_RFAECNT) Ethernet MSC received good unicast frames counter register (ETH_MSC_RGUFCNT) Ethernet PTP time stamp control register (ETH_PTP_TSCTLR)	427 428 429 430 430 431 431 432 433 434 435 435 435 436 437 440 443 NT)

10.4	.52. Ethernet DMA current receive descriptor address register (ETH_DMA_CRDAR))447
10.4	.53. Ethernet DMA current transmit buffer address register (ETH_DMA_CTBAR)	447
10.4	.54. Ethernet DMA current receive buffer address register (ETH_DMA_CRBAR)	447
11. W	/atchdog (WDG)	449
11.1.	Independent watchdog (IWDG)	449
11.1	.1. Introduction	449
11.1	.2. Main features	449
11.1	.3. Function description	449
11.2.	IWDG registers	451
11.2	.1. Control register (IWDG_CTLR)	451
11.2	.2. Prescaler register (IWDG_PSR)	451
11.2	.3. Reload register (IWDG_RLDR)	452
11.2	.4. Status register (IWDG_STR)	453
11.3.	Window watchdog (WWDG)	453
11.3	.1. Introduction	453
11.3	.2. Main features	453
11.3	.3. Function description	454
11.4.	WWDG registers	455
11.4	.1. Control register (WWDG_CTLR)	455
11.4	.2. Configuration register (WWDG_CFR)	456
11.4	.3. Status register (WWDG_STR)	457
11.4 12. A	.3. Status register (WWDG_STR)	
11.4 12. A 12.1 .	.3. Status register (WWDG_STR) nalog to Digital converter (ADC) Introduction	457 458 458
11.4 12. A 12.1. 12.2.	.3. Status register (WWDG_STR) nalog to Digital converter (ADC) Introduction ADC main features	457 458 458 458
11.4 12. A 12.1. 12.2. 12.3.	.3. Status register (WWDG_STR) nalog to Digital converter (ADC) Introduction ADC main features	457 458 458 458 458
11.4 12. A 12.1. 12.2. 12.3. 12.4.	.3. Status register (WWDG_STR) nalog to Digital converter (ADC) Introduction ADC main features ADC pins and internal signals ADC function description	
11.4 12. A 12.1. 12.2. 12.3. 12.4. 12.4.	 Status register (WWDG_STR) nalog to Digital converter (ADC) Introduction ADC main features ADC pins and internal signals ADC function description	
11.4 12. A 12.1. 12.2. 12.3. 12.4. 12.4 12.4	 Status register (WWDG_STR) nalog to Digital converter (ADC) Introduction ADC main features ADC pins and internal signals ADC function description	457 458 458 458 458 458 459 459 459
11.4 12. A 12.1. 12.2. 12.3. 12.4. 12.4 12.4 12.4 12.4	 Status register (WWDG_STR) nalog to Digital converter (ADC) Introduction ADC main features ADC pins and internal signals ADC function description 1 Calibration (ADC_CLB) 2 ADC clock 3 Regular and inserted channel groups 	457 458 458 458 458 459 459 460 460
11.4 12. A 12.1. 12.2. 12.3. 12.4. 12.4 12.4 12.4 12.4 12.4 12.4	 3. Status register (WWDG_STR)	457 458 458 458 458 458 459 459 460 460 460
11.4 12. A 12.1. 12.2. 12.3. 12.4. 12.4 12.4 12.4 12.4 12.4 12.4 12.4	 3. Status register (WWDG_STR) nalog to Digital converter (ADC) Introduction	457 458 458 458 458 458 459 460 460 460 460 463
11.4 12. A 12.1. 12.2. 12.3. 12.4. 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4	 Status register (WWDG_STR) nalog to Digital converter (ADC) Introduction	457 458 458 458 458 458 459 459 460 460 463 463
11.4 12. A 12.1. 12.2. 12.3. 12.4. 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4	 3. Status register (WWDG_STR)	457 458 458 458 458 458 458 459 460 460 460 463 463 463
11.4 12. A 12.1. 12.2. 12.3. 12.4. 12.4 12.	 3. Status register (WWDG_STR)	457 458 458 458 458 458 459 469 460 460 463 463 464 464
11.4 12. A 12.1. 12.2. 12.3. 12.4. 12.4	 Status register (WWDG_STR)	457 458 458 458 458 458 459 459 460 460 460 463 463 464 464 465
11.4 12. A 12.1. 12.2. 12.3. 12.4. 12.4	 3. Status register (WWDG_STR)	457 458 458 458 458 459 459 460 460 460 463 463 464 464 465 466
11.4 12. A 12.1. 12.2. 12.3. 12.4. 12.4	 3. Status register (WWDG_STR)	457 458 458 458 458 458 459 459 460 460 460 463 464 465 466 466
11.4 12. A 12.1. 12.2. 12.3. 12.4. 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4	 3. Status register (WWDG_STR)	457 458 458 458 458 458 459 460 460 463 463 464 466 466 466
11.4 12. A 12.1. 12.2. 12.3. 12.4. 12.4	 3. Status register (WWDG_STR)	457 458 458 458 458 459 459 460 460 460 463 463 464 465 466 466 467 467
11.4 12. A 12.1. 12.2. 12.3. 12.4. 12.4	 3. Status register (WWDG_STR) nalog to Digital converter (ADC) Introduction ADC main features ADC pins and internal signals ADC function description 1 Calibration (ADC_CLB) 2 ADC clock 3 Regular and inserted channel groups 4 Conversion modes 5 Analog watchdog 6 Inserted channel management 7 Data alignment 8 Programmable sample time 9 External trigger 10 DMA request 11 Temperature sensor and internal reference voltage VREF 12 ADC mode 11 Independent mode. 	457 458 458 458 458 458 459 459 460 460 460 460 463 463 464 465 466 466 467 467 468

	12.5.2	Regular simulateous mode	
	12.5.3	Inserted simultaneous mode	469
	12.5.4	Fast interleaved mode	469
	12.5.5	Slow interleaved mode	470
	12.5.6	Alternate trigger mode	471
	12.5.7	Combined regular simultaneous + inserted simultaneous mode	471
	12.5.8	Combined regular simultaneous + alternate trigger mode	472
	12.5.9	Combined inserted simultaneous + interleaved mode	472
1	2.6. A	DC registers	473
	12.6.1	ADC status register (ADC_STR)	
	12.6.2	ADC control register 1 (ADC_CTLR1)	474
	12.6.3	ADC control register 2 (ADC_CTLR2)	476
	12.6.4	ADC sample time register 1 (ADC_SPT1)	478
	12.6.5	ADC sample time register 2 (ADC_SPT2)	479
	12.6.6	ADC inserted channel data offset register x (ADC_ICOSx) (x=14)	
	12.6.7	ADC watchdog high threshold register (ADC_AWHT)	
	12.6.8	ADC watchdog low threshold register (ADC_AWLT)	480
	12.6.9	ADC regular sequence register 1 (ADC_RSQ1)	481
	12.6.10	ADC regular sequence register 2 (ADC_RSQ2)	481
	12.6.11	ADC regular sequence register 3 (ADC_RSQ3)	482
	12.6.12	ADC inserted sequence register (ADC_ISQ)	482
	12.6.13	ADC inserted data register x (ADC_IDTRx) (x= 14)	
	12.6.14	ADC regular data register (ADC_RDTR)	483
13.	12.6.14 Digit	ADC regular data register (ADC_RDTR)	
13. 1	12.6.14 Digit 3.1. C	ADC regular data register (ADC_RDTR) al-to-analog converter (DAC)	
13. 1	12.6.14 Digit 3.1. C	ADC regular data register (ADC_RDTR) al-to-analog converter (DAC) AC introduction	
13. 1 1	12.6.14 Digit 3.1. C 3.2. C	ADC regular data register (ADC_RDTR) al-to-analog converter (DAC) AC introduction AC main features	
13. 1 1 1	12.6.14 Digit 3.1. C 3.2. C 3.3. C	ADC regular data register (ADC_RDTR) al-to-analog converter (DAC) AC introduction AC main features AC function description	
13. 1 1 1	12.6.14 Digit 3.1. C 3.2. C 3.3. C 13.3.1.	ADC regular data register (ADC_RDTR) al-to-analog converter (DAC) AC introduction AC main features AC function description DAC channel enable	
13. 1 1 1	12.6.14 Digit 3.1. C 3.2. C 3.3. C 13.3.1. 13.3.2. 12.0.22	ADC regular data register (ADC_RDTR) al-to-analog converter (DAC) AC introduction AC main features AC function description DAC channel enable DAC output buffer enable	
13. 1 1 1	12.6.14 Digit 3.1. C 3.2. C 3.3. C 13.3.1. 13.3.2. 13.3.3. 13.2.4	ADC regular data register (ADC_RDTR) al-to-analog converter (DAC) AC introduction AC main features AC function description DAC channel enable DAC output buffer enable DAC data format	483 484 484 484 484 485 485 485 486 486
13. 1 1	12.6.14 Digit 3.1. C 3.2. C 3.3. C 13.3.1. 13.3.2. 13.3.3. 13.3.4. 13.2.5	ADC regular data register (ADC_RDTR) al-to-analog converter (DAC) AC introduction AC main features AC function description DAC channel enable DAC contput buffer enable DAC data format DAC conversion	483 484 484 484 484 485 485 485 486 486 486
13. 1 1	12.6.14 Digit 3.1. D 3.2. D 3.3. D 13.3.1. 13.3.2. 13.3.3. 13.3.4. 13.3.5. 13.2.	ADC regular data register (ADC_RDTR) al-to-analog converter (DAC) AC introduction AC main features AC function description DAC channel enable DAC output buffer enable DAC output buffer enable DAC data format DAC conversion DAC output voltage	483 484 484 484 484 485 485 485 485 486 486 486 486
13. 1 1	12.6.14 Digit 3.1. D 3.2. D 3.3. D 13.3.1. 13.3.2. 13.3.3. 13.3.4. 13.3.5. 13.3.6. 13.3.7	ADC regular data register (ADC_RDTR)	483 484 484 484 484 485 485 485 485 486 486 486 486 487 487
13. 1 1	12.6.14 Digit 3.1. D 3.2. D 3.3. D 13.3.1. 13.3.2. 13.3.3. 13.3.4. 13.3.5. 13.3.6. 13.3.7. 13.3.7. 13.3.7.	ADC regular data register (ADC_RDTR)	483 484 484 484 484 485 485 485 486 486 486 486 487 487
13. 1 1	12.6.14 Digit 3.1. D 3.2. D 3.3. D 13.3.1. 13.3.2. 13.3.3. 13.3.4. 13.3.5. 13.3.6. 13.3.7. 13.3.8. 13.2.0	ADC regular data register (ADC_RDTR) al-to-analog converter (DAC) AC introduction AC main features AC function description DAC function description DAC channel enable DAC output buffer enable DAC output buffer enable DAC data format DAC conversion DAC conversion DAC output voltage DAC trigger Noise generation	483 484 484 484 484 485 485 485 485 486 486 486 486 487 487 487
13. 1 1	12.6.14 Digit 3.1. D 3.2. D 3.3. D 13.3.1. 13.3.2. 13.3.3. 13.3.4. 13.3.5. 13.3.6. 13.3.7. 13.3.8. 13.3.9.	ADC regular data register (ADC_RDTR)	483 484 484 484 484 484 485 485 485 485 486 486 486 486 487 487 487 487
13. 1 1 1	12.6.14 Digit 3.1. C 3.2. C 3.3. C 13.3.1. 13.3.2. 13.3.3. 13.3.4. 13.3.5. 13.3.6. 13.3.7. 13.3.8. 13.3.9. 3.4. C	ADC regular data register (ADC_RDTR)al-to-analog converter (DAC) AC introduction AC main features	483 484 484 484 484 485 485 485 485 486 486 486 486 487 487 487 487 487 487
13. 1 1 1	12.6.14 Digit 3.1. C 3.2. C 3.3. C 13.3.1. 13.3.2. 13.3.3. 13.3.4. 13.3.5. 13.3.6. 13.3.7. 13.3.8. 13.3.9. 3.4. C 13.4.1. 13.4.1. 13.4.1.	ADC regular data register (ADC_RDTR)	483 484 484 484 484 485 485 485 485 485 486 486 486 486 487 487 487 487 487 487 487 487 487
13. 1 1 1	12.6.14 Digit 3.1. C 3.2. C 3.3. C 13.3.1. 13.3.2. 13.3.3. 13.3.4. 13.3.5. 13.3.6. 13.3.7. 13.3.8. 13.3.9. 3.4. C 13.4.1. 13.4.2. 13.4.2.	ADC regular data register (ADC_RDTR)	483 484 484 484 484 485 485 485 485 486 486 486 486 487 487 487 487 487 487 487 487 487 487
13. 1 1 1	12.6.14 Digit 3.1. C 3.2. C 3.3. C 13.3.1. 13.3.2. 13.3.3. 13.3.4. 13.3.5. 13.3.6. 13.3.7. 13.3.8. 13.3.9. 3.4. C 13.4.1. 13.4.2. 13.4.3. 13.4.3.	ADC regular data register (ADC_RDTR) al-to-analog converter (DAC) AC introduction AC main features AC function description DAC function description DAC channel enable DAC output buffer enable DAC output buffer enable DAC data format DAC conversion DAC conversion DAC output voltage DMA request DMA request DAC trigger Noise generation Trigangle-wave generation Independent trigger without wave generation Independent trigger with different LFSR generation	483 484 484 484 484 484 484 485 485 485 485

13.4.5.	Independent trigger with different triangle generation	
13.4.6.	Simultaneous software start	493
13.4.7.	Simultaneous trigger without wave generation	493
13.4.8.	Simultaneous trigger with same LFSR generation	493
13.4.9.	Simultaneous trigger with different LFSR generation	493
13.4.10.	Simultaneous trigger with same triangle generation	494
13.4.11.	Simultaneous trigger with different triangle generation	494
13.5. I	DAC registers	495
13.5.1.	DAC control register (DAC_CTLR)	495
13.5.2.	DAC software trigger register (DAC_SWTR)	
13.5.3.	DAC channel1 12-bit right-aligned data holding register (DAC_C1R12DHR)	499
13.5.4.	DAC channel1 12-bit right-aligned data holding register (DAC_C1L12DHR)	499
13.5.5.	DAC channel1 8-bit right-aligned data holding register (DAC_C1R8DHR)	
13.5.6.	DAC channel2 12-bit right-aligned data holding register (DAC_C2R12DHR)	500
13.5.7.	DAC channel2 12-bit left-aligned data holding register (DAC_C2L12DHR)	501
13.5.8.	DAC channel2 8-bit right-aligned data holding register (DAC_C2R8DHR)	501
13.5.9.	Dual DAC 12-bit right-aligned data holding register (DAC_DCR12DHR)	502
13.5.10.	Dual DAC 12-bit left-aligned data holding register (DAC_DCL12DHR)	502
13.5.11.	Dual channel2 8-bit right-aligned data holding register (DAC_DCR8DHR)	503
13.5.12.	DAC channel1 output data register (DAC_C1ODR)	503
13.5.13.	DAC channel2 output data register (DAC_C2ODR)	504
14. Inter	r-integrated circuit (I2C) interface	
14. Inter	r-integrated circuit (I2C) interface	505
14. Inter 14.1. I	r-integrated circuit (I2C) interface	
14. Inter 14.1. I 14.2. I	r-integrated circuit (I2C) interface ntroduction Main features	505
14. Inter 14.1. I 14.2. F 14.3. F	r-integrated circuit (I2C) interface ntroduction Main features Function description	
 14. Inter 14.1. I 14.2. I 14.3. F 14.3.1. 	r-integrated circuit (I2C) interface ntroduction Main features Function description SDA and SCL lines	
 14. Inter 14.1. I 14.2. I 14.3. I 14.3.1. 14.3.2. 	r-integrated circuit (I2C) interface ntroduction Main features Function description SDA and SCL lines Data validation	505 505 505 505 505 506 506 507
 14. Inter 14.1. I 14.2. I 14.3. I 14.3.1. 14.3.2. 14.3.3. 	r-integrated circuit (I2C) interface ntroduction Main features Function description SDA and SCL lines Data validation Start and stop condition	505 505 505 505 505 506 507 507
 14. Inter 14.1. I 14.2. I 14.3. I 14.3.2. 14.3.3. 14.3.4. 	r-integrated circuit (I2C) interface ntroduction Main features Function description SDA and SCL lines Data validation Start and stop condition Clock synchronization	505 505 505 505 505 506 507 507 507
 14. Inter 14.1. I 14.2. I 14.3.1. I 14.3.2. I 14.3.3. I 14.3.4. I 14.3.5. I 	r-integrated circuit (I2C) interface ntroduction Main features Function description SDA and SCL lines Data validation Start and stop condition Clock synchronization Arbitration	
 14. Inter 14.1. I 14.2. I 14.3. I 14.3.2. 14.3.3. 14.3.4. 14.3.5. 14.3.6. 	r-integrated circuit (I2C) interface ntroduction Main features Function description SDA and SCL lines Data validation Start and stop condition Clock synchronization Arbitration	505 505 505 505 505 506 507 507 507 507 508 509
 14. Inter 14.1. I 14.2. I 14.3. I 14.3.1. 14.3.2. 14.3.3. 14.3.4. 14.3.5. 14.3.6. 14.3.7. 	r-integrated circuit (I2C) interface ntroduction Main features Sunction description SDA and SCL lines Data validation Start and stop condition Clock synchronization Arbitration I2C communication flow Programming model	
 14. Inter 14.1. I 14.2. I 14.3. I 14.3.1. 14.3.2. 14.3.3. 14.3.4. 14.3.5. 14.3.6. 14.3.7. 14.3.8. 	r-integrated circuit (I2C) interface ntroduction Main features Function description SDA and SCL lines Data validation Start and stop condition Clock synchronization Arbitration I2C communication flow. Programming model Packet error checking	505 505 505 505 505 506 507 507 507 507 508 508 509 510 520
14. Inter 14.1. I 14.2. I 14.2. I 14.3. I 14.3.1. I 14.3.2. I 14.3.3. I 14.3.4. I 14.3.5. I 14.3.6. I 14.3.7. I 14.3.8. I 14.3.9. I	r-integrated circuit (I2C) interface ntroduction	
14. Inter 14.1. I 14.2. I 14.2. I 14.3.1. I 14.3.2. I 14.3.3. I 14.3.4. I 14.3.5. I 14.3.6. I 14.3.8. I 14.3.9. I 14.3.10. I	r-integrated circuit (I2C) interface	
 14. Inter 14.1. I 14.2. I 14.2. I 14.3.1. I 14.3.2. I 14.3.3. I 14.3.4. I 14.3.5. I 14.3.6. I 14.3.7. I 14.3.8. I 14.3.9. I 14.3.10. I 	r-integrated circuit (I2C) interface ntroduction Main features Function description SDA and SCL lines Data validation Start and stop condition Clock synchronization Arbitration I2C communication flow Programming model Packet error checking SMBus support Status, errors and interrupts 2C registers.	505 505 505 505 505 507 507 507 507 507 508 509 510 520 520 521 522
14. Inter 14.1. I 14.2. I 14.2. I 14.3. I 14.3.1. I 14.3.2. I 14.3.3. I 14.3.4. I 14.3.5. I 14.3.6. I 14.3.7. I 14.3.8. I 14.3.9. I 14.3.10. I 14.4.1. I	r-integrated circuit (I2C) interface ntroduction Main features Function description SDA and SCL lines Data validation. Start and stop condition Clock synchronization Arbitration. I2C communication flow. Programming model Packet error checking SMBus support. Status, errors and interrupts I2C control register 1 (I2C_CTLR1)	505 505 505 505 506 507 507 507 507 507 508 509 510 520 520 521 522
14. Inter 14.1. I 14.2. I 14.2. I 14.3. I 14.3.1. I 14.3.2. I 14.3.3. I 14.3.4. I 14.3.5. I 14.3.6. I 14.3.7. I 14.3.8. I 14.3.9. I 14.3.10. I 14.4.1. I 14.4.2. I	r-integrated circuit (I2C) interface ntroduction Main features Function description SDA and SCL lines Data validation Start and stop condition Clock synchronization Arbitration I2C communication flow Programming model Packet error checking SMBus support Status, errors and interrupts 2C registers I2C control register 1 (I2C_CTLR1) I2C control register 2 (I2C_CTLR2)	505 505 505 505 505 507 507 507 507 507 507 507 507 507 507 507
14. Inter 14.1. I 14.2. I 14.2. I 14.3. I 14.3.1. I 14.3.2. I 14.3.3. I 14.3.4. I 14.3.5. I 14.3.6. I 14.3.7. I 14.3.8. I 14.3.9. I 14.3.10. I 14.4.1. I 14.4.2. I 14.4.3. I	r-integrated circuit (I2C) interface Introduction Main features Function description SDA and SCL lines Data validation. Start and stop condition Clock synchronization Arbitration	505 505 505 505 506 507 507 507 507 508 509 510 520 520 520 521 522 522 522 523 523
14. Inter 14.1. I 14.2. I 14.3. I 14.3.1. I 14.3.2. I 14.3.3. I 14.3.4. I 14.3.5. I 14.3.6. I 14.3.7. I 14.3.8. I 14.3.9. I 14.3.10. I 14.4.1. I 14.4.2. I 14.4.3. I 14.4.4. I	r-integrated circuit (I2C) interface Introduction Main features Function description SDA and SCL lines Data validation. Start and stop condition Clock synchronization Arbitration. I2C communication flow. Programming model Packet error checking SMBus support. Status, errors and interrupts 2C registers. I2C control register 1 (I2C_CTLR1) I2C control register 2 (I2C_CTLR2) I2C own address register 1 (I2C_AR1) I2C own address register 2 (I2C_AR2).	505 505 505 505 505 507 507 507 507 507 507 507 507 507 507 507

14.4.0	6. I2C transfer status register 1 (I2C_STR1)	526
14.4.	7. I2C transfer status register 2 (I2C_STR2)	528
14.4.8	8. I2C clock configure register (I2C_CLKR)	529
14.4.9	9. I2C Rise Time register (I2C_RTR)	
15. Se	erial peripheral interface / Inter-IC sound (SPI/I2S)	530
15.1.	Introduction	530
15.2.	Main features	530
15.2.	1. SPI features	530
15.2.2	2. I2S features	531
15.3.	SPI function description	
15.3.	1. Pin configuration	
15.3.2	2. SPI slave mode	534
15.3.3	3. SPI master mode	535
15.3.4	4. SPI simplex communication	536
15.3.	5. Data Rx and Tx procedures	536
15.3.0	6. CRC calculation	
15.3.	7. Status flags and error flags	538
15.3.8	8. Disabling the SPI	539
15.3.9	9. DMA requests	540
15.3.	10. SPI interrupts	541
15.4.	I2S function description	
15.4.	1. General description	
15.4.2	2. Supported audio standards	
15.4.3	3. Clock generator	
15.4.4	4. Operation	
15.4.	5. DMA features	557
15.5.	SPI registers	
15.5.	1. SPI control register 1 (SPI_CTLR1)	
15.5.2	2. SPI control register 2 (SPI_CTLR2)	
15.5.3	B. SPI status register (SPI_STR)	
15.5.4	4. SPI data register (SPI_DTR)	
15.5.	5. SPI CRC polynomial register (SPI_CPR)	
15.5.0	6. SPI RX CRC register (SPI_RCR)	
15.5.	7. SPI TX CRC register (SPI_TCR)	
15.5.8	8. SPI I2S control register (SPI_I2SCTLR)	
15.5.9	9. SPI I2S clock prescaler register (SPI_I2SCKP)	
16. Ba	ackup registers (BKP)	
16.1.	Introduction	
16.2.	Main features	566
16.3.	Function description	566

16.3.1	. RTC clock calibration	566
16.3.2	. Tamper detection	566
16.4.	BKP registers	
16.4.1	. Backup data register x (BKP_DRx) (x= 142)	
16.4.2	. RTC clock calibration register (BKP_RCCR)	
16.4.3	. Tamper pin control register (BKP_TPCR)	568
16.4.4	. Tamper interrupt event register (BKP_TIER)	568
17. Un	iversal synchronous asynchronous receiver transmitter (US	ART) 570
17.1.	Introduction	570
17.2.	Main features	570
17.3.	Function description	571
17.3.1	. USART transmitter	572
17.3.2	. USART receiver	573
17.3.3	. Reception errors	574
17.3.4	. Baud rate generation	574
17.3.5	. Multi-processor communication	574
17.3.6	. LIN mode	575
17.3.7	. Half-duplex communication mode	575
17.3.8	. Synchronous mode	576
17.3.9	. Smartcard (ISO7816) mode	577
17.3.1	0. IrDA SIR ENDEC mode	577
17.3.1	1. Hardware flow control	579
17.3.1	2. DMA requests	580
17.3.1	3. USART interrupts	580
17.4.	USART registers	582
17.4.1	. USART status register (USART_STR)	582
17.4.2	. USART data register (USART_DR)	584
17.4.3	. USART baud rate register (USART_BRR)	584
17.4.4	. USART control register 1 (USART_CTLR1)	584
17.4.5	. USART control register 2 (USART_CTLR2)	586
17.4.6	. USART control register 3 (USART_CTLR3)	587
17.4.7	. USART guard time and prescaler register (USART_GTPR)	589
18. MC	U Debug (MCUDBG)	591
18.1.	Introduction	591
18.2.	Function description	591
18.2.1	. Debug support for low-power mode	591
18.2.2	. Debug support for timer, i2c,bxCAN, wwdg and iwdg	591
18.3.	MCUDBG registers	591
18.3.1	. MCUDBG ID code register (MCUDBG_IDR)	591
18.3.2	. MCUDBG control register (MCUDBG_CTLR)	592

19. Uni	versal serial bus full-speed device interface (USB 2.0 FS)	596
19.1.	Introduction	596
19.2.	Main features	596
19.3.	Implementation	597
19.4.	Signal Description	597
19.5.	Function description	597
19.5.1.	Block Diagram	
19.5.2.	General functions	
19.5.3.	Operation procedure	
19.5.4.	USB Interrupts	603
19.5.5.	Isochronous transfers	604
19.5.6.	Reset events	604
19.5.7.	Suspend/Resume events	605
19.6.	USB registers	605
19.6.1.	USB control register (USB_CTLR)	605
19.6.2.	USB interrupt Flag register (USB_IFR)	607
19.6.3.	USB Status register (USB_SR)	608
19.6.4.	USB device address register (USB_AR)	608
19.6.5.	USB Buffer address register (USB_BAR)	609
19.6.6.	USB endpoint n control/status register (USB_EPnCSR), n=[07]	609
19.6.7.	USB Transmission buffer address register n (USB_TXARn)	611
19.6.8.	USB Transmission byte count register n (USB_TXCNTn)	611
19.6.9.	USB Reception buffer address register n (USB_RXARn)	612
19.6.10). USB Reception byte count register n (USB_RXCNTRn)	612
20. Rea	II-time Clock(RTC)	613
20.1.	Introduction	613
20.2.	Main feature	
20.2	Function Description	614
20.3.	RTC overview	
20.3.2	RTC reset	614
20.3.3	RTC reading	615
20.3.4	RTC configuration	615
20.3.5.	RTC flag assertion	615
20.4	BTC Register	616
20.4. 20.4.1	RTC control register1(RTC_CTLR1)	010 616
20.4.1.	RTC control register2(RTC_CTLR2)	
20.4.2. 20 1 2	RTC prescaler load register1 (RTC PLR1)	017 619
20. 4 .3. 20 4 4	RTC prescaler load register?(RTC_PLR2)	010 612
20.4.4.	RTC prescaler divider register1 (RTC PREDIV1)	610
20.4.0.	RTC prescaler divider register? (RTC_PREDIV?)	610
20.4.0.		13

20.4.8. RTC counter register/ (RTC_CNT2) 62 20.4.9. RTC alarm register/ (RTC_ALRMR1) 62 20.4.10. RTC alarm register/ (RTC_ALAMR2) 62 21. External memory controller (EXMC) 62 21.1. Introduction 62 21.2. Main feature 62 21.3. Function description 62 21.3.1. EXMC Architecture 62 21.3.2. Basic regulation of EXMC access 62 21.3.3. External device address mapping 62 21.3.4. NOR Flash/PSRAM controller 62 21.3.5. Nand Flash or PC Card controller 64 21.4. NOR Flash/PSRAM controller registers 65 21.4. NAND Flash/PC card controller registers 65 21.4.1. NOR/PSRAM controller registers 65 22.1 Introduction 66 22.2. Controller Area Network (bxCAN) 66 22.3.1. Working mode 66 22.3.2. Communication modes 66 22.3.3. Data transmission 66 22.3.4.	20.4.7.	RTC counter register1(RTC_CNT1)	619
20.4.9. RTC alarm register1(RTC_ALRMR1)	20.4.8.	RTC counter register2 (RTC_CNT2)	620
20.4.10. RTC alarm register2 (RTC_ALAMR2)	20.4.9.	RTC alarm register1(RTC_ALRMR1)	620
21. External memory controller (EXMC) 62' 21.1. Introduction 62' 21.2. Main feature 62' 21.3. Function description 62' 21.3. EXMC Architecture 62' 21.3.1. EXMC Architecture 62' 21.3.2. Basic regulation of EXMC access 62' 21.3.3. External device address mapping 62' 21.3.4. NOR Flash/PSRAM controller 62' 21.3.5. Nand Flash or PC Card controller 64' 21.4. EXMC registers 65' 21.4.1. NOR/PSRAM controller registers 65' 21.4.2. NAND Flash/PC card controller registers 65' 21.4.1. NOR/PSRAM controller registers 65' 21.4.2. NAND Flash/PC card controller registers 65' 21.1. Introduction 66' 22.2. Controller Area Network (bxCAN) 66' 22.3.1. Working mode 66' 22.3.2. Communication modes 66' 22.3.3. Data transmission 66' 22.3.4. Data reception 66' 22.3.5. Filtering Function 67' 22.3.6. Time-triggered communication 67' 22.3.8. Error flags 67'	20.4.10	. RTC alarm register2 (RTC_ALAMR2)	620
21.1. Introduction 62 21.2. Main feature 62 21.3. Function description 62 21.3.1. EXMC Architecture 62 21.3.2. Basic regulation of EXMC access 62 21.3.3. External device address mapping 62 21.3.4. NOR Flash/PSRAM controller 62 21.3.5. Nand Flash or PC Card controller 64 21.4. NOR/PSRAM controller registers 65 21.4.1. NOR/PSRAM controller registers 65 21.4.1. NOR/PSRAM controller registers 65 22.1. NAND Flash/PC card controller registers 65 22.1. Introduction 66 22.2. Main features 66 22.3. Function description 66 22.3.1. Working mode 66 22.3.2. Communication modes 66 22.3.3. Data reception 66 22.3.4. Data reception 66 22.3.5. Filtering Function 67 22.4. bxCAN interrupts 67	21. Ext	ernal memory controller (EXMC)	621
21.2. Main feature. 62. 21.3. Function description 62. 21.3.1. EXMC Architecture 62. 21.3.2. Basic regulation of EXMC access 62. 21.3.3. External device address mapping 62. 21.3.4. NOR Flash/PSRAM controller 62. 21.3.5. Nand Flash or PC Card controller 64. 21.4. EXMC registers 65. 21.4.1. NOR/PSRAM controller registers 65. 21.4.2. NAND Flash/PC card controller registers 65. 21.4.1. NOR/PSRAM controller registers 65. 21.4.2. NAND Flash/PC card controller registers 65. 22.1. Introduction 66. 22.1. Introduction 66. 22.3. Function description 66. 22.3.1. Working mode 66. 22.3.2. Communication modes 66. 22.3.3. Data transmission 66. 22.3.4. Data reception 66. 22.3.5. Filtering Function 67. 22.4. batCAN registers <th>21.1.</th> <th>Introduction</th> <th> 621</th>	21.1.	Introduction	621
21.3. Function description 62. 21.3.1. EXMC Architecture 62. 21.3.2. Basic regulation of EXMC access 62. 21.3.3. External device address mapping 62. 21.3.4. NOR Flash/PSRAM controller 62. 21.3.5. Nand Flash or PC Card controller 65. 21.4.1. NOR/PSRAM controller registers 65. 21.4.1. NOR/PSRAM controller registers 65. 21.4.2. NAND Flash/PC card controller registers 65. 21.4.2. NAND Flash/PC card controller registers 65. 22.1. Introduction 66. 22.2. Main features 66. 22.3.1. Working mode 66. 22.3.3. Data transmission 66. 22.3.4. Data reception 66. 22.3.5. Filtering Function 66. 22.3.6. Filtering function 66. 22.3.7. Communication parameters 67. 22.4. bxCAN registers 67. 22.3.8. Error flags 67. 22.4. bxCAN registe	21.2.	Main feature	621
21.3.1. EXMC Architecture	21.3.	Function description	622
21.3.2. Basic regulation of EXMC access	21.3.1.	EXMC Architecture	622
21.3.3. External device address mapping	21.3.2.	Basic regulation of EXMC access	622
21.3.4. NOR Flash/PSRAM controller.	21.3.3.	External device address mapping	623
21.3.5. Nand Flash or PC Card controller	21.3.4.	NOR Flash/PSRAM controller	627
21.4. EXMC registers 654 21.4.1. NOR/PSRAM controller registers 655 21.4.2. NAND Flash/PC card controller registers 655 22. Controller Area Network (bxCAN) 667 22.1. Introduction 666 22.2. Main features 666 22.3. Function description 666 22.3.1. Working mode 666 22.3.2. Communication modes 666 22.3.3. Data transmission 666 22.3.4. Data reception 666 22.3.5. Filtering Function 666 22.3.6. Time-triggered communication 677 22.3.7. Communication parameters 67 22.3.8. Error flags 67 22.3.9. bxCAN registers 67 22.4.1. CAN control register (CAN_CTLR) 67 22.4.2. CAN transmit status register (CAN_TSTR) 67 22.4.3. CAN receive FIFO0 register (CAN_TSTR) 67 22.4.3. CAN register FIFO1 register (CAN_RFR1) 67 22.4.4. CAN reror	21.3.5.	Nand Flash or PC Card controller	646
21.4.1. NOR/PSRAM controller registers 655 21.4.2. NAND Flash/PC card controller registers 655 22. Controller Area Network (bxCAN) 667 22.1. Introduction 666 22.2. Main features 666 22.3. Function description 666 22.3. Function description 666 22.3.1. Working mode 666 22.3.2. Communication modes 666 22.3.3. Data transmission 666 22.3.4. Data reception 666 22.3.5. Filtering Function 666 22.3.6. Time-triggered communication 677 22.3.7. Communication parameters 67 22.3.8. Error flags 677 22.3.9. bxCAN interrupts 677 22.4.1. CAN control register (CAN_CTLR) 677 22.4.2. CAN status register (CAN_TSTR) 677 22.4.3. CAN transmit status register (CAN_TSTR) 677 22.4.4. CAN receive FIFO1 register (CAN_RFR1) 677 22.4.5. CAN interrupt enable register (CAN_RFR1) 677 22.4.6. CAN interrupt enable register (CAN_BTR) 688 22.4.7. CAN error register (CAN_BTR) 688 22.4.8. CAN bit timing register (C	21.4.	EXMC registers	650
21.4.2. NAND Flash/PC card controller registers	21.4.1.	NOR/PSRAM controller registers	650
22. Controller Area Network (bxCAN) 66' 22.1. Introduction 66' 22.2. Main features 66' 22.3. Function description 66' 22.3.1. Working mode 66' 22.3.2. Communication modes 66' 22.3.3. Data transmission 66' 22.3.4. Data reception 66' 22.3.5. Filtering Function 66' 22.3.6. Time-triggered communication 67' 22.3.7. Communication parameters 67' 22.3.8. Error flags 67' 22.3.9. bxCAN interrupts 67' 22.4.1. CAN control register (CAN_CTLR) 67' 22.4.1. CAN control register (CAN_STR) 67' 22.4.2. CAN status register (CAN_STR) 67' 22.4.3. CAN transmit status register (CAN_RFR0) 67' 22.4.4. CAN receive FIFO0 register (CAN_RFR0) 67' 22.4.5. CAN error register (CAN_RFR0) 67' 22.4.6. CAN interrupt enable register (CAN_RFR0) 68' 22.4.7. CAN error register (CAN_RFR) 68' 22.4.8. CAN bit timing register (CAN_BTR) 68' 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=0.2) 68' 22.4.10.	21.4.2.	NAND Flash/PC card controller registers	655
22.1. Introduction 666 22.2. Main features 666 22.3. Function description 666 22.3.1. Working mode 666 22.3.2. Communication modes 666 22.3.3. Data transmission 666 22.3.4. Data reception 666 22.3.5. Filtering Function 666 22.3.6. Time-triggered communication 677 22.3.7. Communication parameters 677 22.3.8. Error flags 677 22.3.9. bxCAN interrupts 677 22.3.9. bxCAN registers 677 22.4.1. CAN control register (CAN_CTLR) 677 22.4.2. CAN transmit status register (CAN_TSTR) 677 22.4.3. CAN transmit status register (CAN_TSTR) 677 22.4.4. CAN receive FIFO1 register (CAN_TSTR) 677 22.4.5. CAN receive FIFO1 register (CAN_RFR0) 677 22.4.6. CAN receive FIFO1 register (CAN_RFR1) 677 22.4.6. CAN reariser (CAN_ER) 688 22.4.7. <t< td=""><td>22. Cor</td><td>troller Area Network (bxCAN)</td><td></td></t<>	22. Cor	troller Area Network (bxCAN)	
22.2. Main features 666 22.3. Function description 666 22.3.1. Working mode 666 22.3.2. Communication modes 666 22.3.3. Data transmission 666 22.3.4. Data reception 666 22.3.5. Filtering Function 666 22.3.6. Time-triggered communication 677 22.3.7. Communication parameters 677 22.3.8. Error flags 677 22.3.9. bxCAN interrupts 677 22.3.9. bxCAN registers 677 22.4.1. CAN control register (CAN_CTLR) 677 22.4.2. CAN status register (CAN_STR) 677 22.4.3. CAN transmit status register (CAN_TSTR) 677 22.4.4. CAN receive FIFO0 register (CAN_RFR0) 677 22.4.5. CAN receive FIFO1 register (CAN_RFR1) 677 22.4.6. CAN interrupt enable register (CAN_RFR1) 677 22.4.6. CAN interrupt enable register (CAN_RFR1) 678 22.4.7. CAN error register (CAN_RFR1) 678 22.4.8. CAN bit timing register (CAN_RFR) 688 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=02) 688 22.4.10. CAN transmit mailbox identifier register (CAN_TMIRx) (x=02) </th <th>22.1</th> <th></th> <th> 661</th>	22.1		661
22.3. Function description 66 22.3.1. Working mode 66 22.3.2. Communication modes 66 22.3.3. Data transmission 66 22.3.4. Data reception 66 22.3.5. Filtering Function 66 22.3.6. Time-triggered communication 67 22.3.7. Communication parameters 67 22.3.8. Error flags 67 22.3.9. bxCAN registers 67 22.4.1. CAN control register (CAN_CTLR) 67 22.4.2. CAN status register (CAN_STR) 67 22.4.3. CAN transmit status register (CAN_TSTR) 67 22.4.4. CAN receive FIFO0 register (CAN_TSTR) 67 22.4.5. CAN receive FIFO1 register (CAN_RFR1) 67 22.4.5. CAN interrupt enable register (CAN_IER) 68 22.4.7. CAN error register (CAN_ER) 68 22.4.8. CAN bit timing register (CAN_BTR) 68 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=02) 68 22.4.10. CAN transmit mailbox identifier regist	~~	Introduction	
22.3.1. Working mode 66 22.3.2. Communication modes 66 22.3.3. Data transmission 66 22.3.4. Data reception 66 22.3.5. Filtering Function 66 22.3.6. Time-triggered communication 67 22.3.7. Communication parameters 67 22.3.8. Error flags 67 22.3.9. bxCAN registers 67 22.4.1. CAN control register (CAN_CTLR) 67 22.4.2. CAN status register (CAN_STR) 67 22.4.3. CAN transmit status register (CAN_TSTR) 67 22.4.4. CAN receive FIFO0 register (CAN_RFR0) 67 22.4.5. CAN interrupt enable register (CAN_RFR1) 67 22.4.6. CAN interrupt enable register (CAN_RFR1) 67 22.4.7. CAN error register (CAN_ER) 68 22.4.8. CAN bit timing register (CAN_BTR) 68 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=02) 68 22.4.9. CAN transmit mailbox property register (CAN_TMPRx) (x=02) 68	22.2.	Main features	661
22.3.2. Communication modes 66 22.3.3. Data transmission 66 22.3.4. Data reception 66 22.3.5. Filtering Function 66 22.3.6. Time-triggered communication 67 22.3.7. Communication parameters 67 22.3.8. Error flags 67 22.3.9. bxCAN interrupts 67 22.4. bxCAN registers 67 22.4.1. CAN control register (CAN_CTLR) 67 22.4.2. CAN status register (CAN_STR) 67 22.4.3. CAN transmit status register (CAN_TSTR) 67 22.4.4. CAN receive FIFO0 register (CAN_RFR0) 67 22.4.5. CAN receive FIFO1 register (CAN_RFR1) 67 22.4.6. CAN interrupt enable register (CAN_IER) 68 22.4.7. CAN error register (CAN_ER) 68 22.4.8. CAN bit timing register (CAN_BTR) 68 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=0.2) 68 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=0.2) 68	22.2. 22.3.	Main features Function description	661
22.3.3. Data transmission 666 22.3.4. Data reception 666 22.3.5. Filtering Function 666 22.3.6. Time-triggered communication 677 22.3.7. Communication parameters 677 22.3.8. Error flags 677 22.3.9. bxCAN interrupts 677 22.4. bxCAN registers 677 22.4.1. CAN control register (CAN_CTLR) 677 22.4.2. CAN status register (CAN_STR) 677 22.4.3. CAN transmit status register (CAN_TSTR) 677 22.4.4. CAN receive FIFO0 register (CAN_RFR0) 677 22.4.5. CAN receive FIFO1 register (CAN_RFR1) 677 22.4.6. CAN interrupt enable register (CAN_RFR1) 677 22.4.6. CAN interrupt enable register (CAN_IER) 688 22.4.7. CAN error register (CAN_BTR) 688 22.4.8. CAN bit timing register (CAN_BTR) 688 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=02) 688 22.4.10. CAN transmit mailbox property register (CAN_TMIRx) (x=02) 688 </td <td>22.2. 22.3. 22.3.1.</td> <td>Main features Function description Working mode</td> <td></td>	22.2. 22.3. 22.3.1.	Main features Function description Working mode	
22.3.4. Data reception 666 22.3.5. Filtering Function 666 22.3.6. Time-triggered communication 677 22.3.7. Communication parameters 677 22.3.8. Error flags 677 22.3.9. bxCAN registers 677 22.4.1. CAN control register (CAN_CTLR) 677 22.4.2. CAN status register (CAN_STR) 677 22.4.3. CAN transmit status register (CAN_TSTR) 677 22.4.4. CAN receive FIFO0 register (CAN_RFR0) 677 22.4.5. CAN receive FIFO1 register (CAN_RFR1) 677 22.4.6. CAN interrupt enable register (CAN_IER) 677 22.4.7. CAN error register (CAN_ER) 688 22.4.7. CAN error register (CAN_ER) 688 22.4.8. CAN bit timing register (CAN_BTR) 688 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=02) 688 22.4.9. CAN transmit mailbox property register (CAN_TMPRx) (x=02) 688	22.2. 22.3. 22.3.1. 22.3.2.	Main features Function description Working mode Communication modes	
22.3.5. Filtering Function 666 22.3.6. Time-triggered communication 670 22.3.7. Communication parameters 677 22.3.8. Error flags 677 22.3.9. bxCAN interrupts 677 22.4. bxCAN registers 677 22.4.1. CAN control register (CAN_CTLR) 677 22.4.2. CAN status register (CAN_STR) 677 22.4.3. CAN transmit status register (CAN_TSTR) 677 22.4.4. CAN receive FIFO0 register (CAN_TSTR) 677 22.4.5. CAN receive FIFO1 register (CAN_RFR0) 677 22.4.6. CAN interrupt enable register (CAN_IER) 677 22.4.7. CAN error register (CAN_ER) 688 22.4.8. CAN bit timing register (CAN_BTR) 688 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=0.2) 688 22.4.10. CAN transmit mailbox property register (CAN_TMPRx) (x=0.2) 688	22.2. 22.3. 22.3.1. 22.3.2. 22.3.3.	Main features Function description Working mode Communication modes Data transmission	
22.3.6. Time-triggered communication 67 22.3.7. Communication parameters 67 22.3.8. Error flags 67 22.3.9. bxCAN interrupts 67 22.4. bxCAN registers 67 22.4.1. CAN control register (CAN_CTLR) 67 22.4.2. CAN status register (CAN_STR) 67 22.4.3. CAN transmit status register (CAN_TSTR) 67 22.4.4. CAN receive FIFO0 register (CAN_TSTR) 67 22.4.5. CAN receive FIFO1 register (CAN_RFR0) 67 22.4.5. CAN interrupt enable register (CAN_RFR1) 67 22.4.6. CAN interrupt enable register (CAN_IER) 68 22.4.7. CAN error register (CAN_ER) 68 22.4.8. CAN bit timing register (CAN_BTR) 68 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=02) 68 22.4.10. CAN transmit mailbox property register (CAN_TMPRx) (x=02) 68	22.2. 22.3. 22.3.1. 22.3.2. 22.3.3. 22.3.4.	Main features Function description Working mode Communication modes Data transmission Data reception	
22.3.7. Communication parameters 67 22.3.8. Error flags 67 22.3.9. bxCAN interrupts 67 22.4. bxCAN registers 67 22.4.1. CAN control register (CAN_CTLR) 67 22.4.2. CAN status register (CAN_STR) 67 22.4.3. CAN transmit status register (CAN_TSTR) 67 22.4.4. CAN receive FIFO0 register (CAN_RFR0) 67 22.4.5. CAN receive FIFO1 register (CAN_RFR1) 67 22.4.6. CAN interrupt enable register (CAN_IER) 68 22.4.7. CAN error register (CAN_ER) 68 22.4.8. CAN bit timing register (CAN_BTR) 68 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=0.2) 68 22.4.10. CAN transmit mailbox property register (CAN_TMPRx) (x=0.2) 68	22.2. 22.3. 22.3.1. 22.3.2. 22.3.3. 22.3.4. 22.3.5.	Main features Function description Working mode Communication modes Data transmission Data reception Filtering Function	
22.3.8. Error flags 67 22.3.9. bxCAN interrupts 67 22.4. bxCAN registers 67 22.4. CAN control register (CAN_CTLR) 67 22.4.1. CAN control register (CAN_STR) 67 22.4.2. CAN status register (CAN_STR) 67 22.4.3. CAN transmit status register (CAN_TSTR) 67 22.4.4. CAN receive FIFO0 register (CAN_RFR0) 67 22.4.5. CAN receive FIFO1 register (CAN_RFR1) 67 22.4.6. CAN interrupt enable register (CAN_IER) 68 22.4.7. CAN error register (CAN_ER) 68 22.4.8. CAN bit timing register (CAN_BTR) 68 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=02) 68 22.4.10. CAN transmit mailbox property register (CAN_TMPRx) (x=02) 68	22.2. 22.3. 22.3.1. 22.3.2. 22.3.3. 22.3.4. 22.3.5. 22.3.6.	Main features Function description Working mode Communication modes Data transmission Data reception Filtering Function Time-triggered communication	
22.3.9. bxCAN interrupts	22.2. 22.3. 22.3.1. 22.3.2. 22.3.3. 22.3.4. 22.3.5. 22.3.6. 22.3.7.	Main features Function description Working mode Communication modes Data transmission Data reception Filtering Function Time-triggered communication Communication parameters	661 662 663 664 666 666 668 670 671
22.4. bxCAN registers 674 22.4.1. CAN control register (CAN_CTLR) 674 22.4.2. CAN status register (CAN_STR) 674 22.4.3. CAN transmit status register (CAN_TSTR) 677 22.4.3. CAN transmit status register (CAN_TSTR) 677 22.4.4. CAN receive FIFO0 register (CAN_RFR0) 679 22.4.5. CAN receive FIFO1 register (CAN_RFR1) 679 22.4.6. CAN interrupt enable register (CAN_IER) 679 22.4.7. CAN error register (CAN_ER) 689 22.4.8. CAN bit timing register (CAN_BTR) 688 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=0.2) 688 22.4.10. CAN transmit mailbox property register (CAN_TMPRx) (x=0.2) 688	22.2. 22.3. 22.3.1. 22.3.2. 22.3.3. 22.3.4. 22.3.5. 22.3.6. 22.3.7. 22.3.8.	Main features Function description Working mode Communication modes Data transmission Data reception Filtering Function Time-triggered communication Communication parameters Error flags	
22.4.1.CAN control register (CAN_CTLR)67422.4.2.CAN status register (CAN_STR)67422.4.3.CAN transmit status register (CAN_TSTR)67722.4.4.CAN receive FIFO0 register (CAN_RFR0)67922.4.5.CAN receive FIFO1 register (CAN_RFR1)67922.4.6.CAN interrupt enable register (CAN_IER)68922.4.7.CAN error register (CAN_ER)68922.4.8.CAN bit timing register (CAN_BTR)68922.4.9.CAN transmit mailbox identifier register (CAN_TMIRx) (x=02)68922.4.10.CAN transmit mailbox property register (CAN_TMPRx) (x=02)68922.4.10.CAN transmit mailbox property register (CAN_TMPRx) (x=02)689	22.2. 22.3. 22.3.1. 22.3.2. 22.3.3. 22.3.4. 22.3.5. 22.3.6. 22.3.7. 22.3.8. 22.3.9.	Main features Function description Working mode Communication modes Data transmission Data reception Filtering Function Time-triggered communication Communication parameters Error flags bxCAN interrupts	661 662 663 664 666 668 668 670 671 673 673
22.4.2.CAN status register (CAN_STR)6722.4.3.CAN transmit status register (CAN_TSTR)6722.4.4.CAN receive FIFO0 register (CAN_RFR0)6722.4.5.CAN receive FIFO1 register (CAN_RFR1)6722.4.6.CAN interrupt enable register (CAN_IER)6822.4.7.CAN error register (CAN_ER)6822.4.8.CAN bit timing register (CAN_BTR)6822.4.9.CAN transmit mailbox identifier register (CAN_TMIRx) (x=0.2)6822.4.10.CAN transmit mailbox property register (CAN_TMPRx) (x=0.2)68	22.2. 22.3. 22.3.1. 22.3.2. 22.3.3. 22.3.4. 22.3.5. 22.3.6. 22.3.7. 22.3.8. 22.3.9. 22.4.	Main features Function description Working mode Communication modes Data transmission Data reception Filtering Function Time-triggered communication Communication parameters Error flags bxCAN interrupts	661 662 663 664 664 666 668 670 671 673 673 673 673
22.4.3.CAN transmit status register (CAN_TSTR)6722.4.4.CAN receive FIFO0 register (CAN_RFR0)6722.4.5.CAN receive FIFO1 register (CAN_RFR1)6722.4.6.CAN interrupt enable register (CAN_IER)6822.4.7.CAN error register (CAN_ER)6822.4.8.CAN bit timing register (CAN_BTR)6822.4.9.CAN transmit mailbox identifier register (CAN_TMIRx) (x=0.2)6822.4.10.CAN transmit mailbox property register (CAN_TMPRx) (x=0.2)68	22.2. 22.3. 22.3.1. 22.3.2. 22.3.3. 22.3.4. 22.3.5. 22.3.6. 22.3.7. 22.3.8. 22.3.9. 22.4. 22.4.1.	Main features Function description Working mode Communication modes Data transmission Data reception Filtering Function Time-triggered communication Communication parameters Error flags bxCAN interrupts bxCAN registers CAN control register (CAN_CTLR)	
22.4.4. CAN receive FIFO0 register (CAN_RFR0) 679 22.4.5. CAN receive FIFO1 register (CAN_RFR1) 679 22.4.6. CAN interrupt enable register (CAN_IER) 689 22.4.7. CAN error register (CAN_ER) 689 22.4.8. CAN bit timing register (CAN_BTR) 689 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=02) 689 22.4.10. CAN transmit mailbox property register (CAN_TMPRx) (x=02) 689	22.2. 22.3. 22.3.1. 22.3.2. 22.3.3. 22.3.4. 22.3.5. 22.3.6. 22.3.7. 22.3.8. 22.3.9. 22.4. 22.4.1. 22.4.2.	Main features Function description Working mode Communication modes Data transmission Data reception Filtering Function Time-triggered communication Communication parameters Error flags bxCAN interrupts bxCAN registers CAN control register (CAN_CTLR) CAN status register (CAN_STR)	661 662 663 664 664 666 668 670 671 673 673 673 673 674 674
22.4.5. CAN receive FIFO1 register (CAN_RFR1) 679 22.4.6. CAN interrupt enable register (CAN_IER) 680 22.4.7. CAN error register (CAN_ER) 680 22.4.8. CAN bit timing register (CAN_BTR) 680 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=02) 680 22.4.10. CAN transmit mailbox property register (CAN_TMPRx) (x=02) 680	22.2. 22.3. 22.3.1. 22.3.2. 22.3.2. 22.3.3. 22.3.4. 22.3.5. 22.3.6. 22.3.7. 22.3.8. 22.3.9. 22.4. 22.4.1. 22.4.1. 22.4.2. 22.4.3.	Main features Function description Working mode Communication modes Data transmission Data transmission Data reception Filtering Function Time-triggered communication Communication parameters Error flags bxCAN interrupts bxCAN registers CAN control register (CAN_CTLR) CAN status register (CAN_STR) CAN transmit status register (CAN_TSTR)	
22.4.6. CAN interrupt enable register (CAN_IER) 68 22.4.7. CAN error register (CAN_ER) 68 22.4.8. CAN bit timing register (CAN_BTR) 68 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=02) 68 22.4.10. CAN transmit mailbox property register (CAN_TMPRx) (x=02) 68	22.2. 22.3. 22.3.1. 22.3.2. 22.3.3. 22.3.4. 22.3.5. 22.3.6. 22.3.7. 22.3.8. 22.3.9. 22.4. 22.4.1. 22.4.2. 22.4.3. 22.4.4.	Main features Function description Working mode Communication modes Data transmission Data reception Filtering Function Time-triggered communication Communication parameters Error flags bxCAN interrupts bxCAN registers CAN control register (CAN_CTLR) CAN status register (CAN_STR) CAN transmit status register (CAN_RFR0)	661 662 663 664 664 666 668 668 670 671 673 673 673 673 674 674 674 674
 22.4.7. CAN error register (CAN_ER)	22.2. 22.3. 22.3.1. 22.3.2. 22.3.3. 22.3.4. 22.3.4. 22.3.5. 22.3.6. 22.3.7. 22.3.8. 22.3.9. 22.4. 22.4.1. 22.4.2. 22.4.3. 22.4.4. 22.4.5.	Main features Function description Working mode Communication modes	661 662 663 664 664 666 668 670 671 673 673 673 673 674 674 674 674 675 679 679
 22.4.8. CAN bit timing register (CAN_BTR)	22.2. 22.3. 22.3.1. 22.3.2. 22.3.3. 22.3.4. 22.3.5. 22.3.6. 22.3.7. 22.3.8. 22.3.9. 22.4. 22.4.1. 22.4.2. 22.4.2. 22.4.3. 22.4.4. 22.4.5. 22.4.6.	Main features Function description Working mode Communication modes	661 662 663 664 664 666 668 670 671 673 673 673 673 674 674 674 674 674 674 675 679 679 679 679
 22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=02)	22.2. 22.3. 22.3.1. 22.3.2. 22.3.3. 22.3.4. 22.3.6. 22.3.6. 22.3.7. 22.3.8. 22.3.9. 22.4. 22.4.1. 22.4.2. 22.4.2. 22.4.3. 22.4.4. 22.4.5. 22.4.6. 22.4.7.	Main features Function description Working mode Communication modes Data transmission Data reception Filtering Function Time-triggered communication Communication parameters Error flags bxCAN interrupts bxCAN interrupts CAN control register (CAN_CTLR) CAN status register (CAN_STR) CAN status register (CAN_STR) CAN receive FIFO0 register (CAN_RFR0) CAN receive FIFO1 register (CAN_RFR1) CAN interrupt enable register (CAN_IER)	661 662 663 664 664 666 668 670 671 673 673 673 673 673 674 674 674 674 674 675 679 679 679 680 682
22.4.10. CAN transmit mailbox property register (CAN_TMPRx) (x=02)	22.2. 22.3. 22.3.1. 22.3.2. 22.3.3. 22.3.4. 22.3.5. 22.3.6. 22.3.7. 22.3.8. 22.3.9. 22.4. 22.4.1. 22.4.2. 22.4.3. 22.4.4. 22.4.5. 22.4.6. 22.4.7. 22.4.8.	Main features Function description Working mode Communication modes Data transmission Data transmission Data reception Filtering Function Time-triggered communication Communication parameters Error flags bxCAN interrupts bxCAN registers CAN control register (CAN_CTLR) CAN status register (CAN_STR) CAN transmit status register (CAN_TSTR) CAN receive FIFO0 register (CAN_RFR0) CAN receive FIFO1 register (CAN_RFR1) CAN interrupt enable register (CAN_IER) CAN error register (CAN_ER) CAN interrupt enable register (CAN_BTR)	661 662 663 664 664 666 668 670 671 673 673 673 673 673 674 674 674 674 674 675 679 679 679 679 680 682 683
	22.2. 22.3. 22.3.1. 22.3.2. 22.3.3. 22.3.4. 22.3.6. 22.3.6. 22.3.7. 22.3.8. 22.3.9. 22.4.1. 22.4.2. 22.4.3. 22.4.4. 22.4.5. 22.4.6. 22.4.7. 22.4.8. 22.4.9.	Main features Function description Working mode Communication modes Data transmission Data transmission Data reception Filtering Function Time-triggered communication Communication parameters Error flags bxCAN interrupts bxCAN registers CAN control register (CAN_CTLR) CAN status register (CAN_STR) CAN transmit status register (CAN_TSTR) CAN receive FIFO0 register (CAN_RFR0) CAN receive FIFO1 register (CAN_RFR1) CAN interrupt enable register (CAN_IER) CAN error register (CAN_ER) CAN interrupt enable register (CAN_IER) CAN bit timing register (CAN_BTR) CAN bit timing register (CAN_BTR)	661 662 663 664 664 666 668 670 671 673 673 673 673 674 674 674 674 674 674 674 675 679 679 679 680 682 683 683

22.4.11.	CAN transmit mailbox data0 register (CAN TMD0Rx) (x=02)	
22.4.12	CAN transmit mailbox data1 register (CAN TMD1Rx) (x=02)	
22.4.13	CAN receive FIFO mailbox identifier register (CAN RFMIRx) (x=01)	
22.4.14	CAN receive FIFO mailbox property register (CAN_RFMPRx) (x=01)	
22.4.15	CAN receive FIFO mailbox data0 register (CAN_RFMD0Rx) (x=01)	
22.4.16	CAN receive FIFO mailbox data1 register (CAN_RFMD1Rx) (x=01)	
22.4.17	CAN filter control register (CAN_FCTLR)	
22.4.18	CAN filter mode register (CAN_FMR)	
22.4.19	CAN filter scale register (CAN_FSR)	690
22.4.20	CAN filter associated FIFO register (CAN_FAFR)	690
22.4.21	CAN filter working register (CAN_FWR)	690
22.4.22	CAN filter x data y register (CAN_FxDyR) (x=027, y=01)	691
23. Secu	ure digital input/output interface (SDIO)	692
23.1. 9	DIO main features	692
23.2.	DIO bus topology	692
23.3.	DIO functional description	695
23.3.1.	SDIO adapter	696
23.3.2.	AHB interface	697
23.3.3.	SDIO state machine	698
23.4. (Card functional description	
23.4.1.	Card registers	701
23.4.2.	Commands	702
23.4.3.	Responses	713
23.4.4.	Two status fields of the card	716
23.5. F	Programming sequence	723
23.5.1.	Card identification	723
23.5.2.	No Data Commands	725
23.5.3.	Single Block or Multiple Block write	725
23.5.4.	Single Block or Multiple Block read	727
23.5.5.	Stream write and Stream read (MMC only)	728
23.5.6.	Erase	729
23.5.7.	Bus width selection	730
23.5.8.	Protection management	730
23.5.9.	Card Lock/Unlock Operation	731
23.6.	pecific operations	733
23.6.1.	SD I/O specific operations	733
23.6.2.	CE-ATA specific operations	737
23.7. H	IW flow control	
23.8. 9	DIO registers	
23.8.1.	SDIO power register (SDIO_POWER)	738

23.8.2.	SDIO clock control register (SDIO_CLKCTLR)	738
23.8.3.	SDIO parameter register (SDIO_PARA)	739
23.8.4.	SDIO command register (SDIO_CMD)	740
23.8.5.	SDIO command response register (SDIO_RESPCMD)	741
23.8.6.	SDIO response register (SDIO_RESPx x=1-4)	741
23.8.7.	SDIO data timeout register (SDIO_DTTR)	742
23.8.8.	SDIO data length register (SDIO_DTLEN)	742
23.8.9.	SDIO data control register (SDIO_DTCTLR)	743
23.8.10	. SDIO data counter register (SDIO_DTCNT)	745
23.8.11	. SDIO status register (SDIO_STR)	745
23.8.12	. SDIO interrupt clear register (SDIO_ICR)	747
23.8.13	. SDIO interrupt enable register (SDIO_IER)	748
23.8.14	. SDIO FIFO counter register (SDIO_FIFOCNT)	750
23.8.15	. SDIO FIFO data register (SDIO_FIFO)	750
24. Univ	versal serial bus on-the-go Full-Speed interface (USB OTG_FS)	751
24. 01.		
24.1.	Introduction	751
24.2.	Main features	751
24.2.1.	General features	751
24.2.2.	Host-mode features	752
24.2.3.	Device-mode features	752
24.3.	Function description	
24.3.1.	USB 2.0 OTG Full-Speed core	753
24.3.2.	OTG Full-Speed PHY	754
24 4	OTG FS operation	754
24.4 . 24.4.1	OTG mode	
24.4.7	Host mode	756
24.4.2.	Perinheral mode	
24.4.3.	r enpheral mode	
24.5.	USB OTG_FS FIFO	
24.5.1.	Host FIFO architecture	767
24.5.2.	Peripheral FIFO architecture	769
24.5.3.	FIFO RAM allocation	770
24.6.	SOF trigger	772
24.6.1.	Host SOFs	773
24.6.2.	Peripheral SOFs	773
24.7.	Power options	773
24.8.	OTG_FS interrupts	774
24.9.	USB system performance	775
24.10.	OTG FS registers	
24.10.1	OTG FSRs memory map	
24.10.2	USB OTG FS global registers	
2		16

24.10.3.	Host control and status registers	.801
24.10.4.	Device control and status registers	.813
24.10.5.	OTG_FS Power and clock control register (OTG_FS_PCCTLR)	839

List of Figures

Figure 1-1 Cortex™-M3 block diagram	31
Figure 1-2 GD32F10x Medium-density series system architecture	32
Figure 1-3 GD32F10x High-density series system architecture	33
Figure 1-4 GD32F10x Extra-density series system architecture	34
Figure 1-5 GD32F10x Connectivity line series system architecture	35
Figure 1-6 GD32F10x memory map	37
Figure 2-1 Power supply overview	43
Figure 2-2 Waveform of the POR/PDR	45
Figure 2-3 Waveform of the LVD threshold	45
Figure 4-1 the system reset circuit	71
Figure 4-2 the system reset circuit	. 101
Figure 5-1 The basic structure of standard I/O Port bit and five-volt tolerant I/O Port bit	136
Figure 5-2 Input floating/pull up/pull down configurations of I/O Port bit	. 137
Figure 5-3 Analog configuration of I/O Port bit	. 138
Figure 5-4 The Output configuration of I/O Port bit	. 139
Figure 5-5 The Alternate Function configuration of I/O Port bit	. 140
Figure 6-1 Block Diagram of CRC Calculation Unit	. 171
Figure 7-1 Block diagram of EXTI	. 180
Figure 8-1 DMA interrupt generation logic	. 188
Figure 8-2 DMA1 request mapping	. 189
Figure 8-3 DMA1 request mapping	. 190
Figure 9-1 Advanced timer block diagram	. 198
Figure 9-2 Counter timing diagram with prescaler division change from 1 to 2	. 198
Figure 9-3 Counter timing diagram with prescaler division change from 1 to 4	. 199
Figure 9-4 Counter timing diagram, internal clock divided by 1	. 200
Figure 9-5 Counter timing diagram, internal clock divided by 2	. 200
Figure 9-6 Counter timing diagram, internal clock divided by 4	. 201
Figure 9-7 Counter timing diagram, internal clock divided by N	. 201
Figure 9-8 Counter timing diagram, update event when ARSE=0	. 202
Figure 9-9 Counter timing diagram, update event when ARSE=1	. 202
Figure 9-10 Counter timing diagram, internal clock divided by 1	. 203
Figure 9-11 Counter timing diagram, internal clock divided by 2	. 204
Figure 9-12 Counter timing diagram, internal clock divided by 4	. 204
Figure 9-13 Counter timing diagram, internal clock divided by N	. 205
Figure 9-14 Counter timing diagram, update event when repetition counter is not used	. 205
Figure 9-15 Counter timing diagram, internal clock divided by 1, TIMERx_CARL=0x5	. 206
Figure 9-16 Counter timing diagram, internal clock divided by 1	. 207
Figure 9-17 Counter timing diagram, internal clock divided by 1, TIMERx_CARL=0x5	. 207
Figure 9-18 Counter timing diagram, internal clock divided by N	. 208

Figure 9-19 Counter timing diagram, update event with ARSE=1(counter underflow)	. 208
Figure 9-20 Counter timing diagram, Update event with ARSE=1 (counter overflow)	. 209
Figure 9-21 Update rate examples depending on mode and TIMERx_CREP	. 210
Figure 9-22 Control circuit in normal mode, internal clock divided by 1	. 210
Figure 9-23 Capture/compare channel (example: channel 1 input stage)	. 212
Figure 9-24 Capture/compare channel 1 main circuit	. 213
Figure 9-25 Output stage of capture/compare channel (channel 1 to 3)	. 213
Figure 9-26 Output stage of capture/compare channel (channel 4)	. 214
Figure 9-27 Output compare mode, toggle on OC1	. 214
Figure 9-28 Complementary output with dead-time insertion.	. 215
Figure 9-29 Dead-time waveforms with delay greater than the negative pulse	. 216
Figure 9-30 Dead-time waveforms with delay greater than the positive pulse	. 216
Figure 9-31 Output behavior in response to a break (The break input is acting on	high
level)	. 217
Figure 9-32 Single pulse mode	. 218
Figure 9-33 Example of counter operation in encoder interface mode	. 219
Figure 9-34 Example of encoder interface mode with TI1FP1 polarity inverted	. 219
Figure 9-35 Control circuit in restart mode	. 220
Figure 9-36 Control circuit in pause mode	. 221
Figure 9-37 Control circuit in trigger mode	. 221
Figure 9-38 Timer1 Master/Slave mode timer example	. 222
Figure 9-39 Triggering timer 1 with Enable of timer 2	. 223
Figure 9-40 Triggering timer 1 with update of timer 2	. 224
Figure 9-41 Gating timer 1 with enable of timer 2	. 224
Figure 9-42 Gating timer 1 with OC1REF of timer 2	. 225
Figure 9-43 Triggering timer 1 and timer2 with timer2's TI1 input	. 226
Figure 9-44 General timer block diagram(TIMER2 to TIMER5)	. 250
Figure 9-45 Counter timing diagram with prescaler division change from 1 to 2	. 250
Figure 9-46 Counter timing diagram with prescaler division change from 1 to 4	. 251
Figure 9-47 Counter timing diagram, internal clock divided by 1	. 252
Figure 9-48 Counter timing diagram, internal clock divided by 2	. 252
Figure 9-49 Counter timing diagram, internal clock divided by 4	. 253
Figure 9-50 Counter timing diagram, internal clock divided by N	. 253
Figure 9-51 Counter timing diagram, update event when ARSE=0	. 254
Figure 9-52 Counter timing diagram, update event when ARSE=1	. 254
Figure 9-53 Counter timing diagram, internal clock divided by 1	. 255
Figure 9-54 Counter timing diagram, internal clock divided by 2	. 256
Figure 9-55 Counter timing diagram, internal clock divided by 4	. 256
Figure 9-56 Counter timing diagram, internal clock divided by N	. 257
Figure 9-57 Counter timing diagram, update event	. 257
Figure 9-58 Counter timing diagram, internal clock divided by 1, TIMERx_CARL = 0x5	. 258
Figure 9-59 Counter timing diagram, internal clock divided by 2	. 259
Figure 9-60 Counter timing diagram, internal clock divided by 4, TIMERx_CARL=0x63	. 259
Figure 9-61 Counter timing diagram, internal clock divided by N	. 260

19

Figure 9-62 Counter timing diagram, update event with ARSE=1(counter underflow)	. 260
Figure 9-63 Counter timing diagram, Update event with ARSE=1 (counter overflow)	. 261
Figure 9-64 Control circuit in normal mode, internal clock divided by 1	. 262
Figure 9-65 Capture/compare channel (example: channel 1 input stage)	. 263
Figure 9-66 Capture/compare channel 1 main circuit	. 264
Figure 9-67 Output stage of capture/compare channel (channel 1)	. 264
Figure 9-68 Output compare mode, toggle on OC1	. 265
Figure 9-69 Single pulse mode	. 266
Figure 9-70 Example of counter operation in encoder interface mode	. 267
Figure 9-71 Example of encoder interface mode with TI1FP1 polarity inverted	. 268
Figure 9-72 Control circuit in restart mode	. 268
Figure 9-73 Control circuit in pause mode	. 269
Figure 9-74 Control circuit in trigger mode	. 269
Figure 9-75 Master/Slave mode timer example	. 270
Figure 9-76 General timer block diagram (TIMER6 and TIMER7)	. 289
Figure 9-77 Counter timing diagram with prescaler division change from 1 to 2	. 289
Figure 9-78 Counter timing diagram with prescaler division change from 1 to 4	. 290
Figure 9-79 Counter timing diagram in normal mode, internal clock divided by 1	. 291
Figure 9-80 General timer block diagram (TIMER9 and TIMER12)	. 296
Figure 9-81 Counter timing diagram with prescaler division change from 1 to 2	. 297
Figure 9-82 Counter timing diagram with prescaler division change from 1 to 4	. 297
Figure 9-83 Counter timing diagram, internal clock divided by 1	. 298
Figure 9-84 Counter timing diagram, internal clock divided by 2	. 299
Figure 9-85 Counter timing diagram, internal clock divided by 4	. 299
Figure 9-86 Counter timing diagram, internal clock divided by N	. 300
Figure 9-87 Counter timing diagram, update event when ARSE=0	. 300
Figure 9-88 Counter timing diagram, update event when ARSE=1	.301
Figure 9-89 Counter timing diagram, internal clock divided by 1	. 302
Figure 9-90 Counter timing diagram, internal clock divided by 2	. 302
Figure 9-91 Counter timing diagram, internal clock divided by 4	. 303
Figure 9-92 Counter timing diagram, internal clock divided by N	. 303
Figure 9-93 Counter timing diagram, update event	. 304
Figure 9-94 Counter timing diagram, internal clock divided by 1, TIMERx_CARL = 0x5	. 305
Figure 9-95 Counter timing diagram, internal clock divided by 2	. 305
Figure 9-96 Counter timing diagram, internal clock divided by 4, TIMERx_CARL=0x63	. 306
Figure 9-97 Counter timing diagram, internal clock divided by N	. 306
Figure 9-98 Counter timing diagram, update event with ARSE=1(counter underflow)	. 307
Figure 9-99 Counter timing diagram, Update event with ARSE=1 (counter overflow)	. 307
Figure 9-100 Control circuit in normal mode, internal clock divided by 1	. 308
Figure 9-101 Capture/compare channel (example: channel 1 input stage)	. 309
Figure 9-102 Capture/compare channel 1 main circuit	. 310
Figure 9-103 Output stage of capture/compare channel (channel 1)	. 310
Figure 9-104 Output compare mode, toggle on OC1	. 311
Figure 9-105 Single pulse mode	. 312

Figure 9-106 Control circuit in restart mode	313
Figure 9-107 Control circuit in pause mode	314
Figure 9-108 Control circuit in trigger mode	314
Figure 9-109 Timer9 Master/Slave mode timer example	315
Figure 9-110 Triggering timer 9 with Enable of timer 2	316
Figure 9-111 Triggering timer9 with update of timer2	317
Figure 9-112 Gating Timer9 with enable of timer 2	317
Figure 9-113 Gating Timer9 with OC1REF of timer 2	318
Figure 9-114 Triggering Timer9 and Timer2 with Timer2's TI1 input	319
Figure 9-115 General timer block diagram (TIMER10/11/13/14)	. 331
Figure 9-116 Counter timing diagram with prescaler division change from 1 to 2	332
Figure 9-117 Counter timing diagram with prescaler division change from 1 to 4	332
Figure 9-118 Counter timing diagram, internal clock divided by 1	. 333
Figure 9-119 Counter timing diagram, internal clock divided by 2	. 334
Figure 9-120 Counter timing diagram, internal clock divided by 4	. 334
Figure 9-121 Counter timing diagram, internal clock divided by N	. 335
Figure 9-122 Counter timing diagram, update event when ARSE=0	335
Figure 9-123 Counter timing diagram, update event when ARSE=1	336
Figure 9-124 Counter timing diagram, internal clock divided by 1	337
Figure 9-125 Counter timing diagram, internal clock divided by 2	337
Figure 9-126 Counter timing diagram, internal clock divided by 4	338
Figure 9-127 Counter timing diagram, internal clock divided by N	338
Figure 9-128 Counter timing diagram, update event	339
Figure 9-129 Counter timing diagram, internal clock divided by 1, TIMERx_CARL = 0x5	j 340
Figure 9-130 Counter timing diagram, internal clock divided by 2	340
Figure 9-131 Counter timing diagram, internal clock divided by 4, TIMERx_CARL=0x63	341
Figure 9-132 Counter timing diagram, internal clock divided by N	341
Figure 9-133 Counter timing diagram, update event with ARSE=1(counter underflow)	342
Figure 9-134 Counter timing diagram, Update event with ARSE=1 (counter overflow)	342
Figure 9-135 Counter timing diagram in normal mode, internal clock divided by 1	343
Figure 9-136 Capture/compare channel (example: input stage)	344
Figure 9-137 Capture/compare channel 1 main circuit	344
Figure 9-138 Output stage of capture/compare channel	345
Figure 9-139 Output compare mode, toggle on OC1	345
Figure 9-140 Single pulse mode	347
Figure 10-1 ETH module block diagram	357
Figure 10-2 MAC/Tagged MAC frame format	358
Figure 10-3 Media independent interface signals	361
Figure 10-4 Reduced media-independent interface signals	363
Figure 10-5 Wakeup frame filter register	377
Figure 10-6 System time update using the Fine correction method	380
Figure 10-7 Descriptor ring and chain structure	384
Figure 10-8 Transmit descriptor	389
Figure 10-9 Receive descriptor	397

Figure 10-10 MAC module interrupt masking scheme	403
Figure 10-11 Interrupt scheme	404
Figure 10-12 Wakeup frame filter register	415
Figure 11-1 Window watchdog timing diagram	455
Figure 12-1 ADC module block diagram	459
Figure 12-2 Single conversion mode	461
Figure 12-3 Continuous conversion mode	461
Figure 12-4 Scan conversion mode, continuous enbale	462
Figure 12-5 Scan conversion mode, continuous disable	462
Figure 12-6 Discontinuous conversion mode	463
Figure 12-7 Data alignment	464
Figure 12-8 Dual ADC block diagram	467
Figure 12-9 Regular simultaneous mode on 16 channels	469
Figure 12-10 Inserted simultaneous mode on 4 channels	469
Figure 12-11 Fast interleaved mode on 1 channel in continuous conversion mode	470
Figure 12-12 Slow interleaved mode on 1 channel	470
Figure 12-13 Alternate trigger: inserted channel group	471
Figure 12-14 Alternate trigger: inserted channels in discontinuous mode	471
Figure 12-15 Regular simultaneous + alternate trigger mode	472
Figure 12-16 Trigger occurs during inserted conversion	472
Figure 12-17 Interleaved single channel with inserted sequence CH1, CH2	472
Figure 13-1 shows the DAC block diagram of a DAC channel.	485
Figure 13-2 Timing diagram for conversion with trigger disabled TEN = 0;	487
Figure 13-3 DAC LFSR register calculation algorithm	488
Figure 13-4 DAC conversion(SW trigger enabled)with LFSR wave generation	489
Figure 13-5 DAC triangle wave generation	490
Figure 13-6 DAC conversion (SW trigger enabled) with triangle wave generation	490
Figure 14-1 I2C module block diagram	506
Figure 14-2 Data validation	507
Figure 14-3 Start and stop condition	507
Figure 14-4 Clock synchronization	508
Figure 14-5 SDA Line arbitration	509
Figure 14-6 I2C communication flow with 7-bit address.	509
Figure 14-7 I2C communication flow with 10-bit address	509
Figure 14-8 Programming model for slave transmitting	511
Figure 14-9 Programming model for slave receiving	513
Figure 14-10 Programming model for master transmitting	515
Figure 14-11 Programming model for master receiving using Solution A	517
Figure 14-12 Programming model for master receiving using Solution B	519
Figure 15-1 Single master/ single slave application	532
Figure 15-2 SPI data clock timing diagram	534
Figure 15-3 Transmission using DMA	541
Figure 15-4 Reception using DMA	541
Figure 15-5 I2S block diagram	542

Figure 15-10 I2S Phillips standard timing diagram (DTLEN=01, CHLEN=1, CKPL=0)....... 544 Figure15-11 I2S Phillips standard timing diagram (DTLEN=01, CHLEN=1, CKPL=1)........ 544 Figure15-12 I2S Phillips standard timing diagram (DTLEN=00, CHLEN=1, CKPL=0)....... 544 Figure15-13 I2S Phillips standard timing diagram (DTLEN=00, CHLEN=1, CKPL=1)....... 545 Figure15-14 MSB justified standard timing diagram (DTLEN=00, CHLEN=0, CKPL=0)..... 545 Figure15-15 MSB justified standard timing diagram (DTLEN=00, CHLEN=0, CKPL=1)..... 545 Figure15-16 MSB justified standard timing diagram (DTLEN=10, CHLEN=1, CKPL=0)..... 545 Figure15-17 MSB justified standard timing diagram (DTLEN=10, CHLEN=1, CKPL=1)..... 545 Figure15-18 MSB justified standard timing diagram (DTLEN=01, CHLEN=1, CKPL=0) 545 Figure15-19 MSB justified standard timing diagram (DTLEN=01, CHLEN=1, CKPL=1)..... 546 Figure15-20 MSB justified standard timing diagram (DTLEN=00, CHLEN=1, CKPL=0)..... 546 Figure15-21 MSB justified standard timing diagram (DTLEN=00, CHLEN=1, CKPL=1) 546 Figure 15-22 LSB justified standard timing diagram (DTLEN=01, CHLEN=1, CKPL=0)..... 546 Figure 15-23 LSB justified standard timing diagram (DTLEN=01, CHLEN=1, CKPL=1)..... 546 Figure 15-24 LSB justified standard timing diagram (DTLEN=00, CHLEN=1, CKPL=0)..... 547 Figure 15-25 LSB justified standard timing diagram (DTLEN=00, CHLEN=1, CKPL=1)..... 547 Figure 15-26 PCM standard short frame synchronization mode timing diagram (DTLEN=00, Figure15-27 PCM standard short frame synchronization mode timing diagram (DTLEN=00, Figure15-28 PCM standard short frame synchronization mode timing diagram (DTLEN=10, Figure15-29 PCM standard short frame synchronization mode timing diagram (DTLEN=10, Figure15-30 PCM standard short frame synchronization mode timing diagram (DTLEN=01, Figure15-31 PCM standard short frame synchronization mode timing diagram (DTLEN=01, Figure15-32 PCM standard short frame synchronization mode timing diagram (DTLEN=00, Figure 15-33 PCM standard short frame synchronization mode timing diagram (DTLEN=00, Figure15-34 PCM standard long frame synchronization mode timing diagram (DTLEN=00, Figure15-35 PCM standard long frame synchronization mode timing diagram (DTLEN=00, Figure15-36 PCM standard long frame synchronization mode timing diagram (DTLEN=10, Figure15-37. PCM standard long frame synchronization mode timing diagram (DTLEN=10,

Figure15-38 PCM standard long frame synchronization mode timing diagram (DTLEN	=01,
CHLEN=1, CKPL=0)	. 549
Figure15-39 PCM standard long frame synchronization mode timing diagram (DTLEN	=01,
CHLEN=1, CKPL=1)	. 549
Figure15-40 PCM standard long frame synchronization mode timing diagram (DTLEN	=00,
CHLEN=1, CKPL=0)	. 550
Figure15-41 PCM standard long frame synchronization mode timing diagram (DTLEN	=00,
CHLEN=1, CKPL=1)	. 550
Figure 15-42 Block diagram of I2S clock generator	. 550
Figure 17-1 USART module block diagram	. 572
Figure 17-2 USART character frame (9 bits data and 1 stop bit)	. 573
Figure 17-3 Frame error detection and break frame detection in LIN mode	. 575
Figure 17-4 Example of USART in synchronous mode	. 576
Figure 17-5 8-bit format USART synchronous waveform (LBCP=1)	. 576
Figure 17-6 ISO7816-3 frame format	. 577
Figure 17-7 IrDA SIR ENDEC module	. 578
Figure 17-8 IrDA data modulation	. 579
Figure 17-9 Hardware flow control between two USARTs	. 579
Figure 17-10 Hardware flow control	. 580
Figure 17-11 USART interrupt mapping diagram	. 581
Figure 19-1 USB peripheral block diagram	. 598
Figure 19-2 A example with buffer descriptor table usage (USB_BAR = 0)	. 600
Figure 20-1 Block diagram of RTC	. 614
Figure 21-1 The EXMC block diagram	. 622
Figure 21-2 EXMC memory banks	. 623
Figure 21-3 Four regions of bank1 address mapping	. 624
Figure 21-4 NAND/PC Card address mapping	. 626
Figure 21-5 Diagram of bank2 common space	. 627
Figure 21-6 Mode 1 read access	. 631
Figure 21-7 Mode 1 write access	. 631
Figure 21-8 Mode A read access	. 632
Figure 21-9 Mode A write access	. 633
Figure 21-10 Mode 2/B read access	. 634
Figure 21-11 Mode 2 write access	. 634
Figure 21-12 Mode B write access	. 635
Figure 21-13 Mode C read access	. 636
Figure 21-14 Mode C write access	. 636
Figure 21-15 Mode D read access	. 638
Figure 21-16 Mode D write access	. 638
Figure 21-17 Multiplex mode read access	. 640
Figure 21-18 Multiplex mode write access	. 640
Figure 21-19 Read access timing diagram under asy-wait signal assertion	. 642
Figure 21-20 Write access timing diagram under asy-wait signal assertion	. 642
Figure 21-21 Synchronous burst read timing	. 644

Figure 21-22 Synchronous burst write timing	645
Figure 21-23 Access timing of common memory space of Nand flash or PC card Co	ntroller
	648
Figure 22-1 CAN module block diagram	662
Figure 22-2 Transmission register	665
Figure 22-3 State of transmission mailbox	665
Figure 22-4 Reception register	667
Figure 22-5 32-bit filter	668
Figure 22-6 16-bit filter	668
Figure 22-7 32-bit mask mode filter	668
Figure 22-8 32-bit list mode filter	669
Figure 22-9 32-bit filter number	669
Figure 22-10 Filtering index	670
Figure 22-11 The bit time	672
Figure 23-1 SDIO "no response" and "no data" operations	693
Figure 23-2 SDIO multiple blocks read operation	694
Figure 23-3 SDIO multiple blocks write operation	694
Figure 23-4 SDIO sequential read operation	695
Figure 23-5 SDIO sequential write operation	695
Figure 23-6 SDIO block diagram	696
Figure 23-7 Read wait control by stopping SDIO_CLK	734
Figure 23-8 Read Wait operation using SDIO_DAT2	734
Figure 23-9 Function2 read cycle inserted during Function1 multiple read cycle	735
Figure 23-10 Read Interrupt Cycle Timing	736
Figure 23-11 Write Interrupt Cycle Timing	736
Figure 23-12 Multiple Block 4-Bit Read Interrupt Cycle Timing	736
Figure 23-13 Multiple Block 4-Bit Write Interrupt Cycle Timing	737
Figure 23-14 the operation for command completion disable signal	738
Figure 24-1 USB OTG full-speed block diagram	753
Figure 24-2 OTG A-B device connection	755
Figure 24-3 USB host-only connection	757
Figure 24-4 USB peripheral-only connection	763
Figure 24-5 USB OTG core	766
Figure 24-6 Host-mode FIFO address mapping and AHB FIFO access mapping	767
Figure 24-7 Device-mode FIFO address mapping and AHB FIFO access mapping	769
Figure 24-8 SOF connectivity	772
Figure 24-9 Interrupt hierarchy	775
Figure 24-10 OTG_FSRs memory map	777

List of Tables

Table 1-1 Boot modes	39
Table 2-1 Power saving mode summary	47
Table 3-1 GD32F10X_MD	51
Table 3-2 GD32F10X_CL and GD32F10X_HD, GD32F10X_XD	52
Table 5-1 Basic configuration of the I/O port	136
Table 5-2 Advanced timer TIMER1/8	140
Table 5-3 Genernal-purpose timers TIMER2/3/4/5	140
Table 5-4 USARTs	140
Table 5-5 SPIx	141
Table 5-6 I2Sx	141
Table 5-7 I2Cx	141
Table 5-8 BxCAN	141
Table 5-9 USB	142
Table 5-10 OTG_FS	142
Table 5-11 SDIO	143
Table 5-12 EXMC	143
Table 5-13 ADC	143
Table 5-14 DAC	143
Table 5-15 Other I/Os	143
Table 5-16 Debug interface signals	144
Table 5-17 Debug port mapping	145
Table 5-18 ADC1 external trigger injected conversion AF remapping ⁽¹⁾	145
Table 5-19 ADC1 external trigger regular conversion AF remapping ⁽¹⁾	145
Table 5-20 ADC2 external trigger injected conversion AF remapping ⁽¹⁾	145
Table 5-21 ADC2 external trigger regular conversion AF remapping ⁽¹⁾	146
Table 5-22 TIMER1 alternate function remapping	146
Table 5-23 TIMER2 alternate function remapping	146
Table 5-24 TIMER3 alternate function remapping	147
Table 5-25 TIMER4 alternate function remapping	147
Table 5-26 TIMER5 alternate function remapping(1)	147
Table 5-27 TIMER9 remapping ⁽¹⁾	147
Table 5-28 TIMER10 remapping ⁽¹⁾	147
Table 5-29 TIMER11 remapping ⁽¹⁾	147
Table 5-30 TIMER13 remapping ⁽¹⁾	147
Table 5-31 TIMER14 remapping ⁽¹⁾	148
Table 5-32 USART1 alternate function remapping	148
Table 5-33 USART2 alternate function remapping	148
Table 5-34 USART3 alternate function remapping	148
Table 5-35 I2C1 alternate function remapping	148
Table 5-36 SPI1 alternate function remapping	149

Table 5-37 SPI1 alternate function remapping	149
Table 5-38 CAN1 AF remapping	149
Table 5-39 CAN AF remapping	149
Table 5-40 ETH remapping	150
Table 5-41 OSC32 pins configuration	150
Table 5-42 OSC pins configuration	150
Table 7-1 NVIC exception types in Cotrex-M3	175
Table 7-2 Interrupt vector table of MD, HD and XD devices	175
Table 7-3 Interrupt vector table of Connectivity Line devices	177
Table 7-4 EXTI source	180
Table 8-1 DMA transfer operations	186
Table 8-2 DMA interrupt event	188
Table 8-3 Summary of DMA1 requests for each channel	189
Table 8-4 Summary of DMA2 requests for each channel	190
Table 9-1 Counting direction versus encoder signals	219
Table 9-2 Counting direction versus encoder signals	267
Table 10-1 Ethernet pin configuration	358
Table 10-2 Clock range	361
Table 10-3 RX interface signal encoding	362
Table 10-4 Destination address filtering table	371
Table 10-5 Source address filtering table	372
Table 10-6 Error status in RDES0	399
Table 11-1 Min-max timeout value at 36 MHz (fPCLK1)	455
Table 12-1 ADC internal signals	458
Table 12-2. ADC pins definition	458
Table 12-3 Symbol definition of analog signal source resistance effect	465
Table 12-4 External trigger for regular channels for ADC1 and ADC2	465
Table 12-5 External trigger for inserted channels for ADC1 and ADC2	465
Table 12-6 External trigger for regular channels for ADC3	466
Table 12-7 External trigger for inserted channels for ADC3	466
Table 13-1 DAC pins	485
Table 13-2 External triggers	488
Table 14-1 Definition of I2C-bus terminology	506
Table 14-2 Event status flags	521
Table 14-3 I2C error flags	521
Table 15-1 SPI interrupt requests	541
Table 15-2 I2S bitrate calculation formulas	550
Table 15-3 Audio sampling frequency calculation formulas	551
Table 15-4 Audio sampling frequency configuration and precision using SYSCLK	551
Table 15-5 Audio sampling frequency configuration and precision using 25MHz and	PLL3
	552
Table 15-6 Audio sampling frequency configuration and precision using 14.7456MHz	z and
PLL3	552
Table 15-7 Direction of I2S interface signals for each operation mode	553

27

Table 15-8 I2S interrupt	555
Table 17-1 USART important pins description	571
Table 17-2 Stop bits configuration	573
Table 17-3 USART interrupt requests	580
Table 19-1 GD32F10x USB implementation	597
Table 19-2 GD32F10x USB signal pins	597
Table 19-3 Double-buffering buffer flag definition	603
Table 19-4 Double buffer usage	603
Table 19-5 Reception status encoding	610
Table 19-6 Endpoint type encoding	610
Table 19-7 Endpoint kind meaning	611
Table 19-8 Transmission status encoding	611
Table 21-1 NOR Flash interface signals function	628
Table 21-2 PSRAM no-muxed signal function	628
Table 21-3 EXMC bank 1 supports all transactions	629
Table 21-4 NOR / PSRAM controller timing parameters	630
Table 21-5 EXMC timing models	630
Table 21-6 Mode 1 related registers configuration	631
Table 21-7 Mode A related registers configuration	633
Table 21-8 Mode 2/B related registers configuration	635
Table 21-9 mode C related registers configuration	637
Table 21-10 Mode D related registers configuration	639
Table 21-11 multiplex mode related registers configuration	640
Table 21-12 Timing configurations of synchronous multiplexed read mode	644
Table 21-13 Timing configurations of synchronous multiplexed write mode	645
Table 21-14 8-bit or 16-bit nand flash interface signal	646
Table 21-15 16-bit PC card interface signal	646
Table 21-16 Bank2/3/4 of EXMC support the memory and access mode	647
Table 21-17 Nand flash or PC card programmable parameters	647
Table 23-1 SDIO I/O definitions	697
Table 23-2 Command format	702
Table 23-3 Card Command Classes (CCCs)	703
Table 23-4 Basic Commands (class 0)	705
Table 23-5 Block-Oriented Read Commands (class 2)	706
Table 23-6 Stream read commands (class 1) and Stream write commands (class 3)	707
Table 23-7 Block-Oriented Write Commands (class 4)	708
Table 23-8 Erase Commands (class 5)	709
Table 23-9 Block Oriented Write Protection Commands (class 6)	709
Table 23-10 Lock Card (class 7)	710
Table 23-11 Application-specific Commands (class 8)	710
Table 23-12 I/O Mode Commands (class 9)	711
Table 23-13 Switch Function Commands (class 10)	712
Table 23-14 Response R1	713
Table 23-15 Response R2	714

Table 23-16 Response R3	714
Table 23-17 Response R4 for MMC	
Table 23-18 Response R4 for SD I/O	
Table 23-19 Response R5 for MMC	
Table 23-20 Response R5 for SD I/O	
Table 23-21 Response R6	
Table 23-22 Response R7	
Table 23-23 Card Status	
Table 23-24 SD Status	
Table 23-25 Performance Move Field	
Table 23-26 AU_SIZE Field	
Table 23-27 Maximum AU size	
Table 23-28 Erase Size Field	
Table 23-29 Erase Timeout Field	
Table 23-30 Erase Offset Field	
Table 23-31 Lock card data structure	
Table 23-32 response type and SDIO_RESPx register	
Table 24-1 I/O Lines description	
Table 24-2 Minimum duration for soft disconnect	

1. System and memory architecture

The system architecture of the GD32F10x series of devices that includes the ARM® Cortex[™]-M3 processor, bus architecture and memory organization will be described in the following sections. The Cortex[™]-M3 processor is a next generation processor core which offers many new features. Integrated and advanced features make the Cortex[™]-M3 processor suitable for market products that require microcontrollers with high performance and low power consumption. In brief, the Cortex[™]-M3 processor includes three AHB buses known as ICode, DCode and System buses. All memory accesses of the Cortex[™]-M3 processor are executed on the three buses according to the different purposes and the target memory spaces. The memory organization uses a Harvard architecture, pre-defined memory map and up to 4 GB of memory space, making the system flexible and extendable.

1.1. ARM Cortex-M3 processor

The Cortex[™]-M3 processor is a general-purpose 32-bit processor core especially suitable for products requiring high performance and low power consumption microcontrollers. It offers many new features such as a Thumb-2 instruction sets, hardware divider, low latency interrupt respond time, atomic bit-banding access and multiple buses for simultaneous accesses. The Cortex[™]-M3 processor is based on the ARMv7 architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex[™]-M3:

- Internal Bus Matrix connected with ICode bus, DCode bus, System bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP)
- Nested Vectored Interrupt Controller (NVIC)
- Flash Patch and Breakpoint (FPB)
- Data Watchpoint and Trace (DWT)
- Instrumentation Trace Macrocell (ITM)
- Serial Wire JTAG Debug Port (SWJ-DP)
- Trace Port Interface Unit (TPIU)
- Embedded Trace Macrocell (ETM)

The following figure shows the Cortex[™]-M3 processor block diagram. For more information, refer to the ARM[®] Cortex[™]-M3 Technical Reference Manual.

Figure 1-1 Cortex[™]-M3 block diagram

1.2. System architecture

The system architecture of the GD32F10x series is shown in the following figure. The AHB matrix based on AMBA 3.0 AHB-LITE is a multi-layer AHB, which enables parallel access paths between multiple masters and slaves in the system. There are four masters on the AHB matrix, including ICode, DCode, system bus of the Cortex[™]-M3 core and DMA. The ICode bus is the instruction bus and also used for vector fetches from the Code region (0x0000 0000 ~ 0x1FFF FFFF) to the Cortex[™]-M3 core. The DCode bus is used for loading/ storing data and also for debug access of the Code region. Similarly, the System bus is used for instruction/vector fetches, data loading/storing and debugging access of the system regions. The System regions include the internal SRAM region and the Peripheral region. The AHB matrix consists of five slaves, including ICode and DCode interfaces of the flash memory controller, internal SRAM, external memory controller and system AHB.

The system AHB connects with all the AHB peripherals including two AHB-to-APB bridges which provide full synchronous connections between the system AHB and the two APB buses. The two APB buses connect with all the APB peripherals. APB1 is limited to 54 MHz, APB2 operates at full speed (up to 108 MHz depending on the device).

These are interconnected using a multilayer AHB bus architecture as shown in Figure below:

Figure 1-4 GD32F10x Extra-density series system architecture

Figure 1-5 GD32F10x Connectivity line series system architecture

1.3. Memory map

The ARM[®] Cortex[™]-M3 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. The instruction code and data are both located in the same memory address space but in different address ranges. Program memory, data memory, registers and I/O ports are organized within the same linear 4-Gbyte

address space which is the maximum address range of the Cortex[™]-M3 since it has a 32-bit bus address width. Additionally, a pre-defined memory map is provided by the Cortex[™]-M3 processor to reduce the software complexity of repeated implementation of different device vendors. However, some regions are used by the ARM[®] Cortex[™]-M3 system peripherals. The following figure shows the memory map of the GD32F10x series of devices, including Code, SRAM, peripheral, and other pre-defined regions. Each peripheral of either type is allocated 1KB of space. This allows simplifying the address decoding for each peripheral. The APB1 peripherals are located at the address region from 0x4000 0000 to 0x4000 FFFF, while the APB2 peripherals are located from 0x4001 0000 to 0x4001 7FFF. And the address region from 0x4001 8000 to 0x4002 FFFF is used by AHB peripherals.

Figure 1-6 GD32F10x memory map

0x1FFF FFFF

0x1FFF F80F

0x1FFF F800

0x1FFF F000

0x082F FFFF

0x0800 0000

0x0000 0000

reserved

Option

Bytes

System

memory

reserved

Flash

memory

Aliased to Flash or

system memory according to BOOT pins configuration

1.3.1. Bit-banding

In order to reduce the time of read-modify-write operations, the Cortex[™]-M3 processor provides a bit-banding function to perform a single atomic bit operation. The memory map includes two bit-band regions. These occupy the SRAM and Peripherals respectively. These bit-band regions map each word in an alias region of memory to a bit in a bit-band region of memory.

A mapping formula shows how to reference each word in the alias region to a corresponding bit, or target bit, in the bit-band region. The mapping formula is:

```
bit_word_addr = bit_band_base + (byte_offset x 32) + (bit_number x 4)
```

where:

- Bit_word_addr is the address of the word in the alias memory region that maps to the targeted bit.
- Bit_band_base is the starting address of the alias region.
- Byte_offset is the number of the byte in the bit-band region that contains the targeted bit.
- Bit_number is the bit position (0-7) of the targeted bit.

For example, to access bit 7 of address 0x2000 0200, the bit-band alias is:

bit_word_addr = 0x2200 0000 + (0x200 * 32) + (7 * 4) = 0x2200 401C

Writing to address 0x2200 401C will cause bit 7 of address 0x2000 0200 change while a read to address 0x2200 401C will return 0x01 or 0x00 according to the value of bit 7 at the SRAM address 0x2000 0200.

1.3.2. On-chip SRAM memory

The GD32F10x series of devices contain up to 96 KB of on-chip SRAM which starts at the address 0x2000 0000. It supports byte, half-word (16 bits), and word (32 bits) accesses.

1.3.3. On-chip Flash memory

The GD32F10x series of devices provide up to 3072 KB of on-chip flash memory. Read accesses can be performed 32 bits per cycle without any wait state. Besides, all of byte, half-word (16 bits) and word (32 bits) read accesses are supported. The flash memory can be programmed half-word (16 bits) or word (32 bits) at a time. Each page of the flash memory can be erased individually. The whole flash memory space except information blocks can be erased at a time.

1.4. Boot configuration

The GD32F10x series of devices provide three kinds of boot sources which can be selected using the BOOT1 and BOOT0 pins. The values on the BOOT pins are latched on the 4th rising edge of SYSCLK after a reset. It is up to the user to set the BOOT1 and BOOT0 pins after a power-on reset or a system reset to select the required boot source. The details are shown in the following table.

Table 1-1 Boot modes

Selected boot source	Boot mode selection pins						
	Boot1	Boot0					
Main Flash Memory	х	0					
System Memory	0	1					
On-chip SRAM	1	1					

After power-on sequence or a system reset, the ARM® Cortex[™]-M3 processor fetches the top-of-stack value from address 0x0000 0000 and the base address of boot code from 0x0000 0004 in sequence. Then, it starts executing code from the base address of boot code.

Due to the selected boot source, either the main flash memory (original memory space beginning at 0x0800 0000) or the system memory (original memory space beginning at 0x1FFF F000) is aliased in the boot memory space which begins at the address 0x0000 0000. When the on-chip SRAM whose memory space is beginning at 0x2000 0000 is selected as the boot source, in the application initialization code, you have to relocate the vector table in SRAM using the NVIC exception table and offset register.

The embedded boot loader is located in the System memory, which is used to reprogram the Flash memory. In GD32F10x devices, the boot loader can be activated through the USART1 interface.

1.5. Device electronic signature

Medium-density devices are GD32F101xx and GD32F103xx microcontrollers which the flash memory density ranges from 16 to 128 Kbytes.

High-density devices are GD32F101xx and GD32F103xx microcontrollers which the flash memory density ranges from 256 to 512 Kbytes.

Extra-density devices are GD32F101xx and GD32F103xx microcontrollers which the flash memory density larger than 512 Kbytes.

Connectivity line devices are GD32F105xx and GD32F107xx microcontrollers.

The device electronic signature contains memory density information and the 96-bit unique device ID. It is stored in the information block of the Flash memory. The 96-bit unique device ID is unique for any device. It can be used as serial numbers, or part of security keys, etc.

1.5.1. Memory density information

Base address: 0x1FFF F7E0

The value is factory programmed and can never be altered by user.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	FLASH_DENSITY[15:0]														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits	Fields	Descriptions
15:0	FLASH_DENSITY	Flash memory density
	[15:0]	The value indicates the Flash memory density of the device in Kbytes.
		Example: 0x0020 indicates 32 Kbytes.

1.5.2. Unique device ID (96 bits)

Base address: 0x1FFF F7E8

The value is factory programmed and can never be altered by user.

31	30	29	28	27	26	25	24	23	22	2	1	20	19	18	17	16
	UNIQUE_ID[31:16]															
r	r	r	r	r	r	r	r	r	r	r		r	r	r	r	r
15	14	13	12	11	10	9	8	3	7	6	5	4	3	2	1	0
	UNIQUE_ID[15:0]															
r	r	r	r	r	r	r	I	r	r	r	r	r	r	r	r	r

Bits	Fiel	ds			Descri	ptions										
31:0	UNI	QUE_I	D[31:0]		Unique	e device	ID									
15:0	UNI	QUE_ID Add The)[31:16] Iress off value i	fset: 0x0 s factor	This fiel 04 y progr	d value ammed	is rese I and c	rved fo can ne	r a futu ver be	re fea alter	ature ed b	y user.				
31	30	29	28	27	26	25	24	23	22	2	1	20	19	18	17	16
	UNIQUE_ID[63:48]															
r	r	r	r	r	r	r	r	r	r	r		r	r	r	r	r
15	14	13	12	11	10	9		8	7	6	5	4	3	2	1	0
	UNIQUE_ID[47:32]															
r	r	r	r	r	r	r		r	r	r	r	r	r	r	r	r

Bits Fields Descriptions

31:0 UNIQUE_ID[63:32] Unique device ID

Address offset: 0x08

The value is factory programmed and can never be altered by user.

31	30	29	28	27	26	25	24	23	22	2	1	20	19	18	17	16
	UNIQUE_ID[95:80]															
r	r	r	r	r	r	r	r	r	r	r		r	r	r	r	r
45	14	40	10	14	10	0			7	C	F	4	2	2	4	0
15	14	13	12	11	10	9	0		7	0	Э	4	3	2	I	0
	UNIQUE_ID[79:64]															
r	r	r	r	r	r	r	r		r	r	r	r	r	r	r	r

Bits	Fields	Descriptions
31:0	UNIQUE_ID[95:64]	Unique device ID

1.6. System configuration registers

		Bas	e addr	ess: 0	x4002	103C									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							F	Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Res	erved				CEE				Rese	erved		
								rw							

Bits	Fields	Descriptions
7	CEE	Code execution efficiency
		0: Default code execution efficiency.
		1: Code execution efficiency enhancement

NOTE:

- 1. Only bit[7] can be read-modify-write, other bits are not permitted.
- 2. Only GD32F10xC/D/E/F/G/I/K can be configured as Code execution efficiency enhancement mode.

2. Power control (PWR)

2.1. Introduction

The power consumption is regarded as one of the most important issues for the GD32F10x series of devices which operate from 2.6 to 3.6V power supply and available in -40 to +85°C temperature range. In order to reduce the power consumption and allow the application to achieve the best tradeoff between the conflicting demands of CPU operating time, speed and power consumption, The PWR provide three types of power saving modes, including Sleep, Deep-sleep and Standby mode. There are three power domains, including V_{DD}/V_{DDA} domain, 1.2V domain, and Backup domain, as is shown in the following figure 2-1. The power of the V_{DD}/V_{DDA} domain is supplied by power source, but V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} respectively. An embedded LDO in the V_{DD}/V_{DDA} domain is used to supply the 1.2V domain power. A power switch is implemented for the Backup domain, it can be powered from the V_{BAT} voltage when the main V_{DD} supply is shut down.

2.2. Main features

- Three power domains: Backup, V_{DD}/V_{DDA} and 1.2V domains
- Three power saving modes: Sleep, Deep-sleep and Standby modes
- Internal Voltage regulator(LDO) supplies 1.2 V voltage source
- 84 bytes of backup register powered by V_{BAK} for data protection of user application data when in the Standby mode
- Low Voltage Detector can issue an interrupt or wakeup event when the power is lower than a programmed threshold
- Battery power (V_{BAT}) supply for Backup domain when V_{DD} supply is shut down

2.3. Function description

Figure below provides details on the internal configuration of the PWR and the relevant power domains.

2.3.1. Battery Backup domain

The Backup domain is powered by the V_{DD} or the battery power source (V_{BAT}) selected by the internal power switch, and the V_{BAK} pin which drives Backup Domain, power supply for RTC unit, LSE oscillator, BPOR and BREG, and three pads, including PC13 to PC15. In order to ensure the content of the Backup registers and the RTC supply, when V_{DD} supply is shut down, V_{BAT} pin can be connected to an optional standby voltage supplied by a battery or by another source. The power switch is controlled by the Power Down Reset circuit in the V_{DD}/V_{DDA} domain. If no external battery is used in the application, it is recommended to connect V_{BAT} pin externally to V_{DD} pin with a 100nF external ceramic decoupling capacitor.

The Backup domain reset sources includes the Backup domain power-on-reset (BPOR) and the Backup Domain software reset. The BPOR signal forces the device to stay in the reset mode until V_{BAK} is completely powered up. Also the application software can trigger the Backup domain software reset by setting the BKPRST bit in the RCC_BDCR register to reset the Backup domain.

The clock source of the Real Time Clock (RTC) circuit can be derived from the Low Speed Internal RC oscillator (LSI) or the Low Speed External Crystal oscillator (LSE), or HSE clock divided by 128. When V_{DD} is shut down, only LSE is valid for RTC. Before entering the power saving mode by executing the WFI/WFE instruction, the CortexTM-M3 needs to setup the RTC register with an expected wakeup time and enable the wakeup function to achieve the RTC timer wakeup event. After entering the power saving mode for a certain amount of time,

the RTC alarm will be alarmed to wake up the device when the time match event occurs. The details of the RTC configuration and operation will be described in the RTC chapter.

Forty-two 16-bit registers, up to 84 bytes, are provided located in the Backup Domain for user application data storage. These registers are powered by V_{BAK} which constantly supplies power when the V_{DD} power is switched off. The Backup Registers are only reset by the Backup domain power-on-reset or the Backup domain software reset.

When the Backup domain is supplied by V_{DD} (V_{BAK} pin is connected to V_{DD}), the following functions are available:

- PC13 can be used as GPIO, TAMPER pin, RTC Calibration, RTC Alarm or second output.(refer to Chapter 16: Backup registers(BKP))
- PC14 and PC15 can be used as either GPIO or LSE Crystal oscillator pins.

When the Backup domain is supplied by V_{BAT} (V_{BAK} pin is connected to V_{BAT}), the following functions are available:

- PC13 can be used as TAMPER pin, RTC Alarm or second output.(refer to Chapter 16: RTC clock calibration register(BKP_RCCR) in the BKP registers)
- PC14 and PC15 can be used as LSE Crystal oscillator pins only.

Note: Since PC13, PC14 and PC15 are supplied through the Power Switch, which can only be obtained by a small current, the speed of GPIOs PC13 to PC15 should not exceed 2MHz when they are in output mode.

2.3.2. V_{DD}/V_{DDA} power domain

 V_{DD}/V_{DDA} domain includes two parts: V_{DD} domain and V_{DDA} domain. V_{DD} domain includes HSE (High Speed External Crystal oscillator), LDO (Voltage Regulator), POR/PDR (Power On/Down Reset), IWDG (Independent Watch Dog), all pads except PC13 to PC15, etc. V_{DDA} domain includes ADC/DAC (AD/DA Converter), HSI (High Speed Internal RC oscillator), LSI (Low Speed Internal RC oscillator), PLL (Phase Locking Loop), LVD (Low Voltage Detector), etc.

V_{DD} domain

The LDO, which is implemented to supply power for the 1.2V domain, is always enabled after Reset. It can be configured to operate in three different status, including in the Sleep mode (full power on), in the Deep-Sleep mode (on or low power), and in the Standby mode (power off).

The POR/PDR circuit is implemented to detect V_{DD}/V_{DDA} and generate the power reset signal which resets the whole chip except the Backup domain when the supply voltage is lower than the specified threshold. The following figure shows the relationship between the supply voltage and the power reset signal. V_{POR} , which typical value is 2.40V, indicates the threshold of power on reset, while V_{PDR} , which typical value is 2.35V, means the threshold of power down reset.

Figure 2-2 Waveform of the POR/PDR

V_{DDA} domain

The LVD is used to detect whether the V_{DD}/V_{DDA} supply voltage is lower than a programmed threshold selected by the LVDT[2:0] bits in the Power control register(PWR_CTLR). The LVD is enabled by setting the LVDE bit, and LVDF bit, which in the Power status register(PWR_STR), indicates if V_{DD}/V_{DDA} is higher or lower than the LVD threshold. This event is internally connected to the EXTI line 16 and can generate an interrupt if enabled through the EXTI registers. The following figure shows the relationship between the LVD threshold and the LVD output (LVD interrupt signal depends on EXTI line 16 rising or falling edge configuration).

Figure 2-3 Waveform of the LVD threshold

Generally, digital circuits are powered by V_{DD} , while most of analog circuits are powered by V_{DDA} . To improve the ADC and DAC conversion accuracy, the independent power supply V_{DDA} is implemented to achieve better performance of analog circuits. V_{DDA} can be externally connected to V_{DD} through the external filtering circuit that avoids noise on V_{DDA} , and V_{SSA} should be connected to V_{SS} through the specific circuit independently. Otherwise, if V_{DDA} is different from V_{DD} , V_{DDA} must always be higher, but the voltage difference should not exceed 0.2V.

To ensure a high accuracy on low voltage ADC and DAC, the separate external reference voltage on V_{REF} should be connected to ADC/DAC pins. According to the different packages, V_{REF+} pin must be connected to V_{DDA} pin, V_{REF-} pin must be connected to V_{SSA} pin. The V_{REF} pins are only available on 144-pin and 100-pin packages, while on 64-pin and less-pin packages is not available, for they are internally connected to V_{DDA} and V_{SSA} .

2.3.3. 1.2V power domain

The main functions that include CortexTM-M3 logic, AHB/APB peripherals, the APB interfaces for the Backup domain and the V_{DD}/V_{DDA} domain, etc, are located in this power domain. Once the 1.2V is powered up, the POR will generate a reset sequence on the 1.2V power domain. Subsequently, to enter the expected power saving mode, the associated control bits must be configured. Then, once a WFI (Wait for Interrupt) or WFE (Wait for Event) instruction is executed, the device will enter an expected power saving mode which will be discussed in the following section.

2.3.4. Power saving modes

After a system reset or a power reset, the GD32F10x MCU operates at full function and all power domains are active. Users can achieve lower power consumption through slowing down the system clocks (HCLK, PCLK1, PCLK2) or gating the clocks of the unused peripherals. Besides, three power saving modes are provided to achieve even lower power consumption, they are Sleep mode, Deep-sleep mode, and Standby mode.

Sleep Mode

The Sleep mode is corresponding to the SLEEPING mode of the Cortex[™]-M3. In Sleep mode, only clock of Cortex[™]-M3 is off. To enter the Sleep mode, it is only necessary to clear the SLEEPDEEP bit in the Cortex[™]-M3 System Control Register, and execute a WFI or WFE instruction. If the Sleep mode is entered by executing a WFI instruction, any interrupt can wake up the system. If it is entered by executing a WFE instruction, any wakeup event can wake up the system. The mode offers the lowest wakeup time as no time is wasted in interrupt entry or exit.

According to the SLEEPONEXIT bit in the Cortex[™]-M3 System Control Register, there are two options to select the Sleep mode entry mechanism.

Sleep-now: if the SLEEPONEXIT bit is cleared, the MCU enters Sleep mode as soon as WFI or WFE instruction is executed.

Sleep-on-exit: if the SLEEPONEXIT bit is set, the MCU enters Sleep mode as soon as it exits from the lowest priority ISR.

Deep-sleep Mode

The Deep-sleep mode is based on the SLEEPDEEP mode of the Cortex[™]-M3. In Deep-sleep mode, all clocks in the 1.2V domain are off, and all of HSI, HSE and PLL are disenabled. The contents of SRAM and registers are preserved. The LDO can operate normally or in low power mode depending on the LDOLP bit in the PWR_CTLR register. Before entering the Deep-sleep mode, it is necessary to set the SLEEPDEEP bit in the Cortex[™]-M3 System Control Register, and clear the SDBM bit in the PWR_CTLR register. Then, the device enters the Deep-sleep mode after a WFI or WFE instruction is executed. Any interrupt or wakeup event from EXTI lines can wake up the system from the Deep-sleep mode. When exiting the Deep-sleep mode, the HSI is selected as the system clock. Notice that an additional wakeup delay will be incurred if the LDO operates in low power mode.

Note: In order to enter Deep-sleep mode smoothly, all EXTI line pending status (in the EXTI_PD register) and RTC Alarm must be reset. If not, the program will skip the entry process of Deep-sleep mode to continue to executive the following procedure.

Standby Mode

The Standby mode is based on the SLEEPDEEP mode of the Cortex[™]-M3, too. In Standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of HSI, HSE and PLL are disenabled. Before entering the Standby mode, it is necessary to set the SLEEPDEEP bit in the Cortex[™]-M3 System Control Register, and set the SDBM bit in the PWR_CTLR register, and clear WUF bit in the PWR_STR register. Then, the device enters the Standby mode after a WFI or WFE instruction is executed, and the SBF status flag in the PWR_STR register indicates that the MCU has been in Standby mode. There are four wakeup sources for the Standby mode, including the external reset from NRST pin, the RTC alarm, the IWDG reset, and the rising edge on WKUP pin. The Standby mode achieves the lowest power consumption, but spends longest time to wake up. Besides, the contents of SRAM and registers (except Backup Registers) are lost in Standby mode. When exiting from the Standby mode, a power-on reset occurs and the Cortex[™]-M3 will execute instruction code from the 0x0000 0000 address.

Mode	Sleep	Deep-sleep	Standby		
		1. All clocks in the 1.2V	1. The 1.2V domain is		
Description	Only CPU clock is off	domain are off	power off		
Description		2. Disenable HSI, HSE	2. Disenable HSI,		
		and PLL	HSE and PLL		
LDO Status	On	On or in low power mode	Off		
Configuration		SLEEPDEEP = 1	SLEEPDEEP = 1		
Configuration	SLEEPDEEP = 0	SDBM = 0	SDBM = 1, WUFR=1		
Entry	WFI or WFE	WFI or WFE	WFI or WFE		

Table 2-1	Power	saving	mode	summary	,
-----------	-------	--------	------	---------	---

			1.	NRST pin
Makaup	Any interrupt for WFI	Any interrupt or event	2.	WKUP pin
wakeup	Any event for WFE	from EXTI lines	3.	IWDG reset
			4.	RTC alarm
Wakaup		HSI wakeup time,		
vvakeup	None	LDO wakeup time if LDO	Powe	r on sequence
Latency		is in low power mode		

2.4. PWR registers

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

2.4.1. Power control register (PWR_CTLR)

Address offset: 0x00

Reset value: 0x0000 0000 (reset by wakeup from Standby mode)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								Reserved	ł						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Reserve	d			BKPWE		LVDT		LVDE	SBFR	WUFR	SDBM	LDOLP
							rw		rw		rw	rc_w1	rc_w1	rw	rw

Bits	Fields	Descriptions
31:9	Reserved	Must be kept at reset value
8	BKPWE	Backup domain write enable
		0: Disenable write access to the registers in Backup domain
		1: Enable write access to the registers in Backup domain
		After reset, any write access to the registers in Backup domain is disabled.
		This bit has to be set to enable write access to these registers.
7:5	LVDT[2:0]	Low voltage detector threshold
		000: 2.2V
		001: 2.3V
		010: 2.4V
		011: 2.5V
		100: 2.6V
		101: 2.7V
		110: 2.8V
		111: 2.9V
4	LVDE	Low voltage detector enable
		0: Disenable Low Voltage Detector
		1: Enable Low Voltage Detector
3	SBFR	Standby flag reset

0: No effect
1: Reset the standby flag
This bit is always read as 0.
Wakeup flag reset
0: No effect
1: Reset the wakeup flag
This bit is always read as 0.
Standby mode
0: Enter the Deep-sleep mode when the Cortex [™] -M3 enters SLEEPDEEP mode
1: Enter the Standby mode when the Cortex [™] -M3 enters SLEEPDEEP mode
LDO low power mode
0: LDO operates normally during the Deep-sleep mode
1: LDO is in low power mode during the Deep-sleep mode

2.4.2. Power status register (PWR_STR)

Address offset: 0x04

Reset value: 0x0000 0000 (not reset by wakeup from Standby mode)

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								F	Reserved							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Reserve	ed			WUPE		F	Reserved			LVDF	SBF	WUF
								rw						r	r	r
Bi	ts	Fie	elds		Descri	ptions										
31	:9	Re	Reserved Must be kept at reset value													
8	WUPE WKUP pin enable															
					0: Dise	nable V	VKUP	pin func	tion							
					1: Enat	ole WK	UP pir	n functio	n							
					If WUP	E is se	t befor	e enteri	ng the p	ower sa	aving mo	ode, a r	ising e	dge on t	he	
					WKUP	pin wa	kes up	the sys	tem fror	n the po	ower sav	ving mo	de. As	the WK	UP	
					pin is a	ctive h	igh, it v	will setu	o an inp	ut pull d	lown mc	de whe	en this	bit is hig	gh.	
7:	3	Re	eserved	b	Must be	e kept a	at rese	et value								
2		LV	′DF		Low vo	ltage d	etecto	r status	flag							
					0: Low	voltage	e even	t has no	t occurr	ed (V _{DD}	is highe	er than t	the spe	cified L	VD	
					thresho	ld)										
					1: Low	voltage	e even	t occurre	ed (V _{DD}	is equal	l to or lo	wer tha	n the s	pecified	1	
					LVD th	reshold	l)									

Note: The LVD function is stopped in Standby mode.

1	SBF	Standby flag
		0: The device has not been in Standby mode
		1: The device has been in Standby mode
		This bit is cleared only by a POR/PDR or by setting the SBFR bit in the
		PWR_CTLR register.
0	WUF	Wakeup flag
		0: No wakeup event has been received
		1: A wakeup event has been received from the WKUP pin or the RTC alarm
		This bit is cleared only by a POR/PDR or by setting the WUFR bit in the
		PWR_CTLR register.

3. Flash Memory Controller (FMC)

3.1. Introduction

The flash memory controller, FMC, provides all the necessary functions for the on-chip flash memory. There is no waiting time while CPU executes instructions stored in the first 256K bytes of the flash. It also provides page erase, mass erase, and word/half word program operations for flash memory.

3.2. Main features

- Up to 3 MB of on-chip flash memory for storing instructions/data.
- No waiting time within first 256K bytes when CPU executes instructions. A long delay when CPU fetches the instructions out of the range.
- 2 banks adopted for GD32F10X_CL and GD32F10X_XD. Bank1 is used for the first 512KB and bank2 is for the rest capacity.
- Only bank1 is adopted for GD32F10X_CL with flash no more than 512KB and GD32F10X_HD.
- The flash page size is 1KB for GD32F10X_MD, 2KB for bank1, 4KB for bank2.
- Word or half word programming, page erase and mass erase operation.
- 16B option bytes block for user application requirements.
- Option bytes are uploaded to the registers on every system reset.
- Flash security protection to prevent illegal code/data access.
- Page erase/program protection to prevent unexpected operation.

3.3. Function description

3.3.1. Flash Memory Architecture

For GD32F10X_MD, the page size is 1 KB. For GD32F10X_CL with flash no more than 512KB and GD32F10X_HD, the page size is 2KB. For GD32F10X_CL and GD32F10X_XD, bank1 is used for the first 512KB where the page size is 2KB. Bank2 is used for the rest capacity where the page size is 4KB. Each page can be erased individually. The following table shows the details of flash organization.

Block	Name	Address Range	size (bytes)
	Page 0	0x0800 0000 - 0x0800 03FF	1KB
	Page 1	0x0800 0400 - 0x0800 07FF	1KB
	Page 2	0x0800 0800 - 0x0800 0BFF	1KB

Table 3-1 GD32F10X_MD

Main Flash				
Block			•	
	Page 127	0x0801 FC00 - 0x0801 FFFF	1KB	
Information	Poot Loodor oroo		2KB	
Block	Bool Loader area			
Option				
bytes	Option bytes	0x1FFF F800 - 0x1FFF F80F	16B	
Block				

Table 3-2 GD32F10X_CL and GD32F10X_HD, GD32F10X_XD

	Block	Namo	Addross Pango	size
	BIUCK	Name	Address Kallye	(bytes)
		Page 0	0x0800 0000 - 0x0800 07FF	2KB
		Page 1	0x0800 0800 - 0x0800 0FFF	2KB
		Page 2	0x0800 1000 - 0x0800 17FF	2KB
		Page 255	0x0807 F800 - 0x0807 FFFF	2KB
Main Elach F	Block	Page 256	0x0808 0000 - 0x0808 0FFF	4KB
	DIOCK	Page 257	0x0808 1000 - 0x0808 1FFF	4KB
				•
		Page 895	0x082F F000 - 0x082F FFFF	4KB
	GD32F10X_HD		0x1FFF F000- 0x1FFF F7FF	2KB
Plook	GD32F10X_XD	Boot loader area	0x1FFF E000- 0x1FFF F7FF	6KB
BIOCK	GD32F10X_CL		0x1FFF B000- 0x1FFF F7FF	18KB
Option bytes	Block	Option bytes	0x1FFF F800 - 0x1FFF F80F	16B

NOTE: The Information Block stores the boot loader. This block cannot be programmed or erased by user.

3.3.2. Read operations

The flash can be addressed directly as a common memory space. Any instruction fetch and the data access from the flash are through the IBUS or DBUS from the CPU.

3.3.3. Unlock the FMC_CMR register

After reset, the FMC_CMR register is not accessible in write mode, and the LK bit in FMC_CMR register is 1. An unlocking sequence consists of two write operations to the FMC_UKEYR register to open the access to the FMC_CMR register. The two write

operations are writing 0x45670123 and 0xCDEF89AB to the FMC_UKEYR register. After the two write operations, the LK bit in FMC_CMR register is reset to 0 by hardware. The software can lock the FMC_CMR again by set the LK bit in FMC_CMR register to 1. Any wrong operations to the FMC_UKEYR, set the LK bit to 1, and lock FMC_CMR register, and lead to a bus error.

The OBPG bit and OBER bit in FMC_CMR are still protected even the FMC_CMR is unlocked. The unlocking sequence is two write operations, which are writing 0x45670123 and 0xCDEF89AB to FMC_OBKEYR register. And then the hardware sets the OBWE bit in FMC_CMR register to 1. The software can reset OBWE bit to 0 to protect the OBPG bit and OBER bit in FMC_CMR register again.

For the GD32F10X_CL and GD32F10X_XD, the FMC_CMR register is used to configure the operations to bank1 and the option bytes block, while FMC_CMR2 register is used to configure the program and erase operations to bank2. The lock/unlock mechanism of FMC_CMR2 register is similar to FMC_CMR register. The unlock sequence should be written to FMC_UKEYR2 when unlocking FMC_CMR2.

3.3.4. Page Erase

The FMC provides a page erase function which is used to initialize the contents of a main flash memory page to a high state. Each page can be erased independently without affecting the contents of other pages. The following steps show the access sequence of the registers for a page erase operation.

Unlock the FMC_CMR register if necessary.

Check the BUSY bit in FMC_CSR register to confirm that no flash memory operation is in progress (BUSY equal to 0). Otherwise, wait until the operation has finished.

Set the PE bit in FMC_CMR register.

■ Write the page absolute address (0x08XX XXXX) into the FMC_AR register.

Send the page erase command to the FMC by setting the START bit in FMC_CMR register.

Wait until all the operations have finished by checking the value of the BUSY bit in FMC_CSR register.

Read and verify the page if required using a DBUS access.

When the operation is executed successfully, the ENDF in FMC_CSR register is set, and an interrupt will be triggered by FMC if the ENDIE bit in the FMC_CMR register is set. Note that a correct target page address must be confirmed. Or the software may run out of control if the target erase page is being used to fetch codes or to access data. The FMC will not provide any notification when this occurs. Additionally, the page erase operation will be ignored on erase/program protected pages. In this condition, a flash operation error interrupt will be triggered by the FMC if the ERIE bit in the FMC_CMR register is set. The software can check the WPEF bit in the FMC_CSR register to detect this condition in the interrupt handler. The following figure shows the page erase operation flow.

For the GD32F10X_CL and GD32F10X_XD, FMC_CSR reflects the operation status of bank1, and FMC_CSR2 reflects the operation status of bank2. The page erase procedure applied to bank2 is similar to the procedure applied to bank1. Especially, when erasing page in bank2 under security protection, the address should not only be written to FMC_AR2 but also to FMC_AR.

3.3.5. Mass Erase

The FMC provides a complete erase function which is used to initialize the main flash block contents. The following steps show the mass erase register access sequence.

- Unlock the FMC_CMR register if necessary.
- Check the BUSY bit in FMC_CSR register to confirm that no flash memory operation is in progress (BUSY equal to 0). Otherwise, wait until the operation has finished.
- Set ME bit in FMC_CMR register.
- Send the mass erase command to the FMC by setting the START bit in FMC_CMR register.
- Wait until all the operations have been finished by checking the value of the BUSY bit in

FMC_CSR register.

Read and verify the flash memory if required using a DBUS access.

When the operation is executed successfully, the ENDF in FMC_CSR register is set, and an interrupt will be triggered by FMC if the ENDIE bit in the FMC_CMR register is set. Since all flash data will be modified to a value of 0xFFFF_FFFF, the mass erase operation can be implemented using a program that runs in SRAM or by using the debugging tool that accesses the FMC registers directly.

For the GD32F10X_CL and GD32F10X_XD, the mass erase procedure applied to bank2 is similar to the procedure applied to bank1.

The following figure indicates the mass erase operation flow.

3.3.6. Main Flash Programming

The FMC provides a 32-bit word/16-bit half word programming function which is used to modify the main flash memory contents. The following steps show the register access

sequence of the word programming operation.

- Unlock the FMC_CMR register if necessary.
- Check the BUSY bit in FMC_CSR register to confirm that no flash memory operation is in progress (BUSY equal to 0). Otherwise, wait until the operation has finished.
- Set the PG bit in FMC_CMR register.
- Write a 32-bit word/16-bit half word to desired absolute address (0x08XX XXXX) by DBUS.
- Wait until all the operations have been finished by checking the value of the BUSY bit in FMC_CSR register.
- Read and verify the Flash memory if required using a DBUS access.

When the operation is executed successfully, the ENDF in FMC_CSR register is set, and an interrupt will be triggered by FMC if the ENDIE bit in the FMC_CMR register is set. Note that the word/half word programming operation checks the address if it has been erased. If the address has not been erased, PGEF bit in the FMC_CSR register will set when program the address except programming 0x0. Additionally, the program operation will be ignored on erase/program protected pages and WPEF bit in FMC_CSR is set. In these conditions, a flash operation error interrupt will be triggered by the FMC if the ERIE bit in the FMC_CMR register is set. The software can check the PGEF bit or WPEF bit in the FMC_CSR register to detect which condition occurred in the interrupt handler. The following figure displays the word programming operation flow.

For the GD32F10X_CL and GD32F10X_XD, the program procedure applied to bank2 is similar to the procedure applied to bank1.

NOTE: Reading the flash should be avoided when a program/erase operation is ongoing in the same bank. And flash memory accesses failed if the CPU enters the power saving modes.

3.3.7. Option bytes Erase

The FMC provides an erase function which is used to initialize the option bytes block in flash. The following steps show the erase sequence.

Unlock the FMC_CMR register if necessary.

Check the BUSY bit in FMC_CSR register to confirm that no Flash memory operation is in progress (BUSY equal to 0). Otherwise, wait until the operation has finished.

Unlock the option bytes operation bits in FMC_CMR register if necessary.

Wait until OBWE bit is set in FMC_CMR register.

Set OBER bit in FMC_CMR register.

Send the option bytes erase command to the FMC by setting the START bit in FMC_CMR register.

Wait until all the operations have been finished by checking the value of the BUSY bit in FMC_CSR register.

Read and verify the Flash memory if required using a DBUS access.

When the operation is executed successful, the ENDF in FMC_CSR register is set, and an interrupt will be triggered by FMC if the ENDIE bit in the FMC_CMR register is set.

3.3.8. Option bytes Programming

The FMC provides a 32-bit word/16-bit half word programming function which is used to modify the option bytes block contents. There are 8 pair option bytes. The MSB is the complement of the LSB in each pair. And when the option bytes are modified, the MSB is generated by FMC automatically, not the value of input data.

The following steps show the programming operation sequence.

Unlock the FMC_CMR register if necessary.

Check the BUSY bit in FMC_CSR register to confirm that no Flash memory operation is in progress (BUSY equal to 0). Otherwise, wait until the operation has finished.

Unlock the option bytes operation bits in FMC_CMR register if necessary.

Wait until OBWE bit is set in FMC_CMR register

Set the OBPG bit in FMC_CMR register.

A 32-bit word/16-bit half word write at desired address by DBUS.

■ Wait until all the operations have been finished by checking the value of the BUSY bit in FMC_CSR register.

Read and verify the Flash memory if required using a DBUS access.

When the operation is executed successfully, the ENDF in FMC_CSR register is set, and an

interrupt will be triggered by FMC if the ENDIE bit in the FMC_CMR register is set. Note that the word/half word programming operation checks the address if it has been erased. If the address has not been erased, PGEF bit in the FLASH_CSR register will set when program the address except programming 0x0.

The modified option bytes only take effect after a system reset is generated.

3.3.9. Option bytes Description

The option bytes block is reloaded to FMC_OPTR and FMC_WPR registers after each system reset, and the option bytes take effect. The complement option bytes are the opposite of option bytes. When option bytes reload, if the complement option byte and option byte do not match, the ER bit in FMC_OPTR register is set, and the option byte is set to 0xFF. The ER bit is not set if both the option byte and its complement byte are 0xFF. The following table is the detail of option bytes.

Address	Name	Description
0x1fff f800	OB_RDPT	option byte Security Protection value
		0xA5 : no security protection
		any value except 0xA5 : under security protection
0x1fff f801	OB_RDPT_N	OB_RDPT complement value
0x1fff f802	OB_USER	[7:4]: reserved
		[3]: BFB2
		0: boot from bank2 or bank1 if bank2 is void, when
		configured boot from main memory
		1: boot from bank1, when configured boot from main
		memory
		[2]: OB_STDBY_RSTn
		0: generator a reset instead of entering standby mode
		1: no reset when entering standby mode
		[1]: OB_DEEPSLEEP_RSTn
		0: generator a reset instead of entering Deep-sleep mode
		1: no reset when entering Deep-sleep mode
		[0]: OB_WDG_SW
		0: hardware independent watchdog
		1: software independent watchdog
0x1fff f803	OB_USER_N	OB_USER complement value
0x1fff f804	OB_DATA[7:0]	user defined data bit 7 to 0
0x1fff f805	OB_DATA_N[7:0]	OB_DATA complement value bit 7 to 0
0x1fff f806	OB_DATA[15:8]	user defined data bit 15 to 8
0x1fff f807	OB_DATA_N[15:8]	OB_DATA complement value bit 15 to 8
0x1fff f808	OB_WP[7:0]	Page Erase/Program Protection bit 7 to 0
		0: protection active
		1: unprotected

0x1fff f809	OB_WP_N[7:0]	OB_WP complement value bit 7 to 0
0x1fff f80a	OB_WP[15:8]	Page Erase/Program Protection bit 15 to 8
0x1fff f80b	OB_WP_N[15:8]	OB_WP complement value bit 15 to 8
0x1fff f80c	OB_WP[23:16]	Page Erase/Program Protection bit 23 to 16
0x1fff f80d	OB_WP_N[23:16]	OB_WP complement value bit 23 to 16
0x1fff f80e	OB_WP[31:24]	Page Erase/Program Protection bit 31 to 24
		OB_WP[30:0]: Each bit is related to 4KB flash protection,
		that means 4 pages for GD32F10X_MD and 2 pages for
		GD32F10X_HD, GD32F10X_XD and GD32F10X_CL. Bit 0
		configures the first 4KB flash protection, and so on. These bits
		totally controls the first 124KB flash protection.
		OB_WP[31]: Bit 31 controls the protection of the rest
		flash memory.
0x1fff f80f	OB_WP_N[31:24]	OB_WP complement value bit 31 to 24

3.3.10. Page Erase/Program Protection

The FMC provides page erase/program protection functions to prevent inadvertent operations on the Flash memory. The page erase or program will not be accepted by the FMC on protected pages. If the page erase or program command is sent to the FMC on a protected page, the WPEF bit in the FMC_CSR register will then be set by the FMC. If the WPEF bit is set and the ERIE bit is also set to 1 to enable the corresponding interrupt, then the Flash operation error interrupt will be triggered by the FMC to draw the attention of the CPU. The page protection function can be individually enabled by configuring the OB_WP [31:0] bit field to 0 in the option bytes. If a page erase operation is executed on the option bytes block, all the Flash Memory page protection functions will be disabled. When OB_WP in the option bytes is modified, a system reset followed is necessary.

3.3.11. Security Protection

The FMC provides a security protection function to prevent illegal code/data access on the Flash memory. This function is useful for protecting the software/firmware from illegal users.

No protection: When configure OB_RDPT byte and its complement value to 0x5AA5, following a system reset, no protection performed. The main flash and option bytes block are accessible by all operations.

Under protection: When configure OB_RDPT byte and its complement value to any value except 0x5AA5, following a system reset, the security protection is performed. Note that a power reset should be followed instead of a system reset if the OB_RDPT modification is performed while the debug module is still connected to JTAG/SWD device. Under the security protection, the main flash can only be accessed by user code and the first 4KB flash is under erase/program protection. In debug, boot from SRAM or boot from boot loader area, all operations to main flash is forbidden. If a read operation to main flash in debug, boot from SRAM or boot from boot loader area, a bus error generated. If a program/erase operation to

main flash in debug, boot from SRAM or boot from boot loader area, the PGEF bit in FMC_CSR register will be set. Option bytes block are accessible by all boot modes, which can be used to disable the security protection. If the security protection is disabled by setting OB_RDPT byte and its complement value to 0x5AA5, a mass erase for main flash performed.

3.4. FMC registers

3.4.1. Flash reserved register (FMC_RESR)

Address offset: 0x00 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							R	eserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	ed							WSCNT	
													rw	rw	rw

Bits	Fields	Descriptions
31:3	Reserved	
2:0	WSCNT	wait state counter register
		These bits set and reset by software. The WSCNT valid when WSEN bit in
		FMC_WSCR is set
		000 : 0 wait state added
		001: 1 wait state added
		010: 2 wait state added
		011 ~ 111 : reserved

3.4.2. Flash unlock key register (FMC_UKEYR)

Address offset: 0x04 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	UKEY[31:16]														
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	UKEY[15:0]														
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

Bits	Fields	Descriptions	
31:0	UKEY[31:0]	FMC_CMR unlock register	
		These bits are only be written by software	
		Write UKEY[31:0] with keys to unlock FMC_CMR register	

3.4.3. Flash option byte operation unlock key register (FMC_OBKEYR)

Address offset: 0x08 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	OBKEY[31:16]														
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	OBKEY[15:0]														
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

Bits	Fields	Descriptions
31:0	OBKEY[31:0]	FMC_CMR option byte operation unlock register
		These bits are only be written by software
		Write OBKEY[31:0] with keys to unlock option byte command in FMC_CMR
		register.

3.4.4. Flash control/status register (FMC_CSR)

		Addr Rese	Address offset: 0x0C Reset value: 0x0000 0000												
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved								ENDF	WPEF	Res.	PGEF	Res.	BUSY	
										rw	rw		rw		r

Bits	Fields	Descriptions
31:6	Reserved	
5	ENDF	End of operation flag bit When the operation executed successfully, this bit is set by hardware. The software can clear it by writing 1.
4	WPEF	Erase/Program protection error flag bit

When erase/program on protected pages, this bit is set by hardware. The software can clear it by writing 1.

3	Reserved	
2	PGEF	Program error flag bit When program to the flash while it is not 0xFFFF, this bit is set by hardware. The software can clear it by writing 1.
1	Reserved	
0	BUSY	The flash is busy bit. When the operation is in progress, this bit is set to 1. When the operation is end or an error is generated, this bit is clear to 0.

3.4.5. Flash command register (FMC_CMR)

Address offset: 0x10 Reset value: 0x0000 0080

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			ENDI			OBW			STA	OBE	OBP		ME		50
	Keserve	a	E	Kes.	ERIE	Е	Kes.	LK	RT	R	G	Kes.	ME	ΡE	PG
			rw		rw	rw		rw	rw	rw	rw		rw	rw	rw

Bits	Fields	Descriptions
31:13	Reserved	
12	ENDIE	End of operation interrupt enable bit
		This bit is set or clear by software
		0: no interrupt generated by hardware.
		1: end of operation interrupt enable
11	Reserved	
10	ERIE	Error interrupt enable bit
		This bit is set or clear by software
		0: no interrupt generated by hardware.
		1: error interrupt enable
9	OBWE	option byte erase/program enable bit
		This bit is set by hardware when right sequence written to FMC_OBKEYR
		register. This bit can be cleared by software

GigaDevice

8	Reserved	
7	LK	FMC_CMR lock bit
		This bit is cleared by hardware when right sequence written to FMC_UKEYR
		register. This bit can be set by software
6	START	send erase command to FMC bit
		This bit is set by software to send erase command to FMC. This bit is cleared
		by hardware when the BUSY bit is cleared.
5	OBER	option byte erase command bit
		This bit is set or clear by software
		0: no effect
		1: option byte erase command
4	OBPG	option byte program command bit
		This bit is set or clear by software
		0: no effect
		1: option byte program command
3	Reserved	
2	ME	main flash mass erase command bit
		This bit is set or clear by software
		0: no effect
		1: main flash mass erase command
1	PE	main flash page erase command bit
		This bit is set or clear by software
		0: no effect
		1: main flash page erase command
0	PG	main flash program command bit
		This bit is set or clear by software
		0: no effect
		1: main flash program command

NOTE: This register should be reset after the corresponding flash operation completed.

3.4.6. Flash command address register (FMC_AR)

w

w

w

w

w

w

w

w

w

Bits	Fields	Descriptions
31:0	AR[31:0]	flash erase/program command address bits
		These bits are configured by software.
		AR bits are the address of flash erase/program command

w

w

w

w

w

w

Flash option byte register (FMC_OPTR) 3.4.7.

Address offset: 0x1C Reset value: 0x0XXX XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Re	served							DA	TA[15:6]				
						r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		DA	TA[5:0]							USER				RPS	ER
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits	Fields	Descriptions
31:26	Reserved	
25:10	DATA[15:0]	Store OB_DATA[15:0] of option bytes block after system reset
9:2	USER	Store OB_USER byte of option bytes block after system reset
1	RPS	Security Protection status
		0: no protection
		1: protected
0	ER	Option byte read error bit.
		This bit is set by hardware when the option byte and its complement byte do
		not match, then the option byte is set to 0xFF.

Flash Page Erase/Program Protection register (FMC_WPR) 3.4.8.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							WP	[31:16]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							WF	P[15:0]							

Address offset: 0x20 Reset value: 0xXXXX XXXX

Bits	Fields	Descriptions
31:0	WP[31:0]	Store OB_WP[31:0] of option bytes block after system reset

3.4.9. Flash unlock key register2 (FMC_UKEYR2)

Address offset: 0x44
Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							UK	EY[31:16]						
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Uŀ	(EY[15:0]							
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

Bits	Fields	Descriptions
31:0	UKEY[31:0]	FMC_CMR2 unlock register
		These bits are only be written by software
		Write UKEY[31:0] with keys to unlock FMC_CMR2 register

3.4.10. Flash control/status register2 (FMC_CSR2)

		Addr Rese	Address offset: 0x4C Reset value: 0x0000 0000												
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							R	eserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Res	erved					ENDF	WPEF	Res.	PGEF	Res.	BUSY
										rw	rw		rw		r

Bits	Fields	Descriptions
31:6	Reserved	
5	ENDF	End of operation flag bit
		When the operation executed successfully, this bit is set by hardware. The
		software can clear it by writing 1.
4	WPEF	Erase/Program protection error flag bit
		When erase/program on protected pages, this bit is set by hardware. The

software can clear it by writing 1.

3	Reserved	
2	PGEF	Program error flag bit When program to the flash while it is not 0xFFFF, this bit is set by hardware. The software can clear it by writing 1.
1	Reserved	
0	BUSY	The flash is busy bit. When the operation is in progress, this bit is set to 1. When the operation is end or an error is generated, this bit is clear to 0.

3.4.11. Flash command register2 (FMC_CMR2)

Address offset: 0x50 Reset value: 0x0000 0080

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			ENDI	1					STA		5				2
	Keserve	a	E	Kes.	ERIE	F	kes.	LK	RT		Res.		WE	PE	PG
			rw		rw			rw	rw				rw	rw	rw

Bits	Fields	Descriptions
31:13	Reserved	
12	ENDIE	End of operation interrupt enable bit
		This bit is set or clear by software
		0: no interrupt generated by hardware.
		1: end of operation interrupt enable
11	Reserved	
10	ERIE	Error interrupt enable bit
		This bit is set or clear by software
		0: no interrupt generated by hardware.
		1: error interrupt enable
9:8	Reserved	
7	LK	FMC_CMR2 lock bit
		This bit is cleared by hardware when right sequence written to FMC_UKEYR2
		register. This bit can be set by software

GigaDevia	c e	GD32F10x User Manual
6	START	send erase command to FMC bit
		This bit is set by software to send erase command to FMC. This bit is cleared
		by hardware when the BUSY bit is cleared.
5:3	Reserved	
2	ME	main flash mass erase command bit
		This bit is set or clear by software
		0: no effect
		1: main flash mass erase command
1	PE	main flash page erase command bit
		This bit is set or clear by software
		0: no effect
		1: main flash page erase command
0	PG	main flash program command bit
		This bit is set or clear by software
		0: no effect
		1: main flash program command

NOTE: This register should be reset after the corresponding flash operation completed.

3.4.12. Flash command address register2 (FMC_AR2)

Address offset: 0x54

Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 AR[31:16] w w w w w w w w w w w w w w w 7 15 14 13 12 11 10 9 8 6 5 4 3 2 1 AR[15:0] w w w w w w w w w w w w w w w

Bits	Fields	Descriptions
31:0	AR[31:0]	flash erase/program command address bits
		These bits are configured by software.
		AR bits are the address of flash erase/program command

3.4.13. Flash wait state control register (FMC_WSCR)

	Address offset: 0xFC														
		Rese	et value	e: 0x00	00 000	00									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

16

w

0

w

							Res	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved							WSEN							
															r

Bits	Fields	Descriptions
0	WSEN	FMC wait state enable register
		This bit set and reset by software. This bit also protected by the FMC_UKEYR register. It is necessary to writing 0x45670123 and
		0xCDEF89AB to the FMC_UKEYR register.
		0: no wait state added when fetch flash
		1: wait state added when fetch flash

3.4.14. Flash Product reserved ID code register1 (FMC_RES_ID1)

Address offset: 0x100 Reset value: 0xXXXX XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RES_I	D1[31:16	6]						
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RES_	ID1[15:0]						
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits	Fields	Descriptions
31:0	RES_ID1	Product reserved ID code register1
		These bits are read only by software.
		These bits are unchanged constant after power on. These bits are one time
		program when the chip produced.

3.4.15. Flash Product reserved ID code register2 (FMC_RES_ID2)

		Addre Reset	ess offs t value:	et: 0x′ 0xXX	104 XX XX	XX									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RES_	ID2[31:16	6]						
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RES_	ID2[15:0]						

r r r r r r r r r r r r r r r r

Bits	Fields	Descriptions
31:0	RES_ID2	Product reserved ID code register2
		These bits are read only by software.
		These bits are unchanged constant after power on. These bits are one time

program when the chip produced.

69

4. Reset and clock control unit (RCC)

Medium-, High- and X-density Reset and clock control unit (RCC)

GD32F101xx and GD32F103xx microcontrollers where the flash memory density ranges between 16 and 128 Kbytes are called Medium-density devices(GD32F10X_MD).

GD32F101xx and GD32F103xx microcontrollers where the flash memory density ranges between 256 and 512 Kbytes are called High-density devices(GD32F10X_HD).

GD32F101xx and GD32F103xx microcontrollers where the flash memory density is over 512 Kbytes are called X-density devices(GD32F10X_XD).

GD32F105xx and GD32F107xx microcontrollers are called connectivity line devices (GD32F10X_CL).

4.1. Reset Control Unit (RCU)

4.1.1. Introduction

GD32F10x Reset Control includes the control of three kinds of reset, power reset, system reset and backup domain reset. The power on reset, known as a cold reset, resets the full system except the Backup domain during a power up. A system reset resets the processor core and peripheral IP components with the exception of the SW-DP controller and the Backup domain. A backup domain reset resets the Backup domain. The resets can be triggered by an external signal, internal events and the reset generators. More information about these resets will be described in the following sections.

4.1.2. Function Description

Power Reset

The Power reset is generated by either an external reset as Power On and Power Down reset (POR/PDR reset), or by the internal reset generator when exiting Standby mode. The power reset sets all registers to their reset values except the Backup domain. The Power reset active low signal will be keeped until the internal LDO voltage regulator is ready to provide 1.2 V power. The RESET service routine vector is fixed at address 0x0000_0004 in the memory map.

System Reset

A system reset is generated by the following events:

- A power on reset (PORRESETn)
- A external pin reset (NRST)
- A window watchdog timer reset (WWDG_RSTn)
- A independent watchdog timer reset (IWDG_RSTn)
- The SYSRESETREQ bit in CortexTM-M3 Application Interrupt and Reset Control Register is set (SW_RSTn)
- Reset generated when entering Standby mode when resetting OB_STDBY_RSTn bit in User Option Bytes (OB_STDBY_RSTn)
- Reset generated when entering Deep-sleep mode when resetting
 OB_DEEPSLEEP_RSTn bit in User Option Bytes (OB_DEEPSLEEP_RSTn)

A system reset pulse generator guarantees low level pulse duration of 20 µs for each reset source (external or internal reset).

Figure 4-1 the system reset circuit

Backup domain reset

A backup domain reset is generated by setting the BKPRST bit in the Backup domain control register or Backup domain power on reset (VDD or VBAT power on, if both supplies have previously been powered off).

4.2. Clock Control Unit (CCU)

4.2.1. Introduction

The Clock Control unit provides a range of frequencies and clock functions. These include a High Speed Internal 8M RC oscillator (HSI), a High Speed External crystal oscillator (HSE), a Low Speed Internal RC oscillator (LSI), a Low Speed External crystal oscillator (LSE), a Phase Lock Loop (PLL), a HSE clock monitor, clock prescalers, clock multiplexers and clock gating circuitry.

The clocks of the AHB, APB and Cortex[™]-M3 are derived from the system clock (CK_SYS) which can source from the HSI, HSE or PLL. The maximum operating frequency of the system clock (CK_SYS) can be up to 108 MHz. The Independent Watchdog Timer uses LSI and Real Time Clock (RTC) uses either the LSI or LSE as their clock source.

The AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains can be configured by each prescaler. The maximum frequency of the AHB and the APB2 domains is 108 MHz. The maximum allowed frequency of the APB1 domain is 54 MHz. The Cortex System Timer (SysTick) external clock is clocked with the AHB clock (HCLK) divided by 8. The SysTick can work either with this clock or with the Cortex clock (HCLK), configurable in the SysTick Control and Status Register. The ADCs are clocked by the clock of APB2 divided by 2, 4, 6, 8, 12 or 16. The SDIO is clocked with the AHB clock (HCLK) divided by 2.

The RTC is clocked by LSE clock or LSI clock or HSE clock divided by 128 which select by RTCSRC bit in Backup Domain Control Register (RCC_BDCR).

The IWDG is clocked by LSI clock, which is forced on when IWDG started.

If the APB prescaler is 1, the timer clock frequencies are set to APB frequency divide by 1. Otherwise, they are set to the frequency that the APB frequency is multiplied by 2(APB x 2).

4.2.2. Main features

- 4 to 16 MHz High Speed External crystal oscillator (HSE)
- 8 MHz High Speed Internal RC oscillator (HSI)
- 32,768 Hz Low Speed External crystal oscillator (LSE)
- 40 kHz Low Speed Internal RC oscillator (LSI)
- PLL clock source can be HSE or HSI
- HSE clock monitor

4.2.3. Function description

High Speed External Crystal Oscillator (HSE)

The high speed external crystal oscillator (HSE), which has a frequency from 4 to 16 MHz, produces a highly accurate clock source for use as the system clock. A crystal with a specific frequency must be connected and located close to the two HSE pins. The external resistor and capacitor components connected to the crystal are necessary for proper oscillation.

The HSE crystal oscillator can be switched on or off using the HSEEN bit in the Global Clock Control Register GCCR. The HSESTB flag in Global Clock Control Register RCC_GCCR indicates if the high-speed external crystal oscillator is stable. When the HSE is powered up, it will not be released for use until this HSESTB bit is set by the hardware. This specific delay period is known as the oscillator "Start-up time". As the HSE becomes stable, an interrupt will be generated if the related interrupt enable bit HSESTBIE in the Global Clock Interrupt Register RCC_GCIR is set. At this point the HSE clock can be used directly as the system clock source or the PLL input clock.

Select external clock bypass mode by setting the HSEBPS and HSEEN bits in the Global Clock Control Register RCC_GCCR. In bypass mode, the external clock must be provided to the OSC_IN pin. The CK_HSE is equal to the external clock which drives the OSC_IN pin.

High Speed Internal 8 M RC Oscillators (HSI)

The high speed internal 8M RC oscillator, HSI8, has a fixed frequency of 8 MHz and is the default clock source selection for the CPU when the device is powered up. The HSI oscillator provides a lower cost type clock source as no external components are required. The HSI RC oscillator can be switched on or off using the HSIEN bit in the Global Clock Control Register RCC_GCCR. The HSIRSTB flag in the Global Clock Control Register RCC_GCCR is used to indicate if the internal RC oscillator. An interrupt can be generated if the related interrupt enable bit, HSISTBIE, in the Global Clock Interrupt Register, RCC_GCIR, is set when the HSI becomes stable. The HSI clock can also be used as system clock or divided by 2 to be used the PLL input clock.

The frequency accuracy of the HSI can be calibrated by the manufacturer, but its operating frequency is still less accurate than HSE. The application requirements, environment and cost will determine which oscillator type is selected.

If the HSE or PLL is the system clock source, to minimize the time required for the system to recover from the Deep-sleep Mode, the hardware forces the HSI clock to be the system clock when the system initially wakes-up.

Phase Locked Loop (PLL)

The internal Phase Locked Loop, PLL, can provide 16~108 MHz clock output which is 2 ~32 multiples of a fundamental reference frequency of 4 ~ 16 MHz.

The PLL has two input clock sources: HSI/2 or HSE. It can be choosed one of them as the input clock source of The PLL.

The PLL can be switched on or off by using the PLLEN bit in the Global Clock Control Register RCC_GCCR. The PLLSTB flag in the Global Clock Control Register RCC_GCCR will indicate if the PLL clock is stable. An interrupt can be generated if the related interrupt enable bit, PLLSTBIE, in the Global Clock Interrupt Register, RCC_GCIR, is set as the PLL becomes stable.

Low Speed External Crystal Oscillator (LSE)

The low speed external crystal or ceramic resonator oscillator, which has a frequency of 32,768 Hz, produces a low power but highly accurate clock source for the Real Time Clock circuit. The LSE oscillator can be switched on or off using the LSEEN bit in the Backup Domain Control Register RCC_BDCR. The LSESTB flag in the Backup Domain Control Register RCC_BDCR will indicate if the LSE clock is stable. An interrupt can be generated if the related interrupt enable bit, LSESTBIE, in the Global Clock Interrupt Register RCC_GCIR is set when the LSE becomes stable.

Select external clock bypass mode by setting the LSEBPS and LSEEN bits in the Backup Domain Control Register RCC_BDCR. The CK_LSE is equal to the external clock which drives the OSC32_IN pin.

Low Speed Internal RC Oscillator (LSI)

The low speed internal RC oscillator has a frequency of about 40 kHz and is a low power clock source for the Real Time Clock circuit or the Independent Watchdog Timer. The LSI offers a low cost clock source as no external components are required. The LSI RC oscillator can be switched on or off by using the LSIEN bit in the Global Control/Status Register, RCC_GCSR. The LSISTB flag in the Global Control/Status Register RCC_GCSR will indicate if the LSI clock is stable. An interrupt can be generated if the related interrupt enable bit LSISTBIE in the Global Clock Interrupt Register RCC_GCIR is set when the LSI becomes stable.

System Clock (CK_SYS) Selection

After the system reset, the default CK_SYS source will be HSI and can be switched to HSE or PLL by changing the System Clock Switch bits, SCS, in the Global Clock configuration register, RCC_GCFGR. When the SCS value is changed, the CK_SYS will continue to operate using the original clock source until the target clock source is stable. When a clock source is used directly by the CK_SYS or the PLL, it is not possible to stop it.

HSE Clock Monitor (CKM)

The HSE clock monitor function is enabled by the HSE Clock Monitor Enable bit, CKMEN, in the Global Clock Control Register, RCC_GCCR. This function should be enabled after the HSE start-up delay and disabled when the HSE is stopped. Once the HSE failure is detected, the HSE will be automatically disabled. The HSE Clock Stuck Flag, CKMF, in the Global Clock Interrupt Register, RCC_GCIR, will be set and the HSE failure event will be generated. This failure interrupt is connected to the Non-Maskable Interrupt, NMI, of the Cortex-M3. If the HSE is selected as the clock source of CK_SYS or PLL, the HSE failure will force the CK_SYS source to HSI and the PLL will be disabled automatically

Clock Output Capability

The output clock capability can be ranging from 32 kHz to 54 MHz. There are several clock signals can be selected via the CKOUT Clock Source Selection bits, CKOUTSRC, in the Global Clock Configuration Register, RCC_GCFGR. The corresponding GPIO pin should be configured in the properly Alternate Function I/O (AFIO) mode to output the selected clock signal.

CKOUTSRC	Clock Source
0xx	No Clock
100	CK_SYS
101	CK_HSI
110	CK_HSE
111	CK_PLL/2

4.3. RCC registers

4.3.1. Global Clock control register (RCC_GCCR)

Offset: 0x00

Reset value: 0x0000 XX83 where X is undefined.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Descend						PLL		Reserved			OKMEN				
		Rese	erved			PLLSTB	EN		Rese	erved		CRIVIEIN	поерго	ISESIB	HOEEN
						r	rw					rw	rw	r	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
HSICALIB										HSIAD	Ŋ		Reserved.	HSISTB	HSIEN
r	r	r	r	r	r	r	r	rw	rw	rw	rw	rw		r	rw

Bits	Fields	Descriptions
31:26	Reserved	must be kept at reset value
25	PLLSTB	PLL Clock Stabilization Flag
		Set by hardware to indicate if the PLL output clock is stable and ready for use.
		0: PLL is not stable
		1: PLL is stable
24	PLLEN	PLL enable
		Set and reset by software. This bit cannot be reset if the PLL clock is used as the
		system clock. Reset by hardware when entering Deep-sleep or Standby mode.
		0: PLL is switched off
		1: PLL is switched on
23:20	Reserved	Must be kept at reset value.
19	CKMEN	HSE Clock Monitor Enable
		0: Disable the External 4 ~ 16 MHz crystal oscillator (HSE) clock monitor
		1: Enable the External 4 ~ 16 MHz crystal oscillator (HSE) clock monitor
		When the hardware detects that the HSE clock is stuck at a low or high state, the
		internal hardware will switch the system clock to be the internal high speed HSI RC
		clock. The way to recover the original system clock is by either an external reset,
		power on reset or clearing CKSF by software.
		NOTE: When the HSE clock monitor is enabled, the hardware will automatically
		enable the HSI internal RC oscillator regardless of the control bit, HSIEN, state.
18	HSEBPS	External crystal oscillator (HSE) clock bypass mode enable
		The HSEBPS bit can be written only if the HSEEN is 0.
		0: Disable the HSE Bypass mode
		1: Enable the HSE Bypass mode in which the HSE output clock is equal to the input

		clock.
17	HSESTB	External crystal oscillator (HSE) clock stabilization flag
		Set by hardware to indicate if the HSE oscillator is stable and ready for use. 0: HSE oscillator is not stable 1: HSE oscillator is stable
16	HSEEN	 External High Speed oscillator Enable Set and reset by software. This bit cannot be reset if the HSE clock is used as the system clock or the PLL input clock. Reset by hardware when entering Deep-sleep or Standby mode. 0: External 4 ~ 16 MHz crystal oscillator disabled 1: External 4 ~ 16 MHz crystal oscillator enabled
15:8	HSICALIB	High Speed Internal Oscillator calibration value register These bits are load automatically at power on.
7:3	HSIADJ	High Speed Internal Oscillator clock trim adjust value
		These bits are set by software. The trimming value is there bits (HSIADJ) added to the HSICALIB[7:0] bits. The trimming value should trim the HSI to 8 MHz \pm 1%.
2	Reserved	Must be kept at reset value.
1	HSISTB	HSI High Speed Internal Oscillator stabilization FlagSet by hardware to indicate if the HSI oscillator is stable and ready for use.0: HSI oscillator is not stable1: HSI oscillator is stable
0	HSIEN	Internal High Speed oscillator Enable Set and reset by software. This bit cannot be reset if the HSI clock is used as the system clock. Set by hardware when leaving Deep-sleep or Standby mode or the HSE clock is stuck at a low or high state when HSECKM is set. 0: Internal 8 MHz RC oscillator disabled 1: Internal 8 MHz RC oscillator enabled

4.3.2. Global Clock configuration register (RCC_GCFGR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	Reserved		ADCPS[2]	2] PLLMF[4] CKOUTSEL USBPS PI		PLLM	.LMF[3:0] PLLPF			PLLSEL					
			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADCP	S[1:0]		APB2PS	APB1PS				AH	BPS		SC	SS	SCS	6	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	r	r	rw	rw

Offset: 0x04 Reset value: 0x0000 0000

Bits	Fields	Descriptions
31:29	Reserved	must be kept at reset value
28	ADCPS[2]	Bit 3 of ADCPS register
		see bits 15:14 of GCFGR
27	PLLMF[4]	Bit 4 of PLLMF register
		see bits 21:18 of GCFGR
26:24	CKOUTSEL	CKOUT Clock Source Selection
		Set and reset by software.
		0xx: No clock selected
		100: System clock selected
		101: High Speed 8M Internal Oscillator clock selected
		110: External High Speed oscillator clock selected
		111: (CK_PLL / 2) clock selected
23:22	USBPS	USB clock prescaler selection
		Set and reset by software to control the USB clock prescaler value. The USB clock
		must be 48MHz. These bits can't be reset if the USB clock is enabled.
		00: (CK_PLL / 1.5) selected
		01: CK_PLL selected
		10: (CK_PLL / 2.5) selected
		11: (CK_PLL / 2) selected
21:18	PLLMF[3:0]	PLL multiply factor
		These bits and bit 27 of GCFGR are written by software to define the PLL
		multiplication factor.
		Caution: The PLL output frequency must not exceed 108 MHz.
		00000: (PLL source clock x 2)
		00001: (PLL source clock x 3)
		00010: (PLL source clock x 4)
		00011: (PLL source clock x 5)
		00100: (PLL source clock x 6)
		00101: (PLL source clock x 7)
		001110: (PLL source clock x 8)
		(1000: (PLL source clock x 9)
		01000: (FLL source clock x 10)
		01010: (PLL source clock x 12)
		01011: (PLL source clock x 13)
		01100: (PLL source clock x 14)
		01101: (PLL source clock x 15)
		01110: (PLL source clock x 16)
		01111: (PLL source clock x 16)

		10000: (PLL source clock x 17)
		10001: (PLL source clock x 18)
		10010: (PLL source clock x 19)
		10011: (PLL source clock x 20)
		10100: (PLL source clock x 21)
		10101: (PLL source clock x 22)
		10110: (PLL source clock x 23)
		10111: (PLL source clock x 24)
		11000: (PLL source clock x 25)
		11001: (PLL source clock x 26)
		11010: (PLL source clock x 27)
		11011: (PLL source clock x 28)
		11100: (PLL source clock x 29)
		11101: (PLL source clock x 30)
		11110: (PLL source clock x 31)
		11111: (PLL source clock x 32)
17	PLLPREDV	HSE divider for PLL source clock selection.
		Set and cleared by software to divide HSE or not which is selected to PLL.
		0: HSE clock selected
		1: (CK_HSE / 2) clock selected
16	PLLSEL	PLL Clock Source Selection
		Set and reset by software to control the PLL clock source.
		0: (CK_HSI / 2) selected as PLL source clock
		1: HSE selected as PLL source clock
15:14	ADCPS[1:0]	ADC clock prescaler selection
		These bits and bit 28 of GCFGR are written by software to define the ADC prescaler
		factor.Set and cleared by software.
		000: (CK_APB2 / 2) selected
		001: (CK_ APB2 / 4) selected
		010: (CK_ APB2 / 6) selected
		011: (CK_ APB2 / 8) selected
		100: (CK_ APB2 / 2) selected
		101: (CK_ APB2 / 12) selected
		110: (CK_ APB2 / 8) selected
		111: (CK_ APB2 / 16) selected
13:11	APB2PS	APB2 prescaler selection
		Set and reset by software to control the APB2 clock division ratio.
		0xx: CK_AHB selected
		100: (CK_AHB / 2) selected
		101: (CK_AHB / 4) selected
		110: (CK_AHB / 8) selected

		111: (CK_AHB / 16) selected
10:8	APB1PS	APB1 prescaler selection
		Set and reset by software to control the APB1 clock division ratio.
		Caution: The CK_APB1 output frequency must not exceed 54 MHz.
		0xx: CK_AHB selected
		100: (CK_AHB / 2) selected
		101: (CK_AHB / 4) selected
		110: (CK_AHB / 8) selected
		111: (CK_AHB / 16) selected
7:4	AHBPS	AHB prescaler selection
		Set and reset by software to control the AHB clock division ratio
		0xxx: CK_SYS selected
		1000: (CK_SYS / 2) selected
		1001: (CK_SYS / 4) selected
		1010: (CK_SYS / 8) selected
		1011: (CK_SYS / 16) selected
		1100: (CK_SYS / 64) selected
		1101: (CK_SYS / 128) selected
		1110: (CK_SYS / 256) selected
		1111: (CK_SYS / 512) selected
3:2	SCSS	System clock switch status
		Set and reset by hardware to indicate the clock source of system clock.
		00: select CK_HSI as the CK_SYS source
		01: select CK_HSE as the CK_SYS source
		10: select CK_PLL as the CK_SYS source
		11: reserved
1:0	SCS	System clock switch
		Set by software to select the CK_SYS source. Because the change of CK_SYS has
		inherent latency, software should read SCSS to confirm whether the switching is
		complete or not. The switch will be forced to HSI when leaving Deep-sleep and
		Standby mode or by HSE clock monitor when the HSE failure is detected and the HSE
		is selected as the clock source of CK_SYS or PLL.
		00: select CK_HSI as the CK_SYS source
		01: select CK_HSE as the CK_SYS source
		10: select CK_PLL as the CK_SYS source
		11: reserved

4.3.3. Global Clock interrupt register (RCC_GCIR)

Offset: 0x08

Reset value: 0x0000 0000

GD32F10x User Manual

31	30	29	28	27	26 2	25 24	23	22	2 21	20	19	18	8	17	16
Descend					CKA		Posoniod	PLL	HSE	E H	SI	LSE	LSI		
	Keserved					Crti		veserveu.	STBR	STBI	r st	BR S	STBR	STBR	
							w	w			w	w		w	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		4	PLL	HSE	HSI	LSE	LSI	OKME	CKMF Reserv		PLL	HSE	HSI	LSE	LSI
R	eserve	u.	STBIE	STBIE	STBIE	STBIE	STBIE	CKINF			STBF	STBF	STBF	STBF	STBF
			rw	rw	rw	rw	rw	r			r	r	r	r	r

Bits	Fields	Descriptions
31:24	Reserved	must be kept at reset value
23	CKMR	HSE Clock Stuck Interrupt Reset
		Write 1 by software to reset the CKMF flag.
		0: Not reset CKMF flag
		1: Reset CKMF flag
22: 21	Reserved	must be kept at reset value
20	PLLSTBR	PLL stabilization Interrupt Reset
		Write 1 by software to reset the PLLSTBF flag.
		0: Not reset PLLSTBF flag
		1: Reset PLLSTBF flag
19	HSESTBR	HSE Stabilization Interrupt Reset
		Write 1 by software to reset the HSESTBF flag.
		0: Not reset HSESTBF flag
		1: Reset HSESTBF flag
18	HSISTBR	HSI Stabilization Interrupt Reset
		Write 1 by software to reset the HSISTBF flag.
		0: Not reset HSISTBF flag
		1: Reset HSISTBF flag
17	LSESTBR	LSE Stabilization Interrupt Reset
		Write 1 by software to reset the LSESTBF flag.
		0: Not reset LSESTBF flag
		1: Reset LSERDYF flag
16	LSISTBR	LSI Stabilization Interrupt Reset
		Write 1 by software to reset the LSIRDYF flag.
		0: Not reset LSISTBF flag

	1: Reset LSIRDYF flag
Reserved	must be kept at reset value
PLLSTBIE	PLL Stabilization Interrupt Enable
	Set and reset by software to enable/disable the PLL stabilization interrupt. 0: Disable the PLL stabilization interrupt
	1: Enable the PLL stabilization interrupt
HSESTBIE	HSE Stabilization Interrupt Enable
	Set and reset by software to enable/disable the HSE stabilization interrupt 0: Disable the HSE stabilization interrupt 1: Enable the HSE stabilization interrupt
HSISTBIE	HSI Stabilization Interrupt Enable
	Set and reset by software to enable/disable the HSI stabilization interrupt 0: Disable the HSI stabilization interrupt 1: Enable the HSI stabilization interrupt
LSESTBIE	LSE Stabilization Interrupt Enable
	LSE stabilization interrupt enable/disable control 0: Disable the LSE stabilization interrupt 1: Enable the LSE stabilization interrupt
LSISTBIE	LSI Stabilization interrupt enable
	LSI stabilization interrupt enable/disable control 0: Disable the LSI stabilization interrupt 1: Enable the LSI stabilization interrupt
CKMF	HSE Clock Stuck Interrupt Flag Set by hardware when the HSE clock is stuck. Reset by software when setting the CKMR bit. 0: Clock operating normally 1: HSE clock stuck
Reserved	must be kept at reset value.
PLLSTBF	PLL stabilization interrupt flag
	Set by hardware when the PLL is stable and the PLLSTBIE bit is set. Reset by software when setting the PLLSTBR bit. 0: No PLL stabilization interrupt generated 1: PLL stabilization interrupt generated
HSESTBF	HSE stabilization interrupt flag
	Reserved PLLSTBIE HSESTBIE LSESTBIE LSISTBIE CKMF Reserved PLLSTBF

Set by hardware when the External 4 ~ 16 MHz crystal oscillator clock is stable and the

		HSESTBIE bit is set. Reset by software when setting the HSESTBR bit. 0: No HSE stabilization interrupt generated
		1: HSE stabilization interrupt generated
2	HSISTBF	HSI stabilization interrupt flag
		Set by hardware when the Internal 8 MHz RC oscillator clock is stable and the HSISTBIE bit is set.
		Reset by software when setting the HSISTBR bit.
		0: No HSI stabilization interrupt generated
		1: HSI stabilization interrupt generated
1	LSESTBF	LSE stabilization interrupt flag
		Set by hardware when the External 32,768 Hz crystal oscillator clock is stable and the
		LSESTBIE bit is set.
		Reset by software when setting the LSESTBR bit.
		0: No LSE stabilization interrupt generated
		1: LSE stabilization interrupt generated
0	LSISTBF	LSI stabilization interrupt flag
		Set by hardware when the Internal 32kHz RC oscillator clock is stable and the
		LSISTBIE bit is set.
		Reset by software when setting the LSISTBR bit.
		0: No LSI stabilization clock ready interrupt generated
		1: LSI stabilization interrupt generated

4.3.4. APB2 Reset Control Register (RCC_APB2RCR)

Offset: 0x0C

Reset value: 0x00000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
				_						TIMER11	TIMER10	TIMER9					
				Reser	ved					RST	RST	RST		Reserved			
										rw	rw	rw					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
ADC3	USART1	TIMER8	SPI1	TIMER1	ADC2	ADC1	PG	PF	PE	PD	PC	PB	PA	Deserved	AF		
RST.	RST	RST	RST	RST	RST	RST	RST	RST	RST	RST	RST	RST	RST	Reserved.	RST		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		rw		

This bit is set and reset by software.

		0: No reset 1: Reset the TIMER11
20	TIMER10RST	Timer 10 reset
		This bit is set and reset by software. 0: No reset 1: Reset the TIMER10
19	TIMER9RST	Timer 9 reset
		This bit is set and reset by software. 0: No reset 1: Reset the TIMER9
18:16	Reserved	must be kept at reset value
15	ADC3RST	ADC 3 reset
		This bit is set and reset by software. 0: No reset 1: Reset the ADC 3
14	USART1RST	USART1 Reset
		This bit is set and reset by software. 0: No reset 1: Reset the USART1
13	TIMER8RST	Timer 8 reset
		This bit is set and reset by software. 0: No reset 1: Reset the TIMER8
12	SPI1RST	SPI1 Reset
		This bit is set and reset by software. 0: No reset 1: Reset the SPI1
11	TIMER1RST	Timer 1 reset
		This bit is set and reset by software. 0: No reset 1: Reset the TIMER1
10	ADC2RST	ADC 2 reset
		This bit is set and reset by software. 0: No reset 1: Reset the ADC 2

1	
\bigcirc	
GigaDevice	

9	ADC1RST	ADC 1 reset
		This bit is set and reset by software. 0: No reset 1: Reset the ADC 1
8	PGRST	GPIO port G reset This bit is set and reset by software. 0: No reset 1: Reset the GPIO port G
7	PFRST	GPIO portF reset This bit is set and reset by software. 0: No reset 1: Reset the GPIO port F
6	PERST	GPIO port E reset This bit is set and reset by software. 0: No reset 1: Reset the GPIO port E
5	PDRST	GPIO port D reset This bit is set and reset by software. 0: No reset 1: Reset the GPIO port D
4	PCRST	GPIO port C reset This bit is set and reset by software. 0: No reset 1: Reset the GPIO port C
3	PBRST	GPIO port B reset This bit is set and reset by software. 0: No reset 1: Reset the GPIO port B
2	PARST	GPIO port A reset This bit is set and reset by software. 0: No reset 1: Reset the GPIO port A
1	Reserved	must be kept at reset value
0	AFRST	Alternate function I/O reset This bit is set and reset by software. 0: No reset 1: Reset Alternate Function I/O

4.3.5. APB1 Reset Control Register (RCC_APB1RCR)

Offset: 0x10 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	rved	DAC RST	PWR RST	BKP RST	Rese rved	CAN RST	Rese rved	USB RST	I2C2 RST	I2C1 RST	UART5 RST	UART4 RST	USART 3RST	USART 2RST	Rese rved
		rw	rw	rw		rw		rw	rw	rw	rw	rw	rw	rw	
15	14	13	12 1 [.]	1 10	9	8	7	6		5	4	3	2	1	0
SPI3 RST	SPI2 RST	Reser ved	WW GRS	D Res	serve d	TIMER 14RST	TIMER 13RST	TIMI 12R	ER -	TIMER 7RST	TIMER 6RST	TIMER 5RST	TIMER 4RST	TIMER 3RST	TIMER 2RST
rw	rw	•	rw			rw	rw	rw		rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
31:30	Reserved	must be kept at reset value
29	DACRST	DAC reset
		This bit is set and reset by software.
		0: No reset
		1: Reset DAC unit
28	PWRRST	Power control reset
		This bit is set and reset by software.
		0: No reset
		1: Reset power control unit
27	BKPRST	Backup interface reset
		This bit is set and reset by software.
		0: No reset
		1: Reset backup interface
26	Reserved	must be kept at reset value
25	CANRST	CAN reset
		This bit is set and reset by software.
		0: No reset
		1: Reset CAN
24	Reserved	must be kept at reset value
23	USBRST	USB reset
		This bit is set and reset by software.

0: No reset 1: Reset USB 22 I2C2RST I2C2 reset This bit is set and reset by software. 0: No reset 1: Reset I2C2 21 I2C1RST I2C1 reset This bit is set and reset by software. 0: No reset 1: Reset I2C1 20 UART5RST **UART5** reset This bit is set and reset by software. 0: No reset 1: Reset USART5 UART4RST UART4 reset 19 This bit is set and reset by software. 0: No reset 1: Reset USART4 18 **USART3RST** USART3 reset This bit is set and reset by software. 0: No reset 1: Reset USART3 17 **USART2RST** USART2 reset This bit is set and reset by software. 0: No reset 1: Reset USART2 16 Reserved must be kept at reset value **SPI3RST** 15 SPI3 reset This bit is set and reset by software. 0: No reset 1: Reset SPI3 14 SPI2RST SPI2 reset This bit is set and reset by software. 0: No reset 1: Reset SPI2

13:12	Reserved	must be kept at reset value
11	WWDGRST	Window watchdog reset
		This bit is set and reset by software.
		0: No reset
		1: Reset window watchdog
10:9	Reserved	must be kept at reset value
8	TIMER14RST	TIMER14 timer reset
		This bit is set and reset by software.
		0: No reset
		1: Reset TIMER14 Timer
7	TIMER13RST	TIMER13 timer reset
		This bit is set and reset by software.
		0: No reset
		1: Reset TIMER13Timer
6	TIMER12RST	TIMER12 timer reset
		This bit is set and reset by software.
		0: No reset
		1: Reset TIMER12 Timer
5	TIMER7RST	TIMER7 timer reset
		This bit is set and reset by software.
		0: No reset
		1: Reset TIMER7 Timer
4	TIMER6RST	TIMER6 timer reset
		This bit is set and reset by software.
		0: No reset
		1: Reset TIMER6 Timer
3	TIMER5RST	TIMER5 timer reset
		This bit is set and reset by software.
		0: No reset
		1: Reset TIMER5 Timer
2	TIMER4RST	TIMER4 timer reset
		This bit is set and reset by software.
		0: No reset
		1: Reset TIMER4 Timer

1	TIMER3RST	TIMER3 timer reset
		This bit is set and reset by software. 0: No reset 1: Reset TIMER3 timer
0	TIMER2RST	TIMER2 timer reset
		This bit is set and reset by software. 0: No reset 1: Reset TIMER2 timer

4.3.6. AHB Clock Control Register (RCC_AHBCCR)

Offset: 0x14 Reset value: 0x0000 0014

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved.					SDIOEN	Reserved.	EXMCEN	Reserved.	CRCEN	Reserved.	FMCEN	Reserved.	SRAMEN	DMA2EN.	DMA1EN
				rw		rw		rw		rw		rw	rw	rw	

Bits	Fields	Descriptions
31:11	Reserved	must be kept at reset value
10	SDIOEN	SDIO clock enable
		This bit is set and reset by software.
		0: Disabled SDIO clock
		1: Enabled SDIO clock
9	Reserved	must be kept at reset value
8	EXMCEN	EXMC clock enable
		This bit is set and reset by software.
		0: Disabled EXMC clock
		1: Enabled EXMC clock
7	Reserved	must be kept at reset value
6	CRCEN	CRC clock enable
		This bit is set and reset by software.
		0: Disabled CRC clock
		1: Enabled CRC clock
5	Reserved	must be kept at reset value

(\rightarrow	
GigaD) e v i c e	GD32F10X User Manual
4	FMCEN	FMC clock enable
		This bit is set and reset by software to enable/disable FMC clock during Sleep mode.
		0: Disabled FMC clock during Sleep mode
		1: Enabled FMC clock during Sleep mode
3	Reserved	must be kept at reset value
2	SRAMEN	SRAM interface clock enable
		This bit is set and reset by software to enable/disable SRAM interface clock during Sleep mode.
		0: Disabled SRAM interface clock during Sleep mode.
		1: Enabled SRAM interface clock during Sleep mode
1	DMA2EN	DMA2clock enable
		This bit is set and reset by software.
		0: Disabled DMA2 clock
		1: Enabled DMA2 clock enabled
0	DMA1EN	DMA1 clock enable
		This bit is set and reset by software.
		0: Disabled DMA1 clock
		1: Enabled DMA1 clock enabled

4.3.7. APB2 Clock Control Register (RCC_APB2CCR)

Offset: 0x18

Reset value: 0x0000 0000

31	30	כ	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved											TIMER10	TIMER9			
												EN EN				
											rw	rw	rw			
15	14	13	12	11	10	9	8	7	6		5	4	3	2	1	0
ADC3	USART1	TIMER8	SPI1	TIMER1	ADC2	ADC1	PG	PF	PE		PD	PC	PB	PA	Deserved	AF
EN	EN	EN	EN	EN	EN	EN	EN	EN	EN		EN	EN	EN	EN	Reserved.	EN
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw		rw

Bits	Fields	Descriptions
31:22	Reserved	must be kept at reset value
21	TIMER11EN	TIMER11 timer clock enable

This bit is set and reset by software.

0: Disabled TIMER11 timer clock

1: Enabled TIMER11 timer clock

20	TIMER10EN	TIMER10 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER10 timer clock 1: Enabled TIMER10 timer clock
19	TIMER9EN	TIMER9 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER9 timer clock 1: Enabled TIMER9 timer clock
18:16	Reserved	must be kept at reset value
15	ADC3EN	ADC 3 interface clock enable
		This bit is set and reset by software. 0: Disabled ADC 3 interface clock 1: Enabled ADC 3 interface clock
14	USART1EN	USART1 clock enable
		This bit is set and reset by software. 0: Disabled USART1 clock 1: Enabled USART1 clock
13	TIMER8EN	TIMER8 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER8 timer clock 1: Enabled TIMER8 timer clock
12	SPI1EN	SPI1 clock enable
		This bit is set and reset by software. 0: Disabled SPI1 clock 1: Enabled SPI1 clock
11	TIMER1EN	TIMER1 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER1 timer clock 1: Enabled TIMER1 timer clock
10	ADC2EN	ADC2 interface clock enable
		This bit is set and reset by software. 0: Disabled ADC 2 interface clock 1: Enabled ADC 2 interface clock
9	ADC1EN	ADC 1 interface clock enable
		This bit is set and reset by software.

		0: Disabled ADC 1 interface clock 1: Enabled ADC 1 interface clock
8	PGEN	GPIO port G clock enable This bit is set and reset by software. 0: Disabled GPIO port G clock 1: Enabled GPIO port G clock
7	PFEN	GPIO port F clock enable This bit is set and reset by software. 0: Disabled GPIO port F clock 1: Enabled GPIO port F clock
6	PEEN	GPIO port E clock enable This bit is set and reset by software. 0: Disabled GPIO port E clock 1: Enabled GPIO port E clock
5	PDEN	GPIO port D clock enableThis bit is set and reset by software.0: Disabled GPIO port D clock1: Enabled GPIO port D clock
4	PCEN	GPIO port C clock enableThis bit is set and reset by software.0: Disabled GPIO port C clock1: Enabled GPIO port C clock
3	PBEN	GPIO port B clock enableThis bit is set and reset by software.0: Disabled GPIO port B clock1: Enabled GPIO port B clock
2	PAEN	GPIO port A clock enableThis bit is set and reset by software.0: Disabled GPIO port A clock1: Enabled GPIO port A clock
1	Reserved	must be kept at reset value.
0	AFEN	Alternate function IO clock enable This bit is set and reset by software. 0: Disabled Alternate Function IO clock 1: Enabled Alternate Function IO clock

4.3.8. APB1 clock Control Register (RCC_APB1CCR)

Offset: 0x1C

Reset value: 0x0000 0000

GD32F10x User Manual

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Deer		DAC	PWR	BKP	Deserved	CAN		USB	12C2	I2C1	UART5	UART4	USART3	USART2	Reserved	
Rese	rvea.	EN	EN	EN	Reservea.	EN	Reserved	EN	EN	EN	EN	EN	EN	EN	Reserved.	
		rw	rw	rw		rw		rw	rw	rw	rw	rw	rw	rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
SPI3	SPI2			WWDG			TIMER14	TIMER13	TIMER12	TIMER7	TIMER6	TIMER5	TIMER4	TIMER3	TIMER2	
EN	EN	Res	erved	EN	Reserv	Reserved		EN	EN.	EN	EN	EN	EN	EN	EN	
rw	rw			rw			rw	rw	rw	rw	rw	rw	rw	rw	rw	

Bits	Fields	Descriptions
31:30	Reserved	must be kept at reset value
29	DACEN	DAC interface clock enable
		This bit is set and reset by software.
		0: Disabled DAC interface clock
		1: Enabled DAC interface clock
28	PWREN	Power interface clock enable
		This bit is set and reset by software.
		0: Disabled Power interface clock
		1: Enabled Power interface clock
27	BKPEN	Backup interface clock enable
		This bit is set and reset by software.
		0: Disabled Backup interface clock
		1: Enabled Backup interface clock
26	Reserved	must be kept at reset value
25	CANEN	CAN clock enable
		This bit is set and reset by software.
		0: Disabled CAN clock
		1: Enabled CAN clock
24	Reserved	must be kept at reset value
23	USBEN	USB clock enable
		This bit is set and reset by software.
		0: Disabled USB clock
		1: Enabled USB clock
22	I2C2EN	I2C2 clock enable
		This bit is set and reset by software.

		0: Disabled I2C2 clock 1: Enabled I2C2 clock
21	I2C1EN	I2C1 clock enable
		This bit is set and reset by software. 0: Disabled I2C1 clock 1: Enabled I2C1 clock
20	UART5EN	UART5 clock enable
		This bit is set and reset by software. 0: Disabled USART5 clock 1: Enabled USART5 clock
19	UART4EN	UART4 clock enable
		This bit is set and reset by software. 0: Disabled USART4 clock 1: Enabled USART4 clock
18	USART3EN	USART3 clock enable
		This bit is set and reset by software. 0: Disabled USART3 clock 1: Enabled USART3 clock
17	USART2EN	USART2 clock enable
		This bit is set and reset by software. 0: Disabled USART2 clock 1: Enabled USART2 clock
16	Reserved	must be kept at reset value
15	SPI3EN	SPI3 clock enable
		This bit is set and reset by software. 0: Disabled SPI3 clock 1: Enabled SPI3 clock
14	SPI2EN	SPI2 clock enable
		This bit is set and reset by software. 0: Disabled SPI2 clock 1: Enabled SPI2 clock
13:12	Reserved	must be kept at reset value
11	WWDGEN	Window watchdog clock enable
		This bit is set and reset by software. 0: Disabled Window watchdog clock

		1: Enabled Window watchdog clock
10:9	Reserved	must be kept at reset value
8	TIMER14EN	TIMER14 timer clock enable
		This bit is set and reset by software.
		0: Disabled TIMER14 timer clock
		1: Enabled TIMER14 timer clock
7	TIMER13EN	TIMER13 timer clock enable
		This bit is set and reset by software.
		0: Disabled TIMER13 timer clock
		1: Enabled TIMER13 timer clock
6	TIMER12EN	TIMER12 timer clock enable
		This bit is set and reset by software.
		0: Disabled TIMER12 timer clock
		1: Enabled TIMER12 timer clock
5	TIMER7EN	TIMER7 timer clock enable
		This bit is set and reset by software.
		0: Disabled TIMER7 timer clock
		1: Enabled TIMER7 timer clock
4	TIMER6EN	TIMER6 timer clock enable
		This bit is set and reset by software.
		0: Disabled TIMER6 timer clock
		1: Enabled TIMER6 timer clock
3	TIMER5EN	TIMER5 timer clock enable
		This bit is set and reset by software.
		0: Disabled TIMER5 timer clock
		1: Enabled TIMER5 timer clock
2	TIMER4EN	TIMER4 timer clock enable
		This bit is not and resat by software
		0: Disabled TIMER4 timer clock
		1: Enabled TIMER4 timer clock
1	TIMER3EN	TIMER3 timer clock enable
		This bit is set and reset by software.
		0: Disabled TIMER3 timer clock
		1: Enabled TIMER3 timer clock

0 TIMER2EN TIMER2 timer clock enable

This bit is set and reset by software.

0: Disabled TIMER2 timer clock

1: Enabled TIMER2 timer clock

4.3.9. Backup Domain Control Register (RCC_BDCR)

Offset: 0x20

Reset value: 0x0000 0000, reset by Backup domain Reset.

Note: The LSEEN, LSEBPS, RTCSRC and RTCEN bits of the Backup domain control register (BDCR) are only reset after a Backup domain Reset. These bits can be modified only when the BKPWE bit in the Power control register (PWR_CTLR) has to be set.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved	l							BKPRST
															rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RTCEN			Reserved	1		RTCS	RC[1:0]						LSEBPS	LSESTB	LSEEN
rw						rw	rw						rw	r	rw

Bits	Fields	Descriptions
31:15	Reserved	must be kept at reset value
16	BKPRST	Backup domain reset
		This bit is set and reset by software.
		0: No reset
		1: Resets Backup domain
15	RTCEN	RTC clock enable
		This bit is set and reset by software.
		0: Disabled RTC clock
		1: Enabled RTC clock
14:10	Reserved	must be kept at reset value
9:8	RTCSRC[1:0]	RTC clock entry selection
		Set and reset by software to control the PLL clock source.
		00: No clock selected
		01: CK_LSE selected as RTC source clock
		10: CK_LSI selected as RTC source clock
		11: (CK_HSE / 128) selected as RTC source clock
7:3	Reserved	must be kept at reset value

2	LSEBPS	LSE bypass mode enable
		Set and reset by software.
		0: Disable the LSE Bypass mode
		1: Enable the LSE Bypass mode
1	LSESTB	External low-speed oscillator stabilization
		Set by hardware to indicate if the LSE output clock is stable and ready for use.
		0: LSE is not stable
		1: LSE is stable
0	LSEEN	LSE enable
		Set and reset by software.
		0: Disable LSE
		1: Enable LSE

4.3.10. Global Control/Status Register (RCC_GCSR)

Offset: 0x24

Reset value: 0x0C00 0000, reset flags reset by power Reset only, other reset by system reset.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LP	WWDG	IWDG	SW	DODDDOTT	EP		50750				_				
RSTF	RSTF	RSTF	RSTF	POPDRSTF	RSTF	Reserved	RSTFC				Res	erved			
rw	rw	rw	rw	rw	rw		rw								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					_									LSI	LSI
					Res	served								STB	EN
														r	rw

Bits	Fields	Descriptions
31	LPRSTF	Low-power reset flag
		Set by hardware when Deep-sleep /standby reset generated.
		Reset by writing 1 to the RSTFC bit.
		0: No Low-power management reset generated
		1: Low-power management reset generated
30	WWDGRSTF	Window watchdog timer reset flag
		Set by hardware when a window watchdog timer reset generated.
		Reset by writing 1 to the RSTFC bit.
		0: No window watchdog reset generated
		1: Window watchdog reset generated

\bigcirc		
Gig a Device		GD32F10X User Manual
29	IWDGRSTF	Independent watchdog timer reset flag
		Set by hardware when an independent watchdog timer generated.
		Reset by writing 1 to the RSTFC bit.
		0: No Independent watchdog timer reset generated
		1: Independent Watchdog timer reset generated
28	SWRSTF	Software reset flag
		Set by hardware when a software reset generated.
		Reset by writing 1 to the RSTFC bit.
		0: No software reset generated
		1: Software reset generated
27	POPDRSTF	Power On/Power Down reset flag
		Set by hardware when a Power On/Power Down reset generated.
		Reset by writing 1 to the RSTFC bit.
		0: No Power On/Power Down reset generated
		1: Power On/Power Down reset generated
26	EPRSTF	External PIN reset flag
		Set by hardware when a External PIN generated.
		Reset by writing 1 to the RSTFC bit.
		0: No External PIN reset generated
		1: External PIN reset generated
25	Reserved	must be kept at reset value.
24	RSTFC	Reset flag clear
		This bit is set by software to clear all reset flags.
		0: Not clear reset flags
		1: Clear reset flags
23:2	Reserved	must be kept at reset value.
1	LSISTB	LSI stabilization
		Set by hardware to indicate if the LSI output clock is stable and ready for use.
		0: LSI is not stable
		1: LSI is stable
0	LSIEN	LSI enable
		Set and reset by software.
		0: Disable LSI
		1: Enable LSI

4.3.11. RCC Deep-sleep mode voltage register (RCC_DEEPSLEEP_VC)

Offset: 0x34

Reset value: 0x0000 0000.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved								D	EEPSLEE	P_VC					
													rw	rw	rw

Bits	Fields	Descriptions
31:3	Reserved	must be kept at reset value
2:0	DEEPSLEEP_VC	Deep-sleep mode voltage register
		These bits is set and reset by software
		000 : The core voltage is 1.2V in Deep-sleep mode
		001 : The core voltage is 1.1V in Deep-sleep mode
		010 : The core voltage is 1.0V in Deep-sleep mode
		011 : The core voltage is 0.9V in Deep-sleep mode
		100~111 : reserved

Connectivity line devices: Reset and clock control unit (RCC)

GD32F101xx and GD32F103xx microcontrollers where the flash memory density ranges between 16 and 128 Kbytes are called Medium-density devices(GD32F10X_MD).

GD32F101xx and GD32F103xx microcontrollers where the flash memory density ranges between 256 and 512 Kbytes are called High-density devices(GD32F10X_HD).

GD32F101xx and GD32F103xx microcontrollers where the flash memory density is over 512 Kbytes are called X-density devices(GD32F10X_XD).

GD32F105xx and GD32F107xx microcontrollers are called connectivity line devices (GD32F10X_CL).

4.4. Reset Control Unit (RCU)

4.4.1. Introduction

GD32F10x Reset Control includes the control of three kinds of reset, power reset, system reset and backup domain reset. The power on reset, known as a cold reset, resets the full system except the Backup domain during a power up. A system reset resets the processor core and peripheral IP components with the exception of the SW-DP controller and the Backup domain. A backup domain reset resets the Backup domain. The resets can be triggered by an external signal, internal events and the reset generators. More information about these resets will be described in the following sections.

4.4.2. Function Description

Power Reset

The Power reset is generated by either an external reset as Power On and Power Down reset (POR/PDR reset), or by the internal reset generator when exiting Standby mode. The power reset sets all registers to their reset values except the Backup domain. The Power reset active low signal will be keeped until the internal LDO voltage regulator is ready to provide 1.2 V power. The RESET service routine vector is fixed at address 0x0000_0004 in the memory map.

System Reset

A system reset is generated by the following events:

- A power on reset (PORRESETn)
- A external pin reset (NRST)
- A window watchdog timer reset (WWDG_RSTn)
- A independent watchdog timer reset (IWDG_RSTn)
- The SYSRESETREQ bit in Cortex[™]-M3 Application Interrupt and Reset Control

Register is set (SW_RSTn)

- Reset generated when entering Standby mode when resetting OB_STDBY_RSTn bit in User Option Bytes (OB_STDBY_RSTn)
- Reset generated when entering Deep-sleep mode when resetting
 OB_DEEPSLEEP_RSTn bit in User Option Bytes (OB_DEEPSLEEP_RSTn)

A system reset pulse generator guarantees low level pulse duration of 20 µs for each reset source (external or internal reset).

Figure 4-2 the system reset circuit

Backup domain reset

A backup domain reset is generated by setting the BKPRST bit in the Backup domain control register or Backup domain power on reset (VDD or VBAT power on, if both supplies have previously been powered off).

4.5. Clock Control Unit (CCU)

4.5.1. Introduction

The Clock Control unit provides a range of frequencies and clock functions. These include a High Speed Internal 8M RC oscillator (HSI), a High Speed External crystal oscillator (HSE), a Low Speed Internal RC oscillator (LSI), a Low Speed External crystal oscillator (LSE), a Phase Lock Loop (PLL), a HSE clock monitor, clock prescalers, clock multiplexers and clock gating circuitry.

The clocks of the AHB, APB and Cortex[™]-M3 are derived from the system clock (CK_SYS) which can source from the HSI, HSE or PLL. The maximum operating frequency of the system clock (CK_SYS) can be up to 108 MHz. The Independent Watchdog Timer uses LSI and Real Time Clock (RTC) uses either the LSI or LSE as their clock source.

The RCC controller of connectivity line devices has three PLLs(PLL1, PLL2, PLL3) and can provide a variety of configuration of clock frequency to meet the needs of microcontrollers

The AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains can be configured by each prescaler. The maximum frequency of the AHB and the APB2 domains is 108 MHz. The maximum allowed frequency of the APB1 domain is 54 MHz. The Cortex System Timer (SysTick) external clock is clocked with the AHB clock (HCLK) divided by 8. The SysTick can work either with this clock or with the Cortex clock (HCLK), configurable in the SysTick Control and Status Register. The ADCs are clocked by the clock of APB2 divided by 2, 4, 6, 8, 12 or 16.

The RTC is clocked by LSE clock or LSI clock or HSE clock divided by 128 which select by RTCSRC bit in Backup Domain Control Register (RCC_BDCR).

The IWDG is clocked by LSI clock, which is forced on when IWDG started.

The FMC is clocked by HSI clock, which is forced on when HSI started.

The USB OTG is clocked by PLL, divided by 1, 1.5, 2, 2.5 which select by OTGFSPS bit in

Global Clock configuration register (RCC_GCFGR). The USB OTG clock must be 48MHz.

The I2S2/I2S3 is clocked by system clock(CK_SYS) or PLL3 multiplied by 2(PLL3 x 2) which select by I2S2SEL/ I2S3SEL bit in Global Clock configuration register 2 (RCC_GCFGR2).

The Ethernet MAC is clocked by the external PHY. If using the Ethernet module, it must keep the AHB clock frequency at least 25 MHz.

If the APB prescaler is 1, the timer clock frequencies are set to APB frequency divide by 1. Otherwise, they are set to the frequency that the APB frequency is multiplied by 2(APB x 2).

4.5.2. Main features

- 3 to 25 MHz High Speed External crystal oscillator (HSE)
- 8 MHz High Speed Internal RC oscillator (HSI)
- 32,768 Hz Low Speed External crystal oscillator (LSE)
- 40 kHz Low Speed Internal RC oscillator (LSI)
- PLL clock source can be HSE or HIS or PLL2
- HSE clock monitor

4.5.3. Function description

High Speed External Crystal Oscillator (HSE)

The high speed external crystal oscillator (HSE), which has a frequency from 3 to 25 MHz, produces a highly accurate clock source for use as the system clock. A crystal with a specific frequency must be connected and located close to the two HSE pins. The external resistor and capacitor components connected to the crystal are necessary for proper oscillation.

The HSE crystal oscillator can be switched on or off using the HSEEN bit in the Global Clock Control Register GCCR. The HSESTB flag in Global Clock Control Register RCC_GCCR indicates if the high-speed external crystal oscillator is stable. When the HSE is powered up, it will not be released for use until this HSESTB bit is set by the hardware. This specific delay

period is known as the oscillator "Start-up time". As the HSE becomes stable, an interrupt will be generated if the related interrupt enable bit HSESTBIE in the Global Clock Interrupt Register RCC_GCIR is set. At this point the HSE clock can be used directly as the system clock source or the PLL input clock.

Select external clock bypass mode by setting the HSEBPS and HSEEN bits in the Global Clock Control Register RCC_GCCR. In bypass mode, the external clock must be provided to the OSC_IN pin. The CK_HSE is equal to the external clock which drives the OSC_IN pin.

High Speed Internal 8 M RC Oscillators (HSI)

The high speed internal 8M RC oscillator, HSI8, has a fixed frequency of 8 MHz and is the default clock source selection for the CPU when the device is powered up. The HSI oscillator provides a lower cost type clock source as no external components are required. The HSI RC oscillator can be switched on or off using the HSIEN bit in the Global Clock Control Register RCC_GCCR. The HSIRSTB flag in the Global Clock Control Register RCC_GCCR is used to indicate if the internal RC oscillator. An interrupt can be generated if the related interrupt enable bit, HSISTBIE, in the Global Clock Interrupt Register, RCC_GCIR, is set when the HSI becomes stable. The HSI clock can also be used as system clock or divided by 2 to be used the PLL input clock.

The frequency accuracy of the HSI can be calibrated by the manufacturer, but its operating frequency is still less accurate than HSE. The application requirements, environment and cost will determine which oscillator type is selected.

If the HSE or PLL is the system clock source, to minimize the time required for the system to recover from the Deep-sleep Mode, the hardware forces the HSI clock to be the system clock when the system initially wakes-up.

Phase Locked Loop (PLL)

The internal Phase Locked Loop, PLL, can provide 16~108 MHz clock output which is 2 ~32 multiples of a fundamental reference frequency of 3 ~ 25 MHz.

The PLL has three input clock sources: HSI/2 or HSE or PLL2. It can be choosed one of them as the input clock source of The PLL.

The PLL can be switched on or off by using the PLLEN bit in the Global Clock Control Register RCC_GCCR. The PLLSTB flag in the Global Clock Control Register RCC_GCCR will indicate if the PLL clock is stable. An interrupt can be generated if the related interrupt enable bit, PLLSTBIE, in the Global Clock Interrupt Register, RCC_GCIR, is set as the PLL becomes stable.

The input clock source of PLL2 and PLL3 is obtained by HSE. It can be configured by PLL3MF[3:0] 、 PLL2MF[3:0] 和 PREDV2[3:0] bits in the Global Clock configuration register2(RCC_GCFGR2).

Low Speed External Crystal Oscillator (LSE)

The low speed external crystal or ceramic resonator oscillator, which has a frequency of 32,768 Hz, produces a low power but highly accurate clock source for the Real Time Clock circuit. The LSE oscillator can be switched on or off using the LSEEN bit in the Backup Domain Control Register RCC_BDCR. The LSESTB flag in the Backup Domain Control Register RCC_BDCR will indicate if the LSE clock is stable. An interrupt can be generated if the related interrupt enable bit, LSESTBIE, in the Global Clock Interrupt Register RCC_GCIR is set when the LSE becomes stable.

Select external clock bypass mode by setting the LSEBPS and LSEEN bits in the Backup Domain Control Register RCC_BDCR. In bypass mode, the external clock must be provided to the OSC32_IN pin. The CK_LSE is equal to the external clock which drives the OSC32_IN pin.

Low Speed Internal RC Oscillator (LSI)

The low speed internal RC oscillator has a frequency of about 40 kHz and is a low power clock source for the Real Time Clock circuit or the Independent Watchdog Timer. The LSI offers a low cost clock source as no external components are required. The LSI RC oscillator can be switched on or off by using the LSIEN bit in the Global Control/Status Register, RCC_GCSR. The LSISTB flag in the Global Control/Status Register RCC_GCSR will indicate if the LSI clock is stable. An interrupt can be generated if the related interrupt enable bit LSISTBIE in the Global Clock Interrupt Register RCC_GCIR is set when the LSI becomes stable.

System Clock (CK_SYS) Selection

After the system reset, the default CK_SYS source will be HSI and can be switched to HSE or PLL by changing the System Clock Switch bits, SCS, in the Global Clock configuration register, RCC_GCFGR. When the SCS value is changed, the CK_SYS will continue to operate using the original clock source until the target clock source is stable. When a clock source is used directly by the CK_SYS or the PLL, it is not possible to stop it.

HSE Clock Monitor (CKM)

The HSE clock monitor function is enabled by the HSE Clock Monitor Enable bit, CKMEN, in the Global Clock Control Register, RCC_GCCR. This function should be enabled after the HSE start-up delay and disabled when the HSE is stopped. Once the HSE failure is detected, the HSE will be automatically disabled. The HSE Clock Stuck Flag, CKMF, in the Global Clock Interrupt Register, RCC_GCIR, will be set and the HSE failure event will be generated. This failure interrupt is connected to the Non-Maskable Interrupt, NMI, of the Cortex-M3. If the HSE is selected as the clock source of CK_SYS or PLL, the HSE failure will force the CK_SYS source to HSI and the PLL will be disabled automatically.

Clock Output Capability

The output clock capability can be ranging from 32 kHz to 54 MHz. There are several clock signals can be selected via the CKOUT Clock Source Selection bits, CKOUTSRC, in the Global Clock Configuration Register, RCC_GCFGR. The corresponding GPIO pin should be

configured in the properly Alternate Function I/O (AFIO) mode to output the selected clock signal.

CKOUTSRC	Clock Source
00xx	No Clock
0100	CK_SYS
0101	CK_HSI
0110	CK_HSE
0111	CK_PLL/2
1000	CK_PLL2
1001	(CK_PLL3)/2
1010	EXT1
1011	CK_PLL3

4.6. RCC registers

4.6.1. Global Clock control register (RCC_GCCR)

Offset: 0x00

Reset value: 0x0000 XX83 where X is undefined.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Deer	mind	PLL3	PLL3	PLL2	PLL2	PLL	PLL		Descend			OKMEN		LICECTR	
Rese	erved	STB	EN	STB	EN	STB	EN	Reserved			CKMEN	HSEBPS	HSESTB	HOEEN	
		r	rw	r	rw	r	rw					rw	rw	r	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
HSICALIB								HSIAD	Ŋ		Reserved.	HSISTB	HSIEN		
r	r	r	r	r	r	r	r	rw	rw	rw	rw	rw		r	rw

Bits	Fields	Descriptions
31:30	Reserved	must be kept at reset value
29	PLL3STB	PLL3 Clock Stabilization Flag
		Set by hardware to indicate if the PLL3 output clock is stable and ready for use.
		0: PLL3 is not stable
		1: PLL3 is stable
28	PLL3EN	PLL3 enable
		Set and reset by software.Reset by hardware when entering Deep-sleep or Standby
		mode.
		0: PLL3 is switched off
		1: PLL3 is switched on

GigaDevic	e e	GD32F10x User Manual
27	PLL2STB	PLL2 Clock Stabilization Flag
		Set by hardware to indicate if the PLL2 output clock is stable and ready for use. 0: PLL2 is not stable 1: PLL2 is stable
26	PLL2EN	PLL2 enable
		Set and reset by software. This bit cannot be reset if the PLL2 clock is used as the system clock. Reset by hardware when entering Deep-sleep or Standby mode. 0: PLL2 is switched off 1: PLL2 is switched on
25	PLLSTB	PLL Clock Stabilization Flag
		Set by hardware to indicate if the PLL output clock is stable and ready for use. 0: PLL is not stable 1: PLL is stable
24	PLLEN	PLL enable
		Set and reset by software. This bit cannot be reset if the PLL clock is used as the system clock. Reset by hardware when entering Deep-sleep or Standby mode. 0: PLL is switched off 1: PLL is switched on
23:20	Reserved	Must be kept at reset value.
19	CKMEN	 HSE Clock Monitor Enable 0: Disable the External 4 ~ 16 MHz crystal oscillator (HSE) clock monitor 1: Enable the External 4 ~ 16 MHz crystal oscillator (HSE) clock monitor When the hardware detects that the HSE clock is stuck at a low or high state, the internal hardware will switch the system clock to be the internal high speed HSI RC clock. The way to recover the original system clock is by either an external reset, power on reset or clearing CKSF by software. NOTE: When the HSE clock monitor is enabled, the hardware will automatically enable the HSI internal RC oscillator regardless of the control bit, HSIEN, state.
18	HSEBPS	External crystal oscillator (HSE) clock bypass mode enable
		The HSEBPS bit can be written only if the HSEEN is 0. 0: Disable the HSE Bypass mode 1: Enable the HSE Bypass mode in which the HSE output clock is equal to the input clock.
17	HSESTB	External crystal oscillator (HSE) clock stabilization flag
		Set by hardware to indicate if the HSE oscillator is stable and ready for use. 0: HSE oscillator is not stable 1: HSE oscillator is stable

$(\Rightarrow$	•	
GigaDevid	c e	GD32F10x User Manual
16	HSEEN	External High Speed oscillator Enable
		Set and reset by software. This bit cannot be reset if the HSE clock is used as the
		system clock or the PLL input clock. Reset by hardware when entering Deep-sleep or
		Standby mode.
		0: External 4 ~ 16 MHz crystal oscillator disabled
		1: External 4 ~ 16 MHz crystal oscillator enabled
15:8	HSICALIB	High Speed Internal Oscillator calibration value register
		These bits are load automatically at power on.
7:3	HSIADJ	High Speed Internal Oscillator clock trim adjust value
		These bits are set by software. The trimming value is there bits (HSIADJ) added to the
		HSICALIB[7:0] bits. The trimming value should trim the HSI to 8 MHz \pm 1%.
2	Reserved	Must be kept at reset value.
1	HSISTB	HSI High Speed Internal Oscillator stabilization Flag
		Set by hardware to indicate if the HSI oscillator is stable and ready for use.
		0: HSI oscillator is not stable
		1: HSI oscillator is stable
0	HSIEN	Internal High Speed oscillator Enable
		Set and reset by software. This bit cannot be reset if the HSI clock is used as the
		system clock. Set by hardware when leaving Deep-sleep or Standby mode or the HSE
		clock is stuck at a low or high state when HSECKM is set.
		0: Internal 8 MHz RC oscillator disabled
		1: Internal 8 MHz RC oscillator enabled

4.6.2. Global Clock configuration register (RCC_GCFGR)

Offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reser	ved	PLLMF[4]	ADCPS[2]		CKOUT	TSEL OTGFSPS PLLMF[3:0]				PLLPREDV	PLLSEL				
		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADCPS[1:0] APB2PS		APB1PS			AHBPS				SCSS		SCS				
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	r	r	rw	rw

Descriptions
must be kept at reset value
Bit 4 of PLLMF register
see bits 21:18 of GCFGR
Bit 3 of ADCPS register
see bits 15:14 of GCFGR

27:24	CKOUTSEL	CKOUT Clock Source Selection
		Set and reset by software.
		00xx: No clock selected
		0100: System clock selected
		0101: High Speed 8M Internal Oscillator clock selected
		0110: External High Speed oscillator clock selected
		0111: (CK_PLL / 2) clock selected
		1000: CK_PLL2 clock selected
		1001: CK_PLL3 clock divided by 2 selected
		1010: EXT1 selected, to provide the external clock for ETH
		1011: CK_PLL3 clock selected
23:22	OTGFSPS	USB OTG clock prescaler selection
		Set and reset by software to control the USB OTG clock prescaler value. The USB
		OTG clock must be 48MHz. These bits can't be reset if the USB OTG clock is enabled.
		00: (CK_PLL / 1.5) selected
		01: CK_PLL selected
		10: (CK_PLL / 2.5) selected
		11: (CK_PLL / 2) selected
21:18	PLLMF[3:0]	PLL multiply factor
		These bits and bit 27 of GCFGR are written by software to define the PLL
		multiplication factor.
		Caution: The PLL output frequency must not exceed 108 MHz.
		00000: (PLL source clock x 2)
		00001: (PLL source clock x 3)
		00010: (PLL source clock x 4)
		00011: (PLL source clock x 5)
		00100: (PLL source clock x 6)
		00101: (PLL source clock x 7)
		00110: (PLL source clock x 8)
		00111: (PLL source clock x 9)
		01000: (PLL source clock x 10)
		01001: (PLL source clock x 11)
		01010: (PLL source clock x 12)
		01011: (PLL source clock x 13)
		01100: (PLL source clock x 14)
		01101: (PLL source clock x 6.5)
		01110: (PLL source clock x 16)
		01111: (PLL source clock x 16)
		10000: (PLL source clock x 17)
		10001: (PLL source clock x 18)
		10010: (PLL source clock x 19)

		10011: (PLL source clock x 20)
		10100: (PLL source clock x 21)
		10101: (PLL source clock x 22)
		10110: (PLL source clock x 23)
		10111: (PLL source clock x 24)
		11000: (PLL source clock x 25)
		11001: (PLL source clock x 26)
		11010: (PLL source clock x 27)
		11011: (PLL source clock x 28)
		11100: (PLL source clock x 29)
		11101: (PLL source clock x 30)
		11110: (PLL source clock x 31)
		11111: (PLL source clock x 32)
17	PLLPREDV	The LSB of PREDV1 division factor
		This bit is the same bit as PREDV1 division factor bit [0] from RCC_GCFGR2.
		Changing the PREDV1 division factor bit [0] from RCC_GCFGR2, this bit is also
		changed. When the PREDV1 division factor bits [3:1] are not set, this bit controls
		PREDV1 input clock divided by 2 or not.
		Set and cleared by software to divide PREDV1 input clock or not.
		0: PREDV1 input clock not divided
		1: PREDV1 input clock divided by 2
16	PLLSEL	PLL Clock Source Selection
		Set and reset by software to control the PLL clock source.
		0: (CK_HSI / 2) selected as PLL source clock
		1: PREDV1 output clock selected as PLL source clock
15:14	ADCPS[1:0]	ADC clock prescaler selection
		These bits and bit 28 of GCFGR are written by software to define the ADC prescaler
		factor.Set and cleared by software.
		000: (CK_APB2 / 2) selected
		001: (CK_ APB2 / 4) selected
		010: (CK_ APB2 / 6) selected
		011: (CK_ APB2 / 8) selected
		100: (CK_ APB2 / 2) selected
		101: (CK_ APB2 / 12) selected
		110: (CK_ APB2 / 8) selected
		111: (CK_ APB2 / 16) selected
13:11	APB2PS	APB2 prescaler selection
		Set and reset by software to control the APB2 clock division ratio.
		0xx: CK_AHB selected
		100: (CK_AHB / 2) selected
		101: (CK_AHB / 4) selected

		110: (CK_AHB / 8) selected
		111: (CK_AHB / 16) selected
10:8	APB1PS	APB1 prescaler selection
		Set and reset by software to control the APB1 clock division ratio.
		Caution: The CK_APB1 output frequency must not exceed 54 MHz.
		0xx: CK_AHB selected
		100: (CK_AHB / 2) selected
		101: (CK_AHB / 4) selected
		110: (CK_AHB / 8) selected
		111: (CK_AHB / 16) selected
7:4	AHBPS	AHB prescaler selection
		Set and reset by software to control the AHB clock division ratio
		0xxx: CK_SYS selected
		1000: (CK_SYS / 2) selected
		1001: (CK_SYS / 4) selected
		1010: (CK_SYS / 8) selected
		1011: (CK_SYS / 16) selected
		1100: (CK_SYS / 64) selected
		1101: (CK_SYS / 128) selected
		1110: (CK_SYS / 256) selected
		1111: (CK_SYS / 512) selected
3:2	SCSS	System clock switch status
		Set and reset by hardware to indicate the clock source of system clock.
		00: select CK_HSI as the CK_SYS source
		01: select CK_HSE as the CK_SYS source
		10: select CK_PLL as the CK_SYS source
		11: reserved
1:0	SCS	System clock switch
		Set by software to select the CK_SYS source. Because the change of CK_SYS has inherent latency, software should read SCSS to confirm whether the switching is
		complete or not. The switch will be forced to HSI when leaving Deep-sleep and Standby mode or by HSE clock monitor when the HSE failure is detected and the HSE
		is selected as the clock source of CK_SYS or PLL.
		00: select CK_HSI as the CK_SYS source
		01: select CK_HSE as the CK_SYS source
		10: select CK_PLL as the CK_SYS source
		11: reserved

4.6.3. Global Clock interrupt register (RCC_GCIR)

Offset: 0x08

Reset value: 0x0000 0000

31	30	29	28	27	26 2	5 24	23	3	22	21	20	19		18		17	16
						0.4		PLL3	PLL2	PLL	HSE	Ξ	н	SI	LSE	LSI	
Reserved						CKN	ΛR	STBR	STBR	STBR	STB	R	ST	BR	STBR	STBR	
							w		w	w	w	w		w		w	w
15	14	13	12	11	10	9	8	7	7	6	5	4		3	2	1	0
	PLL3	PLL2	PLL	HSE	HSI	LSE	LSI		() 45	PLL3	PLL2	PLL	HS	SE	HSI	LSE	LSI
Res.	STBIE	Cr		STBF	STBF	STBF	ST	BF	STBF	STBF	STBF						
	rw		r	r	r	r		r	r	r	r						

Bits	Fields	Descriptions
31:24	Reserved	must be kept at reset value
23	CKMR	HSE Clock Stuck Interrupt Reset
		Write 1 by software to reset the CKMF flag.
		0: Not reset CKMF flag
		1: Reset CKMF flag
22	PLL3STBR	PLL3 stabilization Interrupt Reset
		Write 1 by software to reset the PLL3STBF flag.
		0: Not reset PLL3STBF flag
		1: Reset PLL3STBF flag
21	PLL2STBR	PLL2 stabilization Interrupt Reset
		Write 1 by software to reset the PLL2STBF flag.
		0: Not reset PLL2STBF flag
		1: Reset PLL2STBF flag
20	PLLSTBR	PLL stabilization Interrupt Reset
		Write 1 by software to reset the PLLSTBF flag.
		0: Not reset PLLSTBF flag
		1: Reset PLLSTBF flag
19	HSESTBR	HSE Stabilization Interrupt Reset
		Write 1 by software to reset the HSESTBF flag.
		0: Not reset HSESTBF flag
		1: Reset HSESTBF flag
18	HSISTBR	HSI Stabilization Interrupt Reset
		Write 1 by software to reset the HSISTBF flag.

		0: Not reset HSISTBF flag 1: Reset HSISTBF flag
17	LSESTBR	LSE Stabilization Interrupt Reset
		Write 1 by software to reset the LSESTBF flag. 0: Not reset LSESTBF flag 1: Reset LSERDYF flag
16	LSISTBR	LSI Stabilization Interrupt Reset
		Write 1 by software to reset the LSIRDYF flag. 0: Not reset LSISTBF flag 1: Reset LSIRDYF flag
15	Reserved	must be kept at reset value
14	PLL3STBIE	PLL3 Stabilization Interrupt Enable
		Set and reset by software to enable/disable the PLL3 stabilization interrupt. 0: Disable the PLL3 stabilization interrupt 1: Enable the PLL3 stabilization interrupt
13	PLL2STBIE	PLL2 Stabilization Interrupt Enable
		Set and reset by software to enable/disable the PLL2 stabilization interrupt. 0: Disable the PLL2 stabilization interrupt 1: Enable the PLL2 stabilization interrupt
12	PLLSTBIE	PLL Stabilization Interrupt Enable
		Set and reset by software to enable/disable the PLL stabilization interrupt. 0: Disable the PLL stabilization interrupt 1: Enable the PLL stabilization interrupt
11	HSESTBIE	HSE Stabilization Interrupt Enable
		Set and reset by software to enable/disable the HSE stabilization interrupt 0: Disable the HSE stabilization interrupt 1: Enable the HSE stabilization interrupt
10	HSISTBIE	HSI Stabilization Interrupt Enable
		Set and reset by software to enable/disable the HSI stabilization interrupt 0: Disable the HSI stabilization interrupt 1: Enable the HSI stabilization interrupt
9	LSESTBIE	LSE Stabilization Interrupt Enable
		LSE stabilization interrupt enable/disable control 0: Disable the LSE stabilization interrupt 1: Enable the LSE stabilization interrupt

8	LSISTBIE	LSI Stabilization interrupt enable
		LSI stabilization interrupt enable/disable control 0: Disable the LSI stabilization interrupt 1: Enable the LSI stabilization interrupt
7	CKMF	HSE Clock Stuck Interrupt Flag Set by hardware when the HSE clock is stuck. Reset by software when setting the CKMR bit. 0: Clock operating normally 1: HSE clock stuck
6	PLL3STBF	PLL3 stabilization interrupt flag
		Set by hardware when the PLL3 is stable and the PLL3STBIE bit is set. Reset by software when setting the PLL3STBR bit. 0: No PLL3 stabilization interrupt generated 1: PLL3 stabilization interrupt generated
5	PLL2STBF	PLL2 stabilization interrupt flag
		Set by hardware when the PLL2 is stable and the PLL2STBIE bit is set. Reset by software when setting the PLL2STBR bit. 0: No PLL2 stabilization interrupt generated 1: PLL2 stabilization interrupt generated
4	PLLSTBF	PLL stabilization interrupt flag
		Set by hardware when the PLL is stable and the PLLSTBIE bit is set. Reset by software when setting the PLLSTBR bit. 0: No PLL stabilization interrupt generated 1: PLL stabilization interrupt generated
3	HSESTBF	HSE stabilization interrupt flag
		Set by hardware when the External 4 ~ 16 MHz crystal oscillator clock is stable and the HSESTBIE bit is set. Reset by software when setting the HSESTBR bit. 0: No HSE stabilization interrupt generated 1: HSE stabilization interrupt generated
2	HSISTBF	HSI stabilization interrupt flag
		Set by hardware when the Internal 8 MHz RC oscillator clock is stable and the HSISTBIE bit is set. Reset by software when setting the HSISTBR bit. 0: No HSI stabilization interrupt generated 1: HSI stabilization interrupt generated
1	LSESTBF	LSE stabilization interrupt flag

Set by hardware when the External 32,768 Hz crystal oscillator clock is stable and the LSESTBIE bit is set. Reset by software when setting the LSESTBR bit.

0: No LSE stabilization interrupt generated1: LSE stabilization interrupt generated

0 LSISTBF LSI stabilization interrupt flag

Set by hardware when the Internal 32kHz RC oscillator clock is stable and the LSISTBIE bit is set.

Reset by software when setting the LSISTBR bit.

0: No LSI stabilization clock ready interrupt generated

1: LSI stabilization interrupt generated

4.6.4. APB2 Reset Control Register (RCC_APB2RCR)

Offset: 0x0C

Reset value: 0x00000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Bosor	und	TIMER11	TIMER10	TIMER9		Beconvod					
	Reserved											RST		Reserveu	
										rw	rw	rw			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADC3	USART1	TIMER8	SPI1	TIMER1	ADC2	ADC1	PG	PF	PE	PD	PC	PB	PA		AF
RST.	RST	RST	RST	RST	RST	RST	RST	RST	RST	RST	RST	RST	RST	Reserved.	RST
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		rw

Bits	Fields	Descriptions
31:22	Reserved	must be kept at reset value
21	TIMER11RST	Timer 11 reset
		This bit is set and reset by software.
		0: No reset
		1: Reset the TIMER11
20	TIMER10RST	Timer 10 reset
		This bit is set and reset by software.
		0: No reset
		1: Reset the TIMER10
19	TIMER9RST	Timer 9 reset
		This bit is set and reset by software.
		0: No reset
		1: Reset the TIMER9

18:16	Reserved	must be kept at reset value
15	ADC3RST	ADC 3 reset
		This bit is set and reset by software. 0: No reset 1: Reset the ADC 3
14	USART1RST	USART1 Reset
		This bit is set and reset by software. 0: No reset 1: Reset the USART1
13	TIMER8RST	Timer 8 reset
		This bit is set and reset by software. 0: No reset 1: Reset the TIMER8
12	SPI1RST	SPI1 Reset
		This bit is set and reset by software. 0: No reset 1: Reset the SPI1
11	TIMER1RST	Timer 1 reset
		This bit is set and reset by software. 0: No reset 1: Reset the TIMER1
10	ADC2RST	ADC 2 reset
		This bit is set and reset by software. 0: No reset 1: Reset the ADC 2
9	ADC1RST	ADC 1 reset
		This bit is set and reset by software. 0: No reset 1: Reset the ADC 1
8	PGRST	GPIO port G reset This bit is set and reset by software. 0: No reset 1: Reset the GPIO port G
7	PFRST	GPIO portF reset This bit is set and reset by software. 0: No reset

1: Reset the GPIO port F

6	PERST	GPIO port E reset This bit is set and reset by software. 0: No reset 1: Reset the GPIO port E
5	PDRST	GPIO port D reset This bit is set and reset by software. 0: No reset 1: Reset the GPIO port D
4	PCRST	GPIO port C reset This bit is set and reset by software. 0: No reset 1: Reset the GPIO port C
3	PBRST	GPIO port B reset This bit is set and reset by software. 0: No reset 1: Reset the GPIO port B
2	PARST	GPIO port A reset This bit is set and reset by software. 0: No reset 1: Reset the GPIO port A
1	Reserved	must be kept at reset value
0	AFRST	Alternate function I/O reset This bit is set and reset by software. 0: No reset 1: Reset Alternate Function I/O

4.6.5. APB1 Reset Control Register (RCC_APB1RCR)

Offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	erved	DAC	PWR	BKP	CAN2	R CAN1	R	served	12C2	I2C1	UART5	UART4	USART	USART	Rese
		Roi	RST	RST	ST	ST			RST	RST	RST	RST	3RST	2RST	rved
		rw	rw	rw	rw	rw			rw	rw	rw	rw	rw	rw	
15	14	13	12 11	10	9	8	7	6		5	4	3	2	1	0
0.510	0.510										TH 455				
SPI3	SPI2	Reser	WW	Res	serve	TIMER	TIMER	LIME	R	TIMER	TIMER	TIMER	TIMER	TIMER	TIMER
RST	RST	ved	GRS	г	d	14RST	13RST	12R\$	ST	7RST	6RST	5RST	4RST	3RST	2RST

| rw |
|----|----|----|----|----|----|----|----|----|----|----|----|
| | | | | | | | | | | | |

Bits	Fields	Descriptions
31:30	Reserved	must be kept at reset value
29	DACRST	DAC reset
		This bit is set and reset by software.
		0: No reset
		1: Reset DAC unit
28	PWRRST	Power control reset
		This bit is set and reset by software.
		0: No reset
		1: Reset power control unit
27	BKPRST	Backup interface reset
		This bit is set and reset by software.
		0: No reset
		1: Reset backup interface
26	CAN2RST	CAN2 reset
		This bit is set and reset by software.
		0: No reset
		1: Reset CAN2
25	CAN1RST	CAN1 reset
		This bit is set and reset by software.
		0: No reset
		1: Reset CAN1
24:23	Reserved	must be kept at reset value
22	I2C2RST	I2C2 reset
		This bit is set and reset by software.
		0: No reset
		1: Reset I2C2
21	I2C1RST	I2C1 reset
		This bit is set and reset by software.
		0: No reset
		1: Reset I2C1
20	UART5RST	USART5 reset
		This bit is set and reset by software.
		0: No reset

1: Reset USART5

19	UART4RST	USART4 reset
		This bit is set and reset by software.
		0: No reset
		1: Reset USART4
18	USART3RST	USART3 reset
		This bit is set and reset by software.
		0: No reset
		1: Reset USART3
17	USART2RST	USART2 reset
		This bit is set and reset by software.
		0: No reset
		1: Reset USART2
16	Reserved	must be kept at reset value
15	SPI3RST	SPI3 reset
		This bit is set and reset by software.
		0: No reset
		1: Reset SPI3
14	SPI2RST	SPI2 reset
		This bit is set and reset by software.
		0: No reset
		1: Reset SPI2
13:12	Reserved	must be kept at reset value
11	WWDGRST	Window watchdog reset
		This bit is set and reset by software.
		0: No reset
		1: Reset window watchdog
10:9	Reserved	must be kept at reset value
8	TIMER14RST	Timer 14 reset
		This bit is set and reset by software.
		0: No reset
		1: Reset the TIMER14
7	TIMER13RST	Timer 13 reset
		This bit is set and reset by software.

		0: No reset 1: Reset the TIMER13
6	TIMER12RST	Timer 12 reset
		This bit is set and reset by software. 0: No reset 1: Reset the TIMER12
5	TIMER7RST	Timer 7 reset
		This bit is set and reset by software. 0: No reset 1: Reset the TIMER7
4	TIMER6RST	Timer 6 reset
		This bit is set and reset by software. 0: No reset 1: Reset the TIMER6
3	TIMER5RST	Timer 5 reset
		This bit is set and reset by software. 0: No reset 1: Reset the TIMER5
2	TIMER4RST	Timer 4 reset
		This bit is set and reset by software. 0: No reset 1: Reset the TIMER4
1	TIMER3RST	Timer 3 reset
		This bit is set and reset by software. 0: No reset 1: Reset the TIMER3
0	TIMER2RST	Timer 2 reset
		This bit is set and reset by software. 0: No reset 1: Reset the TIMER2

4.6.6. AHB Clock Control Register (RCC_AHBCCR)

Offset: 0x14 Reset value: 0x0000 0014

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Re	served								ETHMACRXEN
															rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETHMACTXEN.	ETHMACEN	Res	OTGFSEN	F	Reserved	ł	EXMCEN	Reserved	CRCEN	Res.	FMCEN	Res.	SRAMEN	DMA2EN.	DMA1EN
rw	rw		rw						rw		rw		rw	rw	rw

Bits	Fields	Descriptions
31:17	Reserved	must be kept at reset value
16	ETHMACRXEN	Ethernet MAC RX clock enable
		This bit is set and reset by software.
		0: Disabled Ethernet MAC RX clock
		1: Enabled Ethernet MAC RX clock
15	ETHMACTXEN	Ethernet MAC TX clock enable
		This bit is set and reset by software.
		0: Disabled Ethernet MAC TX clock
		1: Enabled Ethernet MAC TX clock
14	ETHMACEN	Ethernet MAC clock enable
		This bit is set and reset by software.
		0: Disabled Ethernet MAC clock
		1: Enabled Ethernet MAC clock
13	Reserved	must be kept at reset value
12	OTGFSEN	OTGFS clock enable
		This bit is set and reset by software.
		0: Disabled OTGFS clock
		1: Enabled OTGFS clock
11:9	Reserved	must be kept at reset value
8	EXMCEN	EXMC clock enable
		This bit is set and reset by software.
		0: Disabled EXMC clock
		1: Enabled EXMC clock
7	Reserved	must be kept at reset value
6	CRCEN	CRC clock enable
		This bit is set and reset by software.
		0: Disabled CRC clock

		1: Enabled CRC clock
5	Reserved	must be kept at reset value
4	FMCEN	FMC clock enable
		This bit is set and reset by software to enable/disable FMC clock during Sleep
		mode.
		0: Disabled FMC clock during Sleep mode
		1: Enabled FMC clock during Sleep mode
3	Reserved	must be kept at reset value
2	SRAMEN	SRAM interface clock enable
		This bit is set and reset by software to enable/disable SRAM interface clock during
		Sleep mode.
		0: Disabled SRAM interface clock during Sleep mode.
		1: Enabled SRAM interface clock during Sleep mode
1	DMA2EN	DMA2clock enable
		This bit is set and reset by software.
		0: Disabled DMA2 clock
		1: Enabled DMA2 clock enabled
0	DMA1EN	DMA1 clock enable
		This bit is set and reset by software.
		0: Disabled DMA1 clock
		1: Enabled DMA1 clock enabled

4.6.7. APB2 Clock Control Register (RCC_APB2CCR)

Offset: 0x18 Reset value: 0x0000 0000

31	30)	29	28	27	26	25	24	23	22	21	20	19	18	5 17	16
							TIMER11	TIMER10	TIMER9							
	Reserved										EN	EN	EN			
											rw	rw	rw			
15	14	13	12	11	10	9	8	7	6		5	4	3	2	1	0
ADC3	USART1	TIMER8	SPI1	TIMER1	ADC2	ADC1	PG	PF	PE		PD	PC	PB	PA	Beconvod	AF
EN	EN	EN	EN	EN	EN	EN	EN	EN	EN		EN	EN	EN	EN	Reserveu.	EN
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw		rw
Bits		Fields		Des	scriptio	ons										

31:22 Reserved must be kept at reset value

21	TIMER11EN	TIMER11 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER11 timer clock 1: Enabled TIMER11 timer clock
20	TIMER10EN	TIMER10 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER10 timer clock 1: Enabled TIMER10 timer clock
19	TIMER9EN	TIMER9 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER9 timer clock 1: Enabled TIMER9 timer clock
18:16	Reserved	must be kept at reset value
15	ADC3EN	ADC 3 interface clock enable
		This bit is set and reset by software. 0: Disabled ADC 3 interface clock 1: Enabled ADC 3 interface clock
14	USART1EN	USART1 clock enable
		This bit is set and reset by software. 0: Disabled USART1 clock 1: Enabled USART1 clock
13	TIMER8EN	TIMER8 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER8 timer clock 1: Enabled TIMER8 timer clock
12	SPI1EN	SPI1 clock enable
		This bit is set and reset by software. 0: Disabled SPI1 clock 1: Enabled SPI1 clock
11	TIMER1EN	TIMER1 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER1 timer clock 1: Enabled TIMER1 timer clock
10	ADC2EN	ADC2 interface clock enable
		This bit is set and reset by software.

		0: Disabled ADC 2 interface clock 1: Enabled ADC 2 interface clock
9	ADC1EN	ADC 1 interface clock enable
		This bit is set and reset by software. 0: Disabled ADC 1 interface clock 1: Enabled ADC 1 interface clock
8	PGEN	GPIO port G clock enable This bit is set and reset by software. 0: Disabled GPIO port G clock 1: Enabled GPIO port G clock
7	PFEN	GPIO port F clock enable This bit is set and reset by software. 0: Disabled GPIO port F clock 1: Enabled GPIO port F clock
6	PEEN	GPIO port E clock enableThis bit is set and reset by software.0: Disabled GPIO port E clock1: Enabled GPIO port E clock
5	PDEN	GPIO port D clock enableThis bit is set and reset by software.0: Disabled GPIO port D clock1: Enabled GPIO port D clock
4	PCEN	GPIO port C clock enableThis bit is set and reset by software.0: Disabled GPIO port C clock1: Enabled GPIO port C clock
3	PBEN	GPIO port B clock enableThis bit is set and reset by software.0: Disabled GPIO port B clock1: Enabled GPIO port B clock
2	PAEN	GPIO port A clock enableThis bit is set and reset by software.0: Disabled GPIO port A clock1: Enabled GPIO port A clock
1	Reserved	must be kept at reset value.
0	AFEN	Alternate function IO clock enable This bit is set and reset by software. 0: Disabled Alternate Function IO clock

1: Enabled Alternate Function IO clock

4.6.8. APB1 clock Control Register (RCC_APB1CCR)

Offset: 0x1C

Reset value: 0x0000 0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
I	5		DAC	PWR	BKP	. CAN2	CAN1			12C2	I2C1	UART5	UART4	USART3	USART2	
	Reser	ved.	EN	EN	EN	EN	EN	Rese	erved	EN	EN	EN	EN	EN	EN	Reserved.
			rw	rw	rw		rw		rw	rw	rw	rw	rw	rw	rw	<u></u>
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	SPI3	SPI2	Pop	onvod	WWDG	Poso	hou	TIMER14	TIMER13	TIMER12	TIMER7	TIMER6	TIMER5	TIMER4	TIMER3	TIMER2
	EN	EN	Ne5	erveu	EN	Reser	veu	EN	EN	EN.	EN	EN	EN	EN	EN	EN
	rw	rw			rw			rw	rw	rw	rw	rw	rw	rw	rw	rw
	Bits		Field	ls	De	script	ions									
	31:30		Rese	erved	mu	ıst be k	kept a	t reset v	/alue							
	29		DAC	EN	DA	C inte	rface	clock er	nable							
					Th	is bit is	set a	ind rese	et bv sof	tware.						
					0:	Disable	ed DA	C interf	ace clo	ck						
					1:	Enable	d DA	C interfa	ace cloc	k						
	28		PWR	EN	Po	wer int	erfac	e clock (enable							
					Ih	is bit is	set a	ind rese	et by sof	tware.						
					0:		ed Po	wer inte	erface cl	OCK						
					1:	Enable	a Po\	werinte	nace cit	DCK						
	27		BKPI	EN	Ba	ckup ir	nterfa	ce clock	enable							
					Th	is bit is	set a	ind rese	et by sof	tware.						
					0:	Disable	ed Ba	ckup int	erface o	clock						
					1:	Enable	d Bad	ckup inte	erface c	lock						
	26		CAN	2EN	CA	N2 clo	ock en	able								
					Th	is bit is	set a	ind rese	et by sof	tware.						
					0:	Disable	ed CA	N2 cloc	:k							
					1:	Enable	d CA	N2 cloc	k							
	25		CAN	1EN	N CAN1 clock enable											
					Th	is bit is	set a	ind rese	et by sof	tware.						
					0:	Disable	ed CA	N1 cloc	k							
					1:	Enable	d CA	N1 cloc	k							
	24:23		Rese	erved	mu	must be kept at reset value										
	22		I2C2	EN	120	I2C2 clock enable										

		This bit is set and reset by software. 0: Disabled I2C2 clock 1: Enabled I2C2 clock
21	I2C1EN	I2C1 clock enable
		This bit is set and reset by software. 0: Disabled I2C1 clock 1: Enabled I2C1 clock
20	UART5EN	USART5 clock enable
		This bit is set and reset by software. 0: Disabled UART5 clock 1: Enabled UART5 clock
19	UART4EN	UART4 clock enable
		This bit is set and reset by software. 0: Disabled UART4 clock 1: Enabled UART4 clock
18	USART3EN	USART3 clock enable
		This bit is set and reset by software. 0: Disabled USART3 clock 1: Enabled USART3 clock
17	USART2EN	USART2 clock enable
		This bit is set and reset by software. 0: Disabled USART2 clock 1: Enabled USART2 clock
16	Reserved	must be kept at reset value
15	SPI3EN	SPI3 clock enable
		This bit is set and reset by software. 0: Disabled SPI3 clock 1: Enabled SPI3 clock
14	SPI2EN	SPI2 clock enable
		This bit is set and reset by software. 0: Disabled SPI2 clock 1: Enabled SPI2 clock
13:12	Reserved	must be kept at reset value
11	WWDGEN	Window watchdog clock enable
		This bit is set and reset by software.

		0: Disabled Window watchdog clock 1: Enabled Window watchdog clock
10:9	Reserved	must be kept at reset value
8	TIMER14EN	TIMER14 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER14 timer clock 1: Enabled TIMER14 timer clock
7	TIMER13EN	TIMER13 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER13 timer clock 1: Enabled TIMER13 timer clock
6	TIMER12EN	TIMER12 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER12 timer clock 1: Enabled TIMER12 timer clock
5	TIMER7EN	TIMER7 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER7 timer clock 1: Enabled TIMER7 timer clock
4	TIMER6EN	TIMER6 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER6 timer clock 1: Enabled TIMER6 timer clock
3	TIMER5EN	TIMER5 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER5 timer clock 1: Enabled TIMER5 timer clock
2	TIMER4EN	TIMER4 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER4 timer clock 1: Enabled TIMER4 timer clock
1	TIMER3EN	TIMER3 timer clock enable
		This bit is set and reset by software. 0: Disabled TIMER3 timer clock 1: Enabled TIMER3 timer clock

0 TIMEREN TIMER2 timer clock enable

This bit is set and reset by software.

0: Disabled TIMER2 timer clock

1: Enabled TIMER2 timer clock

4.6.9. Backup Domain Control Register (RCC_BDCR)

Offset: 0x20

Reset value: 0x0000 0018, reset by Backup domain Reset.

Note: The LSEEN, LSEBPS, RTCSRC and RTCEN bits of the Backup domain control register (BDCR) are only reset after a Backup domain Reset. These bits can be modified only when the BKPWE bit in the Power control register (PWR_CTLR) has to be set.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved	ł							BKPRST
															rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RTCEN			Reserved	ł		RTCS	RC[1:0]			Reserved	I		LSEBPS	LSESTB	LSEEN
rw						rw	rw						rw	r	rw

Bits	Fields	Descriptions
31:15	Reserved	must be kept at reset value
16	BKPRST	Backup domain reset
		This bit is set and reset by software.
		0: No reset
		1: Resets Backup domain
15	RTCEN	RTC clock enable
		This bit is set and reset by software.
		0: Disabled RTC clock
		1: Enabled RTC clock
14:10	Reserved	must be kept at reset value
9:8	RTCSRC[1:0]	RTC clock entry selection
		Set and reset by software to control the PLL clock source.
		00: No clock selected
		01: CK_LSE selected as RTC source clock
		10: CK_LSI selected as RTC source clock

11: (CK_HSE / 128) selected as RTC source clock

7:5	Reserved	must be kept at reset value
2	LSEBPS	LSE bypass mode enable
		Set and reset by software. 0: Disable the LSE Bypass mode 1: Enable the LSE Bypass mode
1	LSESTB	External low-speed oscillator stabilization
		Set by hardware to indicate if the LSE output clock is stable and ready for use. 0: LSE is not stable 1: LSE is stable
0	LSEEN	LSE enable
		Set and reset by software. 0: Disable LSE 1: Enable LSE

4.6.10. Global Control/Status Register (RCC_GCSR)

Offset: 0x24

Reset value: 0x0C00 0000, reset flags reset by power Reset only, other reset by system reset.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
LP	WWDG	IWDG	SW	DODDDOTE	EP		DOTTO									
RSTF	RSTF	RSTF	RSTF	POPDRSTF	RSTF	Reserved	RSTFC	Reserved								
rw	rw	rw	rw	rw	rw		rw									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
														LSI	LSI	
Reserved									STB	EN						
														r	rw	

Bits	Fields	Descriptions
31	LPRSTF	Low-power reset flag
		Set by hardware when Deep-sleep /standby reset generated.
		Reset by writing 1 to the RSTFC bit.
		0: No Low-power management reset generated
		1: Low-power management reset generated
30	WWDGRSTF	Window watchdog timer reset flag
		Set by hardware when a window watchdog timer reset generated.
		Reset by writing 1 to the RSTFC bit.

		0: No window watchdog reset generated
		1: Window watchdog reset generated
29	IWDGRSTF	Independent watchdog timer reset flag
		Set by hardware when an independent watchdog timer generated.
		Reset by writing 1 to the RSTFC bit.
		0: No Independent watchdog timer reset generated
		1: Independent Watchdog timer reset generated
28	SWRSTF	Software reset flag
		Set by hardware when a software reset generated.
		Reset by writing 1 to the RSTFC bit.
		0: No software reset generated
		1: Software reset generated
27	POPDRSTF	Power On/Power Down reset flag
		Set by hardware when a Power On/Power Down reset generated.
		Reset by writing 1 to the RSTFC bit.
		0: No Power On/Power Down reset generated
		1: Power On/Power Down reset generated
26	EPRSTF	External PIN reset flag
		Set by hardware when a External PIN generated.
		Reset by writing 1 to the RSTFC bit.
		0: No External PIN reset generated
		1: External PIN reset generated
25	Reserved	must be kept at reset value.
24	RSTFC	Reset flag clear
		This bit is set by software to clear all reset flags.
		0: Not clear reset flags
		1: Clear reset flags
23:2	Reserved	must be kept at reset value.
1	LSISTB	LSI stabilization
		Set by hardware to indicate if the LSI output clock is stable and ready for use.
		0: LSI is not stable
		1: LSI is stable
0	LSIEN	LSI enable
		Set and reset by software.
		0: Disable LSI

1: Enable LSI

4.6.11. AHB Reset Control Register (RCC_AHBRCR)

Reset value: 0x0000 0000															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	ETHMACRST	Reserved	OTGFSRST						Res	served.					

rw rw

Offset: 0x28

Bits	Fields	Descriptions
31:15	Reserved	must be kept at reset value
14	ETHMACRST	Ethernet MAC unit reset
		This bit is set and reset by software.
		0: No reset Ethernet MAC unit
		1: Reset Ethernet MAC unit
13	Reserved	must be kept at reset value
12	OTGFSRST	OTGFS unit reset
		This bit is set and reset by software. 0: No reset USB OTGFS unit 1: Reset USB OTGFS unit
11:1	Reserved	must be kept at reset value

4.6.12. Global Clock configuration register 2 (RCC_GCFGR2)

Offset: 0x2c

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserve	ed						I2S3SEL	I2S2SEL	PREDV1SEL
													rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PLL3MF[3:0] PLL2MF[3:0]					PREDV2[3:0]					PREDV1[3:0]					
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
31:19	Reserved	must be kept at reset value
18	I2S3SEL	I2S3 Clock Source Selection
		Set and reset by software.
		0: System clock selected as I2S3 source clock
		1: (PLL3 x 2) selected as I2S3 source clock
17	I2S2SEL	I2S2 Clock Source Selection
		Set and reset by software.
		0: System clock selected as I2S2 source clock
		1: (PLL3 x 2) selected as I2S2 source clock
16	PREDV1SEL	PREDV1 input Clock Source Selection
		Set and reset by software.
		0: HSE selected as PREDV1 input source clock
		1: PLL2 selected as PREDV1 input source clock
15:12	PLL3MF[3:0]	PLL3 multiply factor
		Set and reset by software.
		00xx: reserve
		010x: reserve
		0110: (PLL3 source clock x 8)
		0111: (PLL3 source clock x 9)
		1000 :(PLL3 source clock x 10)
		1001: (PLL3 source clock x 11)
		1010: (PLL3 source clock x 12)
		1011: (PLL3 source clock x 13)
		1100: (PLL3 source clock x 14)
		1101: reserve
		1110 :(PLL3 source clock x 16)
		1111: (PLL3 source clock x 20)
11:8	PLL2MF[3:0]	PLL3 multiply factor
		Set and reset by software.
		00xx: reserve
		010x: reserve
		0110: (PLL2 source clock x 8)
		0111: (PLL2 source clock x 9)
		1000 :(PLL2 source clock x 10)
		1001: (PLL2 source clock x 11)
		1010: (PLL2 source clock x 12)
		1011: (PLL2 source clock x 13)
		1100: (PLL2 source clock x 14)
		1101: reserve
		1110 :(PLL2 source clock x 16)

		1111: (PLL2 source clock x 20)
7:4	PREDV2	PREDV2 division factor for HSE
		This bit is set and reset by software. These bits can be written when PLL2 and PLL3
		are disable. The CK_HSE is divided by (PREDV2+ 1).
		0000: PREDV2 input source clock not divided
		0001: PREDV2 input source clock divided by 2
		0010: PREDV2 input source clock divided by 3
		0011: PREDV2 input source clock divided by 4
		0100: PREDV2 input source clock divided by 5
		0101: PREDV2 input source clock divided by 6
		0110: PREDV2 input source clock divided by 7
		0111: PREDV2 input source clock divided by 8
		1000: PREDV2 input source clock divided by 9
		1001: PREDV2 input source clock divided by 10
		1010: PREDV2 input source clock divided by 11
		1011: PREDV2 input source clock divided by12
		1100: PREDV2 input source clock divided by 13
		1101: PREDV2 input source clock divided by 14
		1110: PREDV2 input source clock divided by 15
		1111: PREDV2 input source clock divided by 16
3:0	PREDV1	PREDV1 division factor
		This bit is set and reset by software. These bits can be written when PLL is disable.
		Note: The bit 0 of PREDV1 is same as bit 17 of RCC_GCFGR, so modifying
		Bit 17 of RCC_GCFGR aslo modifies bit 0 of RCC_GCFGR2.
		0000: PREDV1 input source clock not divided
		0001: PREDV1 input source clock divided by 2
		0010: PREDV1 input source clock divided by 3
		0011: PREDV1 input source clock divided by 4
		0100: PREDV1 input source clock divided by 5
		0101: PREDV1 input source clock divided by 6
		0110: PREDV1 input source clock divided by 7
		0111: PREDV1 input source clock divided by 8
		1000: PREDV1 input source clock divided by 9
		1001: PREDV1 input source clock divided by 10
		1010: PREDV1 input source clock divided by 11
		1011: PREDV1 input source clock divided by12
		1100: PREDV1 input source clock divided by 13
		1101: PREDV1 input source clock divided by 14
		1110: PREDV1 input source clock divided by 15

4.6.13. RCC Deep-sleep mode voltage register (RCC_DEEPSLEEP_VC)

Offset: 0x34

		Rese	et value	e: 0x00	000 000	00.									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserve	ed						D	EEPSLEE	P_VC
													rw	rw	rw

Bits	Fields	Descriptions
31:3	Reserved	must be kept at reset value
2:0	DEEPSLEEP_VC	Deep-sleep mode voltage register
		These bits is set and reset by software
		000 : The core voltage is 1.2V in Deep-sleep mode
		001 : The core voltage is 1.1V in Deep-sleep mode
		010 : The core voltage is 1.0V in Deep-sleep mode
		011 : The core voltage is 0.9V in Deep-sleep mode
		100~111 : reserved

5. General-purpose and alternate-function I/Os

5.1. Introduction

There general-purpose interface combines seven general-purpose input/output(GPIO) banks.

Each GPIO bank provides 16 dedicated general-purpose pins with input and output capabilities; Each GPIO port has related control and configuration registers to satisfy the requirements of specific applications. The external interrupt on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit (EXIT)

The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the AF input or output pins.

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog mode.

5.2. Main features

- Input/output direction control
- Each pin weak pull-up/pull-down function
- Output push-pull/open drain enable control
- Output set/reset control
- External interrupt with programmable trigger edge using EXTI configuration registers
- Analog input/output configurations
- Alternate function input/output configurations
- Port configuration lock

5.3. Function description

Each of the GPIO ports can be configured as inputs or outputs and can be individually configured by software in serveral modes via the two 32-bit configuration registers (GPIOx_CTLR1, GPIOx_CTLR2) and the two 32-bit data registers (GPIOx_DIR, GPIOx_DOR).Check the following table for details.

Table 5-1	Basic configuration of	of the I/O port
-----------	------------------------	-----------------

Configur	ation mode	CMF1	CMF0	MODE1	MODE0	PxODR
						register
	Analog	0	0	00		don't care
Input	Input floating		1			don't care
	Input pull-down	1	0			0
	Input pull-up					1
General	Push-pull	0	0	00: Reserved		0 or 1
purpose	Open-drain		1	00: Speed up	to 10MHz	0 or 1
Output	•			01: Speed up	to 2MHz	
Alternate	Push-pull	1	0	01: Speed up	to 50MHz	don't care
Function	Open-drain		1			don't care
Output						

Figure 5-1 The basic structure of standard I/O Port bit and five-volt tolerant I/O Port bit

1. V_{dd_FT} is a potential specific to five-volt tolerant I/Os and different from V_{dd}

5.3.1. GPIO pin configuration

During or just after the reset period, the alternative functions are all inactive and the GPIO ports are configured into the input floating mode that input without Pull-Up(PU)/Pull-Down

(PD) resistors. But the Serial-Wired Debug pins are in input PU/PD mode after reset:

PA15:JTDI in PU

PA14:JTCK in PD

PA13: JTMS in PU

PB4: NJTRST in PU

The GPIO pins can be configured as inputs or outputs. When the GPIO pins are configured as input pins, the data on the external pads can be captured at every APB2 clock cycle to the data input register (GPIO_DIR). And all GPIO pins have an internal weak pull-up and weak pull-down which can be chosen.

When the GPIO pins are configured as output pins, user colud configure the speed of port . And chooses the output driver mode: Push-Pull or Open-Drain mode. The value of the data output register (GPIO_DOR) is output on the I/O pin.

5.3.2. External interrupt/wakeup lines

All ports have external interrupt capability. To use external interrupt lines, the port must be configured in input mode.

5.3.3. Input configuration

When GPIO pin is configured as Input:

- The Schmitt Trigger Input is activated
- The weak pull-up and pull-down resistors could be chosen
- The data present on the I/O pad is sampled into the Data Input Register every APB2 clock cycle
- The Output Buffer is disabled

Figure 5-2 Input floating/pull up/pull down configurations of I/O Port bit

1. Vdd_FT is a potential specific to five-volt tolerant I/Os and different from Vdd

5.3.4. Analog configuration

When GPIO pin is used as analog configuration:

- The weak pull-up and pull-down resistors are disabled.
- The Output Buffer is disabled.
- The Schmitt Trigger Input is de-activated.
- Read access to the Data Input Register gets the value "0".

Figure 5-3 Analog configuration of I/O Port bit

 $1.V_{dd_FT}$ is a potential specific to five-volt tolerant I/Os and different from V_{dd}

5.3.5. Output configuration

When GPIO pin is configured as output:

- The Schmitt Trigger Input is activated.
- The weak pull-up and pull-down resistors are disabled.
- The Output Buffer is enabled:

Open Drain Mode: A "0" in the Output register activates the N-MOS while a "1" in the Output register leaves the port in Hi-Z.

Push-Pull Mode: A "0" in the Output register activates the N-MOS while a "1" in the Output register activates the P-MOS.

- A read access to the Data Output Register gets the last written value in Push-Pull mode
- A read access to the Data Input Register gets the I/O state in open drain mode

Figure 5-4 The Output configuration of I/O Port bit

 $1.V_{dd_FT}$ is a potential specific to five-volt tolerant I/Os and different from V_{dd}

5.3.6. Alternate functions (AF)

To suit for different device packages, the GPIO supports remap some alternate functions to some other pins by software. For bidirectional Alternate Functions, the port bit must be configured in Alternate Function Output mode. In this case the input driver is configured in input floating mode.

When GPIO pin is configured as Alternate Function:

- The Output Buffer is turned on in Open Drain or Push-Pull configuration
- The Output Buffer is driven by the peripheral
- The Schmitt Trigger Input is activated
- The weak pull-up and pull-down resistors are disabled.
- The data present on the I/O pin is sampled into the Data Input Register every APB2 clock cycle
- A read access to the Data Input Register gets the I/O state in open drain mode
- A read access to the Data Output Register gets the last written value in Push-Pull mode

Figure 5-5 The Alternate Function configuration of I/O Port bit

Tables below give the GPIO configurations of the device peripherals.

Table 5-2 Advanced timer TIMER1/8

TIMER1/8 pinout	GPIO functional description	GPIO configuration
TIMER1/8_CH[4:1]	Input capture channel[4:1]	Input floating
	Output compare channel[4:1]	Alternate function push-pull
TIMER1/8_CH[3:1]N	Complementary output channel[3:1]	Alternate function push-pull
TIMER1/8_BKIN	Break input	Input floating
TIMER1/8_ETR	External trigger timer input	Input floating

Table 5-3 Genernal-purpose timers TIMER2/3/4/5

TIMER2/3/4/5	GPIO functional description	GPIO configuration
TIMER2/3/4/5_CH[4:1]	Input capture channel[4:1]	Input floating
	Output compare channel[4:1]	Alternate function push-pull
TIMER2/3/4/5_ETR	External trigger timer input	Input floating

Table 5-4 USARTs

USART pinout	GPIO functional description	GPIO configuration
USART[3:1]_TX	Full duplex	Alternate function push-pull
	Half duplex synchronous mode	Alternate function push-pull
USART[3:1]_RX	Full duplex	Input floating / Input pull-up
	Half duplex synchronous mode	Not used. Used as a general IO
USART[3:1]_CK	Synchronous mode	Alternate function push-pull
USART[3:1]_RTS	Hardware flow control	Alternate function push-pull
USART[3:1]_CTS	Hardware flow control	Input floating / Input pull-up

1. The USART_TX pin can also be configured as alternate function open drain.

Table 5-5 SPIx		
SPIx pinout	GPIO functional description	GPIO configuration
SPIx_SCK	Master	Alternate function push-pull
	Slave	Input floating
SPIx_MOSI	Full duplex / master	Alternate function push-pull
	Full duplex / slave	Input floating / Input pull-up
	Simplex bidirectional data wire / master	Alternate function push-pull
	Simplex bidirectional data wire / slave	Not used. Used as a general IO
SPIx_MISO	Full duplex / master	Input floating / Input pull-up
	Full duplex / slave (point to point)	Alternate function push-pull
	Full duplex / master (multi-slave)	Alternate function open drain
	Simplex bidirectional data wire / master	Not used. Used as a general IO
	Simplex bidirectional data wire / slave	Alternate function push-pull
	(point to point))	
	Simplex bidirectional data wire / slave	Alternate function open drain
	(multi-slave)	
SPIx_NSS	Hardware master / slave	Input floating / Input pull-up /
		Input pull-down
	Hardware master / NSS output enabled	Alternate function push-pull
	Software	Not used. Used as a general IO

Table 5-6 I2Sx

I2Sx pinout	GPIO functional description	GPIO configuration
I2Sx_WS	Master	Alternate function push-pull
	Slave	Input floating
I2Sx_CK	Master	Alternate function push-pull
	Slave	Input floating
I2Sx_SD	Transmitter	Alternate function push-pull
	Receiver	Input floating / Input pull-up / Input
		pull-down
I2Sx_MCK	Master	Alternate function push-pull
	Slave	Not used. Used as a general IO

Table 5-7 I2Cx

I2Cx pinout	GPIO functional description	GPIO configuration
I2Cx_SCL	I2C clock	Alternate function open drain
I2Cx_SDA	I2C Data I/O	Alternate function open drain

Table 5-8 BxCAN

BxCAN pinout	GPIO functional description	GPIO configuration
CAN_TX	Transmit data line	Alternate function push-pull

CAN_RX Receive data line Input floating / Input pull-up

Table 5-9 USB⁽¹⁾

USB pinout	GPIO configuration
USB_DM / USB_DP	As soon as the USB is enabled, these pins are connercted to the
	USBinternal transceiver automatically

1. This table applies to low-, medium-, high and XL-density devices only

Table 5-10 OTG_FS⁽¹⁾

OTG_FS pinout	GPIO functional description	GPIO configuration
OTG_FS_SOF	Host	AF push-pull,if used
	Device	AF push-pull,if used
	OTG	AF push-pull,if used
OTG_FS_VBUS	Host	Input floating
(2)	Device	Input floating
	OTG	Input floating
OTG_FS_ID	Host	No need if the Force host mode is
		selected by software(FHMOD set in the
		OTG_FS_GUSB
		CFG register)
	Device	No need if the Force host mode is
		selected by software(FHMOD set in the
		OTG_FS_GUSB
		CFG register)
	OTG	Input pull-up
OTG_FS_DM	Host	Controlled automatically by the USB
		power-down
	Device	Controlled automatically by the USB
		power-down
	OTG	Controlled automatically by the USB
		power-down
OTG_FS_DP	Host	Controlled automatically by the USB
		power-down
	Device	Controlled automatically by the USB
		power-down
	OTG	Controlled automatically by the USB
		power-down

1. This table applies to connectivity line devices only.

 For the OTG_FS_VBUS pin(PA9) to be used by another shared perpheral or as a genreal-purpose IO, the PHY Power-down mode has to be active(clear bit 16 in the OTG_FS_GCCFG register)

Table 5-11 SDIO

SDIO pinout	GPIO configuration
SDIO_CK	Alternate function push-pull
SDIO_CMD	Alternate function push-pull
SDIO[D7:D0]	Alternate function push-pull

Table 5-12 EXMC

EXMC pinout	GPIO configuration
EXMC_A[25:0]	Alternate function push-pull
EXMC_D[15:0]	
EXMC_CK	Alternate function push-pull
EXMC_NOE	Alternate function push-pull
EXMC_NWE	
EXMC_NE[4:1]	Alternate function push-pull
EXMC_NCE[3:2]	
EXMC_NCE4_1	
EXMC_NCE4_2	
EXMC_NWAIT	Input floating/ Input pull-up
EXMC_CD	
EXMC_NIOS16	Input floating
EXMC_INTR	
EXMC_INT[3:2]	
EXM_NL	Alternate function push-pull
EXMC_NBL[1:0]	
EXMC_NIORD,EXMC_NIOWR,	Alternate function push-pull
EXMC_NREG	

Table 5-13 ADC

ADC pinout	GPIO configuration
ADC	Analog

Table 5-14 DAC

DAC pinout	GPIO configuration
DAC	Analog

Table 5-15 Other I/Os

Pins	Configuration	GPIO configuration
TAMPER-RTC pin	RTC output	Forced by hardware when
	Tamper event input	configuring the BKP_CR and

		BKP_RTCCR registers
CK_OUT	Clock output	Alternate function push-pull
EXTI input lines	External input interrupts	Input floating / input pull-up /
		input pull-down

5.4. Remapping function I/O and debug configuration

5.4.1. Introduction

In order to expand the flexibility of the GPIO or the usage of peripheral functions, each I/O pin can be configured to have up to three different functions by setting the AFIO Port Configuration Register (AFIO_PCFR1). Suitable pinout locations can be selected using the peripheral IO remapping function. Additionally, various GPIO pins can be selected to be the EXTI interrupt line by setting the relevant EXTI Source Selection Register (AFIO_ESSRx) to trigger an interrupt or event.

5.4.2. Main features

- APB slave interface for register access
- EXTI source selection
- Each pin has up to four alternative functions for configuration

5.4.3. JTAG/SWD alternate function remapping

The debug interface signals are mapped on the GPIO ports as shown in table below.

Table 5-16 Debug interface signals

Alternate function	GPIO port
JTMS / SWDIO	PA13
JTCK / SWCLK	PA14
JTDI	PA15
JTDO / TRACESWO	PB3
NJTRST	PB4
TRACECK	PE2
TRACECK0	PE3
TRACECK1	PE4
TRACECK2	PE5
TRACECK3	PE6

To reduce the number of GPIOs used to debug, user can configure SWJ_CFG [2:0] bits in the AFIO_PCFR1 to different vaule. Refer to table below.

			SWJ I/O pin assigned			
SWJ _CFG [2:0]	Available debug ports	PA13/ JTMS/ SWDIO	PA14/ JTCK/S WCLK	PA15/ JTDI	PB3/ JTDO/ TRACE SWO	PB4/ NJTRST
000	Full SWJ (JTAG-DP + SW-DP) (Reset state)	•	•	•	•	•
001	Full SWJ (JTAG-DP + SW-DP) but without NJTRST	•	•	•	•	х
010	JTAG-DP Disabled and SW-DP Enabled	•	•	х	X ⁽¹⁾	х
100	JTAG-DP Disabled and SW-DP Disabled	х	х	х	х	х
Other	Forbidden					

Table 5-17 Debug port mapping

1. Released only if not using asynchronous trace.

5.4.4. ADC AF remapping

Refer to AFIO Port Configuration Register (AFIO_PCFR1).

Table 5-18 ADC1 external trigger injected conversion AF remapping⁽¹⁾

Alternate function	ADC1_ETRGINJ_REMAP = 0	ADC1_ETRGINJ_REMAP = 1
ADC1 external trigger	ADC1 external trigger injected	ADC1 external trigger injected
ADCT external ingger	conversion is connected to	conversion is connected to
Injected conversion	EXTI15	TIMER8_CH4

1. Remap available only for high-density and XL –density devices

Table 5-19 ADC1 external trigger regular conversion AF remapping⁽¹⁾

Alternate function	ADC1_ETRGREG_REMAP = 0	ADC1_ETRGREG_REMAP = 1
ADC1 ovtorpol triggor	ADC1 external trigger regular	ADC1 external trigger regular
ADCT external ingger	conversion is connected to	conversion is connected to
regular conversion	EXTI11	TIMER8_TRGO

1. Remap available only for high-density and XL –density devices

Table 5-20 ADC2 external trigger injected conversion AF remapping⁽¹⁾

Alternate function	ADC2_ETRGINJ_REMAP = 0	ADC2_ETRGINJ_REMAP = 1
ADC2 ovtornal trigger	ADC2 external trigger injected	ADC2 external trigger injected
injected conversion	conversion is connected to	conversion is connected to
	EXTI15	TIMER8_CH4

1. Remap available only for high-density and XL –density devices

Table 5-21 ADC2 external trigger regular conversion AF remapping⁽¹⁾

Alternate function	ADC2_ETRGREG_REMAP = 0	ADC2_ETRGREG_REMAP = 1
ADC2 external trigger	ADC2 external trigger regular	ADC2 external trigger regular
regular conversion	conversion is connected to	conversion is connected to
	EXTI11	TIMER8_TRGO

1. Remap available only for high-density and XL –density devices

5.4.5. TIMER AF remapping

Table 5-22 TIMER1 alternate function remapping

Alternate function	TIMER1_REMAP[1:0]	TIMER1_REMAP[1:0]	TIMER1_REMAP[1:0]
Alternate function	="00" (no remap)	="01" (partial remap)	="11" (full remap) ⁽¹⁾
TIMER1_ETR	PA	.12	PE7
TIMER1_CH1	PA	48	PE9
TIMER1_CH2	PA	49	PE11
TIMER1_CH3	PA	.10	PE13
TIMER1_CH4	PA	.11	PE14
TIMRE1_BKIN	PB12 ⁽²⁾	PA6	PE15
TIMER1_CH1N	PB13	PA7	PE8
TIMER1_CH2N	PB14 ⁽²⁾	PB0	PE10
TIMER1_CH3N	PB15 ⁽²⁾	PB1	PE12

- 1. Remap available only for 100-pin and 144-pin packages
- 2. Remap not available on 36-pin package

Table 5-23 TIMER2 alternate function remapping

	TIMER2_REMA	TIMER2_REMAP	TIMER2_REMA	TIMER2_REMA
Alternate function	P[1:0] = "00"	[1:0] = "01"	P[1: 0] = "10"	P[1:0] = "11"
	(no remap)	(partial remap)	(partial remap	(full remap) ⁽¹⁾
TIMER2_CH1/TIME R2 ETR ⁽²⁾	PA0	PA15	PA0	PA15
TIMER2_CH2	PA1	PB3	PA1	PB3
TIMER2_CH3	PA2		PE	310
TIMER2_CH4	PA3		PE	311

- 1. Remap not available on 36-pin package
- 2. TIMER2_CH1 and TIMER2_ETR share the same pin but cannot be used at the same time (which is why we have this notation:TIMER2_CH1_ETR).

Table 5-24 TIMER3 alternate function remapping

Alternate function	TIMER3_REMAP[1:0] ="00" (no remap)	TIMER3_REMAP[1:0] ="10" (partial remap)	TIMER3_REMAP[1:0] ="11" (full remap) ⁽¹⁾
TIMER3_CH1	PA6	PB4	PC6
TIMER3_CH2	PA7	PB5	PC7
TIMER3_CH3	PB0		PC8
TIMER3_CH4	PB1		PC9

1. Remap available only for 64-pin,100-pin and 144-pin packages.

Table 5-25 TIMER4 alternate function remapping

Alternate function	TIMER4_REMAP = 0	TIMER4_REMAP = 1 ⁽¹⁾
TIMER4_CH1	PB6	PD12
TIMER4_CH2	PB7	PD13
TIMER4_CH3	PB8	PD14
TIMER4_CH4	PB9	PD15

1. Remap available only for 100-pin and 144-pin packages.

Table 5-26 TIMER5 alternate function remapping⁽¹⁾

Alternate function	TIMER5CH4_REMAP = 0	TIMER5CH4_REMAP = 1
TIMER5_CH4	TIMER5 channel4 is connected	LSI internal ckock is connected
		to TIMER5_CH4 input for
	10 PA3	calibration purpose

1. Remap available only for high-density,XL-density and connectivity lines devices.

Table 5-27 TIMER9 remapping⁽¹⁾

Alternate function	TIMER9_REMAP = 0	TIMER9_REMAP = 1
TIMER9_CH1	PA2	PE5
TIMER9_CH2	PA3	PE6

1. Refer to the AF remap and debug I/O configuration register2

Table 5-28 TIMER10 remapping⁽¹⁾

Alternate function	TIMER10_REMAP = 0	TIMER10_REMAP = 1
TIMER10_CH1	PB8	PF6

1. Refer to the AF remap and debug I/O configuration register2

Table 5-29 TIMER11 remapping⁽¹⁾

Alternate function	TIMER11_REMAP = 0	TIMER11_REMAP = 1
TIMER11_CH1	PB9	PF7

1. Refer to the AF remap and debug I/O configuration register2

Table 5-30 TIMER13 remapping⁽¹⁾

Alternate function	TIMER13_REMAP = 0	TIMER13_REMAP = 1
TIMER13_CH1	PA6	PF8

1. Refer to the AF remap and debug I/O configuration register2

Table 5-31 TIMER14 remapping⁽¹⁾

Alternate function	TIMER14_REMAP = 0	TIMER14_REMAP = 1
TIMER14_CH1	PA7	PF9

1. Refer to the AF remap and debug I/O configuration register2

5.4.6. USART AF remapping

Refer to AFIO Port Configuration Register (AFIO_PCFR1).

Table 5-32 USART1 alternate function remapping

Alternate function	USART1_REMAP = 0	USART1_REMAP = 1
USART1_TX	PA9	PB6
USART1_RX	PA10	PB7

Table 5-33 USART2 alternate function remapping

Alternate function	USART2_REMAP = 0	USART2_REMAP = 1 ⁽¹⁾
USART2_CTS	PA0	PD3
USART2_RTS	PA1	PD4
USART2_TX	PA2	PD5
USART2_RX	PA3	PD6
USART2_CK	PA4	PD7

1. Remap available only 100-pin and 144-pin packages

Table 5-34 USART3 alternate function remapping

Alternate function	USART3_REMAP[1:0] ="00" (no remap)	USART3_REMAP[1:0] ="10" (partial remap) ⁽¹⁾	USART3_REMAP[1:0] ="11" (full remap) ⁽²⁾
USART3_TX	PB10	PC10	PD8
USART3_RX	PB11	PC11	PD9
USART3_CK	PB12	PC12	PD10
USART3_CTS	PB13		PD11
USART3_RTS	PB14		PD12

1. Remap available only for 64-pin,100-pin and 144-pin packages

2. Remap available only 100-pin and 144-pin packages

5.4.7. I2C1 AF remapping

Refer to AFIO Port Configuration Register (AFIO_PCFR1).

Table 5-35 I2C1 alternate function remapping

Alternate function	I2C1_REMAP = 0	I2C1_REMAP = 1
I2C1_SCL	PB6	PB8
I2C1_SDA	PB7	PB9

5.4.8. SPI1 AF remapping

Refer to AFIO Port Configuration Register (AFIO_PCFR1).

 Table 5-36 SPI1 alternate function remapping

Alternate function	SPI1_REMAP = 0	SPI1_REMAP = 1	
SPI1_NSS	PA4	PA15	
SPI1_SCK	PA5	PB3	
SPI1_MISO	PA6	PB4	
SPI1_MOSI	PA7	PB5	

5.4.9. SPI3/I2S3 AF remapping

Refer to AFIO Port Configuration Register (AFIO_PCFR1).

Table 5-37 SPI1 alternate function remapping

Alternate function	SPI1_REMAP = 0	SPI1_REMAP = 1
SPI3_NSS/ I2S3_WS	PA15	PA4
SPI3_SCK/ I2S3_CK	PB3	PC10
SPI3_MISO	PB4	PC11
SPI3_MOSI/I2S3_SD	PB5	PC12

5.4.10. CAN1 AF remapping

The CAN signals can be mapped on Port A, Port B or Port D as shown in table below. For port D, remapping is not possible in devices delivered in 36-, 48- and 64-pin packages.

Table 5-38 CAN1 AF remappin

Alternate function ⁽¹⁾	CAN_REMAP[1:0] = "00"	CAN_REMAP[1:0] = "10" ⁽²⁾	CAN_REMAP[1:0] = "11" ⁽³⁾
CAN_RX	PA11	PB8	PD0
CAN_TX	PA12	PB9	PD1

- 1. CAN1_RX and CAN1_TX in connectivity line devices; CAN_RX and CAN_TX in other devices with a single CAN interface.
- 2. Remap not available on 36-pin package
- 3. This remapping is available only on 100-pin packages, when PD0 and PD1 are not remapped on OSC-IN and OSC-OUT.

5.4.11. CAN2 AF remapping

CAN2 is available in connectivity lines devices The external signals can be remapped as show table below.

CAN_REMAP = "0"	CAN_REMAP = "1"		
PB12	PB5		
PB13	PB6		
	CAN_REMAP = "0" PB12 PB13		

Table 5-39 CAN AF remapping

5.4.12. Ethernet alternate function remapping

Table 5-40 ETH remapping

Alternete function	ETH_REMAP =	ETH_REMAP =				
Alternate function	"0"	"1"				
RX_DV-CRS_DV	PA7	PD8				
RXD0	PC4	PD9				
RXD1	PC5	PD10				
RXD2	PB0	PD11				
RXD3	PB1	PD12				

1. Remap not available on 36-pin package

2. This remapping is available only on 100-pin packages, when PD0 and PD1 are not remapped on OSC-IN and OSC-OUT.

5.4.13. CLK pins AF remapping

The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general-purpose I/O PC14 and PC15 individually, when the LSE oscillator is off. The LSE has priority over the GP IOs function.

- Note: 1 But when the 1.8 V domain is powered off (by entering standby mode) or when the backup domain is supplied by VBAT (VDD no more supplied), the PC14/PC15 GPIO functionality is lost and will be set in analog mode.
 - 2 Refer to the note on IO usage restrictions in Section 5.1.2 on page 67.

Table 5-41 OSC32 pins configuration

Alternate function	LSE = ON	LSE = OFF
PC14	OSC32_IN	PC14
PC15	OSC32_OUT	PC15

The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose I/O PD0/PD1.

Table 5-42 OSC pins configuration

Alternate function	HSE = ON	HSE = OFF				
PD0	OSC_IN	PD0				
PD1	OSC_OUT	PD1				

5.4.14. GPIO locking function

The locking mechanism allows the IO configuration to be protected. When the LOCK sequence has been applied on a port bit, it is no longer able to modify the value of the port bit until the next reset.

5.5. GPIO registers

5.5.1. GPIO port control register 1 (GPIOx_CTLR1) (x=A..F,G)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
CF7[1:0]		MD7[1:0]		CF6[1:0]		MD6[1:0]		CF5[1:0]		MD5[1:0]		CF4[1:0]		MD4[1:0]		
rw																
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
CF3[1:0]		MD3[1:0]		CF2[1:0]		MD2[1:0]		CF1	CF1[1:0]		MD1[1:0]		CF0[1:0]		MD0[1:0]	
rw																

Address offset: 0x00 Reset value: 0x4444 4444.

Bits	Fields	Descriptions
31:30	CF7[1:0]	Pin 7 configuration bits
		These bits are set and cleared by software
		refer to CF0[1:0]description
29:28	MD7[1:0]	Pin 7 mode bits
		These bits are set and cleared by software
		refer to MD0 [1:0]description
27:26	CF6[1:0]	Pin 6 configuration bits
		These bits are set and cleared by software
		refer to CF0[1:0]description
25:24	MD6[1:0]	Pin 6 mode bits
		These bits are set and cleared by software
		refer to MD0 [1:0]description
23:22	CF5[1:0]	Pin 5 configuration bits
		These bits are set and cleared by software
		refer to CF0[1:0]description
21:20	MD5[1:0]	Pin 5 mode bits
		These bits are set and cleared by software
		refer to MD0 [1:0]description
19:18	CF4[1:0]	Pin 4 configuration bits
		These bits are set and cleared by software
		refer to CF0[1:0] description

6	
GigaDevice	

17.16		Din 1 modo bits
17.10	MD4[1.0]	These bits are set and cleared by software
		refer to MD0 [1:0]description
15:14	CF3[1:0]	Pin 3 configuration bits
		These bits are set and cleared by software
		refer to CF0[1:0]description
13:12	MD3[1:0]	Pin 2 mode bits
		These bits are set and cleared by software
		refer to MD0[1:0]description
11:10	CF2[1:0]	Pin 2 configuration bits
		These bits are set and cleared by software
		refer to CF0[1:0] description
9:8	MD2[1:0]	Pin 2 mode bits
		These bits are set and cleared by software
		refer to MD0[1:0] description
7:6	CF1[1:0]	Pin 1 configuration bits
		These bits are set and cleared by software
		refer to CF0[1:0] description
5:4	MD1[1:0]	Pin 1 mode bits
		These bits are set and cleared by software
		refer to MD0[1:0] description
3:2	CF0[1:0]	Pin 0 configuration bits
		These bits are set and cleared by software
		Input mode (MD[1:0] =00)
		00: Analog mode
		01: Floating input
		11:Reserved
		Output mode (MD[1:0] >00)
		00: GPIO output with push-pull
		01: GPIO output with open-drain
		11: AFIO output with open-drain
1:0	MD0[1:0]	Pin 0 mode bits
		These bits are set and cleared by software

00: Input mode (reset state)

- 01: Output mode ,max speed 10MHz
- 10: Output mode ,max speed 2 MHz
- 11: Output mode ,max speed 50MHz

5.5.2. GPIO port control register 2 (GPIOx_CTLR2) (x=A..F,G)

Address offset: 0x04 Reset value: 0x4444 4444

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
CF15[1:0]		MD15[1:0]		CF14[1:0]		MD14[1:0]		CF1	CF13[1:0]		MD13[1:0]		CF12[1:0]		MD12[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
CF11[1:0]		MD1	MD11[1:0]		CF10[1:0]		MD10[1:0]		CF9[1:0]		MD9[1:0]		CF8[1:0]		MD8[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

Bits	Fields	Descriptions
31:30	CF15[1:0]	Pin15 configuration bits
		These bits are set and cleared by software
		refer to CF0[1:0]description
29:28	MD15[1:0]	Pin 15 mode bits
		These bits are set and cleared by software
		refer to MD0 [1:0]description
27:26	CMF14[1:0]	Pin 14 configuration bits
		These bits are set and cleared by software
		refer to CF0[1:0]description
25:24	MD14[1:0]	Pin 14 mode bits
		These bits are set and cleared by software
		refer to MD0 [1:0]description
23:22	CF13[1:0]	Pin 13 configuration bits
		These bits are set and cleared by software
		refer to CF0[1:0]description
21:20	MD13[1:0]	Pin 13 mode bits
		These bits are set and cleared by software
		refer to MODE0 [1:0]description
19:18	CF12[1:0]	Pin 12 configuration bits

		These bits are set and cleared by software
		refer to CF0[1:0] description
17:16	MD12[1:0]	Pin 12 mode bits These bits are set and cleared by software
		refer to MD0 [1:0]description
15:14	CF11[1:0]	Pin 11 configuration bits These bits are set and cleared by software
		refer to CF0[1:0]description
13:12	MD11[1:0]	Pin 11 mode bits These bits are set and cleared by software
		refer to MD0[1:0]description
11:10	CF10[1:0]	Pin 10 configuration bits These bits are set and cleared by software
		refer to CF0[1:0] description
9:8	MD10[1:0]	Pin 10 mode bits These bits are set and cleared by software
		refer to MD0[1:0] description
7:6	CF9[1:0]	Pin 9 configuration bits These bits are set and cleared by software
		refer to CF0[1:0] description
5:4	MD9[1:0]	Pin 9 mode bits These bits are set and cleared by software
		refer to MD0[1:0] description
3:2	CF8[1:0]	Pin 8 configuration bits These bits are set and cleared by software
		refer to CF0[1:0] description
1:0	MD0[1:0]	Pin 8 mode bits These bits are set and cleared by software refer to MD0[1:0] description

5.5.3. GPIO port data input register (GPIOx_DIR) (x=A..F,G)

Address offset: 0x08 Reset value: 0x0000 XXXX

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								Reser	ved							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DIR15	DIR14	DIR13	DIR12	DIR11	DIR10	DIR9	DIR8	DIR7	DIR6	DIR5	DIR4	DIR3	DIR2	DIR1	DIR0
	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
I	Bits	Fi	elds			Desc	ription	IS								
;	31:16	R	eserved													
	15.0					Dent	بلم الارتجاجا	-1-								
	15:0	DI	K[15:0]			Port input data										

These bits are read only and can be accessed in word mode only. They contain the input value of the corresponding I/O port

0: Input signal low

1: Input signal high

5.5.4. GPIO port data output register (GPIOx_DOR) (x=A..F,G)

Address offset: 0x0C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DOR15	DOR14	DOR13	DOR12	DOR11	DOR10	DOR9	DOR8	DOR7	DOR6	DOR5	DOR4	DOR3	DOR2	DOR1	DOR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits	Fields	Descriptions
31:16	Reserved	
15:0	DOR[15:0]	Port onput data
		These bits are be read and written by software and can be accessed in word
		mode only
		Note: For atomic bit set/reset, the DOR bits can be individually set and
		cleared by writing to the GPIOx_BOR register
		0: Onput signal low
		1: Onput signal high

5.5.5. GPIO port bit operation register (GPIOx_BOR) (x=A..F,G)

Address offset: 0x10 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
COR15	COR14	COR13	COR12	COR11	COR10	COR9	COR8	COR7	COR6	COR5	COR4	COR3	COR2	COR1	COR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BOR15	BOR14	BOR13	BOR12	BOR11	BOR10	BOR9	BOR8	BOR7	BOR6	BOR5	BOR4	BOR3	BOR2	BOR1	BOR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

5.5.6. GPIO port bit clear register (GPIOx_BCR) (x=A..F,G)

	Reset value: 0x0000 0000																
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
							Reserve	d									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
CR15	CR14	CR13	CR12	CR11	CR10	CR9	CR8	CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0		
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w		
Bits	F	ields			Descri	ptions											
31:16	R	eserved															
15:0	С	Rv			Port v	Clear b	it										
	These bits are write-only and can be accessed in Word mode only																
					0: No action on the corresponding DORs bit												

Address offset: 0x14 Reset value: 0x0000 000

1: Clear the corresponding DORx bit

5.5.7. GPIO port configuration lock register (GPIOx_LOCKR) (x=A,B)

This register is used to lock the configuration of the port bits when a correct write sequence is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the LOCK sequence has been applied on a port bit it is longer possible to modify the value of the port bit until the next reset.

Each lock bit freezes the corresponding 4 bits of the control register(CTLR1, CTLR2).

Address offset: 0x18 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved													LKK	
															rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LK15	LK14	LK13	LK12	LK11	LK10	LK9	LK8	LK7	LK6	LK5	LK4	LK3	LK2	LK1	LK0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
31:17	Reserved	
16	LKK	Lock key
		It can only be setted using the Lock Key Writing Sequence.And can always
		be read.
		0: Port configuration lock key not active
		1: Port configuration lock key active.
		GPIO_LOCKR register is locked until an MCU reset
		LOCK key writing sequence
		Write $1 \rightarrow$ Write $0 \rightarrow$ Write $1 \rightarrow$ Read $0 \rightarrow$ Read 1
		Note: The value of LCK[15:0] must hold during the LOCK Key Writing
		sequence.
15:0	LKx	Port Lock bit 0 ~ 15
		These bits are read write but can only be written when the LKK bit is 0.
		0: Port configuration not locked
		1: Port configuration locked

5.5.8. Event control register (AFIO_ECR)

Address offset: 0x00 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved									PORT[2:0] PIN[:			3:0]			
								rw		rw			rw		

Bits	Fields	Descriptions
31:8	Reserved	
7	EOE	Event output enable
		Set and cleared by software.When set the EVENTOUT Cortex output is
		connected to the I/O selected by the PORT[2:0] and PIN[3:0] bits
6:4	PORT[2:0]	Event output port selection
		Set and cleared by software.Select the port used to output the Cortex
		EVENTOUT signal.
		000: Select PORT A
		001: Select PORT B
		010: Select PORT C
		011: Select PORT D
		100: Select PORT E
3:0	PIN[3:0]	Event output pin selection
		Set and cleared by software.Select the pin used to output the Cortex
		EVENTOUT signal.
		These bits are set and cleared by software
		0000: Select Pin 0
		0001: Select Pin 1
		0010: Select Pin 2
		1111: Select Pin 15

5.5.9. AFIO port configuration register 1 (AFIO_PCFR1)

Address offset: 0x04 Reset value: 0x0000 0000

Memory map and bit definitions for low-,medium- high- and XL-density devices:

											•							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	F	Reserve	ed		SW	J_CFG[2	2:0]	R	eserved		ADC2_ ETRGRE R _REMAP	ADC2_ ETRGINJ _REMAP	ADC1_ ETRGRER _REMAP	ADC1_ ETRGINJ _REMAP	TIMER5C H4_ REMAP			
					w	w	w											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
REMAP	CAN_F	кема :0]	REMAP	AP	(3_REM [1:0]	AP	2_REM [1:0]	AP	1_REM [1:0]	RE	SAR13_ MAP[1:0]	REMAP	REMAP	REMAP	REMAP			
rw	rw	rw	rw		rw		rw		rw		rw	rw	rw	rw	rw			
Bits	Fie	elds				Desc	riptior	IS										
31:27	Re	eserve	ed															
26:24	SV	VJ_CI	FG[2:0]			Serial	wire .	ITAG o	configu	ratio	on							
						These bits are set and cleared by software												
						000: Full SWJ (JTAG-DP + SW-DP)Reset State												
						001: Full SWJ (JTAG-DP + SW-DP) but without NJTRST												
						010: JTAG-DP Disabled and SW-DP Enabled												
						100: JTAG-DP Disabled and SW-DP Disabled												
						Other: Undefined												
23:21	23:21 Reserved																	
	23:21 Reserved																	
20	AD	DC2_E	ETRGRE	G_RE	MAP	ADC 2	2 exte	rnal tri	gger re	gula	ar conver	sion remap	oping					
						Set and cleared by software. The bit control the trigger input connected to												
						ADC2 external trigger regular conversion. When this bit is reset, the ADC2												
						exterr	nal trig	ger ree	qular c	onve	ersion to	EXTI11.W	hen this bit	is set, th	e ADC2			
						exterr	nal eve	ent reg	ular co	nve	rsion is c	onnected t	o TIM8_TF	RGO.				
19	AD	DC2_E	ETRGINJ	_REM	AP	ADC 2	2 exte	rnal tri	gger re	gula	ar conver	sion remap	oping					
						Set a	nd clea	ared by	y softw	are.	The bit o	control the	trigger inp	ut connec	ted to			
						ADC2	exter	nal trig	ger inj	ecte	ed conver	sion. Whe	n this bit is	reset, the	e ADC2			
						exterr	nal trig	ger inj	ected o	conv	ersion to	EXTI15.W	hen this bi	t is set, th	e ADC2			
						exterr	nal eve	ent inje	ected co	onve	ersion is o	connected	to TIM8_C	hannel4.				
18	AD	DC1_E	ETRGRE	G_RE	MAP	ADC	1 exte	rnal tri	gger re	gula	ar conver	sion remap	oping					
						Set a	nd clea	ared by	y softw	are.	The bit o	control the	trigger inp	ut connec	ted to			
						ADC2	exter	nal trig	ger inj	ecte	ed conver	sion. Whe	n this bit is	reset, the	e ADC2			
						exterr	nal trig	ger inj	ected o	conv	ersion to	EXTI11.W	hen this bi	t is set, th	e ADC2			
						exterr	nal eve	ent inje	ected co	onve	ersion is o	connected	to TIM8_T	RGO.				
17	AD	DC1_E	ETRGINJ	_REM	AP	ADC	1 exte	rnal tri	gger re	gula	ar conver	sion remap	oping					
						Set a	nd clea	ared by	y softw	are.	The bit o	control the	trigger inp	ut connec	ted to			
						ADC2	exter	nal trig	ger inj	ecte	ed conver	sion. Whe	n this bit is	reset, the	e ADC1			

external trigger injected conversion to EXTI15.When this bit is set, the ADC1 external event injected conversion is connected to TIM8_Channel4.

16	TIMER5CH4_REMAP	TIMER5 channel4 internal remap Set and cleared by software.This bit controls the TIMER5_CH4 internal mapping.When reset the timer TIMER5_CH4 is connected to PA3.When set the LSI internal clock is connected to TIMER5_CH4 input for calibration purpose. Note: This bit is available only in high density value line devices.
15	PD01_REMAP	Port D0/Port D1 mapping on OSC_IN/OSC_OUT This bit is set and cleared by software 0: Not remap 1: PD0 remapped on OSC_IN, PD1 remapped on OSC_OUT
14:13	CAN_REMAP [1:0]	CAN interface remapping These bits are set and cleared by software. 00: No remap 01: Not used 10: Partial remap 11: Full remap
12	TIMER4_REMAP	TIMER4 remapping This bit is set and cleared by software 0: No remap 1: Full remap
11:10	TIMER3_Remap[1:0]	TIMER3 remapping These bits are set and cleared by software 00: No remap 01: Not used 10: Partial remap 11: Full remap
9:8	TIMER2_REMAP [1:0]	TIMER2 remapping These bits are set and cleared by software 00: No remap 01: Partial remap 10: Partial remap 11: Full remap
7:6	TIMER1_REMAP [1:0]	TIMER1 remapping These bits are set and cleared by software 00: No remap

		01: Partial remap 10: Not used 11: Full remap
5:4	USART3_REMAP [1:0]	USART3 remapping These bits are set and cleared by software 00: No remap 01: Partial remap 10: Not used 11: Full remap
3	USART2_REMAP	USART2 remapping This bit is set and cleared by software 0: No remap 1: Remap
2	USART1_REMAP	USART1 remapping This bit is set and cleared by software 0: No remap 1: Remap
1	I2C1_REMAP	I2C1 remapping This bit is set and cleared by software 0: No remap 1: Remap
0	SPI1_REMAP	SPI1 remapping This bit is set and cleared by software 0: No remap 1: Remap

Memory map and bit definitions for connectivity devices:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved	PTP_P PS_ REMA P	TIMER2I TR1_ REMAP	SPI3_ REMAP	Reserv ed	SW	J_CFG[2:0]	MII_RMI _SEL	CAN I 2_ REM AP	ETH RĒM AP		Rese	erved		TIMER5CH4_ REMAP
					w	w	w				rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PD01_	CAN_	REMAP	TIMER4_	TIMER3	B_REM	TIMER2	2_REM	TIMER1	_REM	US	ART3_	USART2_	USART1_	I2C1_	SPI1_
REMAP	[1:0]	REMAP	AP [1:0]	AP [1:0]	AP [1	:0]	REM	1AP[1:0]	REMAP	REMAP	REMAP	REMAP
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits Fields	Descriptions
-------------	--------------

\bigcirc		
GigaDevi	c e	GD32F10x User Manual
31	Reserved	Must be kept at reset value.
30	PTP_PPS_REMAP	Ethernet PTP PPS remapping
		This bit is set and cleared by software. It enables the Ethernet MAC_PPS to
		be output on the PB5 pin
		0: PPT_PPS not output PB5 pin
		1: PPT_PPS is output on PB5 pin
		Note : This bit is available only in connectivity line devices and is reserved
		otherwise.
29	TIMER2ITR1_REMAP	TIMER2 internal trigger 1 remapping
		These bits are set and cleared by software. It control the TMER2_ITR1
		internal mapping
		0: Connect TIMER2_ITR1 internally to the Ethernet PTP output for calibration purposes
		 Connect USB OTG SOF (Start of Frame) output TIMER2_ITR1 for calibration purposes
		Note: This bit is available only in connectivity line devices and is reserved
		otherwise.
28	SPI3_REMAP	SPI3/I2S3 remapping
		This bit is set and cleared by software.
		0: No remap (SPI3_NSS-I2S3_WS/PA15, SPI3_SCK-I2S3_CK/PB3,
		SPI3_MISO/PB4, SPI3_MOSI-I2S_SD/PB5)
		1: Full remap (SPI3_NSS-I2S3_WS/PA4, SPI3_SCK-I2S3_CK/PC10,
		SPI3_MISO/PC11, SPI3_MOSI-I2S_SD/PC12)
		Note: This bit is available only in connectivity line devices and is reserved
		otherwise.
27	Reserved	
26:24	SWJ_CFG[2:0]	Serial wire JTAG configuration
		These bits are write-only (when read, the value is undefined). They are used to
		configure the SWJ and trace alternate function I/Os. The SWJ(Serial Wire
		JTAG) supports JTAG or SWD access to the Cortex debug port. The default
		state after reset is SWJ ON without trace. This allows JTAG or SW mode to be
		enabled by sending a specific sequence on the JTMS/JTCK pin
		000: Full SWJ(JTAG-DP +SW-DP): Reset State
		001: Full SWJ(JTAG-DP +SW-DP): but without NJTRST
		010: JTAG-DP Disabled and SW-DP Enabled
		010: JTAG-DP Disabled and SW-DP Disabled
		Other combinations: no effect
23	MII_RMII_SEL	MII or RMII selection
		This bit is set and cleared by software. It configures the Ethernet MAC
		internally for use with an external MII or RMII PHY.
		0:Configure Ethernet MAC for connection with an MII PHY

1:Configure Ethernet MAC for connection with an RMII PHY Note: This bit is available only in connectivity line devices and is reserved otherwise.

22	CAN2_REMAP	CAN2 I/O remapping This bit is set and cleared by software.It controls the CAN2_TX and CAN2_RX pins 0: No remap (CAN2_RX/PB12,CAN_TX/PB13) 1:Remap (CAN2_RX/PB5,CAN_TX/PB6) Note: This bit is available only in connectivity line devices and is reserved otherwise.
21	ETH_REMAP	Ethernet MAC I/O remapping This bit is set and cleared by software.It controls the Ethernet MAC connections with PHY 0: No remap (RX_DV-CRS_DV/PA7,RXD0/PC4,RXD1/PC5,RXD2/PB0,RXD3/PB1) 1: Remap (RX_DV-CRS_DV/PD8,RXD0/PD9,RXD1/PD10,RXD2/PD11,RXD3/PD12) Note: This bit is available only in connectivity line devices and is reserved otherwise.
20:17	Reserved	
16	TIMER5CH4_IREMAP	TIMER5 channel4 internal remap Set and cleared by software.This bit controls the TIMER5_CH4 internal mapping. When reset timer TIMER5_CH4 is connected to PA3.When set the LSI internal clock connected to TIMER5_CH4 input for calibration purpose. 0: No remap 1: Remap
15	PD01_REMAP	Port D0/Port D1 mapping on OSC_IN/OSC_OUT This bit is set and cleared by software 0: Not remap 1: PD0 remapped on OSC_IN, PD1 remapped on OSC_OUT
14:13	CAN1_REMAP[1:0]	CAN1alternate interface remapping These bits are set and cleared by software
		00: No remap 01: Not used 10: Partial remap 11: Full remap

12	TIMER4_REMAP	TIMER4 remapping This bit is set and cleared by software. 0: No remap 1: Full remap
11:10	TIMER3_REMAP [1:0]	TIMER3 remapping These bits are set and cleared by software 00: No remap 01: Not used 10: Partial remap 11: Full remap
9:8	TIMER2_REMAP [1:0]	TIMER2 remapping These bits are set and cleared by software 00: No remap 01: Partial remap 10: Partial remap 11: Full remap
7:6	TIMER1_REMAP [1:0]	TIMER1 remapping These bits are set and cleared by software 00: No remap 01: Partial remap 10: Not used 11: Full remap
5:4	USART3_REMAP [1:0]	USART3 remapping These bits are set and cleared by software 00: No remap 01: Partial remap 10: Not used 11: Full remap
3	USART2_REMAP	USART2 remapping This bit is set and cleared by software 0: No remap 1: Remap
3	USART2_REMAP	USART2 remapping This bit is set and cleared by software 0: No remap 1: Remap
2	USART1_REMAP	USART1 remapping This bit is set and cleared by software 0: No remap

GigaD	5 evice	GD32F10x User Manual
		1: Remap
1	I2C1_REMAP	I2C1 remapping
		This bit is set and cleared by software
		0: No remap
		1: Remap
0	SPI1_REMAP	SPI1 remapping
		This bit is set and cleared by software
		0: No remap
		1: Remap

5.5.10. EXTI source selection register 1 (AFIO_ESSR1)

Address offset: 0x08 Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EXTI3[3:0] EXTI2[3:0]					EXTI	[3:0]			EXTIC	0[3:0]				
	rw rw					rw					rw				

Bits	Fields	Descriptions
31:16	Reserved	
15:12	EXTI3[3:0]	EXTI 3 pin configuration
		These bits are set and cleared by software
		refer to EXTI0[3:0] description
11:8	EXTI2[3:0]	EXTI 2 pin configuration
		These bits are set and cleared by software
		refer to EXTI0[3:0] description
7:4	EXTI1[3:0]	EXTI 1 pin configuration
		These bits are set and cleared by software
		refer to EXTI0[3:0] description
3:0	EXTI0[3:0]	EXTI 0 pin configuration
		These bits are set and cleared by software
		0000: PORTA[0] pin is selected as EXTI0 source signal
		0001: PORTB[0] pin is selected as EXTI0 source signal
		0010: PORTC[0] pin is selected as EXTI0 source signal
		0011: PORTD[0] pin is selected as EXTI0 source signal
		0100: PORTE[0] pin is selected as EXTI0 source signal
		0101: PORTF[0] pin is selected as EXTI0 source signal

0110: PORTG[0] pin is selected as EXTI0 source signal

5.5.11. EXTI source selection register 2 (AFIO_ESSR2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EXTI	7[3:0]		EXTI6[3:0]					EXTI	5[3:0]		EXTI4[3:0]			
	rw			rw				rw				rw			

Address offset: 0x0C Reset value: 0x0000

Bits	Fields	Descriptions
31:16	Reserved	
15:12	EXTI7[3:0]	EXTI 7 pin configuration
		These bits are set and cleared by software
		refer to EXTI0[3:0] description
11:8	EXTI6[3:0]	EXTI 6 pin configuration
		These bits are set and cleared by software
		refer to EXTI0[3:0] description
7:4	EXTI5[3:0]	EXTI 5 pin configuration
		These bits are set and cleared by software
		refer to EXTI0[3:0] description
3:0	EXTI4[3:0]	EXTI 4 pin configuration
		These bits are set and cleared by software
		refer to EXTI0[3:0] description

5.5.12. EXTI source selection register 3 (AFIO_ESSR3)

Address offset: 0x10
Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EXTI	11[3:0]			EXTI10	0[3:0]			EXTIS	9[3:0]			EXTI	8[3:0]	
	rw			rw				rw			rw				

Bits Fie	elds	Descriptions
Bits Fie	elds	Descriptions

166

31:16	Reserved	
15:12	EXTI11[3:0]	EXTI 11 pin configuration
		These bits are set and cleared by software
		refer to EXTI0[3:0] description
11:8	EXTI10 [3:0]	EXTI 10 pin configuration
		These bits are set and cleared by software
		refer to EXTI0[3:0] description
7:4	EXTI9 [3:0]	EXTI 9 pin configuration
		These bits are set and cleared by software
		refer to EXTI0[3:0] description
3:0	EXTI8 [3:0]	EXTI 8 pin configuration
		These bits are set and cleared by software
		refer to EXTI0[3:0] description

5.5.13. EXTI source selection register 4 (AFIO_ESSR4)

Address offset: 0x14 Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserv	ed							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EXTI15[3:0]				EXTI14[3:0]				EXTI13[3:0]				EXTI12[3:0]			
rw				rw				rw				rw			

Bits	Fields	Descriptions
31:16	Reserved	
15:12	EXTI15 [3:0]	EXTI 15 pin configuration These bits are set and cleared by software refer to EXTI0[3:0] description
11:8	EXTI14 [3:0]	EXTI 14 pin configuration These bits are set and cleared by software refer to EXTI0[3:0] description
7:4	EXTI13 [3:0]	EXTI 13 pin configuration These bits are set and cleared by software refer to EXTI0[3:0] description
3:0	EXTI12 [3:0]	EXTI 12 pin configuration These bits are set and cleared by software refer to EXTI0[3:0] description

5.5.14. AFIO port configuration register 2 (AFIO_PCFR2)

	Address offset: 0x1C														
			R	eset	value:	0x0000									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	eserve	ed		FSMC_	TIMER14_R	TIMER13_R	TIMER11_R	TIMER10_R	TIMER9_R			Reserv	/ed	
					NADV	EMAP	EMAP	EMAP	EMAP	EMAP					
					rw	rw	rw	rw	rw	rw					
Bit	11 Percented														
51.															
10	FSMC_NADV FSMC_NADV connect/disconnect														
						This bit	is set and cle	eared by soft	ware, It contr	ols the use	of op	tiona	I FSM	C_NA	JV
						signal.									
	0: The NADV signal is connected to the output(default)														
	1: The NADV signal is not connected. The I/O pin can be used by another peripheral.														
9		TIM	ER14	RE	MAP	TIMER1	4 remappir	ng							
						This bit	s set and cle	eared by soft	ware, It contro	ols the map	ping c	of the	TIME	R14_0	CH1
						alternate	e function on	to the GPIO	ports						
						0: No i	remap (PA7)								
						1: Ren	nap (PF9)								
-															
8		TIM	ER13	B_RE	MAP	TIMER1	3 remappir	ng Namad hu aaffu	wana li aanin			£ 41= =			
						alternat	s set and cle	to the GPIO	vare, it contro	ois the map	ping c	or the		R13_0	-11
							emap (PA6)		pons						
						1: Ren	nap (PF8)								
							I \ -/								
7		TIM	ER11	RE	MAP	TIMER1	1 remappir	ng							
						This bit	s set and cle	eared by soft	ware, It contro	ols the map	ping c	of the	TIME	R11_0	CH1
						alternate	e function on	to the GPIO	ports						
	0: No remap (PB9)														
	1: Remap (PF7)														
6		TIM	ER10	_RE	MAP	TIMER1	0 remappir	ng						_	
						This bit i	s set and cle	ared by soft	ware, It contro	ols the map	ping c	of the	TIME	R10_0	CH1
						alternate	e function on	to the GPIO	ports						

- 0: No remap (PB8)
- 1: Remap (PF6)

5 TIMER9_REMAP TIMER9 remapping

This bit is set and cleared by software, It controls the mapping of the TIMER9_CH1 and TIMER9_CH2 alternate function onto the GPIO ports

- 0: No remap (TIMER9_CH1 on PA2 and TIMER9_CH2 on PA3)
- 1: Remap (PF6) (TIMER9_CH1 on PE5 and TIMER9_CH2 on PE6)

4:0 Reserved

6. CRC Calculation Unit

6.1. Introduction

A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to raw data.

This CRC calculation unit can be used to calculate 32 bit CRC code within fix polynomial.

6.2. Main feature

- 32bit data input and 32 bit data output. Calculation period is 4 AHB Clock Cycle for 32 bit input data size from data entered to the calculation result available.
- Free purpose 8 bit register is unrelated for calculation and can be used for any other goal by any other peripheral device.
- Fix polynomial: 0x4C11DB7 X³² + X²⁶ + X²³ + X²² + X¹⁶ + X¹² + X¹¹ + X¹⁰ + X⁸ + X⁷ + X⁵ + X⁴ + X² + X + 1 This 32bit CRC polynomial is a common polynomial used in Ethernet.

Figure 6-1 Block Diagram of CRC Calculation Unit

6.3. Function Description

- CRC calculation unit is used to calculate the 32-Bit raw data, and CRC_DTR register will receive the raw data and store the calculation result. If do not clear the CRC_DTR register by software setting CRC_CTLR register, the new input raw data will calculate based on the result of previous value of CRC_DTR.
- CRC calculation will spend 4 AHB clock cycle for 32bit data size, during this
- period AHB will not be hanged because the existence of the 32-bit input buffer.
- This module supplies an 8-bit free register CRC_FDTR.
- CRC_FDTR is unrelated to the CRC calculation, any value you write in will be read out at anytime.

6.4. CRC Register

6.4.1. CRC Data Register (CRC_DTR)

Address offset: 0x00

		Rese	et value	: 0xFF	FF FFF	F									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DATA	[31:16]							
							r	w							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DATA	[15:0]							

rw

Bits	Fields	Descriptions
31:0	DATA[31:0]	CRC calculation result bits
		Software writes and reads.
		Write value cannot be read because the read value is the previous CRC calculation
		result.

6.4.2. CRC Free Data Register (CRC_FDTR)

Address offset: 0x04 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							FDR	[7:0]			
											r١	N			

Bits	Fields	Descriptions
31:8	Reserved	Keep at reset value
7:0	FDR[7:0]	Free Data Register Bits
		Software write and read
		These bits are unrelated with CRC calculation. This byte can be used for any goal by
		any other peripheral. The CRC_CTLR register will generate no effect to the byte.

6.4.3. CRC Control Register (CRC_CTLR)

Address offset: 0x08 Reset value: 0x0000 0000															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										RESET					
															rs

Bits	Fields	Descriptions
31:1	Reserved	Keep at reset value
0	RESET	This bit can reset the CRC_DTR register to the value of 0xFFFFFFFF then automatically
		cleared itself to 0 by hardware. This bit will generate no effect to CRC_FDTR.
		Software write and read.

7. Interrupts and events

7.1. Introduction

Cortex-M3 integrates the Nested Vectored Interrupt Controller (NVIC) for efficient exception and interrupts processing. NVIC facilitates low-latency exception and interrupt handling and controls power management. It's tightly coupled to the processer core. You can read the Technical Reference Manual of Cortex-M3 for more details about NVIC.

GD32F10x also provides an external interrupt/event controller called EXTI which can contains 20 independent edge detectors and generates interrupts request or wake up event to the processer. The EXTI has three trigger types: rising edge, falling edge and both edges. Each edge detector in the EXTI can be configured and masked independently.

7.2. Main features

- Cortex-M3 system exception
- Up to 68 maskable peripheral interrupts
- 4 bits interrupt priority configuration—16 priority levels
- Efficient interrupt processing
- Support exception pre-emption and tail chaining
- Wake up system from power saving mode
- 20 independent edge detectors in EXTI
- Three trigger types: rising, falling and both edges
- Software interrupt or event trigger
- Trigger sources configurable

7.3. Function description

7.3.1. NVIC and exception/interrupt processing

The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions in Handler Mode. The processor state is automatically stored to the stack on an exception and automatically restored from the stack at the end of the Interrupt Service Routine (ISR).

The vector is fetched in parallel to the state saving, enabling efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration. The following tables lists all exception types in the GD32F10x devices.

Table 7-1 NVIC exception types in Cotrex-M3

Exception Type	Vector Number	Priority (a)	Vector Address	Description
-	0	-	0x0000_0000	Reserved
Reset	1	-3	0x0000_0004	Reset
NMI	2	-2	0x0000_0008	Non maskable interrupt.
HardFault	3	-1	0x0000_000C	All class of fault
MemManage	4	Programmable	0x0000_0010	Memory management
BusFault	5	Programmable	0x0000_0014	Prefetch fault, memory access fault
UsageFault	6	Programmable	0x0000_0018	Undefined instruction or illegal state
-	7-10	-	0x0000_001C -0x0000_002B	Reserved
SVCall	11	Programmable	0x0000_002C	System service call via SWI instruction
Debug Monitor	12	Programmable	0x0000_0030	Debug Monitor
-	13	-	0x0000_0034	Reserved
PendSV	14	Programmable	0x0000_0038	Pendable request for system service
SysTick	15	Programmable	0x0000_003C	System tick timer

Table 7-2 Interrupt vector table of MD, HD and XD devices

Interrupt	Vector	Parinharal Interrunt Description	Vector Address
Number	Number	Penpheral Interrupt Description	vector Address
IRQ 0	16	Window watchdog interrupt	0x0000_0040
IRQ 1	17	LVD through EXTI Line detection interrupt	0x0000_0044
IRQ 2 18		Tamper interrupt	0x0000_0048
IRQ 3	19	RTC global interrupt	0x0000_004C
IRQ 4	20	Flash global interrupt	0x0000_0050
IRQ 5	21	RCC global interrupt	0x0000_0054
IRQ 6	22	EXTI Line0 interrupt	0x0000_0058
IRQ 7	23	EXTI Line1 interrupt	0x0000_005C
IRQ 8	24	EXTI Line2 interrupt	0x0000_0060
IRQ 9	25	EXTI Line3 interrupt	0x0000_0064
IRQ 10	26	EXTI Line4 interrupt	0x0000_0068
IRQ 11	27	DMA1 Channel1 global interrupt	0x0000_006C
IRQ 12	28	DMA1 Channel2 global interrupt	0x0000_0070
IRQ 13	29	DMA1 Channel3 global interrupt	0x0000_0074
IRQ 14 30 DMA1 Channel4 global interru		DMA1 Channel4 global interrupt	0x0000_0078
IRQ 15	31	DMA1 Channel5 global interrupt	0x0000_007C

Interrupt	Vector	Perinheral Interrunt Description	Vector Address
Number	Number		
IRQ 16	32	DMA1 Channel6 global interrupt	0x0000_0080
IRQ 17	33	DMA1 Channel7 global interrupt	0x0000_0084
IRQ 18	34	ADC1 and ADC2 global interrupt	0x0000_0088
IRQ 19	35	USB High Priority or CAN1 TX interrupts	0x0000_008C
IRQ 20	36	USB Low Priority or CAN1 RX0 interrupts	0x0000_0090
IRQ 21	37	CAN1 RX1 interrupt	0x0000_0094
IRQ 22	38	CAN1 SCE interrupt	0x0000_0098
IRQ 23	39	EXTI Line[9:5] interrupts	0x0000_009C
IRQ 24	40	TIMER1 Break interrupt (and TIMER9 global interrupt)	0x0000_00A0
IRQ 25	41	TIMER1 Update interrupt (and TIMER10 global interrupt)	0x0000_00A4
IRQ 26	42	TIMER1 Trigger and Communication interrupts (and TIMER11 global interrupt)	0x0000_00A8
IRQ 27	43	TIMER1 Capture Compare interrupt	0x000_00AC
IRQ 28	44	TIMER2 global interrupt	0x0000_00B0
IRQ 29	45	TIMER3 global interrupt	0x0000_00B4
IRQ 30	46	TIMER4 global interrupt	0x0000_00B8
IRQ 31	47	I2C1 event interrupt	0x0000_00BC
IRQ 32	48	I2C1 error interrupt	0x000_00C0
IRQ 33	49	I2C2 event interrupt	0x0000_00C4
IRQ 34	50	I2C2 error interrupt	0x0000_00C8
IRQ 35	51	SPI1 global interrupt	0x000_00CC
IRQ 36	52	SPI2 global interrupt	0x0000_00D0
IRQ 37	53	USART1 global interrupt	0x0000_00D4
IRQ 38	54	USART2 global interrupt	0x0000_00D8
IRQ 39	55	USART3 global interrupt	0x0000_00DC
IRQ 40	56	EXTI Line[15:10] interrupts	0x0000_00E0
IRQ 41	57	RTC alarm through EXTI line interrupt	0x0000_00E4
IRQ 42	58	USB wakeup from suspend through EXTI line interrupt	0x0000_00E8
IRQ 43	59	TIMER8 Break interrupt (and TIMER12 global interrupt)	0x0000_00EC
IRQ 44	60	TIMER8 Update interrupt (and TIMER13 global interrupt)	0x0000_00F0
IRQ 45	61	TIMER8 Trigger and Communication interrupts (and TIMER14 global interrupt)	0x0000_00F4
IRQ 46	62	TIMER8 Capture Compare interrupt	0x0000_00F8
IRQ 47	63	ADC3 global interrupt	0x0000_00FC

Interrupt	Vector	Peripheral Interrupt Description	Vector Address
Number	Number		
IRQ 48	64	EXMC global interrupt	0x0000_0100
IRQ 49	65	SDIO global interrupt	0x0000_0104
IRQ 50	66	TIMER5 global interrupt	0x0000_0108
IRQ 51	67	SPI3 global interrupt	0x0000_010C
IRQ 52	68	UART4 global interrupt	0x0000_0110
IRQ 53	69	UART5 global interrupt	0x0000_0114
IRQ 54	70	TIMER6 global interrupt	0x0000_0118
IRQ 55	71	TIMER7 global interrupt	0x0000_011C
IRQ 56	72	DMA2 Channel1 global interrupt	0x0000_0120
IRQ 57	73	DMA2 Channel2 global interrupt	0x0000_0124
IRQ 58	74	DMA2 Channel3 global interrupt	0x0000_0128
IRQ 59	75	DMA2 Channel4 and DMA2 Channel5 global interrupts	0x0000_012C

Note:

- 1) IRQ0 ~ 42 are available in MD devices, but when the flash memory is less than 64KB, IRQ30, IRQ33, IRQ34, IRQ36 and IRQ39 are not available.
- 2) IRQ0 ~ 59 are available in HD and XD devices, but the TIMER9 to TIMER14 global interrupts (in the brackets of the Peripheral interrupt description) are available only in the XD devices.

Interrupt Number	Vector Number	Peripheral Interrupt Description	Vector Address
IRQ 0	16	Window watchdog interrupt	0x0000_0040
IRQ 1	17	LVD through EXTI Line detection interrupt	0x0000_0044
IRQ 2	18	Tamper interrupt	0x0000_0048
IRQ 3	19	RTC global interrupt	0x0000_004C
IRQ 4	20	Flash global interrupt	0x0000_0050
IRQ 5	21	RCC global interrupt	0x0000_0054
IRQ 6	22	EXTI Line0 interrupt	0x0000_0058
IRQ 7	23	EXTI Line1 interrupt	0x0000_005C
IRQ 8	24	EXTI Line2 interrupt	0x0000_0060
IRQ 9	25	EXTI Line3 interrupt	0x0000_0064
IRQ 10	26	EXTI Line4 interrupt	0x0000_0068
IRQ 11	27	DMA1 Channel1 global interrupt	0x0000_006C
IRQ 12	28	DMA1 Channel2 global interrupt	0x0000_0070
IRQ 13	29	DMA1 Channel3 global interrupt	0x0000_0074
IRQ 14	30	DMA1 Channel4 global interrupt	0x0000_0078
IRQ 15	31	DMA1 Channel5 global interrupt	0x0000_007C
IRQ 16	32	DMA1 Channel6 global interrupt	0x0000_0080

Table 7-3 Interrupt vector table of Connectivity Line devices

Interrupt	Vector	Perinheral Interrunt Description	Vector Address
Number	Number	r enpheral interrupt Description	Vector Address
IRQ 17	33	DMA1 Channel7 global interrupt	0x0000_0084
IRQ 18	34	ADC1 and ADC2 global interrupt	0x0000_0088
IRQ 19	35	CAN1 TX interrupts	0x000_008C
IRQ 20	36	CAN1 RX0 interrupts	0x0000_0090
IRQ 21	37	CAN1 RX1 interrupt	0x0000_0094
IRQ 22	38	CAN1 SCE interrupt	0x0000_0098
IRQ 23	39	EXTI Line[9:5] interrupts	0x0000_009C
IRQ 24	40	TIMER1 Break interrupt	0x000_00A0
IRQ 25	41	TIMER1 Update interrupt	0x0000_00A4
IRQ 26	42	TIMER1 Trigger and Communication interrupts	0x0000_00A8
IRQ 27	43	TIMER1 Capture Compare interrupt	0x000_00AC
IRQ 28	44	TIMER2 global interrupt	0x0000_00B0
IRQ 29	45	TIMER3 global interrupt	0x0000_00B4
IRQ 30	46	TIMER4 global interrupt	0x0000_00B8
IRQ 31	47	I2C1 event interrupt	0x0000_00BC
IRQ 32	48	I2C1 error interrupt	0x0000_00C0
IRQ 33	49	I2C2 event interrupt	0x0000_00C4
IRQ 34	50	I2C2 error interrupt	0x0000_00C8
IRQ 35	51	SPI1 global interrupt	0x000_00CC
IRQ 36	52	SPI2 global interrupt	0x0000_00D0
IRQ 37	53	USART1 global interrupt	0x0000_00D4
IRQ 38	54	USART2 global interrupt	0x0000_00D8
IRQ 39	55	USART3 global interrupt	0x0000_00DC
IRQ 40	56	EXTI Line[15:10] interrupts	0x0000_00E0
IRQ 41	57	RTC alarm through EXTI line interrupt	0x0000_00E4
IRQ 42	58	USB OTG FS wakeup through EXTI line interrupt	0x0000_00E8
IRQ 43	59	TIMER8 Break interrupt (and TIMER12 global interrupt)	0x0000_00EC
IRQ 44	60	TIMER8 Update interrupt (and TIMER13 global interrupt)	0x0000_00F0
IRQ 45	61	TIMER8 Trigger and Communication interrupts (and TIMER14 global interrupt)	0x0000_00F4
IRQ 46	62	TIMER8 Capture Compare interrupt	0x0000_00F8
-	-	Reserved	0x0000_00FC
IRQ 48	64	EXMC global interrupt	0x0000_0100
-	-	Reserved	0x0000_0104
IRQ 50	66	TIMER5 global interrupt	0x0000_0108

Interrupt	Vector	Peripheral Interrupt Description	Vector Address
Number	Number		
IRQ 51	67	SPI3 global interrupt	0x0000_010C
IRQ 52	68	UART4 global interrupt	0x0000_0110
IRQ 53	69	UART5 global interrupt	0x0000_0114
IRQ 54	70	TIMER6 global interrupt	0x0000_0118
IRQ 55	71	TIMER7 global interrupt	0x0000_011C
IRQ 56	72	DMA2 Channel1 global interrupt	0x0000_0120
IRQ 57	73	DMA2 Channel2 global interrupt	0x0000_0124
IRQ 58	74	DMA2 Channel3 global interrupt	0x0000_0128
IRQ 59	75	DMA2 Channel4 global interrupt	0x0000_012C
IRQ 60	76	DMA2 Channel5 global interrupt	0x0000_0130
IRQ 61	77	Ethernet global interrupt	0x0000_0134
IRQ 62	78	Ethernet wakeup through EXTI line interrupt	0x0000_0138
IRQ 63	79	CAN2 TX interrupts	0x0000_013C
IRQ 64	80	CAN2 RX0 interrupts	0x0000_0140
IRQ 65	81	CAN2 RX1 interrupt	0x0000_0144
IRQ 66	82	CAN2 SCE interrupt	0x0000_0148
IRQ 67	83	USB OTG FS global interrupt	0x0000_014C

7.3.2. External Interrupt and Event (EXTI)

The EXTI contains 20 independent edge detectors and generates interrupts request or wake up event to the processer. The EXTI has three trigger types: rising edge, falling edge and both edges. Each edge detector in the EXTI can be configured and masked independently. Figure below is the block diagram of EXTI.

Figure 7-1 Block diagram of EXTI

The EXTI trigger source includes 16 external lines from GPIO pins and 4 lines from internal modules (including LVD, RTC Alarm, USB Wake-up and Ethernet Wake-up, please refer to Table-7-4 for detail), but this four EXTI lines are connected to the external trigger. All GPIO pins can be selected as an EXTI trigger source by configuring AFIO_ESSRx registers in GPIO module (please refer to GPIO section for detail).

EXTI can provide not only interrupts but also event signals to the process. The Cortex-M3 processor fully implements the Wait For Interrupt (WFI), Wait For Event (WFE) and the Send Event (SEV) instructions. The GD32F10x include a Wake-up Interrupt Controller (WIC). This enables the processor and NVIC to be put into a very low-power sleep mode leaving the WIC to identify and prioritize interrupts and event. EXTI can be used to wake up processor and the whole system when some expected event occurs, such as a special GPIO pin toggling or RTC alarm.

EXTI Line Number	Source	Attribute
0	PA0/PB0/PC0/PD0/PE0/PF0/PG0	External
1	PA1/PB1/PC1/PD1/PE1/PF1/PG1	External
2	PA2/PB2/PC2/PD2/PE2/PF2/PG2	External
3	PA3/PB3/PC3/PD3/PE3/PF3/PG3	External
4	PA4/PB4/PC4/PD4/PE4/PF4/PG4	External
5	PA5/PB5/PC5/PD5/PE5/PF5/PG5	External

Table 7-4 EXTI source

EXTI Line Number	Source	Attribute
6	PA6/PB6/PC6/PD6/PE6/PF6/PG6	External
7	PA7/PB7/PC7/PD7/PE7/PF7/PG7	External
8	PA8/PB8/PC8/PD8/PE8/PF8/PG8	External
9	PA9/PB9/PC90/PD90/PE9/PF9/PG9	External
10	PA10/PB10/PC10/PD10/PE10/PF10/PG10	External
11	PA11/PB11/PC11/PD11/PE11/PF11/PG11	External
12	PA12/PB12/PC12/PD12/PE12/PF12/PG12	External
13	PA13/PB13/PC13/PD13/PE13/PF13/PG13	External
14	PA14/PB14/PC14/PD14/PE14/PF14/PG14	External
15	PA15/PB15/PC15/PD15/PE15/PF15/PG15	External
16	LVD	External
17	RTC Alarm	External
18	USB Wake-up	External
19	Ethernet Wake-up	External

Note: The EXTI line19 is available only in the GD32F107xx device.

7.4. EXTI registers

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

7.4.1. Interrupt enable register (EXTI_IER)

Address offset: 0x00

Reset value: 0x0000 0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Rese	rved						IER19	IER18	IER17	IER16
													rw	rw	rw	rw
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IER15	IER14	IER13	IER12	IER11	IER10	IER9	IER8	IER7	IER6	IER5	IER4	IER3	IER2	IER1	IER0
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
E	Bits	F	ields		Desc	riptior	IS									
3	81:20	R	eserve	ed	Must	be kep	ot at re	set val	he							
1	9: 0	IE	Rx		Interr	upt ena	able co	ontrol								

0: Interrupt from Linex is disabled.

1: Interrupt from Linex is enabled.

Note: The Bit 19 is available only in the GD32F107xx device and is reserved otherwise.

7.4.2. Event enable register (EXTI_EER)

Address offset: 0x04 Reset value: 0x0000 0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Rese	erved						EER19	EER18	EER17	EER16
													rw	rw	rw	rw
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EER15	EER14 EER13 EER12 EER11 EER10 EER9 EER8 EER7 EER6 EER5 EER4										EER3	EER2	EER1	EER0	
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
E	Bits	Fields Descriptions														
3	1:20	R	eserve	ed	Must	be kep	ot at re	set val	ue							
1	9: 0	0 EERx Event enable control														
					0: Ev	ent fro	m Line	x is dis	abled.							
					1: Ev	ent fro	m Line	x is en	abled.							

Note: The Bit 19 is available only in the GD32F107xx device and is reserved otherwise.

7.4.3. Rising edge trigger enable register (EXTI_RTE)

Address offset: 0x08

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Res	erved						RTE19	RTE18	RTE17	RTE16
												rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RTE15	RTE14	RTE13	RTE12	RTE11	RTE10	RTE9	RTE8	RTE7	RTE6	RTE5	RTE4	RTE3	RTE2	RTE1	RTE0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits	F	ields		Desc	ription	IS									
31:20	٦	Reserve	ed	Must	be kep	ot at re	set val	ue							
19:0	F	RTEx		Risin	g edge	trigge	r enab	le							
				0: Ris	sing ed	ge of L	_ine x i	s not v	alid						
				1: Ris	sing ed	ge of L	_ine x i	s valid	as an i	interrup	ot/event red	quest			

Note: The Bit 19 is available only in the GD32F107xx device and is reserved otherwise.

7.4.4. Falling edge trigger enable register (EXTI_FTE)

Address offset: 0x0C Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Res	served						FTE19	FTE18	FTE17	FTE16
												rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FTE15	FTE14	FTE13	FTE12	FTE11	FTE10	FTE9	FTE8	FTE7	FTE6	FTE5	FTE4	FTE3	FTE2	FTE1	FTE0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits	F	ields		Des	criptio	ns									
31: 20	F	Reserve	ed	Must	t be kej	pt at re	eset va	lue							
19: 0	F	TEx		Falli	ng edge	e trigg	er ena	ble							
				0: Fa	alling e	dge of	Line x	is not	valid						

1: Falling edge of Line ${\boldsymbol{x}}$ is valid as an interrupt/event request

Note: The Bit 19 is available only in the GD32F107xx device and is reserved otherwise.

7.4.5. Software interrupt event register (EXTI_SIE)

Address offset: 0x10 Reset value: 0x0000 0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Rese	rved						SIE19	SIE18	SIE17	SIE16
													rw	rw	rw	rw
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SIE15	SIE14	SIE13	SIE12	SIE11	SIE10	SIE9	SIE8	SIE7	SIE6	SIE5	SIE4	SIE3	SIE2	SIE1	SIE0
-	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
E	Bits	F	ields		Desc	riptior	าร									
3	31:20	R	leserve	ed	Must	be kep	ot at re	eset va	alue							
1	19: 0	: 0 SIEx Interrupt/Event software trigger 0: Deactivate the EXTIx software interrupt/event r									event re	equest				

1: Activate the EXTIx software interrupt/event request

Note: The Bit 19 is available only in the GD32F107xx device and is reserved otherwise.

7.4.6. Pending register (EXTI_PD)

Address offset: 0x14 Reset value: undefined

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Re	eserved						PD19	PD18	PD17	PD16
													rw	rw	rw	rw
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ρ	D15	PD14	PD13	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bi	ts		Fields		Des	scripti	ons									
31	: 20	I	Reserv	/ed	Mu	st be k	ept at	reset	/alue							
19	: 0	I	PDx		Inte	errupt/E	Event p	pendin	g statu	IS						
					0: E	EXTI Li	ne x is	not tri	ggered	t						
					1: E	EXTI Li	ne x is	trigge	red. Tł	nis bit i	is clea	red to 0 by	writin	g 1 to	it.	

Note: The Bit 19 is available only in the GD32F107xx device and is reserved otherwise.

8. Direct memory access controller (DMA)

8.1. Introduction

The direct memory access (DMA) controller provides a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Data can be quickly moved by DMA between peripherals and memory as well as memory and memory without any CPU actions. There are 12 channels in the DMA controller (7 for DMA1 and 5 for DMA2). Each channel is dedicated to manage memory access requests from one or more peripherals. An arbiter is implemented inside to handle the priority among DMA requests.

The system bus is shared by the DMA controller and the Cortex[™]-M3 core. When the DMA and the CPU are targeting the same destination, the DMA access may stop the CPU access to the system bus for some bus cycles. Round-robin scheduling is implemented in the bus matrix to ensure at least half of the system bus bandwidth for the CPU.

Note:

GD32F101xx and GD32F103xx microcontrollers where the flash memory density ranges between 16 and 128 Kbytes are called Medium-density devices(GD32F10X_MD).

GD32F101xx and GD32F103xx microcontrollers where the flash memory density ranges between 256 and 512 Kbytes are called High-density devices(GD32F10X_HD).

GD32F101xx and GD32F103xx microcontrollers where the flash memory density is over 512 Kbytes are called X-density devices(GD32F10X_XD).

GD32F105xx and GD32F107xx microcontrollers are called connectivity line devices (GD32F10X_CL).

8.2. Main features

- Programmable length of data to be transferred, max to 65536
- 12 channels and each channel are configurable(7 for DMA1 and 5 for DMA2)
- AHB and APB peripherals, FLASH, SRAM can be accessed as source and destination
- Each channel is connected to fixed hardware DMA request
- The priorities of DMA channel requests are determined by software configuration and hardware channel number
- Support peripheral to memory, memory to peripheral, and memory to memory transfers
- Three types of event flags and one single interrupt request for each channel
- Configurable transfer size of source and destination in a channel

Note: Only high-density ,X-density and connectivity line devices have DMA2 controller.

8.3. Function description

8.3.1. DMA transfers

The handshake mechanism between the DMA controller and peripherals is based on the request signal and the acknowledge signal. The request singal indicates the peripheral is requesting for DMA access, while the acknowledge signal indicates the DMA controller has accessed the peripheral. When the DMA controller receives two or more requests at a time, the requests are served depending on the channel priorities. Each DMA transfer consists of two operations, including the loading of data from the source and the storage of the loaded data to the destination. The source and destination addresses are computed by the DMA controller based on the programmed values in the DMA_PBARx, DMA_MBARx, and DMA_CTLRx registers. For details, see Chapter 8.3.3. The DMA_RCNTx register controls how many transfers to be transmitted on the channel. The PSIZE and MSIZE bits in the DMA_CTLRx register determine how many bytes to be transmitted in a transfer. Suppose DMA_RCNT is 4, and both PNAGA and MNAGA are set. The DMA transfer operations for each combination of PSIZE and MSIZE are shown in the following table.

Trar	nsfer size	Transfer	operations
Source	Destination	Source	Destination
32 bits	32 bits	1: Read B3B2B1B0[31:0] @0x0	1: Write B3B2B1B0[31:0] @0x0
		2: Read B7B6B5B4[31:0] @0x4	2: Write B/B6B5B4[31:0] @0x4
		4: Read BFBEBDBC[31:0] @0x0	
32 bits	16 bits	1: Read B3B2B1B0[31:0] @0x0	1. White $B[B[D[7:0]] \otimes O(X)$
		2. Read BBBAB0B8[31:0] @0x4	2. White B0B4[7:0] @0x2 3: Write B0B8[7:0] @0x4
		4: Read BEBEBDBC[31:0] @0x0	4: Write BDBC[7:0] @0x4
		1: Read B3B2B1B0[31:0] @0x0	1: Write B0/7:01 @0x0
32 bits	8 bits	2: Read B7B6B5B4[31:0] @0x4	2: Write B4[7:0] @0x1
		3: Read BBBAB9B8[31:0] @0x8	3: Write B8[7:0] @0x2
		4: Read BFBEBDBC[31:0] @0xC	4: Write BC[7:0] @0x3
401.11	001.10	1: Read B1B0[15:0] @0x0	1: Write 0000B1B0[31:0] @0x0
16 DItS	32 Dits	2: Read B3B2[15:0] @0x2	2: Write 0000B3B2[31:0] @0x4
		3: Read B5B4[15:0] @0x4	3: Write 0000B5B4[31:0] @0x8
		4: Read B7B6[15:0] @0x6	4: Write 0000B7B6[31:0] @0xC
16 bito	16 hito	1: Read B1B0[15:0] @0x0	1: Write B1B0[15:0] @0x0
TO DILS	TODIIS	2: Read B3B2[15:0] @0x2	2: Write B3B2[15:0] @0x2
		3: Read B5B4[15:0] @0x4	3: Write B5B4[15:0] @0x4
		4: Read B7B6[15:0] @0x6	4: Write B7B6[15:0] @0x6
16 hite	8 hite	1: Read B1B0[15:0] @0x0	1: Write B0[7:0] @0x0
10 0115	0 0115	2: Read B3B2[15:0] @0x2	2: Write B2[7:0] @0x1
		3: Read B5B4[15:0] @0x4	3: Write B4[7:0] @0x2
		4: Read B7B6[15:0] @0x6	4: Write B6[7:0] @0x3
8 hits	32 hits	1: Read B0[7:0] @0x0	1: Write 000000B0[31:0] @0x0
0 510	02 010	2: Read B1[7:0] @0x1	2: Write 000000B1[31:0] @0x4
		3: Read B2[7:0] @0x2	3: Write 000000B2[31:0] @0x8
		4: Read B3[7:0] @0x3	4: Write 000000B3[31:0] @0xC
8 hits	16 bits	1: Read B0[7:0] @0x0	1, Write 00B0[15:0] @0x0
0 5110	10 510	2: Read B1[7:0] @0x1	2, Write 00B1[15:0] @0x2
		3: Read B2[7:0] @0x2	3, Write 00B2[15:0] @0x4
		4: Read B3[7:0] @0x3	4, vvrite 00B3[15:0] @0x6
8 bits	8 bits	1: Read B0[7:0] @0x0	1, Write B0[/:0] @0x0
0	0 0.00	2: Read B1[/:0] @0x1	2, Write B1[/:0] @0x1
		3: Read B2[7:0] @0x2	3, write B2[7:0] @0x2
		4: Read B3[7:0] @0x3	4, Write B3[7:0] @0x3

Table 8-1 DMA transfer operations

8.3.2. Arbitration among channels

When two or more requests are received at a time, the arbiter determines which request is served based on the priorities of channels. There are two-stage priorities, including the software priority and the hardware priority. The software priority is configured by the PRIO[1:0] bits in the DMA_CTLRx register. There are four levels, including low, medium, high, and ultra high. And the hardware priority is fixed. That is the channel with lower numer gets priority versus the channel with higher number. For example, channel 1 gets priority over channel 3. The software priority is more significant than the hardware priority. If two channels are configured in different software priorities, the channel with higher software priority is served. If two channels are configured in the same software priority, the channel with higher hardware priority is served.

8.3.3. Next address generation algorithm

PSIZE and MSIZE bits in the DMA_CTLRx register are used for configuring the transfer data size of peripheral and memory. PNAGA and MNAGA bits in the DMA_CTLRx register are used to configure the next address generation algorithm of peripheral and memory. There are two algorithms including the fixed address mode and the increasing address mode. In the fixed address mode, the next address is equal to the current address. In the increasing address mode, the next address is the current address plus 1 or 2 or 4, depending on the transfer data size.

8.3.4. Circulation mode

Circular mode is implemented for circular data flows (for example, ADC scan mode). The feature can be enabled by configuring the CIRC bit in the DMA_CTLRx register. If enabled, the remain counter of the channel is automatically reloaded with the initial programmed value when it reaches zero. So the DMA requests are always served.

8.3.5. Memory to memory mode

The memory to memory mode is enabled by setting the MEMTOMEM bit in the DMA_CTLRx register. In this mode, the DMA channel can also work without being triggered by a request from a peripheral. The DMA channel starts transferring as soon as it is enabled by setting the CHEN bit in the DMA_CTLRx register, and stops when the DMA_RCNTx register reaches zero.

8.3.6. Interrupt requests

Each DMA channel has a dedicated interrupt. There are three types of interrupt event, including transfer complete, half transfer complete, and transfer error. An interrupt may be produced when any type of interrupt event occurs on the channel. Each interrupt event has a dedicated flag bit in the DMA_IFR register, a dedicated clear bit in the DMA_ICR register,

and a dedicated enable bit in the DMA_CTLRx register. The relationship is described in the following table.

Table 8-2 DMA interrupt event

Interrupt event	Flag bit	Clear bit	Enable bit
Transfer complete	TCIF	TCIC	TCIE
Half transfer complete	HTIF	HTIC	HTIE
Transfer error	ERRIF	ERRIC	ERRIE

Figure 8-1 DMA interrupt generation logic

NOTE: "x" indicates channel number (for DMA1, x=1...7. for DMA2, x=1...5). In connectivity line devices, DMA2 Channel4 and DMA2 Channel5 interrupts have different interrupt vectors. In high-density and XL-density devices, DMA2 Channel4 and DMA2 Channel5 interrupts have the same interrupt vector. Other DMAx [1,2] Channel interrupts have different interrupt vector.

The transfer error event occurs when the DMA controller accesses a reserved address space. At the moment, the channel is automatically shut down through hardware clear of the CHEN bit in the DMA_CTLRx register.

8.3.7. DMA channel configuration procedure

The following sequence should be followed to configure a DMA channel.

- 1. Configure the DMA_PBARx register for setting the peripheral address.
- 2. Configure the DMA_MBARx register for setting the memory address.
- 3. Configure the DMA_RCNTx register for setting the total transfer data number.
- 4. Configure the DMA_CTLRx register for channel software priority, transfer direction, mode type, data size and interrupt type.
- 5. Configure the DMA_CTLRx register for setting the CHEN bit.

8.3.8. DMA Request Mapping

Several requests from peripherals may be mapped to one DMA channel. They are logically ORed before entering the DMA. For details, see the following figure. The request of each

peripheral can be independently enabled or disenabled by programming the registers of the corresponding peripheral. The user has to ensure that only one request is enabled at a time on one channel.

Figure 8-2 DMA1 request mapping

Table 8-3 lists the support request from peripheral of each channel.

Table 8-3 Summary of DMA	1 requests for each channel
--------------------------	-----------------------------

Peripherals	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 7
TIMER1	•	TIMER1_CH1	TIMER1_CH2	TIMER1_CH4 TIMER1_TRIG TIMER1_COM	TIMER1_UP	TIMER1_CH3	•
TIMER2	TIMER2_CH3	TIMER2_UP	•	•	TIMER2_CH1	•	TIMER2_CH2 TIMER2_CH4

TIMER3	•	TIMER3_CH3	TIMER3_CH4 TIMER3_UP	•	•	TIMER3_CH1 TIMER3_TRIG	•
TIMER4	TIMER4_CH1	•	•	TIMER4_CH2	TIMER4_CH3	•	TIMER4_UP
ADC1	ADC1	•	•	•	•	•	•
SPI	•	SPI1_RX	SPI1_TX	SPI/I2S2_RX	SPI/I2S2_TX	•	•
USART	•	USART3_TX	USART3_RX	USART1_TX	USART1_RX	USART2_RX	USART2_TX
I2C	•	•	•	I2C2_TX	I2C2_RX	I2C1_TX	I2C1_RX

Figure 8-3 DMA1 request mapping

Table 8-4 lists the support request from peripheral of each channel.

		•			
Peripherals	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
	TIMER5_CH4	TIMER5_CH3			
TIMERS	TIMER5_TRIG	TIMER5_UP	•		
TIMER6/			TIMER6_UP/		
DAC_Channel1	•	•	DAC_Channel1	•	•
TIMER7/				TIMER7_UP/	
DAC_Channel2	•	•	•	DAC_Channel2	•
		TM8_CH4			
TIMER8		TM8_TRIG	TM8_CH1	•	TM8_CH2
		TM8_COM			

Table 8	8-4	Summary	of DMA2	requests	for	each	channel
---------	-----	---------	---------	----------	-----	------	---------

ADC3	•	•	•	●	ADC3
SPI/I2S3	SPI/I2S3_RX	SPI/I2S3_TX	•	●	•
USART4	•	•	USART4_RX	●	USART4_TX
SDIO	•	•	•	SDIO	•

8.4. DMA registers

Note: For DMA2 having 5 channels, all bits related to channel6 and channel7 In the following registers, are not suitable for DMA2.

8.4.1. DMA interrupt status register (DMA_IFR)

Address offset: 0x00 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Rese	rved		ERRIF7	HTIF7	TCIF7	GIF7	ERRIF6	HTIF6	TCIF6	GIF6	ERRIF5	HTIF5	TCIF5	GIF5
				r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ERRIF4	HTIF4	TCIF4	GIF4	ERRIF3	HTIF3	TCIF3	GIF3	ERRIF2	HTIF2	TCIF2	GIF2	ERRIF1	HTIF1	TCIF1	GIF1
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits	Fields	Descriptions
31:28	Reserved	Keep at reset value
27/23/19/	ERRIFx	Error flag of channel x (x=17)
15/11/7/3		Hardware set and software cleared by configuring DMA_ICR register.
		0: Error has not occurred on channel x
		1: Error has occurred on channel x
26/22/18/	HTIFx	Half transfer complete flag of channel x (x=17)
14/10/6/2		Hardware set and software cleared by configuring DMA_ICR register.
		0: Half number of transfer has not completed on channel x
		1: Half number of transfer has completed on channel x
25/21/17/	TCIFx	Transfer complete flag of channel x (x=17)
13/9/5/1		Hardware set and software cleared by configuring DMA_ICR register.
		0: Transfer has not completed on channel x
		1: Transfer has completed on channel x
24/20/16/	GIFx	Global interrupt flag of channel x (x=17)
12/8/4/0		Hardware set and software cleared by configuring DMA_ICR register.
		0: None of ERRIF, HTIF or TCIF occurs on channel x
		1: At least one of ERRIF, HTIF or TCIF occurs on channel x

8.4.2. DMA interrupt flag clear register (DMA_ICR)

Address offset: 0x04 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Rese	rved		ERRIC7	HTIC7	TCIC7	GIC7	ERRIC6	HTIC6	TCIC6	GIC6	ERRIC5	HTIC5	TCIC5	GIC5
				w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ERRIC4	HTIC4	TCIC4	GIC4	ERRIC3	HTIC3	TCIC3	GIC3	ERRIC2	HTIC2	TCIC2	GIC2	ERRIC1	HTIC1	TCIC1	GIC1
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

Bits	Fields	Descriptions
31:28	Reserved	Keep at reset value
27/23/19/	ERRICx	Clear error flag of channel x (x=17)
15/11/7/3		0: No effect
		1: Clear ERRIFx bit in the DMA_IFR register
26/22/18/	HTICx	Clear half transfer complete flag of channel x (x=17)
14/10/6/2		0: No effect
		1: Clear HTIFx bit in the DMA_IFR register
25/21/17/	TCICx	Clear transfer complete flag of channel x (x=17)
13/9/5/1		0: No effect
		1: Clear TCIFx bit in the DMA_IFR register
24/20/16/	GICx	Clear global interrupt flag of channel x (x=17)
12/8/4/0		0: No effect
		1: Clear GIFx, ERRIFx, HTIFx and TCIFx bits in the DMA_IFR register

8.4.3. DMA channel x control register (DMA_CTLRx)

x = 1..7, where x is channel number Address offset: $0x08 + 0d20 \times (x - 1)$ Reset value: $0x0000\ 0000$

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	MEMTO MEM	PRIC	0[1:0]	MSIZE	E[1:0]	PSIZE	PSIZE[1:0]		PNAGA	CIRC	DIR	ERRIE	HTIE	TCIE	CHEN
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
31:15	Reserved	Keep at reset value

14	MEMTOMEM	Memory to Memory Mode
		0: Disenable Memory to Memory Mode
		1: Enable Memory to Memory Mode
13:12	PRIO[1:0]	Priority Level of this channel
		00: Low
		01: Medium
		10: High
		11: Ultra high
11:10	MSIZE[1:0]	Transfer data size of memory
		00: 8-bit
		01: 16-bit
		10: 32-bit
		11: Reserved
9:8	PSIZE[1:0]	Transfer data size of peripheral
		00: 8-bit
		01: 16-bit
		10: 32-bit
		11: Reserved
7	MNAGA	Next address generation algorithm of memory
		0: Fixed address mode
		1: Increasing address mode
6	PNAGA	Next address generation algorithm of peripheral
		0: Fixed address mode
		1: Increasing address mode
5	CIRC	Circulation mode
		0: Disenable circulation mode.
		1: Enable circulation mode
4	DIR	Direction of the data transfer on the channel
		0: Read from peripheral and write to memory
		1: Read from memory and write to peripheral
3	ERRIE	Enable bit for channel error interrupt
		0: Disenable the channel error interrupt
		1: Enable the channel error interrupt
2	HTIE	Enable bit for channel transfer half complete interrupt
		0:Disenable HT interrupt
		1:Enable HT interrupt
1	TCIE	Enable bit for channel transfer complete interrupt
		0:Disenable TC interrupt

Note:

1:Enable TC interrupt

0	CHEN	Channel enable
		0:Disenable channel
		1:Enable channel

8.4.4. DMA channel x remain counter (DMA_RCNTx)

x = 1..7, where x is channel number Address offset: $0x0C + 0d20 \times (x - 1)$ Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RCNT[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
31:16	Reserved	must be kept at reset value
15:0	RCNT[15:0]	Remain counter

This register indicates how many transfers remain. It can only be written when the channel is disenabled. Once the channel is enabled, it is read-only, and decreases after each DMA transfer. If the register is zero, no transaction can be issued whether the channel is enabled or not. Once the mission of the channel is complete, the register can be reloaded automatically by the previously programmed value if the channel is configured in auto-reload mode.

8.4.5. DMA channel x peripheral base address register (DMA_PBARx)

x = 1..7, where x is channel number Address offset: 0x10 + 0d20 × (x – 1) Reset value: 0x0000 0000 Do not configure this register when channel is enabled.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	PBAR[31:16]														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PBAR[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits	l	Fields		Descriptions											
31:0	:0 PBAR[31:0]			Periph	Peripheral base address										

When PSIZE is 01 (16-bit), PBAR[0] is ignored. Access is automatically aligned to a half word address. When PSIZE is 10 (32-bit), PBAR[1:0] is ignored. Access is automatically aligned to a word address.

8.4.6. DMA channel x memory base address register (DMA_MBARx)

x = 1..7, where x is channel number Address offset: $0x14 + 0d20 \times (x - 1)$ Reset value: $0x0000\ 0000$

Note: Do not configure this register when channel is enabled.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MBAR[31:16]															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MBAR[15:0]															
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
31:0	MBAR[31:0]	Memory base address
		When MSIZE is 01 (16-bit), MBAR[0] is ignored. Access is automatically aligned to a
		half word address.
		When MSIZE is 10 (32-bit), MBAR[1:0] is ignored. Access is automatically aligned to a
		word address.

9. Timer (TIMERx)

TIMER	TIMER1/8	TIMER2/3/4/5	TIMER6/7	TIMER9/12	TIMER10/11/13/14		
TYPE	Advanced	General(1)	Basic	General(2)	General(3)		
Prescaler	16-bit	16-bit	16-bit	16-bit	16-bit		
Counte mode	UP,DOWN, Center-aligned	UP,DOWN, Center-aligned	UP ONLY	UP,DOWN, Center-aligned	UP,DOWN, Center-aligned		
Repetition	•	×	×	×	×		
Capture/ compare CH	4	4	0	2	1		
Output Complementary	3	×	×	×	×		
Deadtime	•	×	×	×	×		
Break	•	×	×	×	×		
Single Pulse	•	•	×	•	•		
Quadrature Decoder	•	•	×	•	×		
Hall sensor interface	•	×	×	×	×		
Slave Controller	•	• •		٠	×		
Inter connection	•(1)	●(2)	TRGO TO DAC	●(3)	•(3)		
Debug Mode	•	• •		٠	•		
DMA	DMA •		•	×	×		

Timers (TIMERx) are devided into five sorts.

(1) TIMER 1: timer5_trgo->it0; timer 2_trgo->it1; timer 3_trgo->it2; timer 4_trgo ->it3;
 TIMER 8: timer 1_trgo->it0; timer 2_trgo->it1; timer 4_trgo->it2; timer 5_trgo ->it3;

(2) TIMER 2: timer 1_trgo->it0; timer 8_trgo->it1; timer 3_trgo->it2; timer 4_trgo ->it3; TIMER 3: timer 1_trgo->it0; timer 2_trgo->it1; timer 5_trgo->it2; timer 4_trgo ->it3; TIMER 4: timer 1_trgo->it0; timer 2_trgo->it1; timer 3_trgo->it2; timer 8_trgo ->it3; TIMER 5: timer 2_trgo->it0; timer 3_trgo->it1; timer 4_trgo->it2; timer 8_trgo ->it3;

(3) TIMER 9: timer 2_trgo->it0; timer 3_trgo->it1; timer 10_trgo ->it2; timer 11_trgo ->it3; TIMER 12: timer 4_trgo->it0; timer 5_trgo->it1; timer 13_trgo ->it2; timer 14_trgo ->it3;

9.1. Advanced timer (TIMER 1 and TIMER8)

9.1.1. Introduction

The Advanced Timers, known as TIMER1 and TIMER8, may be used for a variety of purposes of advanced control. They consist of one 16-bit up/down-counter, four 16-bit capture/compare registers (TIMERx_CHCC), one 16-bit counter auto reload register (TIMERx_CARL) and several control registers. They can be used for a variety of purposes including general timer, input signal pulse width measurement or output waveform generation such as single pulse generation or PWM output. TIMER1 and TIMER8 support an Encoder Interface using a decoder with two inputs.

The advanced (TIMER1 and TIMER8) and general (TIMERx) timers are completely independent. They do not share any resources but can be synchronized together.

9.1.2. Main features

- 16-bit down, up, down/up auto-reload counter.
- 16-bit programmable prescaler that allows division of the counter clock frequency by any factor between 1 and 65536.
- Up to 4 independent channels support functions including input capture, compare match output, generation of PWM waveform (edge and center-aligned Mode), and single pulse mode output.
- Counter repetition to update the timer registers only after a given number of cycles of the counter.
- Break input to trigger the timer's output signals to a known state.
- Interrupt/DMA generation by update, trigger event, input capture event, output compare match event or break input.
- Programmable dead-time for output match.
- Synchronization circuit to control TIMER1 (or TIMER8) with external signals or to interconnect several timers together.
- Encoder interface controller with two inputs using quadrature decoder
- TIMERx Master/Slave mode controller

9.1.3. Function description

Figure below provides details on the internal configuration of the advanced timer.

Figure 9-1 Advanced timer block diagram

Prescaler counter

The prescaler can divide the timer clock (PCLK) to the counter clock (CNT_CLK) by any factor between 1 and 65536. It is controlled through prescaler register (TIMERx_PSC) which can be changed on the fly but be taken into account at the next update event.

Figure 9-2 Counter timing diagram with prescaler division change from 1 to 2

Figure 9-3 Counter timing diagram with prescaler division change from 1 to 4

Upcounting mode

In this mode the counter counts continuously from 0 to the counter-reload value, which is defined in the TIMERx_CARL register, in a count-up direction. Once the counter reaches the counter reload value, the counter restarts to count once again from 0. If the repetition counter is set, the update events generated after the number (TIMERx_CREP+1) of overflow. Else the update event is generated at each counter overflow. The counting direction bit DIR in the TIMERx_CTLR1 register should be set to 0 for the upcounting mode.

When the update event is set by the UPG bit in the TIMERx_EVG register, the counter value will be initialized to 0 and generates an update event.

If set the UPDIS bit in TIMERx_CTLR1 register, the update event is disabled.

When an update event occurs, all the registers (repetition counter, autoreload register, prescaler register) are updated.

The following figures show some examples of the counter behavior for different clock frequencies when TIMERx_CARL=0x63.

Figure 9-4 Counter timing diagram, internal clock divided by 1

Figure 9-6 Counter timing diagram, internal clock divided by 4

Figure 9-8 Counter timing diagram, update event when ARSE=0

Figure 9-9 Counter timing diagram, update event when ARSE=1

Downcounting mode

In this mode the counter counts continuously from the counter-reload value, which is defined in the TIMERx_CARL register, to 0 in a count-down direction. Once the counter reaches 0, the counter restarts to count once again from the counter-reload value. If the repetition counter is set, the update event generated after the number (TIMERx_CREP+1) of underflow. Else the update event is generated at each counter underflow. The counting direction bit DIR in the TIMERx_CTLR1 register should be set to 1 for the down-counting mode.

When the update event is set by the UPG bit in the TIMERx_EVG register, the counter value will be initialized to the counter-reload value and generates an update event.

If set the UPDIS bit in TIMERx_CTLR1 register, the update event is disabled.

When an update event occurs, all the registers (repetition counter, autoreload register, prescaler register) are updated.

The following figures show some examples of the counter behavior for different clock frequencies when TIMERx_CARL=0x63.

Figure 9-10 Counter timing diagram, internal clock divided by 1

Figure 9-11 Counter timing diagram, internal clock divided by 2

Figure 9-13 Counter timing diagram, internal clock divided by N

Center-aligned counting mode

In the center-aligned counting mode, the counter counts up from 0 to the counter-reload value and then counts down to 0 alternatively. The Timer module generates an overflow event when the counter counts to the counter-reload value subtract 1 in the up-counting mode and generates an underflow event when the counter counts to 1 in the down-counting mode. The counting direction bit DIR in the TIMERx_CTLR1 register is read-only and indicates the counting direction when in the center-aligned mode. The counting direction is

updated by hardware automatically.

Setting the UPG bit in the TIMERx_EVG register will initialize the counter value to 0 irrespective of whether the counter is counting up or down in the center-align counting mode and generates an update event.

The UPIF bit in the TIMERx_EVG register can be set to 1 when an underflow event at count-down (CAM in TIMERx_CTLR1 is "01"), an overflow event at count-up (CAM in TIMERx_CTLR1 is "10") or both of them occur (CAM in TIMERx_CTLR1 is "11").

If set the UPDIS bit in the TIMERx_CTLR1 register, the update event is disabled.

When an update event occurs, all the registers (repetition counter, autoreload register, prescaler register) are updated.

The following figures show some examples of the counter behavior for different clock frequencies when TIMERx_CARL=0x5.

Figure 9-15 Counter timing diagram, internal clock divided by 1, TIMERx_CARL=0x5

Figure 9-16 Counter timing diagram, internal clock divided by 1

Figure 9-18 Counter timing diagram, internal clock divided by N

Figure 9-20 Counter timing diagram, Update event with ARSE=1 (counter overflow)

Counter Repetition

Counter Repetition is used to generator update event or updates the timer registers only after a given number (N+1) of cycles of the counter, where N is CREP in TIMERx_CREP register. The repetition counter is decremented at each counter overflow in up-counting mode, at each counter underflow in down-counting mode or at each counter overflow and at each counter underflow in center-aligned mode.

Setting the UPG bit in the TIMERx_EVG register will reload the content of CREP in TIMERx_CREP register and generator an update event.

For odd values of CREP in center-aligned mode, the update event occurs either on the overflow or on the under depending on when the CREP register was written and when the counter was started. The update event generated at overflow when the CREP was written before starting the counter, and generated at underflow when the CREP was written after starting the counter.

Figure 9-21 Update rate examples depending on mode and TIMERx_CREP

Clock selection

The following describes the Timer Module clock controller which determines the clock source of the internal prescaler counter.

Internal timer clock PCLK

The default internal clock source is the APB2 clock CK_APB2 used to drive the counter prescaler when the slave mode is disabled. If the slave mode controller is enabled by setting SMC field in the TIMERx_SMC register to an available value including 0x1, 0x2, 0x3 and 0x7, the prescaler is clocked by other clock sources selected by the TRGS field in the TIMERx_SMC register and described as follows. When the slave mode selection bits SMC are set to 0x4, 0x5 or 0x6, the internal clock PCLK is the counter prescaler driving clock source.

Figure 9-22 Control circuit in normal mode, internal clock divided by 1

Quadrature decoder

To select Quadrature Decoder mode the SMC field should be set to 0x1, 0x2 or 0x3 in the TIMERx_SMC register. The Quadrature Decoder function uses two input states of the TIMERx_CH1 and TIMERx_CH2 pins to generate the clock pulse to drive the counter prescaler. The counting direction bit DIR is modified by hardware automatically at each transition on the input source signal. The input source signal can be derived from the TIMERx_CH1 pin only, the TIMERx_CH2 pin only or both TIMERx_CH1 and TIMERx_CH2 pins.

Internal trigger inputs (ITI)

The counter prescaler can count during each rising or falling edge of the ITI signal. This mode can be selected by setting the SMC field to 0x6 in the TIMERx_SMC register; here the counter will act as an event counter. The input event, known as ITI here, can be selected by setting the TRGS field. When the ITI signal is selected as the clock source, the internal edge detection circuitry will generate a clock pulse during each ITI signal rising or falling edge to drive the counter prescaler.

External input pin (TIx)

The counter prescaler can be driven to count during each rising or falling edge on the external pin TIMERx_ TIx. This mode can be selected by setting SMC field to 0x7 and the TRGS field to 0x4, 0x5 or 0x6. Note that the TIx is derived from the TIMERx_TIx sampled by a digital filter.

External trigger input (ETIF)

The counter prescaler can be driven to count during each rising or falling edge on the external pin TIMER1_ ETI. This mode can be selected by setting the ECM2E bit in the TIMER1_SMC register to 1. The other way to select the ETIF signal as the clock source is to set the SMC field to 0x6 and the TRGS field to 0x7 respectively. Note that the ETIF signal is derived from the TIMER1_ETI pin sampled by a digital filter. When the clock source is selected to come from the ETIF signal, the Trigger Controller including the edge detection circuitry will generate a clock pulse during each ETIF signal rising edge to clock the counter prescaler.

Capture/compare channels

The TIMER1/TIMER8 has four independent channels which can be used as capture inputs or compare match outputs. Each channel is built around a channel capture compare register including an input stage, a channel controller and an output stage.

Input capture stage

The input stage consists of a digital filter, a channel polarity selection, edge detection and a channel prescaler. The channel1 input signal (TI1) can be chosen to come from the TIMERx_CH1 signal or the Excusive-OR function of the TIMERx_CH1, TIMERx_CH2 and TIMERx_CH3 signals. The channel input signal (TIx) is sampled by a digital filter to generate a filtered input signal TIxF. Then the channel polarity and the edge detection block can

generate a TIxFPx signal for the input capture function. The effective input event number can be set by the channel input prescaler register (CHxICP).

Figure 9-23 Capture/compare channel (example: channel 1 input stage)

Channel controller

The TIMERx has four independent channels which can be used as capture inputs or compare match outputs.

When used in the input capture mode, the counter value is captured into the TIMERx_CHCCx shadow register first and then transferred into the TIMERx_CHCCx preload register when the capture event occurs.

When used in the compare match output mode, the contents of the TIMERx_CHCCx preload register is copied into the associated shadow register; the counter value is then compared with the register value.

Figure 9-24 Capture/compare channel 1 main circuit

Output stage

The TIMER1/ TIMER8 has four channels for compare match, single pulse or PWM output function.

Figure 9-25 Output stage of capture/compare channel (channel 1 to 3)

Figure 9-27 Output compare mode, toggle on OC1

When the channel is used as a capture input, the counter value is captured into the Channel Capture/Compare Register (TIMERx_CHCCx) when an effective input signal transition occurs. Once the capture event occurs, the CHxIF flag in the TIMERx_STR register is set. If the CHxIF bit is already set, i.e., the flag has not yet been cleared by software, and another capture event on this channel occurs, the corresponding channel Over-Capture flag, named CHxOF, will be set. Once the capture event occurs, a DMA request is generated depending on the CHxIE bit and an interrupt is generated depending on the CHxIE bit

The input capture mode can be also used for pulse width measurement from signals on the TIMERx_CHx pins (TIx).

Channel Output Reference Signal

When the TIMERx is used in the compare match output mode, the OCxREF signal (Channel x Output Reference signal) is defined by setting the CHxOM bits. The OCxREF signal has several types of output function, these include, keeping the original level by setting the CHxOM field to 0x00, set to 1 by setting the CHxOM field to 0x01, set to 0 by setting the CHxOM field to 0x02 or signal toggle by setting the CHxOM field to 0x03 when the counter value matches the content of the TIMERx_CHCCx register.

The PWM mode 1 and PWM mode 2 outputs are also another kind of OCxREF output which is setup by setting the CHxOM field to 0x06/0x07. In these modes, the OCxREF signal level is changed according to the counting direction and the relationship between the counter value and the TIMERx_CHCCx content. With regard to a more detailed description refer to the relative bit definition.

Another special function of the OCxREF signal is a forced output which can be achieved by setting the CHxOM field to 0x04/0x05. Here the output can be forced to an inactive/active level irrespective of the comparison condition between the counter and the TIMERx_CHCCx values.

The OCxREF signal can be forced to 0 when the ETIF signal is derived from the external TIMERx_ ETI pin and when it is set to a high level by setting the CHxOCE bit to 1 in the TIMERx_CHCTLR1 register. The OCxREF signal will not return to its active level until the next update event occurs.

Outputs Complementary and Dead-time

The TIMER1/TIMER8 can output two complementary signals. The complementary signals OCx and OCxN are activated by a combination of several control bits: the CHxE and CHxNE bits in the TIMERx_CHE register and the POE, ROS, IOS, ISOx and ISOxN bits in the TIMERx_BKDT and TIMERx_CTLR2 registers. The outputs polarity is determined by CHxP and CHxNP bits in the TIMERx_CHE register.

If CHxE, CHxNE and POE bits are 1, dead-time should insertion. The rising edge of OCx output is delayed relative to the rising edge of OCxREF and the rising edge of OCxN output is delayed relative to the falling edge of OCxREF. The delay value is an 8-bit dead-time counter determined by DT field in TIMERx_BKDT register. If the delay value is greater than the width of the active output (OCx or OCxN) then the corresponding pulse is not generated.

Break function

In this function, the output OCx and OCxN are controlled by the POE, IOS and ROS bits in the TIMERx_BKDT register, ISOx and ISOxN bits in the TIMERx_CTLR2 register and cannot be set both to active level when break occurs. The break sources are input break pin or HSE stack event by Clock Monitor (CKM) in RCC. The break function enabled by setting the BRKE bit in the TIMERx_BKDT register. The break input polarity is setting by the BRKP bit in TIMERx_BKDT.

When a break occurs, the POE bit is cleared asynchronously, the output OCx and OCxN are driven with the level programmed in the ISOx bit in the TIMERx_CTLR2 register as soon as POE is 0. If IOS is 0 then the timer releases the enable output else the enable output remains high. The complementary outputs are first put in reset state, and then the dead-time generator is reactivated in order to drive the outputs with the level programmed in the ISOx and ISOxN bits after a dead-time.

When a break occurs, the BKIF bit in the TIMERx_STR register is set. If BKIE is 1, an interrupt generated. If BKDE is 1, a DMA request sent.

Figure 9-31 Output behavior in response to a break (The break input is acting on high level)

Break In	
OCxREF	
OCx OCxN not implemented CHxP-0 ISOx-1	
OCxN not implemented CHxP=1 ISOx=1	
OCx	
OCxN not implemented CHxP=1,ISOx=0	
OCx	
OCXN delay delay	
CHxE=1, CHxP=0,ISOx=0,CHxNE=1,CHxNP=0,ISOxN=1	
dela <mark>y</mark> delay delay	
CHxE=1, CHxP=0,ISOx=1,CHxNE=1,CHxNP=1,ISOxN=1	
OCxN	
CHxE=1, CHxP=0,ISOx=0,CHxNE=0,CHxNP=0,ISOxN=1	
OCx	
OCxN	
CHxE=1, CHxP=0,ISOx=1,CHxNE=0,CHxNP=0,ISOxN=0	
OCx OCx	
CHxE=1, CHxP=0,CHxNE=0,CHxNP=0,ISOx=0,ISOxN=0 or ISOx=1,ISOxN=1	

Single Pulse Mode

Once the timer is set to operate in the single pulse mode, it is not necessary to set the timer enable bit CEN in the TIMERx_CTLR1 register to 1 to enable the counter. The trigger to generate a pulse can be sourced from the trigger signals edge or by setting the CEN bit to 1 using software. Setting the CEN bit to 1 or a trigger from the trigger signals edge can generate a pulse and then keep the CEN bit at a high state until the update event occurs or the CEN bit is written to 0 by software. If the CEN bit is cleared to 0 using software, the counter will be stopped and its value held. If the CEN bit is automatically cleared to 0 by a hardware update event, the counter will be reinitialized.

In the Single Pulse mode, the trigger active edge which sets the CEN bit to 1 will enable the counter. However, there exist several clock delays to perform the comparison result between the counter value and the TIMERx_CHCCx value. In order to reduce the delay to a minimum value, the user can set the CHxOEF bit in each TIMERx_CHCTLR1 register. After a trigger rising occurs in the single pulse mode, the OCxREF signal will immediately be forced to the state which the OCxREF signal will change to, as the compare match event occurs without taking the comparison result into account. The CHxOEF bit is available only when the output channel is configured to operate in the PWM1 or PWM2 output mode and the trigger source is derived from the trigger signal.

Figure 9-32 Single pulse mode

Quadrature Decoder

The Quadrature Decoder function uses two quadrature inputs TI1 and TI2 derived from the TIMERx_CH1 and TIMERx_CH2 pins respectively to interact to generate the counter value. The DIR bit is modified by hardware automatically during each input source transition. The input source can be either TI1 only, TI2 only or both TI1 and TI2, the selection made by setting the SMC field to 0x01, 0x02 or 0x03. The mechanism for changing the counter direction is shown in the following table. The Quadrature decoder can be regarded as an external clock with a directional selection. This means that the counter counts continuously in the interval between 0 and the counter-reload value. Therefore, users must configure the TIMERx_CARL register before the counter starts to count.

Counting		TI1	FP1	TI2F	P2	
mode	Level	Rising	Falling	Rising	Falling	
TI1 only	TI2FP=High	TI2FP=High Down		-	-	
counting	TI2FP=Low	Up	Down	-	-	
TI2 only	TI1FP=High	-	-	Up	Down	
counting	TI1FP=Low	-	-	Down	Up	
	TI2FP=High	Down	Up	Х	Х	
TI1 and TI2	TI2FP=Low	Up	Down	Х	Х	
counting	TI1FP=High	Х	Х	Up	Down	
	TI1FP=Low	Х	Х	Down	Up	

Table 9-1 Counting direction versus encoder signals

Note: "-" means "no counting"; "X" means impossible.

Figure 9-33 Example of counter operation in encoder interface mode

Figure 9-34 Example of encoder interface mode with TI1FP1 polarity inverted

Slave Controller

The TIMER1/TIMER8 can be synchronized with an external trigger in several modes including the Restart mode, the Pause mode and the Trigger mode which is selected by the SMC field in the TIMERx_SMC register. The trigger input of these modes can be selected by the TRGS field in the TIMERx_SMC register, below to TI1 signal as an example. The operation modes in the Slave Controller are described in the accompanying sections.

Restart mode

The counter and its prescaler can be reinitialized in response to a rising edge of the TI1 signal. When a TI1 rising edge occurs, the update event software generation bit named UPG will automatically be asserted by hardware and the trigger event flag will also be set. Then the counter and prescaler will be reinitialized. Although the UPG bit is set to 1 by hardware, the update event does not really occur. It depends upon whether the update event disable control bit UPDIS is set to 1 or not. If UPDIS is set to 1 to disable the update event to occur, there will no update event will be generated, however the counter and prescaler are still reinitialized when the TI1 rising edge occurs. If the UPDIS bit in the TIMERx_CTLR1 register is cleared to enable the update event to occur, an update event will be generated together with the TI1 rising edge, then all the preloaded registers will be updated.

Figure 9-35 Control circuit in restart mode

Pause mode

In the Pause Mode, the selected TI1 input signal level is used to control the counter start/stop operation. The counter starts to count when the selected TI1 signal is at a high level and stops counting when the TI1 signal is changed to a low level, here the counter will maintain its present value and will not be reset.

Figure 9-36 Control circuit in pause mode

Trigger mode

After the counter is disabled to count, the counter can resume counting when a TI1 rising edge signal occurs. When a TI1 rising edge occurs, the counter will start to count from the current value in the counter. Note that the TI1 signal is only used to enable the counter to resume counting and has no effect on controlling the counter to stop counting.

Figure 9-37 Control circuit in trigger mode

Timer Interconnection

The timers can be internally connected together for timer chaining or synchronization. This can be implemented by configuring one timer to operate in the Master mode while configuring another timer to be in the Slave mode. The following figures present several examples of trigger selection for the master and slave modes.

Figure below shows the timer1 trigger selection when it is configured in slave mode.

Figure 9-38 Timer1 Master/Slave mode timer example

Other interconnection examples:

■ Timer 2 as prescaler for timer 1

We configure Timer2 as a prescaler for Timer 1. Refer to Figure 9-38 for connections. Do as follow:

- Configure Timer2 in master mode and select its Update Event (UPE) as trigger output (MMC=010 in the TIMER2_CTLR2 register). Then timer2 drives a periodic signal on each counter overflow.
- 2. Configure the Timer 2 period (TIMER2_CARL registers).
- Select the Timer 1 input trigger source from Timer 2(TRGS=001 in the TIMER1_SMC register).
- 4. Configure Timer 1 in external clock mode 1 (SMC=111 in TIMER1_SMC register).
- 5. Start Timer 1 by writing '1 in the CEN bit (TIMER1_CTLR1 register).
- 6. Start Timer 2 by writing '1 in the CEN bit (TIMER2_CTLR1 register).
- Start timer 1 with timer 2's Enable/Update signal

First, we enable Timer 1 with the enable out of Timer 2. Refer to Figure 9-38, Timer 1 starts counting from its current value on the divided internal clock after trigger by timer 2 enable output.

When Timer 1 receives the trigger signal its CEN bit is automatically set and the counter

counts until we disable timer 1. Both counter clock frequencies are divided by 3 by the prescaler compared to PCLK (fCNT_CLK = fPCLK/3). Do as follow:

- 1. Configure Timer 2 master mode to send its enable signal as trigger output (MMC=001 in the TIMER2_CTLR2 register)
- 2. Configure Timer 1 to select the input trigger from Timer 2 (TRGS=001 in the TIMER1_SMC register).
- 3. Configure Timer 1 in trigger mode (SMC=110 in TIMER1_SMC register).
- 4. Start Timer 2 by writing 1 in the CEN bit (TIMER2_CTLR1 register).

Figure 9-39 Triggering timer 1 with Enable of timer 2

In this example, we also can use update Event as trigger source instead of enable signal. Refer to Figure 9-38. Do as follow:

- 1. Configure Timer 2 in master mode and send its Update Event (UPE) as trigger output (MMC=010 in the TIMER2_CTLR2 register).
- 2. Configure the Timer 2 period (TIMER2_CARL registers).
- Configure Timer 1 to get the input trigger from Timer 2 (TRGS=001 in the TIMER1_SMC register).
- 4. Configure Timer 1 in trigger mode (SMC=110 in TIMER1_SMC register).
- 5. Start Timer 2 by writing '1 in the CEN bit (TIMER2_CTLR1 register).

Figure 9-40 Triggering timer 1 with update of timer 2

Enable timer 1 count with timer 2's enable/OC1 Ref. signal

In this example, we control the enable of Timer 1 with the enable output of Timer2 .Refer to Figure 9-38. Timer 1 counts on the divided internal clock only when Timer 2 is enable. Both counter clock frequencies are divided by 3 by the prescaler compared to PCLK (fCNT_CLK = fPCLK/3). Do as follow:

- 1. Configure Timer 2 in master mode and Output enable signal as trigger output (MMC=001 in the TIMER2_CTLR2 register).
- 2. Configure Timer 1 to get the input trigger from Timer 2 (TRGS=001 in the TIMER1_SMC register).
- 3. Configure Timer 1 in pause mode (SMC=101 in TIMER1_SMC register).
- 4. Enable Timer 1 by writing '1 in the CEN bit (TIMER1_CTLR1 register)
- 5. Start Timer 2 by writing '1 in the CEN bit (TIMER2_CTLR1 register).
- 6. Stop Timer 2 by writing '0 in the CEN bit (TIMER2_CTLR1 register).

Figure 9-41 Gating timer 1 with enable of timer 2

PCLK						_
TIMER2_EN						
TIMER2_CNT_REG	 61	X	62	63		
TIMER1_TRGIF				 		
TIMER1_CNT_REG	 11	X	12	13		_

In this example, we also can use OCx_Ref as trigger source instead of enable signal output. Do as follow:

- 1. Configure Timer 2 in master mode and Output Compare 1 Reference (OC1REF) signal as trigger output (MMS=100 in the TIMER2_CTLR2 register).
- 2. Configure the Timer 2 OC1REF waveform (TIMER2_ CHCTLR1 register).
- 3. Configure Timer 1 to get the input trigger from Timer 2 (TRGS=001 in the TIMER1_SMC register).
- 4. Configure Timer 1 in pause mode (SMC=101 in TIMER1_SMC register).
- 5. Enable Timer 1 by writing '1 in the CEN bit (TIMER1_CTLR1 register).
- 6. Start Timer 2 by writing '1 in the CEN bit (TIMER2_CTLR1 register).

Figure 9-42 Gating timer 1 with OC1REF of timer 2

■ Using an external trigger to start 2 timers synchronously

We configure the start of Timer 1 is triggered by the enable of Timer 2, and timer 2 is triggered by its TI1 input rises edge, Refer to Figure 9-38. To ensure two timers start synchronously, timer 2 must be configured in Master/Slave mode. Do as follow:

- 1. Configure Timer 2 slave mode to get the input trigger from TI1 (TRGS=100 in the TIMER2_SMC register).
- 2. Configure Timer 2 in trigger mode (SMC=110 in the TIMER2_SMC register).
- 3. Configure the Timer 2 in Master/Slave mode by writing MSM=1 (TIMER2_SMC register).
- Configure Timer 1 to get the input trigger from Timer 2 (TRGS=001 in the TIMER1_SMC register).
- 5. Configure Timer 1 in trigger mode (SMC=110 in the TIMER2_SMC register).

When a rising edge occurs on Timer 2's TI1, two timer counters starts counting synchronously on the internal clock and both TIF flags are set.

PCLK	
TIMER2_TI1	
TIMER2_TRGIF	
TIMER2_EN	
TIMER2_CK	
TIMER2_CNT_REG	 00 01 02 03
TIMER1_TRGIF	
TIMER1_EN	
TIMER1_CK	
TIMER1_CNT_REG	00 01 02 03

Figure 9-43 Triggering timer 1 and timer2 with timer2's TI1 input

Timer debug mode

When the Cortex[™]-M3 halted, and the DBG_TIMERx_STOP configuration bit in MCUDBG module set to 1, the TIMERx counter stops.

9.1.4. TIMER1 /TIMER8registers

TIMER1/TIMER8 control register 1 (TIMERx_CTLR1)

Address offset: 0x00 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved						CDI	/[1:0]	ARSE	CAM	[1:0]	DIR	SPM	UPS	UPDIS	CEN
						r	w	rw	r١	N	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
15:10	Reserved	Must be kept at reset value
9:8	CDIV[1:0]	Clock division
		The CDIV bits can be configured by software to specify division ratio between the timer
		clock (PCLK) frequency and the dead-time and sampling clock (DTS), which is used by
		the dead-time generators and the digital filters.

7	ARSE	00: f _{DTS} =f _{PCLK} 01: f _{DTS} =f _{PCLK} /2 10: f _{DTS} =f _{PCLK} /4 11: Reserved Auto-reload shadow enable
		0: The shadow register for TIMERx_CARL register is disabled 1: The shadow register for TIMERx_CARL register is enabled
6:5	CAM[1:0]	 Center-aligned mode selection 00: No center-aligned mode (edge-aligned mode). The direction of the counter is specified by the DIR bit. 01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare interrupt flags of channels, which are configured in output mode (CHxM=00 in TIMERx_CHCTLRx register), are set only when the counter is counting down. 10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare interrupt flags of channels, which are configured in output mode (CHxM=00 in TIMERx_CHCTLRx register), are set only when the counter is counting up. 11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare interrupt flags of channels, which are configured in output mode (CHxM=00 in TIMERx_CHCTLRx register), are set only when the counter is counting up. 11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare interrupt flags of channels, which are configured in output mode (CHxM=00 in TIMERx_CHCTLRx register), are set only when the counter is counting up. 11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare interrupt flags of channels, which are configured in output mode (CHxM=00 in TIMERx_CHCTLRx register), are set only when the counter is counting both up and down. After the counter is enabled, can not be switched from edge-aligned mode to center-aligned mode.
4	DIR	Direction 0: Count up 1: Count down This bit is read only when the timer is configured in Center-aligned mode or Encoder mode.
3	SPM	Single pulse mode. 0: Counter continues after update event. 1: The CEN is cleared by hardware and the counter stops at next update event.
2	UPS	Update source This bit is used to select the update event sources by software. 0: When enabled, any of the following events generate an update interrupt or DMA request: - The UPG bit is set - The counter generates an overflow or underflow event - The slave mode controller generates an update event. 1: When enabled, only counter overflow/underflow generates an update interrupt or DMA request.
1	UPDIS	Update disable. This bit is used to enable or disable the update event generation.

0: update event enable. The update event is generate and the buffered registers are loaded with their preloaded values when one of the following events occurs:

- The UPG bit is set
- The counter generates an overflow or underflow event
- The slave mode controller generates an update event.

1: update event disable. The buffered registers keep their value, while the counter and the prescaler are reinitialized if the UPG bit is set or if the slave mode controller generates a hardware reset event.

0 CEN Counter enable

0: counter disable

1: counter enable

The CEN bit must be set by software when time1 works in external clock, pause mode and encoder mode. While in trigger mode, the hardware can set the CEN bit automatically.

TIMER1/TIMER8 control register 2 (TIMERx_CTLR2)

Address offset: 0x04

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	ISO4	ISO3N	ISO3	ISO2N	ISO2	ISO1N	ISO1	TI1S	MMC[2:0]		DMAS	CCUC	Reserved	CCSE	
	rw	rw	rw	rw	rw	rw	rw	rw		rw		rw	rw		Rw

Bits	Fields	Descriptions
15	Reserved	Must be kept at reset value
14	ISO4	Idle state of channel 4 output
		Refer to ISO1 bit
13	ISO3N	Idle state of channel 3 complementary output
		Refer to ISO1N bit
12	ISO3	Idle state of channel 3 output
		Refer to ISO1 bit
11	ISO2N	Idle state of channel 2 complementary output
		Refer to ISO1N bit
10	ISO2	Idle state of channel 2 output
		Refer to ISO1 bit
9	ISO1N	Idle state of channel 1 complementary output
		0: When POE bit is reset, OC1N is set low.
		1: When POE bit is reset, OC1N is set high
		This bit can be modified only when LK [1:0] bits in TIMERx_BKDT register is 00.

GigaDevi	c e	GD32F10x User Manual
8	ISO1	Idle state of channel 1 output 0: When POE bit is reset, OC1 is set low. 1: When POE bit is reset, OC1 is set high The OC1 output changes after a dead-time if OC1N is implemented. This bit can be modified only when LK [1:0] bits in TIMERx_BKDT register is 00.
7	TI1S	Channel 1 trigger input TI1 selection 0: The TIMERx_CH1 pin input is selected as channel 1 trigger input. 1: The result of combinational XOR of TIMERx_CH1, CH2 and CH3 pins is selected as channel 1 trigger input.
6:4	MMC[2:0]	 Master mode control These bits control the selection of TRGO signal, which is sent in master mode to slave timers for synchronization function. 000: Reset. When the UPG bit in the TIMERx_EVG register is set or a reset is generated by the slave mode controller, a TRGO pulse occurs. And in the latter case, the signal on TRGO is delayed compared to the actual reset. 001: Enable. This mode is useful to start several timers at the same time or to control a window in which a slave timer is enabled. In this mode the master mode controller selects the counter enable signal TIMERx_EN as TRGO. The counter enable signal is set when CEN control bit is set or the trigger input in pause mode is high. There is a delay between the trigger input in pause mode and the TRGO output, except if the master-slave mode is selected. 010: Update. In this mode the master mode controller selects the update event as TRGO. 011: Capture/ compare pulse. In this mode the master mode controller generates a TRGO pulse when a capture or a compare match occurred. 100: Compare. In this mode the master mode controller selects the OC1REF signal is used as TRGO 110: Compare. In this mode the master mode controller selects the OC2REF signal is used as TRGO 111: Compare. In this mode the master mode controller selects the OC3REF signal is used as TRGO
3	DMAS	DMA request source selection 0: DMA request of channel x is sent when channel x event occurs. 1: DMA request of channel x is sent when update event occurs.
2	CCUC	Capture/compare control shadow register update control When the Capture/compare control shadow registers (for CHxE, CHxNE and CHxOM bits) are enabled (CCSE=1), this bit control when these shadow registers update. 0: The shadow registers update by when CCUG bit is set. 1: The shadow registers update by when CCUG bit is set or an rising edge of TRGI occurs.

Note: When a channel does not have a complementary output, this bit has no effect.

1	Reserved	Must be kept at reset value.
0	CCSE	Capture/compare control shadow register enable
		0: The shadow registers for CHxE, CHxNE and CHxOM bits are disabled.
		1: The shadow registers for CHxE, CHxNE and CHxOM bits are enabled. After these
		bits have been written, they are updated only when CCUG bit is set.
		Note: When a channel does not have a complementary output, this bit has no effect.

TIMER1/TIMER8 slave mode control register (TIMx_SMC)

Address offset: 0x08 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETPL	ECM2E	ETPS	C[1:0]		ETFC[3:0]		MSM	TR	GS[2:0]		Reserved		SMC[2:0]	
rw	rw	rv	v		rw			rw		rw				rw	
Bits	Fi	elds		Descri	otions										
15	E	TPL		Externa	ıl trigger	· polarit	ty								
				This bit	specifie	es the p	olarity	of ETI s	signal						
				0: ETI is active at high level or rising edge.											
				1: ETI is active at low level or falling edge.											
14	E	CM2E		External clock mode 2 enable											
				In external clock mode 2, the counter is clocked by any active edge on the ETIF signal.											
			0: Exter	nal cloc	abled.										
				1: External clock mode 2 enabled.											
				Setting the ECM2E bit has the same effect as selecting external clock mode 1 with											h
				TRGI co	onnecte	d to E1	⊓F (SM	1C=111	and TR	RGS =1	11).				
				It is pos	sible to	simulta	aneous	ly use e	external	clock r	node	2 with the re	eset m	node, pa	use
				mode o	r trigger	mode	. But th	e TRGS	S bits m	ust not	be 1	11 in this ca	se.		
				The ext	ernal cl	ock inp	ut will l	be ETIF	if exter	nal clo	ck m	ode 1 and e>	ternal	l clock m	node
				2 are er	nabled a	at the s	ame tir	ne.							
13:12	E	TPSC[1:	:0]	Externa	l trigger	presca	aler								
				The free	quency	of exte	rnal trig	gger sig	nal ETIF	^{>} must	not b	e at higher t	n an 1 /	4 of TIM	IERx
				CLK fre	quency	. When	the ex	ternal t	rigger si	ignal is	a fas	st clocks, the	presc	aler car	ו be
				enabled	d to redu	ice ET	IP frequ	uency							
				00: Pre	scaler d	isable									
				01: ETI	P freque	ency wi	ill be di	vided b	y 2						
				10: ETIP frequency will be divided by 4											
				11: ETI	P freque	ency wi	ill be di	vided b	y 8						
11:8	E	TFC[3:0]	Externa	l trigger	filter c	ontrol								
				An event counter is used in the digital filter, in which a transition on the output occurs										urs	

7

6:4

3

2:0

GD32F10x User Manual

	after N input events. This bit-field specifies the frequency used to sample ETIP signal
	and the length of the digital filter applied to ETIP.
	0000: Filter disable. f _{SAMP} = f _{DTS} , N=1.
	0001: f _{SAMP} = f _{PCLK} , N=2.
	0010: f _{SAMP} = f _{PCLK} , N=4.
	0011: f _{SAMP} = f _{PCLK} , N=8.
	0100: f _{SAMP} =f _{DTS} /2, N=6.
	0101: f _{SAMP} =f _{DTS} /2, N=8.
	0110: f _{SAMP} =f _{DTS} /4, N=6.
	0111: f _{SAMP} =f _{DTS} /4, N=8.
	1000: f _{SAMP} =f _{DTS} /8, N=6.
	1001: f _{SAMP} =f _{DTS} /8, N=8.
	1010: f _{SAMP} =f _{DTS} /16, N=5.
	1011: f _{SAMP} =f _{DTS} /16, N=6.
	1100: f _{SAMP} =f _{DTS} /16, N=8.
	1101: f _{SAMP} =f _{DTS} /32, N=5.
	1110: f _{SAMP} =f _{DTS} /32, N=6.
	1111: f _{SAMP} =f _{DTS} /32, N=8.
MSM	Master-slave mode
	The effect of an event on the trigger input is delayed in this mode to allow a perfect
	synchronization between the current timer and its slaves through TRGO. If we want to
	synchronize several timers on a single external event, this mode can be used.
	0: Master-slave mode disable
	1: Master-slave mode enable
TRGS[2:0]	Trigger selection
	This bit-field specifies which signal is selected as the trigger input, which is used to
	synchronize the counter.
	000: Internal trigger input 0 (ITR0)
	001: Internal trigger input 1 (ITR1)
	010: Internal trigger input 2 (ITR2)
	011: Internal trigger input 3 (ITR3)
	100: TI1 edge flag (TI1F_ED)
	101: Filtered channel 1 input (TI1FP1)
	110: Filtered channel 2 Input (TI2FP2)
	111: External trigger input (ETIF)
	These bits must not be changed when slave mode is enabled.
Reserved	Must be kept at reset value.
SMC[2:0]	Slave mode control
	000: Disable mode. The prescaler is clocked directly by the internal clock when CEN
	bit is set high.
	001: Quadrature decoder mode 1. The counter counts on TI2FP2 edge, while the
	direction depends on TI1FP1 level.

010: Quadrature decoder mode 2. The counter counts on TI1FP1 edge, while the direction depends on TI2FP2 level.

011: Quadrature decoder mode 3. The counter counts on both TI1FP1 and TI2FP2 edge, while the direction depends on each other.

100: Restart Mode. The counter is reinitialized and the shadow registers are updated on the rising edge of the selected trigger input.

101: Pause Mode. The trigger input enables the counter clock when it is high and disables the counter when it is low.

110: Trigger Mode. A rising edge of the trigger input enables the counter. The counter cannot be disabled by the slave mode controller.

111: External Clock Mode 1. The counter counts on the rising edges of the selected trigger.

Because TI1F_ED outputs 1 pulse for each transition on TI1F, and the pause mode checks the level of the trigger signal, when TI1F_ED is selected as the trigger input, the pause mode must not be used.

TIMER1/TIMER8 DMA and interrupt enable register (TIMERx_DIE)

Address offset: 0x0C Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Reserved	TRGDE	CCUDE	CH4DE	CH3DE	CH2DE	CH1DE	UPDE	BKIE	TRGIE	CCUIE	CH4IE	CH3IE	CH2IE	CH1IE	UPIE	
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
Dite	El de			Descriptions												
DIIS	FIE	aus		Jeschp	tions											
15	Re	served	1	Must be kept at reset value.												
14	TR	GDE	-	Trigger DMA request enable												
			(): Trigge	er DMA i	request	disable	d								
				1: Triaae	er DMA i	reauest	enable	d								
				00												
13	CCUDE		(Channel control update DMA request enable												
			(): Chanr	nel conti	ol upda	te DMA	A reque	st disat	oled						
				1: Chanr	nel conti	ol upda	te DMA	A reque	est enab	led						
12	CH	I4DE	(Channel	4 DMA	request	enable	9								
			(): Chanr	nel 4 DN	1A requ	est disa	abled								
				1: Chanr	nel 4 DN	1A requ	est ena	bled								
11	CH	13DE	(Channel	3 DMA	request	enable	<i>j</i>								
	•		(). Chanr	nel 3 DN		est disa	abled								
				1. Chan				blod								
				i. Uialli		in iequi	est ella	DIEU								
10	CH	12DE	(Channel	2 DMA	request	enable	9								
			(): Chanr	nel 2 DN	1A requ	est disa	abled								

		1: Channel 2 DMA request enabled
9	CH1DE	Channel 1 DMA request enable
		0: Channel 1 DMA request disabled
		1: Channel 1 DMA request enabled
8	UPDE	Update DMA request enable
		0: Update DMA request disabled
		1: Update DMA request enabled
7	BKIE	Break interrupt enable
		0: Break interrupt disabled
		1: Break interrupt enabled
6	TRGIE	Trigger interrupt enable
		0: Trigger interrupt disabled
		1: Trigger interrupt enabled
5	CCUIE	Channel control update interrupt enable
		0: Channel control update interrupt disabled
		1: Channel control update interrupt enabled
4	CH4IE	Channel 4 interrupt enable
		0: Channel 4 interrupt disabled
		1: Channel 4 interrupt enabled
3	CH3IE	Channel 3 interrupt enable
		0: Channel 3 interrupt disabled
		1: Channel 3 interrupt enabled
2	CH2IE	Channel 2 interrupt enable
		0: Channel 2 interrupt disabled
		1: Channel 2 interrupt enabled
1	CH1IE	Channel 1 interrupt enable
		0: Channel 1 interrupt disabled
		1: Channel 1 interrupt enabled
0	UPIE	Update interrupt enable
		0: Update interrupt disabled
		1: Update interrupt enabled

TIMER1/TIMER8 status register (TIMERx_STR)

Address offset: 0x10 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
F	Reserved	d	CH4OF	CH3OF	CH2OF	CH1OF	Reserved.	BKIF	TRGIF	CCUIF	CH4IF	CH3IF	CH2IF	CH1IF	UPIF

rc_w0

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits	Fields	Descriptions
15:13	Reserved	Must be kept at reset value.
12	CH4OF	Channel 4 overcapture flag
		Refer to CH1OF description
11	CH3OF	Channel 3 overcapture flag
		Refer to CH1OF description
10	CH2OF	Channel 2 overcapture flag
		Refer to CH1OF description
9	CH10F	Channel 1 overcapture flag
		When channel 1 is configured in input mode, this flag is set by hardware when a
		capture event occurs while CH1IF flag has already been set. This flag is cleared by
		software.
		0: No overcapture interrupt occurred
		1: Overcapture interrupt occurred
8	Reserved	Must be kept at reset value.
7	BKIF	Break interrupt flag
		This flag is set by hardware when the break input goes active, and cleared by software
		if the break input is not active.
		0: No active level break has been detected.
		1: An active level has been detected.
6	TRGIF	Trigger interrupt flag
		This flag is set by hardware on trigger event and cleared by software. When the slave
		mode controller is enabled in all modes but pause mode, an active edge on TRGI input
		generates a trigger event. When the slave mode controller is enabled in pause mode
		both edges on TRGI input generates a trigger event.
		0: No trigger event occurred.
		1: Trigger interrupt occurred.
5	CCUIF	Channel control update interrupt flag
		This flag is set by hardware when channel control update event occurs, and cleared by
		software
		0: No channel control update interrupt occurred
		1: Channel control update interrupt occurred
4	CH4IF	Channel 4 interrupt enable
		Refer to CH1IF description
3	CH3IF	Channel 3 interrupt enable
		Refer to CH1IF description

2	CH2IF	Channel 2 interrupt enable
		Refer to CH1IF description
1	CH1IF	Channel 1 interrupt flag
		This flag is set by hardware and cleared by software. When channel 1 is in input mode,
		this flag is set when a capture event occurs. When channel 1 is in output mode, this
		flag is set when a compare event occurs.
		0: No Channel 1 interrupt occurred
		1: Channel 1 interrupt occurred
0	UPIF	Update interrupt flag
		This bit is set by hardware on an update event and cleared by software.
		0: No update interrupt occurred
		1: Update interrupt occurred

TIMER1/TIMER8 event generation register (TIMERx_EVG)

Address offset: 0x14 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved						BKG	TRGG	CCUG	CH4G	CH3G	CH2G	CH1G	UPG		
								w	w	w	w	w	w	w	w

Bits	Fields	Descriptions
15:8	Reserved	Must be kept at reset value.
7	BKG	Break event generation
		This bit is set by software and cleared by hardware automatically. When this bit is set,
		the POE bit is cleared and BKIF flag is set, related interrupt or DMA transfer can occur
		if enabled.
		0: No generate a break event
		1: Generate a break event
6	TRGG	Trigger event generation
		This bit is set by software and cleared by hardware automatically. When this bit is set,
		the TRGIF flag in TIMERx_STR register is set, related interrupt or DMA transfer can
		occur if enabled.
		0: No generate a trigger event
		1: Generate a trigger event
5	CCUG	Channel control update event generation
		This bit is set by software and cleared by hardware automatically. When this bit is set
		the channel control registers (CHxE, CHxNE and CHxOM bits) of the channels having
		a complementary output are updated.
		0: no generate channel control update event

		1: generate channel control update event
4	CH4G	Channel 4 capture or compare event generation Refer to CH1G description
3	CH3G	Channel 3 capture or compare event generation Refer to CH1G description
2	CH2G	Channel 2 capture or compare event generation e Refer to CH1G description
1	CH1G	Channel 1 capture or compare event generation This bit is set by software in order to generate a capture or compare event in channel 1, it is automatically cleared by hardware. When this bit is set, the CC1IF flag is set, the corresponding interrupt or DMA request is sent if enabled. In addition, if channel 1 is configured in input mode, the current value of the counter is captured in TIMER1_CHCC1 register, and the CH1OF flag is set if the CH1IF flag was already high. 0: No generate a channel 1 capture or compare event 1: Generate a channel 1 capture or compare event
0	UPG	This bit can be set by software, and cleared by hardware automatically. When this bit is set, the counter is cleared if the center-aligned or upcounting mode is selected, else (downcounting) it takes the auto-reload value. The prescaler counter is cleared at the same time. 0: No generate an update event

1: Generate an update event

TIMER1/TIMER8 channel control register 1 (TIMERx_CHCTLR1)

Address offset: 0x18 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CH2			1	CH2	CH2			CH1	0		01	CLIAOSE	CH1		
OCE			ני	OSE	OFE	CH2N	/[1:0]	OCE	CH10M[2:0]			CHIOSE	OFE	CH1I	M[1:0]
	CH2I	CF[3:0]		CH2IC	CP[1:0]			CH1ICF[3:0]			CH1ICP[
		rw		r	w	r١	N	rw				rw	r	w	

Output compare mode:

Bits	Fields	Descriptions
15	CH2OCE	Channel 2 output compare clear enable.
		Refer to CH1OCE description.
14:12	CH2OM[2:0]	Channel 2 output compare mode Refer to CH1OM description.
11	CH2OSE	Channel 2 output compare shadow enable

Refer to CH1OSE description.

10	CH2OFE	Channel 2 output compare fast enable Refer to CH1OFE description.
9:8	CH2M[1:0]	Channel 2 mode selection This bit-field specifies the direction of the channel and the input signal selection. This bit-field is writable only when the channel is OFF (CH2E bit in TIMERx_CHE register is reset). 00: channel 2 is configured as output 01: channel 2 is configured as input, IC2 is mapped on TI2 10: channel 2 is configured as input, IC2 is mapped on TI1 11: channel 2 is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through TRGS bits in TIMERx_SMC register.
7	CH1OCE	Channel 1 output compare clear enable. When this bit is set, the OC1Ref signal is cleared when High level is detected on ETIF input. 0: Channel 1 output compare clear disable 1: Channel 1 output compare clear enable
6:4	CH1OM[2:0]	Channel 1 output compare mode This bit-field specifies the behavior of the output reference signal OC1REF which drives OC1 and OC1N. OC1REF is active high, while OC1 and OC1N active level depends on CH1P and CH1NP bits. 000: Frozen. The OC1REF signal keep stable, independent of the comparison between the output compare register TIMERx_CHCC1 and the counter. 001: Set high on match.OC1REF signal is forced high when the counter matches the output compare register TIMERx_CHCC1. 010: Set low on match. OC1REF signal is forced low when the counter matches the c output compare register TIMERx_CHCC1. 011: Toggle on match. OC1REF toggles when the counter matches the c output compare register TIMERx_CHCC1. 102: Force low. OC1REF is forced low level. 103: Force high. OC1REF is forced low level. 104: Force high. OC1REF is forced high level. 105: PWM mode 1. When counting up, OC1REF is high as long as the counter is smaller than TIMERx_CHCC1 else low. When counting down, OC1REF is low as long as the counter is larger than TIMERx_CHCC1 else high. 111: PWM mode 2. When counting up, OC1REF is low as long as the counter is smaller than TIMERx_CHCC1 else high. When counting down, OC1REF is high as long as the counter is larger than TIMERx_CHCC1 else low. When configured in PWM mode, the OCREF level changes only when the output compare mode switches from "frozen" mode to "PWM" mode or when the result of the comparison changes. This bit cannot be modified when LK [1:0] bit-filed in TIMERx_BKDT register is 11 and

3

2

1:0

	CH1M bit-filed is 00.
CH1OSE	Channel 1 output compare shadow enable
	When this bit is set, the shadow register of TIMERx_CHCC1 register, which updates at
	each update event will be enabled.
	0: Channel 1 output compare shadow disable
	1: Channel 1 output compare shadow enable
	The PWM mode can be used without validating the shadow register only in one pulse
	mode (OPM bit set in TIMERx_CTLR1 register is set).
	This bit cannot be modified when LK [1:0] bit-filed in TIMERx_BKDT register is 11 and
	CH1M bit-filed is 00.
CH10FE	Channel 1 output compare fast enable
	When this bit is set, the effect of an event on the trigger in input on the CC output will
	be accelerated if the channel is configured in PWM1 or PWM2 mode. The output
	channel will treat an active edge on the trigger input as a compare match, and OC is
	set to the compare level independently from the result of the comparison.
	0: Channel 1 output compare fast disable. The minimum delay from an edge on the
	trigger input to activate CC1 output is 5 clock cycles.
	1: Channel 1 output compare fast enable. The minimum delay from an edge on the
	trigger input to activate CC1 output is 3 clock cycles.
CH1M[1:0]	Channel 1 mode selection
	This bit-field specifies the direction of the channel and the input signal selection. This
	bit-field is writable only when the channel is OFF (CH1E bit in TIMERx_CHE register is
	reset).
	00: channel 1 is configured as output
	01: channel 1 is configured as input, IC1 is mapped on TI1
	10: channel 1 is configured as input, IC1 is mapped on TI2

11: channel 1 is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TRGS bits in TIMERx_SMC register.

Input capture mode

Bits	Fields	Descriptions
15:12	CH2ICF[3:0]	Channel 2 input capture filter control
		Refer to CH1ICF description
11:10	CH2ICP[1:0]	Channel 2 input capture prescaler
		Refer to CH1ICP description
9:8	CH2M[1:0]	Channel 2 mode selection
		This bit-field specifies the direction of the channel and the input signal selection. This
		bit-field is writable only when the channel is OFF (CH2E bit in TIMERx_CHE register is
		reset).
		00: channel 2 is configured as output
		01: channel 2 is configured as input, IC2 is mapped on TI2

10: channel 2 is configured as input, IC2 is mapped on TI1 11: channel 2 is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through TRGS bits in TIMERx_SMC register. 7:4 CH1ICF[3:0] Channel 1 input capture filter control An event counter is used in the digital filter, in which a transition on the output occurs after N input events. This bit-field specifies the frequency used to sample TI1 input signal and the length of the digital filter applied to TI1. 0000: Filter disable, f_{SAMP}= f_{DTS}, N=1 0001: f_{SAMP}= f_{PCLK}, N=2 0010: f_{SAMP}= f_{PCLK}, N=4 0011: f_{SAMP}= f_{PCLK}, N=8 0100: f_{SAMP}=f_{DTS}/2, N=6 0101: f_{SAMP}=f_{DTS}/2, N=8 0110: f_{SAMP}=f_{DTS}/4, N=6 0111: f_{SAMP}=f_{DTS}/4, N=8 1000: f_{SAMP}=f_{DTS}/8, N=6 1001: f_{SAMP}=f_{DTS}/8, N=8 1010: f_{SAMP}=f_{DTS}/16, N=5 1011: f_{SAMP}=f_{DTS}/16, N=6 1100: f_{SAMP}=f_{DTS}/16, N=8 1101: f_{SAMP}=f_{DTS}/32, N=5 1110: f_{SAMP}=f_{DTS}/32, N=6 1111: f_{SAMP}=f_{DTS}/32, N=8 3:2 CH1ICP[1:0] Channel 1 input capture prescaler This bit-field specifies the ratio of the prescaler on channel 1 input. The prescaler is reset when CH1E bit in TIMERx_CHE register is reset. 00: prescaler disable, capture is done on each channel input edge 01: capture is done every 2 channel input edges 10: capture is done every 4channel input edges 11: capture is done every 8 channel input edges 1:0 CH1M[1:0] Channel 1 mode selection This bit-field specifies the direction of the channel and the input signal selection. This bit-field is writable only when the channel is OFF (CH1E bit in TIMERx_CHE register is reset). 00: channel 1 is configured as output 01: channel 1 is configured as input, IC1 is mapped on TI1 10: channel 1 is configured as input, IC1 is mapped on TI2 11: channel 1 is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TRGS bits in TIMERx_SMC register.

TIMER1/TIMER8 channel control register 2 (TIMERx_CHCTLR2)

Address offset: 0x1C

Reset value: 0x0000

	15	14	13	12	11	10	9	9 8		6	5 4		3	2	1	0	
	CH4			01	CH4	CH4			СНЗ	0		01	CH3	CH3	CH3M[1:0]		
	OCE			UJ	OSE	OFE	CH4N	И[1:0]	OCE	C	-H3OIVI[2:	0]	OSE	OFE			
		CH4I	CF[3:0]		CH4ICP[1:0]				CH3IC	CF[3:0]		CH3IC	P[1:0]				
rw				r	w	r\	N		r)	w		n	N	R	w		

Output compare mode

Bits	Fields	Descriptions
15	CH4OCE	Channel 4 output compare clear enable.
		Refer to CH1OCE description.
14:12	CH4OM[2:0]	Channel 4 output compare mode
		Refer to CH1OM description.
11	CH4OSE	Channel 4 output compare shadow enable
		Refer to CH1OSE description.
10	CH4OFE	Channel 4 output compare fast enable
		Refer to CH1OFE description.
9:8	CH4M[1:0]	Channel 4 mode selection
		This bit-field specifies the direction of the channel and the input signal selection. This
		bit-field is writable only when the channel is OFF (CH4E bit in TIMERx_CHE register is
		reset).
		00: channel 4 is configured as output
		01: channel 4 is configured as input, IC4 is mapped on TI4
		10: channel 4 is configured as input, IC4 is mapped on TI3
		11: channel 4 is configured as input, IC4 is mapped on TRC. This mode is working only
		if an internal trigger input is selected through TRGS bits in TIMERx_SMC register.
7	CH3OCE	Channel 3 output compare clear enable.
		Refer to CH1OCE description.
6:4	CH3OM[2:0]	Channel 3 output compare mode
		Refer to CH1OM description.
3	CH3OSE	Channel 3 output compare shadow enable
		Refer to CH1OSE description.
2	CH3OFE	Channel 3 output compare fast enable
		Refer to CH1OFE description.
1:0	CH3M[1:0]	Channel 1 mode selection
		This bit-field specifies the direction of the channel and the input signal selection. This
		bit-field is writable only when the channel is OFF (CH3E bit in TIMERx_CHE register is
		reset).

00: channel 3 is configured as output

01: channel 3 is configured as input, IC3 is mapped on TI3

10: channel 3 is configured as input, IC3 is mapped on TI4

11: channel 3 is configured as input, IC3 is mapped on TRC. This mode is working only

if an internal trigger input is selected through TRGS bits in TIMERx_SMC register.

Input capture mode

Bits	Fields	Descriptions
15:12	CH4ICF[3:0]	Channel 4 input capture filter control
		Refer to CH1ICF description
11:10	CH4ICP[1:0]	Channel 4 input capture prescaler
		Refer to CH1ICP description
9:8	CH4M[1:0]	Channel 4 mode selection
		This bit-field specifies the direction of the channel and the input signal selection. This
		bit-field is writable only when the channel is OFF (CH4E bit in TIMERx_CHE register is reset).
		00: channel 4 is configured as output
		01: channel 4 is configured as input, IC4 is mapped on TI4
		10: channel 4 is configured as input, IC4 is mapped on TI3
		11: channel 4 is configured as input, IC4 is mapped on TRC. This mode is working only
		if an internal trigger input is selected through TRGS bits in TIMERx_SMC register.
7:4	CH3ICF[3:0]	Channel 3 input capture filter control
		Refer to CH1ICF description
3:2	CH3ICP[1:0]	Channel 3 input capture prescaler
		Refer to CH1ICP description
1:0	CH3M[1:0]	Channel 3 mode selection
		This bit-field specifies the direction of the channel and the input signal selection. This
		bit-field is writable only when the channel is OFF (CH3E bit in TIMERx_CHE register is reset).
		00: channel 3 is configured as output
		01: channel 3 is configured as input. IC3 is mapped on TI3
		10: channel 3 is configured as input, IC3 is mapped on TI4
		11: channel 3 is configured as input, IC3 is mapped on TRC. This mode is working only
		if an internal trigger input is selected through TRGS bits in TIMERx_SMC register.

TIMER1/TIMER8 channel enable register (TIMERx_CHE)

Address offset: 0x20
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0
-----------------------------------	-----

Reserved	CH4P	CH4E	CH3NP	CH3NE	CH3P	CH3E	CH2NP	CH2NE	CH2P	CH2E	CH1NP	CH1NE	CH1P	CH1E
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
15:14	Reserved	Must be kept at reset value.
13	CH4P	Channel 4 polarity
		Refer to CH1P description.
12	CH4E	Channel 4 enable
		Refer to CH1E description.
11	CH3NP	Channel 3 complementary output polarity
		Refer to CH1NP description.
10	CH3NE	Channel 3 complementary output enable
		Refer to CH1NE description.
9	CH3P	Channel 3 polarity
		Refer to CH1P description.
8	CH3E	Channel 3 enable
		Refer to CH1E description.
7	CH2NP	Channel 2 complementary output polarity
		Refer to CH1NP description.
6	CH2NE	Channel 2 complementary output enable
		Refer to CH1NE description.
5	CH2P	Channel 2 polarity
		Refer to CH1P description.
4	CH2E	Channel 2 enable
		Refer to CH1E description.
3	CH1NP	Channel 1 complementary output polarity
		When channel 1 is configured in output mode, this bit specifies the complementary
		output signal polarity.
		0: Channel 1 active high.
		T: Channel 1 active low. When channel 1 is configured in input mode. In conjunction with CH1P, this bit is used
		to define the polarity of IC1.
		This bit cannot be modified when LK [1:0] bit-filed in TIMERx_BKDT register is 11 or
		10.
2	CH1NE	Channel 1 complementary output enable
		When channel 1 is configured in output mode, setting this bit enables the
		complementary output in channel1.
		0: Channel 1 complementary output disabled.

1: Channel 1 complementary output enabled.

1		CH1P		 Channel 1 polarity When channel 1 is configured in output mode, this bit specifies the output signal polarity. 0: Channel 1 active high. 1: Channel 1 active low. When channel 1 is configured in input mode, this bit specifies the IC1 signal polarity. [CH1NP, CH1P] will selete the active trigger or capture polarity for TI1FP1 or TI2FP2. [CH1NP==0, CH1P==0]: TIxFP1's rising edge is the active signal for capture or trigger operation in slave mode. And TIxFP1 will not be inverted. [CH1NP==0, CH1P==1]: TIxFP1's falling edge is the active signal for capture or trigger 										ırity. :FP2. rigger	
				operat [CH1N [CH1N captur This b 10.	ion in sl IP==1, (IP==1, (e or trig it canno	ave mo CH1P== CH1P== ger ope t be mo	ode. And =0]: Res =1]: TIx eration i odified v	d TIxFP served. FP1's fa n slave when Lk	1 will be alling an mode. / ([1:0] b	e invert nd rising And Th it-filed i	ed. g edge a kFP1 wi in TIME	are both II be not Rx_BKI	the ac t inverte DT regis	tive sigr ed. ster is 1	nal for 1 or
0	CH1E Channel 1 enable When channel 1 is configured in input mode, setting this bit enables OC1 signal in active state. When channel 1 is configured in output mode, setting this bit enables the capture event in channel1. 0: Channel 1 disabled. 1: Channel 1 enabled.											in •s the			
		TIME	R1/TIN	MER8 o	counte	er regi	ister (TIME	Rx_CN	IT)					
		Addres	ss offs	et: 0x24	Ļ										
		Reset	value:	0x0000)										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							rw	5.0]							
Bits		Fields		Descr	iptions										
15:0		CNT[15:0	D]	This bit-filed indicates the current counter value. Writing to this bit-filed can change the											
				value of the counter.											
		TIME	R1/TIN	MER8 p	oresca	ler re	gister	(TIM	ERx_P	SC)					
		Addres	ss offs	et: 0x28	}										
		Reset	value:	0x0000)										

PSC[15:0]

rw

Bits	Fields	Descriptions
15:0	PSC[15:0]	Prescaler value of the counter clock
		The PSC clock is divided by (PSC+1) to generate the counter clock. The value of this
		bit-filed will be loaded to the corresponding shadow register at every update event.

TIMER1/TIMER8 counter auto reload register (TIMERx_CARL)

	Address offset: 0x2C Reset value: 0x0000														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CARL[1	5:0]							
	rw														

Bits	Fields	Descriptions
15:0	CARL[15:0]	Counter auto reload value
		This bit-filed specifies the auto reload value of the counter.

TIMER1/TIMER8 counter repetition register (TIMERx_CREP)

		Addre Reset	ss offse value:	et: 0x30 0x0000)										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved										CREI	P[7:0]			
											r	w			

Bits	Fields	Descriptions
15:8	Reserved	Must be kept at reset value.
7:0	CREP[7:0]	Counter repetition value This bit-filed specifies the update event generation rate. Each time the repetition counter counting down to zero, an update event is generated. The update rate of the shadow registers is also affected by this bit-filed when these shadow registers are enabled.

TIMER1/TIMER8 channel 1 capture compare register (TIMERx_CHCC1)

Address offset: 0x34 Reset value: 0x0000

Giga	Device	,								GD)32F	10x	User	Mar	nual
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CHCC1[15:0]							
							rw								

Bits	Fields	Descriptions
15:0	CHCC1[15:0]	Capture or compare value of channel1
		When channel1 is configured in input mode, this bit-filed indicates the counter value
		corresponding to the last capture event. And this bit-filed is read-only.
		When channel1 is configured in output mode, this bit-filed contains value to be
		compared to the counter. When the corresponding shadow register is enabled, the
		shadow register updates every update event.

TIMER1/TIMER8 channel 2 capture compare register (TIMERx_CHCC2)

Address offset: 0x38 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CHCC2[15:0]														
							rw								

Bits	Fields	Descriptions
15:0	CHCC2[15:0]	Capture or compare value of channel2
		When channel 2 is configured in input mode, this bit-filed indicates the counter value
		corresponding to the last capture event. And this bit-filed is read-only.
		When channel 2 is configured in output mode, this bit-filed contains value to be
		compared to the counter. When the corresponding shadow register is enabled, the
		shadow register updates every update event.

TIMER1/TIMER8 channel 3 capture compare register (TIMERx_CHCC3)

		Addre Reset	ss offse value:	et: 0x30 0x0000											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CHCC3[15:0]							
							rw								

Bits	Fields	Descriptions
15:0	CHCC3[15:0]	Capture or compare value of channel 3
		When channel 3 is configured in input mode, this bit-filed indicates the counter value
		corresponding to the last capture event. And this bit-filed is read-only.
		When channel 3 is configured in output mode, this bit-filed contains value to be

compared to the counter. When the corresponding shadow register is enabled, the shadow register updates every update event.

TIMER1/TIMER8 channel 4 capture compare register (TIMERx_CHCC4)

Address offset: 0x40 Reset value: 0x0000 CHCC4[15:0] rw

Bits	Fields	Descriptions
15:0	CHCC4[15:0]	Capture or compare value of channel 4
		When channel 4 is configured in input mode, this bit-filed indicates the counter value
		corresponding to the last capture event. And this bit-filed is read-only.
		When channel 4 is configured in output mode, this bit-filed contains value to be
		compared to the counter. When the corresponding shadow register is enabled, the
		shadow register updates every update event.

TIMER1/TIMER8 break and dead-time register (TIMERx_BKDT)

Address offset: 0x44 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
POE	OAE	BRKP	BRKE	ROS	IOS	LK[1:0]					DT	[7:0]			
rw	rw	rw	rw	rw	rw	rw	rw rw				r	w			

Bits	Fields	Descriptions				
15	POE	Primary output enable				
		This bit s set by software or automatically by hardware depending on the OAE bit. It is				
		cleared asynchronously by hardware as soon as the break input is active. When a				
		channel is configured in output mode, setting this bit enables the channel outputs (OC				
		and OCN) if the corresponding enable bits (CHxE, CHxNE in TIMERx_CHE register)				
		have been set.				
		0: Channel outputs are disabled or forced to idle state.				
		1: Channel outputs are enabled.				
14	OAE	Output automatic enable				
		This bit specifies whether the POE bit can be set automatically by hardware.				
		0: POE can be not set by hardware.				
		1: POE can be set by hardware automatically at the next update event, if the break				

		input is not active. This bit can be modified only when LK [1:0] bit-filed in TIMERx_BKDT register is 00.
13	BRKP	Break polarity This bit specifies the polarity of the BRK input signal. 0: BRK input active low 1; BRK input active high
12	BRKE	Break enable This bit can be set to enable the BRK and CCS clock failure event inputs. 0: Break inputs disabled 1; Break inputs enabled This bit can be modified only when LK [1:0] bit-filed in TIMERx_BKDT register is 00.
11	ROS	Run mode off-state configure When POE bit is set, this bit specifies the output state for the channels which has a complementary output and has been configured in output mode. 0: When POE bit is set, the channel output signals (OC/OCN) are disabled. 1: When POE bit is set, the channel output signals (OC/OCN) are enabled, with relationship to CHxE/CHxNE bits in TIMERx_CHE register. This bit cannot be modified when LK [1:0] bit-filed in TIMERx_BKDT register is 10 or 11.
10	IOS	 Idle mode off-state configure When POE bit is reset, this bit specifies the output state for the channels which has been configured in output mode. 0: When POE bit is reset, the channel output signals (OC/OCN) are disabled. 1: When POE bit is reset, he channel output signals (OC/OCN) are enabled, with relationship to CHxE/CHxNE bits in TIMERx_CHE register. This bit cannot be modified when LK [1:0] bit-filed in TIMERx_BKDT register is 10 or 11.
9:8	LK[1:0]	Lock control This bit-filed specifies the write protection property of registers. 00: LOCK disable. No write protection. 01: LOCK mode 1. The ISOx/ISOxN bits in TIMERx_CTLR2 register and the BRKE/BRKP/OAE/DT bits in TIMERx_BKDT register are writing protected. 10: LOCK mode 2. In addition of the registers in LOCK mode 1, the CHxP/CHxNP bits in TIMERx_CHE register (if related channel is configured in output mode) and the ROS/IOS bits in TIMERx_BKDT register are writing protected. 11: LOCK mode 3. In addition of the registers in LOCK mode 2, the CHxOM/CHxOSE bits in TIMERx_CHCTRLx registers (if the related channel is configured in output) are writing protected. This bit-field can be written only once after the reset. Once the TIMERx_BKDT register has been written, this bit-field will be writing protected.

This bit-field specifies the duration of the dead-time, which is inserted before the output transitions. The relationship between DT value and the duration of dead-time is as follow:

DT [7:5] =0xx: duration = DT [7:0] x t_{DT} , t_{DT} = t_{DTS} .

DT [7:5] =10x: duration = (64+DT [5:0]) x t_{DT} , $t_{DT}=t_{DTS}*2$.

DT [7:5] =110: duration = (32+DT [4:0]) x t_{DT} , $t_{DT}=t_{DTS}*8$.

DT [7:5] =111: duration = (32+DT [4:0]) x t_{DT} , $t_{DT}=t_{DTS}*16$.

This bit can be modified only when LK [1:0] bit-filed in TIMERx_BKDT register is 00.

TIMER1/TIMER8 DMA control register (TIMERx_DCTLR)

Address offset: 0x48 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved		DBLTH[4:0]				Reserved			DBAR[4:0]						
					rw								rw		

Bits	Fields	Descriptions
15:14	Reserved	Must be kept at reset value.
12:8	DBLTH[4:0]	DMA access burst length
		When register access are done through the TIMERx_DTRSF address, this 5-bit
		bit-field specifies the number of transfers.
7:5	Reserved	Must be kept at reset value.
4:0	DBAR[4:0]	DMA access base address
		When register access are done through the TIMERx_DTRSF address, this bit-field
		specifies the offset of the starting address from the TIMERX CTLR1 register.

TIMER1/TIMER8 DMA transfer register (TIMERx_DTRSF)

Address offset: 0x4C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DTRSF[15:0] rw

Bits	Fields	Descriptions
15:0	DTRSF[15:0]	DMA transfer
		When a read or write operation is assigned to this register, the register located at the
		address range (DBAR + burst counter) x 4 from TIMERx_CTLR1 will be accessed.
		The burst counter is calculated by hardware, and ranges from 0 to DBLTH.

248

9.2. General timers (TIMER2 to TIMER5)

9.2.1. Introduction

The general timers (TIMER2/TIMER3/TIMER4/TIMER5) consist of one 16-bit up/down-counter; four capture/compare registers (TIMERx_CHCC), one counter auto reload register (TIMERx_CARL) and several control registers. They can be used for a variety of purposes including general timer, input signal pulse width measurement or output waveform generation such as single pulse generation or PWM output. The TIMERx supports an Encoder Interface using a decoder with two inputs.

9.2.2. Main features

- 16-bit down, up, down/up auto-reload counter.
- 16-bit programmable prescaler that allows division of the counter clock frequency by any factor between 1 and 65536.
- Up to 4 independent channels support functions including input capture, compare match output, generation of PWM waveform (edge and center-aligned Mode), and single pulse mode output.
- Interrupt/DMA generation by update, trigger event, input capture event, output compare match event
- Synchronization circuit to control TIMERx with external signals or to interconnect several timers together.
- Encoder interface controller with two inputs using quadrature decoder
- TIMERx Master/Slave mode controller

9.2.3. Function description

Figure below provides details on the internal configuration of the general timer.

Prescaler counter

The prescaler can divide the timer clock (PCLK) to the counter clock (CNT_CLK) by any factor between 1 and 65536. It is controlled through prescaler register (TIMERx_PSC) which can be changed on the fly but be taken into account at the next update event.

Figure 9-45 Counter timing diagram with prescaler division change from 1 to 2

Figure 9-46 Counter timing diagram with prescaler division change from 1 to 4

Upcounting mode

In this mode the counter counts continuously from 0 to the counter-reload value, which is defined in the TIMERx_CARL register, in a count-up direction. Once the counter reaches the counter reload value, the counter restarts to count once again from 0. The update event is generated at each counter overflow. The counting direction bit DIR in the TIMERx_CTLR1 register should be set to 0 for the upcounting mode.

When the update event is set by the UPG bit in the TIMERx_EVG register, the counter value will be initialized to 0 and generates an update event.

If set the UPDIS bit in TIMERx_CTLR1 register, the update event is disabled.

When an update event occurs, all the registers (autoreload register, prescaler register) are updated.

The following figures show some examples of the counter behavior for different clock frequencies when TIMERx_CARL=0x63.

Figure 9-47 Counter timing diagram, internal clock divided by 1

Figure 9-48 Counter timing diagram, internal clock divided by 2

Figure 9-49 Counter timing diagram, internal clock divided by 4

Figure 9-50 Counter timing diagram, internal clock divided by N

Figure 9-51 Counter timing diagram, update event when ARSE=0

Figure 9-52 Counter timing diagram, update event when ARSE=1

Downcounting mode

In this mode the counter counts continuously from the counter reload value, which is defined in the TIMERx_CARL register, to 0 n a count-down direction. Once the counter reaches 0, the counter restarts to count once again from the counter-reload value. If the repetition counter is set, the update event generated after the number of underflow. Else the update event is generated at each counter underflow. The counting direction bit DIR in the TIMERx_CTLR1 register should be set to 1 for the down counting mode.

When the update event is set by the UPG bit in the TIMERx_EVG register, the counter value will be initialized to the counter-reload value and generates an update event.

If set the UPDIS bit in TIMERx_CTLR1 register, the update event is disabled.

When an update event occurs, all the registers (repeat counter, reload register, prescaler register) are updated.

Figure 9-53 Counter timing diagram, internal clock divided by 1

Figure 9-54 Counter timing diagram, internal clock divided by 2

Figure 9-56 Counter timing diagram, internal clock divided by N

Center-aligned counting mode

In the center-aligned counting mode, the counter counts up from 0 to the counter-reload value and then counts down to 0 alternatively. The Timer module generates an overflow event when the counter counts to the counter-reload value subtract 1 in the up-counting mode and generates an underflow event when the counter counts to 1 in the down-counting mode. The counting direction bit DIR in the TIMERx_CTLR1 register is read-only and indicates the counting direction when in the center- aligned mode. The counting direction is

updated by hardware automatically.

Setting the UPG bit in the TIMERx_EVG register will initialize the counter value to 0 irrespective of whether the counter is counting up or down in the center-align counting mode and generates an update event.

The UPIF bit in the TIMERx_EVG register can be set to 1 when an underflow event at count-down (CAM in TIMERx_CTLR1 is "01"), an overflow event at count-up (CAM in TIMERx_CTLR1 is "10") or both of them occur (CAM in TIMERx_CTLR1 is "11").

If set the UPDIS bit in the TIMERx_CTLR1 register, the update event is disabled.

When an update event occurs, all the registers (autoreload register, prescaler register) are updated.

The following figures show some examples of the counter behavior for different clock frequencies when TIMERx_CARL=0x5.

Figure 9-58 Counter timing diagram, internal clock divided by 1, TIMERx_CARL = 0x5

Figure 9-59 Counter timing diagram, internal clock divided by 2

Figure 9-61 Counter timing diagram, internal clock divided by N

GD32F10x User Manual

Figure 9-63 Counter timing diagram, Update event with ARSE=1 (counter overflow)

Clock selection

The following describes the Timer Module clock controller which determines the clock source of the internal prescaler counter.

Internal timer clock PCLK

The default internal clock source is the APB2 clock CK_APB2 used to drive the counter prescaler when the slave mode is disabled. If the slave mode controller is enabled by setting SMC field in the TIMERx_SMC register to an available value including 0x1, 0x2, 0x3 and 0x7, the prescaler is clocked by other clock sources selected by the TRGS field in the TIMERx_SMC register and described as follows. When the slave mode selection bits SMC are set to 0x4, 0x5 or 0x6, the internal clock PCLK is the counter prescaler driving clock source.

Quadrature decoder

To select Quadrature Decoder mode the SMC field should be set to 0x1, 0x2 or 0x3 in the TIMERx_SMC register. The Quadrature Decoder function uses two input states of the TIMERx_CH1 and TIMERx_CH2 pins to generate the clock pulse to drive the counter prescaler. The counting direction bit DIR is modified by hardware automatically at each transition on the input source signal. The input source signal can be derived from the TIMERx_CH1 pin only, the TIMERx_CH2 pin only or both TIMERx_CH1 and TIMERx_CH2 pins.

Internal trigger inputs (ITI)

The counter prescaler can count during each rising or falling edge of the ITI signal. This mode can be selected by setting the SMC field to 0x6 in the TIMERx_SMC Rregister; here the counter will act as an event counter. The input event, known as ITI here, can be selected by setting the TRGS field. When the ITI signal is selected as the clock source, the internal edge detection circuitry will generate a clock pulse during each ITI signal rising or falling edge to drive the counter prescaler.

External input pin (TIx)

The counter prescaler can be driven to count during each rising or falling edge on the external pin TIMERx_ TIx. This mode can be selected by setting SMC field to 0x7 and the TRGS field to 0x4, 0x5 or 0x6. Note that the TIx is derived from the TIMERx_TIx sampled by a digital filter.

External trigger input (ETIF)

The counter prescaler can be driven to count during each rising or falling edge on the external pin TIMERx_ ETI. This mode can be selected by setting the ECM2E bit in the TIMERx_SMC register to 1. The other way to select the ETIF signal as the clock source is to

GD32F10x User Manual

set the SMC field to 0x6 and the TRGS field to 0x7 respectively. Note that the ETIF signal is derived from the TIMERx_ETI pin sampled by a digital filter. When the clock source is selected to come from the ETIF signal, the Trigger Controller including the edge detection circuitry will generate a clock pulse during each ETIF signal rising edge to clock the counter prescaler.

Capture/compare channels

The TIMERx has four independent channels which can be used as capture inputs or compare match outputs. Each channel is built around a channel capture compare register including an input stage, channel controller and an output stage.

Input capture stage

The input stage consists of a digital filter, a channel polarity selection, edge detection and a channel prescaler. The channel 1 input signal (TI1) can be chosen to come from the TIMERx_CH1 signal or the Excusive-OR function of the TIMERx_CH1, TIMERx_CH2 and TIMERx_CH3 signals. The channel input signal (TIx) is sampled by a digital filter to generate a filtered input signal TIxF. Then the channel polarity and the edge detection block can generate a TIxFPx signal for the input capture function. The effective input event number can be set by the channel input prescaler register (CHx_ICP).

Figure 9-65 Capture/compare channel (example: channel 1 input stage)

Channel controller

The GPTIMER has four independent channels which can be used as capture inputs or compare match outputs.

When used in the input capture mode, the counter value is captured into the TIMERx_CHCCx shadow register first and then transferred into the TIMERx_CHCCx preload register when the capture event occurs.

When used in the compare match output mode, the contents of the TIMERx_CHCCx preload register is copied into the associated shadow register; the counter value is then compared

with the register value.

Output stage

The TIMERx has four channels for compare match, single pulse or PWM output function.

Figure 9-68 Output compare mode, toggle on OC1

Interrupt generated if enabled

When the channel is used as a capture input, the counter value is captured into the Channel Capture/Compare Register (TIMERx_CHCCx) when an effective input signal transition occurs. Once the capture event occurs, the CHxIF flag in the TIMERx_STR register is set. If the CHxIF bit is already set, i.e., the flag has not yet been cleared by software, and another capture event on this channel occurs, the corresponding channel Over-Capture flag, named CHxOF, will be set.Once the capture event occurs, a DMA request is generated depending on the CHxIE bit and an interrupt is generated depending on the CHxIE bit

The input capture mode can be also used for pulse width measurement from signals on the TIMERx_CHx pins (TIx).

Channel Output Reference Signal

When the TIMERx is used in the compare match output mode, the OCxREF signal (Channel x Output Reference signal) is defined by setting the CHxOM bits. The OCxREF signal has several types of output function. These include, keeping the original level by setting the CHxOM field to 0x00, set to 1 by setting the CHxOM field to 0x01, set to 0 by setting the CHxOM field to 0x02 or signal toggle by setting the CHxOM field to 0x03 when the counter value matches the content of the TIMERx_CHCCx register.

The PWM mode 1 and PWM mode 2 outputs are also another kind of OCxREF output which is setup by setting the CHxOM field to 0x06/0x07. In these modes, the OCxREF signal level is changed according to the counting direction and the relationship between the counter value and the TIMERx_CHCCx content. With regard to a more detailed description refer to the relative bit definition.

Another special function of the OCxREF signal is a forced output which can be achieved by setting the CHxOM field to 0x04/0x05. Here the output can be forced to an inactive/active level irrespective of the comparison condition between the counter and the TIMERx_CHCCx values.

The OCxREF signal can be forced to 0 when the ETIF signal is derived from the external TIMERx_ETI pin and when it is set to a high level by setting the CHxOCE bit to 1 in the TIMERx_CHCTLR1 register. The OCxREF signal will not return to its active level until the next update event occurs.

Single pulse mode

Once the timer is set to operate in the single pulse mode, it is not necessary to set the timer enable bit CEN in the TIMERx_CTLR1 register to 1 to enable the counter. The trigger to generate a pulse can be sourced from the trigger signals edge or by setting the CEN bit to 1 using software. Setting the CEN bit to 1 or a trigger from the trigger signals edge can generate a pulse and then keep the CEN bit at a high state until the update event occurs or the CEN bit is written to 0 by software. If the CEN bit is cleared to 0 using software, the counter will be stopped and its value held. If the CEN bit is automatically cleared to 0 by a hardware update event, the counter will be reinitialized.

In the Single Pulse mode, the trigger active edge which sets the CEN bit to 1 will enable the counter. However, there exist several clock delays to perform the comparison result between the counter value and the TIMERx_CHCCx value. In order to reduce the delay to a minimum value, the user can set the CHxOEF bit in each TIMERx_CHCTLR1 register. After a trigger rising edge occurs in the single pulse mode, the OCxREF signal will immediately be forced to the state which the OCxREF signal will change to, as the compare match event occurs without taking the comparison result into account. The CHxOEF bit is available only when the output channel is configured to operate in the PWM1 or PWM2 output mode and the trigger source is derived from the trigger signal.

Quadrature Decoder

The Quadrature Decoder function uses two quadrature inputs TI1 and TI2 derived from the TIMERx_CH1 and TIMERx_CH2 pins respectively to interact to generate the counter value. The DIR bit is modified by hardware automatically during each input source transition. The input source can be either TI1 only, TI2 only or both TI1 and TI2, the selection made by setting the SMC field to 0x01, 0x02 or 0x03. The mechanism for changing the counter direction is shown in the following table. The Quadrature decoder can be regarded as an external clock with a directional selection. This means that the counter counts continuously in the interval between 0 and the counter-reload value. Therefore, users must configure the TIMERx_CARL register before the counter starts to count.

Counting		TI1	FP1	TI2FP2			
mode	Level	Rising	Falling	Rising	Falling		
TI1 only	TI2FP=High	Down	Up	-	-		
counting	TI2FP=Low	Up	Down	-	-		
TI2 only	TI1FP=High	-	-	Up	Down		
counting	TI1FP=Low	-	-	Down	Up		
	TI2FP=High	Down	Up	Х	Х		
TI1 and TI2	TI2FP=Low	Up	Down	Х	Х		
counting	TI1FP=High	Х	Х	Up	Down		
	TI1FP=Low	Х	Х	Down	Up		

Table 9-2 Counting direction versus encoder signals

Note: "-" means "no counting"; "X" means impossible.

Figure 9-70 Example of counter operation in encoder interface mode

GD32F10x User Manual

Figure 9-71 Example of encoder interface mode with TI1FP1 polarity inverted

Slave Controller

The TIMERx can be synchronized with an external trigger in several modes including the Restart mode, the Pause mode and the Trigger mode which is selected by the SMC field in the TIMERx_SMC register. The trigger input of these modes can be selected by the TRGS field in the TIMERx_SMC register, below to TI1 signal as an example. The operation modes in the Slave Controller are described in the accompanying sections.

Restart mode

The counter and its prescaler can be reinitialized in response to a rising edge of the TI1 signal. When a TI1 rising edge occurs, the update event software generation bit named UPG will automatically be asserted by hardware and the trigger event flag will also be set. Then the counter and prescaler will be reinitialized. Although the UPG bit is set to 1 by hardware, the update event does not really occur. It depends upon whether the update event disable control bit UPDIS is set to 1 or not. If UPDIS is set to 1 to disable the update event to occur, there will no update event will be generated, however the counter and prescaler are still reinitialized when the TI1 rising edge occurs. If the UPDIS bit in the TIMERx_CTLR1 register is cleared to enable the update event to occur, an update event will be generated together with the TI1 rising edge, then all the preloaded registers will be updated.

Figure 9-72 Control circuit in restart mode

Pause mode

In the Pause Mode, the selected TI1 input signal level is used to control the counter start/stop operation. The counter starts to count when the selected TI1 signal is at a high level and stops counting when the TI1 signal is changed to a low level, here the counter will maintain its present value and will not be reset.

Trigger mode

After the counter is disabled to count, the counter can resume counting when a TI1 rising edge signal occurs. When a TI1 rising edge occurs, the counter will start to count from the current value in the counter. Note that the TI1 signal is only used to enable the counter to resume counting and has no effect on controlling the counter to stop counting.

Timer Interconnection

The timers can be internally connected together for timer chaining or synchronization. This can be implemented by configuring one timer to operate in the Master mode while configuring another timer to be in the Slave mode. The following figures present several examples of trigger selection for the master and slave modes.

Figure below shows the timer x trigger selection when it is configured in slave mode.

Figure 9-75 Master/Slave mode timer example

Timer debug mode

When the Cortex[™]-M3 halted, and the DBG_TIMERx_STOP configuration bit in MCUDBG module set to 1, the TIMERx counter stops.

9.2.4. TIMER2 to TIMER5 registers

TIMERx control register 1 (TIMERx_CTLR1)

Address offset: 0x00 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved					CDIV[1:0]		ARSE	CAM[1:0]		DIR	SPM	UPS	UPDIS	CEN	
					r	w	rw	rv	v	rw	rw	rw	rw	rw	

Bits	Fields	Descriptions
15:10	Reserved	Must be kept at reset value
9:8	CDIV[1:0]	Clock division The CDIV bits can be configured by software to specify division ratio between the timer clock (PCLK) and the sampling clock (DTS), which is used by the digital filters. 00: $f_{DTS}=f_{PCLK}$ 01: $f_{DTS}=f_{PCLK}/2$

		10: f _{DTS} = f _{PCLK} /4
		11: Reserved
7	ARSE	Auto-reload shadow enable
		0: The shadow register for TIMERx_ CARL register is disabled
		1: The shadow register for TIMERx_CARL register is enabled
6:5	CAM[1:0]	Center-aligned mode selection
		00: No center-aligned mode (edge-aligned mode). The direction of the counter is specified by the DIR bit.
		01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare interrupt flags of channels, which are configured in output mode (CHxM=00 in
		TIMERx_CHCTLRx register), are set only when the counter is counting down.
		10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare interrupt flags of channels, which are configured in output mode (CHxM=00 in
		TIMERx_CHCTLRx register), are set only when the counter is counting up.
		11: Center-aligned mode 3. The counter counts up and down alternatively. Output
		compare interrupt flags of channels, which are configured in output mode (CHxM=00 in
		TIMERx_CHCTLRx register), are set only when the counter is counting both up and down.
		After the counter is enabled, can not be switched from edge-aligned mode to
		center-aligned mode.
4	DIR	Direction
		0: Count up
		1: Count down
		This bit is read only when the timer is configured in Center-aligned mode or Encoder mode.
3	SPM	Single pulse mode.
		0: Counter continues after update event.
		1: The CEN is cleared by hardware and the counter stops at update event.
2	UPS	Update source
		This bit is used to select the update event sources.
		0: When enabled, any of the following events generate an update interrupt or DMA
		- The OPG bit is set
		The cloud mode controller percentee on underlieve event
		The slave mode controller generates an update event. When enabled, only equipter evertlew/underflow generates on update interrupt or
		DMA request.
1	LIPDIS	Lindate disable
I		This hit is used to enable or disable the update event generation
		0: undate event enable. The undate event is generate and the huffered registers are
		loaded with their preloaded values when one of the following events occurs:

- The UPG bit is set

- The counter generates an overflow or underflow event

The slave mode controller generates an update event.

1: update event disable. The buffered registers keep their value, while the counter and the prescaler are reinitialized if the UPG bit is set or if the slave mode controller generates a hardware reset event.

0 CEN Counter enable

_

0: counter disable

1: counter enable

The CEN bit must be set by software when timer works in external clock, pause mode and encoder mode. While in trigger mode, the hardware can set the CEN bit automatically.

TIMERx control register 2 (TIMERx_CTLR2)

Address offset: 0x04

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved								TI1S	I	MMC[2:0]		DMAS		Reserved	
								rw		rw		rw			

Bits	Fields	Descriptions
15:8	Reserved	Must be kept at reset value
7	TI1S	Channel 1 trigger input selection
		0: The TIMERx_CH1 pin input is selected as channel 1 trigger input.
		1: The result of combinational XOR of TIMERx_CH1, CH2 and CH3 pins is selected as
		channel 1 trigger input.
6:4	MMC[2:0]	Master mode control
		These bits control the selection of TRGO signal, which is sent in master mode to slave
		timers for synchronization function.
		000: Reset. When the UPG bit in the TIMERx_EVG register is set or a reset is
		generated by the slave mode controller, a TRGO pulse occurs. And in the latter case,
		the signal on TRGO is delayed compared to the actual reset.
		001: Enable. This mode is useful to start several timers at the same time or to control a
		window in which a slave timer is enabled. In this mode the master mode controller
		selects the counter enable signal TIMERx_EN as TRGO. The counter enable signal is
		set when CEN control bit is set or the trigger input in pause mode is high. There is a
		delay between the trigger input in pause mode and the TRGO output, except if the
		master-slave mode is selected.
		010: Update. In this mode the master mode controller selects the update event as
		TRGO.
		011: Capture/compare pulse. In this mode the master mode controller generates a

		TRGO pulse when a capture or a compare match occurred.
		100: Compare. In this mode the master mode controller selects the $\ensuremath{OC1REF}$ signal is
		used as TRGO
		101: Compare. In this mode the master mode controller selects the OC2REF signal is
		used as TRGO
		110: Compare. In this mode the master mode controller selects the OC3REF signal is
		used as TRGO
		111: Compare. In this mode the master mode controller selects the OC4REF signal is
		used as TRGO
3	DMAS	DMA request source selection
		0: DMA request of channel x is sent when channel x event occurs.
		1: DMA request of channel x is sent when update event occurs.
2:1	Reserved	Must be kept at reset value.

TIMERx slave mode control register (TIMx_SMC)

Address offset: 0x08 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
ETPL	ECM2E	ETPS	C[1:0]	ETFC[3:0]			MSM	TRGS[2:0]			Reserved	ed SMC[2:0]				
rw	rw	r	w	rw				rw	rw			rw				

Bits	Fields	Descriptions
15	ETPL	External trigger polarity
		This bit specifies the polarity of ETI signal
		0: ETI is active at high level or rising edge.
		1: ETI is active at low level or falling edge.
14	ECM2E	External clock mode 2 enable
		In external clock mode 2, the counter is clocked by any active edge on the ETIF signal.
		0: External clock mode 2 disabled
		1: External clock mode 2 enabled.
		Setting the ECM2E bit has the same effect as selecting external clock mode 1 with
		TRGI connected to ETIF (SMC=111 and TRGS =111).
		It is possible to simultaneously use external clock mode 2 with the reset mode, pause
		mode or trigger mode. But the TRGS bits must not be 111 in this case.
		The external clock input will be ETIF if external clock mode 1 and external clock mode
		2 are enabled at the same time.
13:12	ETPSC[1:0]	External trigger prescaler
		The frequency of external trigger signal ETIP must not be at higher than 1/4 of
		TIMERxCLK frequency. When the external trigger signal is a fast clocks, the prescaler
		can be enabled to reduce ETIP frequency

		00: Prescaler disable
		01: ETIP frequency will be divided by 2
		10: ETIP frequency will be divided by 4
		11: ETIP frequency will be divided by 8
11:8	ETFC[3:0]	External trigger filter control
		An event counter is used in the digital filter, in which a transition on the output occurs
		after N input events. This bit-field specifies the frequency used to sample ETIP signal
		and the length of the digital filter applied to ETIP.
		0000: Filter disalble. f _{SAMP} = f _{DTS} , N=1.
		0001: f _{SAMP} = f _{PCLK} , N=2.
		0010: f _{SAMP} = f _{PCLK} , N=4.
		0011: f _{SAMP} = f _{PCLK} , N=8.
		0100: f _{SAMP} =f _{DTS} /2, N=6.
		0101: f _{SAMP} =f _{DTS} /2, N=8.
		0110: f _{SAMP} =f _{DTS} /4, N=6.
		0111: f _{SAMP} =f _{DTS} /4, N=8.
		1000: f _{SAMP} =f _{DTS} /8, N=6.
		1001: f _{SAMP} =f _{DTS} /8, N=8.
		1010: f _{SAMP} =f _{DTS} /16, N=5.
		1011: f _{SAMP} =f _{DTS} /16, N=6.
		1100: f _{SAMP} =f _{DTS} /16, N=8.
		1101: f _{SAMP} =f _{DTS} /32, N=5.
		1110: f _{SAMP} =f _{DTS} /32, N=6.
		1111: f _{SAMP} =f _{DTS} /32, N=8.
7	MSM	Master-slave mode
		The effect of an event on the trigger input is delayed in this mode to allow a perfect
		synchronization between the current timer and its slaves through TRGO. If we want to
		synchronize several timers on a single external event, this mode can be used.
		0: Master-slave mode disable
		1: Master-slave mode enable
6:4	TRGS[2:0]	Trigger selection
		This bit-field specifies which signal is selected as the trigger input, which is used to
		synchronize the counter.
		000: Internal trigger input 0 (ITR0)
		001: Internal trigger input 1 (ITR1)
		010: Internal trigger input 2 (ITR2)
		011: Internal trigger input 3 (ITR3)
		100: TI1 edge flag (TI1F_ED)
		101: Filtered channel 1 input (TI1FP1)
		110: Filtered channel 2 Input (TI2FP2)
		111: External trigger input (ETIF)
		These bits must not be changed when slave mode is enabled.

GigaDev	vice	GD32F10x User Manual
3	Reserved	Must be kept at reset value.
2:0	SMC[2:0]	Slave mode control
		000: Disable mode .The prescaler is clocked directly by the internal clock when CEN
		bit is set high.
		001: Quadrature decoder mode 1. The counter counts on TI2FP2 edge, while the
		direction depends on TI1FP1 level.
		010: Quadrature decoder mode 2. The counter counts on TI1FP1 edge, while the
		direction depends on TI2FP2 level.
		011: Quadrature decoder mode 3. The counter counts on both TI1FP1 and TI2FP2
		edge, while the direction depends on each other.
		100: Restart Mode. The counter is reinitialized and the shadow registers are updated
		on the rising edge of the selected trigger input.
		101: Pause Mode. The trigger input enables the counter clock when it is high and
		disables the counter when it is low.
		110: Trigger Mode. A rising edge of the trigger input enables the counter. The counter
		cannot be disabled by the slave mode controller.
		111: External Clock Mode 1. The counter counts on the rising edges of the selected
		trigger.
		Because TI1F_ED outputs 1 pulse for each transition on TI1F, and the pause mode
		checks the level of the trigger signal, when TI1F_ED is selected as the trigger input,
		the pause mode must not be used.

TIMERx DMA and interrupt enable register (TIMERx_DIE)

Address offset: 0x0C Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	TRGDE	Reserved	CH4DE	CH3DE	CH2DE	CH1DE	UPDE	Reserved	TRGIE	Reserved	CH4IE	CH3IE	CH2IE	CH1IE	UPIE
	rw		rw	rw	rw	rw	rw		rw		rw	rw	rw	rw	rw

Bits	Fields	Descriptions
15	Reserved	Must be kept at reset value.
14	TRGDE	Trigger DMA request enable
		0: Trigger DMA request disabled
		1: Trigger DMA request enabled
13	Reserved	Must be kept at reset value
12	CH4DE	Channel4DMA request enable
		0: Channel 4DMA request disabled
		1: Channel4 DMA request enabled
11	CH3DE	Channel3DMA request enable
		0: Channel 3DMA request disabled

		1: Channel3 DMA request enabled
10	CH2DE	Channel2DMA request enable 0: Channel 2DMA request disabled 1: Channel2 DMA request enabled
9	CH1DE	Channel 1 DMA request enable 0: Channel 1 DMA request disabled 1: Channel1 DMA request enabled
8	UPDE	Update DMA request enable 0: Update DMA request disabled 1: Update DMA request enabled
7	Reserved	Must be kept at reset value
6	TRGIE	Trigger interrupt enable 0: Trigger interrupt disabled 1: Trigger interrupt enabled
5	Reserved	Must be kept at reset value.
4	CH4IE	Channel4 interrupt enable 0: Channel 4 interrupt disabled 1: Channel4 interrupt enabled
3	CH3IE	Channel3 interrupt enable 0: Channel 3 interrupt disabled 1: Channel3 interrupt enabled
2	CH2IE	Channel2 interrupt enable 0: Channel 2 interrupt disabled 1: Channel2 interrupt enabled
1	CH1IE	Channel 1 interrupt enable 0: Channel 1 interrupt disabled 1: Channel1 interrupt enabled
0	UPIE	Update interrupt enable 0: Update interrupt disabled 1: Update interrupt enabled

TIMERx DMA and interrupt status register (TIMERx_STR)

Address offset: 0x10 Reset value: 0x0000

15	14	13	12	11	10	9	8 7	6	5	4	3	2	1	0
F	Reserve	d	CH4OF	CH3OF	CH2OF	CH1OF	Reserved.	TRGIF	Reserved.	CH4IF	CH3IF	CH2IF	CH1IF	UPIF
			rc_w0	rc_w0	rc_w0	rc_w0		rc_w0		rc_w0	rc_w0	rc_w0	rc_w0	rc_w0

Bits	Fields	Descriptions
15:13	Reserved	Must be kept at reset value.
12	CH4OF	Channel4 overcapture flag
		Refer to CH1OF description
11	CH3OF	Channel3 overcapture flag
		Refer to CH1OF description
10	CH2OF	Channel2 overcapture flag
		Refer to CH1OF description
9	CH1OF	Channel 1 overcapture flag
		When channel 1 is configured in input mode, this flag is set by hardware when a
		capture event occurs while CH1IF flag has already been set. This flag is cleared by
		software.
		0: No overcapture interrupt occurred
		1: Overcapture interrupt occurred
8:7	Reserved	Must be kept at reset value.
6	TROIE	
0	INGI	This flog is not by bordware on trigger event and closed by software. When the clove
		made controller is enabled in all medes but house made, on active adds on TPCL input
		apparetes a trigger event. When the abus made controller is enabled in pause made
		beth edges on TDCL input generates a trigger event
		Ou Ne trieges ou riker input generates a trigger event.
		U: No trigger event occurred.
		1: Trigger interrupt occurred.
5	Reserved	Must be kept at reset value.
4	CH4IF	Channel4 interrupt enable
		Refer to CH1IF description
3	CH3IF	Channel3 interrupt enable
		Refer to CH1IF description
2	CH2IF	Channel2 interrupt enable
-		Refer to CH1IF description
1	CH1IF	Channel 1 interrupt flag
		This flag is set by hardware and cleared by software. When channel 1 is in input mode,
		this flag is set when a capture event occurs. When channel 1 is in output mode, this
		flag is set when a compare event occurs.
		0: No Channel 1 interrupt occurred
		1: Channel 1 interrupt occurred
0		Lindete internut fler
U	UPIF	Update interrupt flag
		I his bit is set by hardware on an update event and cleared by software.

0: No update interrupt occurred

1: Update interrupt occurred

TIMERx event generation register (TIMERx_EVG)

Address offset: 0x14 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved							TRGG	Reserved.	CH4G	CH3G	CH2G	CH1G	UPG		
							w		w	w	w	w	w		

Bits	Fields	Descriptions
15:7	Reserved	Must be kept at reset value.
6	TRGG	Trigger event generation
		This bit is set by software and cleared by hardware automatically. When this bit is set,
		the TRGIF flag in TIMERx_STR register is set, related interrupt or DMA transfer can
		occur if enabled.
		0: No generate a trigger event
		1: Generate a trigger event
5	Reserved	Must be kept at reset value
4	CH4G	Channel4capture or compare event generation
		Refer to CH1G description
3	CH3G	Channel3capture or compare event generation
		Refer to CH1G description
2	CH2G	Channel2capture or compare event generation e
		Refer to CH1G description
1	CH1G	Channel 1 capture or compare event generation
		This bit is set by software in order to generate a capture or compare event in channel
		1, it is automatically cleared by hardware. When this bit is set, the CC1IF flag is set, the
		corresponding interrupt or DMA request is sent if enabled. In addition, if channel 1 is
		configured in input mode, the current value of the counter is captured in
		TIMER1_CHCC1 register, and the CH1OF flag is set if the CH1IF flag was already
		high.
		0: No generate a channel 1 capture or compare event
		1: Generate a channel 1 capture or compare event
0	UPG	This bit can be set by software, and cleared by hardware automatically. When this bit is
		set, the counter is cleared if the center-aligned or upcounting mode is selected, else
		(downcounting)it takes the auto-reload value. The prescaler counter is cleared at the
		same time.

0: No generate an update event

1: Generate an update event

TIMERx channel control register 1 (TIMERx_CHCTLR1)

Address offset: 0x18 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CH2				CH2	CH2			CH1				CUMORE	CH1		
OCE	,	SH2OIVI[2:0	וי	OSE	OFE	CH2N	И[1:0]	OCE	U	H1OM[2:	UJ	CHIOSE	OFE	CH1M[1:0]	
	CH2ICF[3:0]			CH2ICP[1:0]						CF[3:0]		CH1ICP[
	rw			r	w	r	N		r	w		rw			rw

Output compare mode:

Bits	Fields	Descriptions
15	CH2OCE	Channel 2 output compare clear enable.
		Refer to CH1OCE description.
14:12	CH2OM[2:0]	Channel 2 output compare mode
		Refer to CH1OM description.
11	CH2OSE	Channel 2 output compare shadow enable
		Refer to CH1OSE description.
10	CH2OFE	Channel 2 output compare fast enable
		Refer to CH1OFE description.
9:8	CH2M[1:0]	Channel 2 mode selection
		This bit-field specifies the direction of the channel and the input signal selection. This
		bit-field is writable only when the channel is OFF (CH2E bit in TIMERx_CHE register is
		reset).
		00: channel 2 is configured as output
		01: channel 2 is configured as input, IC2 is mapped on TI2
		10: channel 2 is configured as input, IC2 is mapped on TI1
		11: channel 2 is configured as input, IC2 is mapped on TRC. This mode is working only
		if an internal trigger input is selected through TRGS bits in TIMER_SMC register.
7	CH1OCE	Channel 1 output compare clear enable.
		When this bit is set, the OC1Ref signal is cleared when High level is detected on ETIF
		input.
		0: Channel 1 output compare clear disable
		1: Channel 1 output compare clear enable
6:4	CH1OM[2:0]	Channel 1 output compare mode
		This bit-field specifies the behavior of the output reference signal OC1REF which
		drives OC1. OC1REF is active high, while OC1 actives level depends on CH1P bit.
		000: Frozen. The OC1REF signal keep stable, independent of the comparison

		between the output compare register TIMERx_CHCC1 and the counter.
		001: Set high on match.OC1REF signal is forced high when the counter matches the
		output compare register TIMERx_CHCC1.
		010: Set low on match. OC1REF signal is forced low when the counter matches the c
		output compare register TIMERx_CHCC1.
		011: Toggle on match. OC1REF toggles when the counter matches the c output
		compare register TIMERx_CHCC1.
		100: Force low. OC1REF is forced low level.
		101: Force high. OC1REF is forced high level.
		110: PWM mode 1. When counting up, OC1REF is high as long as the counter is
		smaller than TIMERx_CHCC1 else low. When counting down, OC1REF is low as long
		as the counter is larger than TIMERx_CHCC1else high.
		111: PWM mode 2. When counting up, OC1REF is low as long as the counter is
		smaller than TIMERx_CHCC1 else high. When counting down, OC1REF is high as
		long as the counter is larger than TIMERx_CHCC1 else low.
		When configured in PWM mode, the OCREF level changes only when the output
		compare mode switches from "frozen" mode to "PWM" mode or when the result of the
		comparison changes.
3	CH1OSE	Channel 1 output compare shadow enable
		When this bit is set, the shadow register of TIMERx_CHCC1 register, which updates at
		each update event will be enabled.
		0: Channel 1 output compare shadow disable
		1: Channel 1 output compare shadow enable
		The PWM mode can be used without validating the shadow register only in one pulse
		mode (OPM bit set in TIMERx_CTLR1 register is set).
2	CH1OFE	Channel 1 output compare fast enable
		When this bit is set, the effect of an event on the trigger in input on the CC output will
		be accelerated if the channel is configured in PWM1 or PWM2 mode. The output
		channel will treat an active edge on the trigger input as a compare match, and OC is
		set to the compare level independently from the result of the comparison.
		0: Channel 1 output compare fast disable. The minimum delay from an edge on the
		trigger input to activate CC1 output is 5 clock cycles.
		1: Channel 1 output compare fast enable. The minimum delay from an edge on the
		trigger input to activate CC1 output is 3 clock cycles.
1:0	CH1M[1:0]	Channel 1 mode selection
		This bit-field specifies the direction of the channel and the input signal selection. This
		bit-field is writable only when the channel is OFF (CH1E bit in TIMERx_CHE register is
		reset).
		00: channel 1 is configured as output
		01: channel 1 is configured as input, IC1 is mapped on TI1
		10: channel 1 is configured as input, IC1 is mapped on TI2
		11: channel 1 is configured as input, IC1 is mapped on TRC. This mode is working only

GD32F10x User Manual

if an internal trigger input is selected through TRGS bits in TIMER_SMC register.

Input capture mode

Bits	Fields	Descriptions
15:12	CH2ICF[3:0]	Channel 2 input capture filter control
		Refer to CH1ICF description
11:10	CH2ICP[1:0]	Channel 2 input capture prescaler
		Refer to CH1ICP description
9:8	CH2M[1:0]	Channel 2 mode selection
		This bit-field specifies the direction of the channel and the input signal selection. This
		bit-field is writable only when the channel is OFF (CH2E bit in TIMERx_CHE register is reset).
		00: channel 2 is configured as output
		01: channel 2 is configured as input, IC2 is mapped on TI2
		10: channel 2 is configured as input, IC2 is mapped on TI1
		11: channel 2 is configured as input, IC2 is mapped on TRC. This mode is working only
		if an internal trigger input is selected through TRGS bits in TIMER_SMC register.
7:4	CH1ICF[3:0]	Channel 1 input capture filter control
		An event counter is used in the digital filter, in which a transition on the output occurs
		after N input events. This bit-field specifies the frequency used to sample TI1 input
		signal and the length of the digital filter applied to TI1.
		0000: Filter disable, f _{SAMP} = f _{DTS} , N=1
		0001: f _{SAMP} = f _{PCLK} , N=2
		0010: f _{SAMP} = f _{PCLK} , N=4
		0011: f _{SAMP} = f _{PCLK} , N=8
		0100: f _{SAMP} =f _{DTS} /2, N=6
		0101: f _{SAMP} =f _{DTS} /2, N=8
		0110: f _{SAMP} =f _{DTS} /4, N=6
		0111: f _{SAMP} =f _{DTS} /4, N=8
		1000: f _{SAMP} =f _{DTS} /8, N=6
		1001: f _{SAMP} =f _{DTS} /8, N=8
		1010: f _{SAMP} =f _{DTS} /16, N=5
		1011: f _{SAMP} =f _{DTS} /16, N=6
		1100: f _{SAMP} =f _{DTS} /16, N=8
		1101: f _{SAMP} =f _{DTS} /32, N=5
		1110: f _{SAMP} =f _{DTS} /32, N=6
		1111: f _{SAMP} =f _{DTS} /32, N=8
3:2	CH1ICP[1:0]	Channel 1 input capture prescaler
		This bit-field specifies the ratio of the prescaler on channel 1 input. The prescaler is
		reset when CH1E bit in TIMERx_CHE register is reset.
		00: prescaler disable, capture is done on each channel input edge

01: capture is done every 2 channel input edges

10: capture is done every 4channel input edges

11: capture is done every 8 channel input edges

1:0 CH1M[1:0] Channel 1 mode selection

This bit-field specifies the direction of the channel and the input signal selection. This bit-field is writable only when the channel is OFF (CH1E bit in TIMERx_CHE register is reset).

00: channel 1 is configured as output

01: channel 1 is configured as input, IC1 is mapped on TI1

10: channel 1 is configured as input, IC1 is mapped on TI2

11: channel 1 is configured as input, IC1 is mapped on TRC. This mode is working only

if an internal trigger input is selected through TRGS bits in TIMERx_SMC register.

TIMER1 channel control register 2 (TIMER1_CHCTLR2)

Address offset: 0x1C Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
CH4	CH4OM[2:0]			CH4	CH4			СНЗ	CH3OM[2:0]			CH3	CH3	CH3M[1:0]		
OCE				OSE	OFE	CH4N	/[1:0]	OCE				OSE	OFE			
	CH4ICF[3:0]			CH4IC	CP[1:0]			CH3ICF[3:0]				CH3ICP[1:0]				
	rw			r	w	٢١	N		r	w		r	w	r	w	

Output compare mode

Bits	Fields	Descriptions
15	CH4OCE	Channel 4 output compare clear enable.
		Refer to CH1OCE description.
14:12	CH4OM[2:0]	Channel 4 output compare mode
		Refer to CH1OM description.
11	CH4OSE	Channel 4 output compare shadow enable
		Refer to CH1OSE description.
10	CH4OFE	Channel 4 output compare fast enable
		Refer to CH1OFE description.
9:8	CH4M[1:0]	Channel 4 mode selection
		This bit-field specifies the direction of the channel and the input signal selection. This
		bit-field is writable only when the channel is OFF (CH4E bit in TIMERx_CHE register is
		00: channel 4 is configured as output
		01: channel 4 is configured as input, IC4 is mapped on TI4
		10: channel 4 is configured as input, IC4 is mapped on TI3
		11: channel 4 is configured as input, IC4 is mapped on TRC. This mode is working only

GD32F10x User Manual

if an internal trigger input is selected through TRGS bits in TIMERx_SMC register.

7	CH3OCE	Channel 3 output compare clear enable. Refer to CH1OCE description.
6:4	CH3OM[2:0]	Channel 3 output compare mode Refer to CH1OM description.
3	CH3OSE	Channel 3 output compare shadow enable Refer to CH1OSE description.
2	CH3OFE	Channel 3 output compare fast enable Refer to CH1OFE description.
1:0	CH3M[1:0]	Channel 1 mode selection This bit-field specifies the direction of the channel and the input signal selection. This bit-field is writable only when the channel is OFF (CH3E bit in TIMERx_CHE register is reset). 00: channel 3 is configured as output 01: channel 3 is configured as input, IC3 is mapped on TI3 10: channel 3 is configured as input, IC3 is mapped on TI4 11: channel 3 is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TRGS bits in TIMERx_SMC register.

Input capture mode

Bits	Fields	Descriptions
15:12	CH4ICF[3:0]	Channel 4 input capture filter control
		Refer to CH1ICF description
11:10	CH4ICP[1:0]	Channel 4 input capture prescaler
		Refer to CH1ICP description
9:8	CH4M[1:0]	Channel 4 mode selection
		This bit-field specifies the direction of the channel and the input signal selection. This
		bit-field is writable only when the channel is OFF (CH4E bit in TIMERx_CHE register is
		reset).
		00: channel 4 is configured as output
		01: channel 4 is configured as input, IC4 is mapped on TI4
		10: channel 4 is configured as input, IC4 is mapped on TI3
		11: channel 4 is configured as input, IC4 is mapped on TRC. This mode is working only
		if an internal trigger input is selected through TRGS bits in TIMER_SMC register.
7:4	CH3ICF[3:0]	Channel 3 input capture filter control
		Refer to CH1ICF description
3:2	CH3ICP[1:0]	Channel 3 input capture prescaler
		Refer to CH1ICP description

1:0	CH3M[1:0]	Channel 3 mode selection
		This bit-field specifies the direction of the channel and the input signal selection. This
		bit-field is writable only when the channel is OFF (CH3E bit in TIMERx_CHE register is
		reset).
		00: channel 3 is configured as output
		01: channel 3 is configured as input, IC3 is mapped on TI3
		10: channel 3 is configured as input, IC3 is mapped on TI4
		11: channel 3 is configured as input, IC1 is mapped on TRC. This mode is working only
		if an internal trigger input is selected through TRGS bits in TIMER_SMC register.

TIMERx channel enable register (TIMERx_CHE)

Address offset: 0x20 Reset value: 0x0000

15	14	13	12	11 10) 9	8	7	6	5	4	3	2 1	0
Reser	ved.	CH4P	CH4E	Reserved.	СНЗР	CH3E	Reserved	l.	CH2P	CH2E	Reserved.	CH1P	CH1E
		rw	rw		rw	rw			rw	rw		rw	rw

Bits	Fields	Descriptions
15:14	Reserved	Must be kept at reset value.
13	CH4P	Channel 4 polarity
		Refer to CH1P description.
12	CH4E	Channel 4 enable
		Refer to CH1E description.
11:10	Reserved	Must be kept at reset value.
9	СНЗР	Channel 3 polarity
		Refer to CH1P description.
8	CH3E	Channel 3 enable
		Refer to CH1E description.
7:6	Reserved	Must be kept at reset value.
5	CH2P	Channel 2 polarity
		Refer to CH1P description.
4	CH2E	Channel 2 enable
		Refer to CH1E description.
3:2	Reserved	Must be kept at reset value.
1	CH1P	Channel 1 polarity
		When channel 1 is configured in output mode, this bit specifies the output signal
		polarity.

0: Channel 1 active high.

1: Channel 1 active low.

When channel 1 is configured in input mode, this bit specifies the IC1 signal polarity.

0: Channel 1 non-inverted

1: Channel 1 inverted

0 CH1E Channel 1 enable

When channel 1 is configured in input mode, setting this bit enables OC1 signal in active state. When channel 1 is configured in output mode, setting this bit enables the capture event in channel1.
0: Channel 1 disabled.

1: Channel 1 enabled.

TIMERx counter register (TIMERx_CNT)

Address offset: 0x24 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CNT[15	5:0]							

rw

Bits	Fields	Descriptions
15:0	CNT[15:0]	This bit-filed indicates the current counter value. Writing to this bit-filed can change the
		value of the counter.

TIMERx prescaler register (TIMERx_PSC)

Address offset: 0x28 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PSC[15	5:0]							

rw

Bits	Fields	Descriptions
15:0	PSC[15:0]	Prescaler value of the counter clock
		The PSC clock is divided by (PSC+1) to generate the counter clock. The value of this
		bit-filed will be loaded to the corresponding shadow register at every update event.

TIMERx counter auto reload register (TIMERx_CARL)

Address offset: 0x2C Reset value: 0x0000

Giga	Devic	: e								GD	32F [.]	10x l	User	Mar	nual
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CARL[1	5:0]							
							rw								
Bits		Fields		Descr	iptions										
15:0		CARL[15	5:0]	Count	er auto	reload	value								
				This b	it-filed s	pecifie	s the au	to reloa	ad value	e of the	counter				
		TIME	Rx ch	annel	1 capt	ure c	ompai	re reg	ister (TIME	Rx_CH	ICC1)			
		Addre	ss offs	et: 0x34	1										
		Reset	value:	0x0000)										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CHCC1[15:0]							
							rw								
Bits		Fields		Descr	iptions										
15:0		CHCC1[15:0]	Captu	re or co	mpare	value of	chann	el1						
				When	channe	el1 is co	onfigured	d in inp	ut mode	e, this bi	t-filed in	dicates	the co	unter va	alue
				corres	ponding	g to the	last cap	oture ev	ent. An	d this b	it-filed is	s read-c	only.		
				When	channe	el1 is co	onfigured	d in out	put moc	de, this	bit-filed	contain	s value	to be	
				compa	ared to t	he cou	nter. Wł	nen the	corresp	oonding	shadov	v registe	er is en	abled, t	he
				shado	w regist	ter upda	ates eve	ery upda	ate ever	nt.					
		TIME	Rx ch	annel	2 capt	ure c	ompai	e reg	ister (TIME	Rx_CH	ICC2)			
		Addre	ss offs	et: 0x38	3										
		Reset	value:	0x0000)										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CHCC2[15:0]							
			_				rw	_				_			

Bits	Fields	Descriptions
15:0	CHCC2[15:0]	Capture or compare value of channel2
		When channel2 is configured in input mode, this bit-filed indicates the counter value
		corresponding to the last capture event. And this bit-filed is read-only.
		When channel2 is configured in output mode, this bit-filed contains value to be
		compared to the counter. When the corresponding shadow register is enabled, the
		shadow register updates every update event.

TIMERx channel 3 capture compare register (TIMERx_CHCC3)

Address offset: 0x3C

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CHCC3[15:0]							

rw

Bits	Fields	Descriptions
15:0	CHCC3[15:0]	Capture or compare value of channel 3
		When channel 3 is configured in input mode, this bit-filed indicates the counter value
		corresponding to the last capture event. And this bit-filed is read-only.
		When channel 3 is configured in output mode, this bit-filed contains value to be
		compared to the counter. When the corresponding shadow register is enabled, the
		shadow register updates every update event.

TIMERx channel 4 capture compare register (TIMERx_CHCC4)

Address offset: 0x40 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CHCC4[15:0]														
	rw														

Bits	Fields	Descriptions
15:0	CHCC4[15:0]	Capture or compare value of channel 4
		When channel 4 is configured in input mode, this bit-filed indicates the counter value
		corresponding to the last capture event. And this bit-filed is read-only.
		When channel 4 is configured in output mode, this bit-filed contains value to be
		compared to the counter. When the corresponding shadow register is enabled, the
		shadow register updates every update event.

TIMERx DMA control register (TIMERx_DCTLR)

Address offset: 0x48 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved			DBLTH[4:0]					Reserved			DBAR[4:0]				
rw												rw			

Bits	Fields	Descriptions
15:14	Reserved	Must be kept at reset value.
12:8	DBLTH[4:0]	DMA access burst length

Reserved

7:5

When register access are done through the TIMERx_DTRSF address, this 5-bit bit-field specifies the number of transfers. Must be kept at reset value.

4:0 DBAR[4:0] DMA access base address When register access are done through the TIMERx_DTRSF address, this bit-field specifies the offset of the starting address from the TIMER1_CTLR1 register.

TIMERx DMA transfer register (TIMERx_DTRSF)

Address offset: 0x4C Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DTRSF[15:0]															
							rw								

Bits	Fields	Descriptions
15:0	DTRSF[15:0]	DMA transfer
		When a read or write operation is assigned to this register, the register located at the
		address range (DBAR + burst counter) x 4 from TIMERx_CTLR1 will be accessed.
		The burst counter is calculated by hardware, and ranges from 0 to DBLTH.

9.3. Basic timer (TIMER6 and TIMER7)

9.3.1. Introduction

The general timers (TIMER6 and TIMER7) consist of one 16-bit counter auto reload register (TIMERx_CARL) and several control registers. It can be used for general timer, and it is also used by DAC (Digital to analog converter). TIMERx's trgo is connected to DAC which can be drived by this trigger.

9.3.2. Main features

- 16-bit up auto-reload counter.
- 16-bit programmable prescaler that allows division of the counter clock frequency by any factor between 1 and 65536.
- Synchronization circuit to trigger the DAC.
- Interrupt/DMA generated by counter overflow.

9.3.3. Function description

Figure below provides details on the internal configuration of the Basic timer.

Figure 9-76 General timer block diagram (TIMER6 and TIMER7)

Prescaler counter

The prescaler can divide the timer clock (PCLK) to the counter clock (CNT_CLK) by any factor between 1 and 65536. It is controlled through prescaler register (TIMERx_PSC) which can be changed on the fly but be taken into account at the next update event.

Figure 9-77 Counter timing diagram with prescaler division change from 1 to 2

Figure 9-78 Counter timing diagram with prescaler division change from 1 to 4

Upcounting mode

In this mode the counter counts continuously from 0 to the counter-reload value, which is defined in the TIMERx_CARL register, in a count-up direction. Once the counter reaches the counter reload value, the counter restarts to count once again from 0. The update event is generated at each counter overflow.

When the update event is set by the UPG bit in the TIMERx_EVG register, the counter value will be initialized to 0 and generates an update event.

If set the UPDIS bit in TIMERx_CTLR1 register, the update event is disabled.

When an update event occurs, all the registers (autoreload register, prescaler register) are updated.

Clock selection

Basic timer has the unique clock source which is controlled by RCC. Counter and prescaler counter are clocked by this internal clock PCLK, except UPG is asserted. UPG's assert will initial counter and prescaler counter.

Timer debug mode

When the Cortex[™]-M3 halted, and the DBG_TIMERx_STOP configuration bit in MCUDBG module set to 1, the TIMERx counter stops.

9.3.4. TIMER6/7 registers

TIMER6/7 control register 1 (TIMERx_CTLR1)

Address offset: 0x00 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved								ARSE	F	Reserved		SPM	UPS	UPDIS	CEN
								rw				rw	rw	rw	rw

Bits	Fields	Descriptions
15:8	Reserved	Must be kept at reset value
7	ARSE	Auto-reload shadow enable
		0: The shadow register for TIMERX_CARL register is disabled
		1: The shadow register for TIMERx_CARL register is enabled
3	SPM	Single pulse mode.
		0: Counter continues after update event.
		1: The CEN is cleared by hardware and the counter stops at next update event.
2	UPS	Update source

This bit is used to select the update event sources by software.

0: When enabled, any of the following events generate an update interrupt or DMA request:

- The UPG bit is set

- The counter generates an overflow or underflow event

- The slave mode controller generates an update event.

1: When enabled, only counter overflow/underflow generates an update interrupt or DMA request.

1 UPDIS Update disable.

This bit is used to enable or disable the update event generation.

0: update event enable. The update event is generate and the buffered registers are loaded with their preloaded values when one of the following events occurs:

- The UPG bit is set
- The counter generates an overflow or underflow event
- The slave mode controller generates an update event.

1: update event disable. The buffered registers keep their value, while the counter and the prescaler are reinitialized if the UPG bit is set or if the slave mode controller generates a hardware reset event.

0 CEN Counter enable 0: counter disable 1: counter enable The CEN bit must

The CEN bit must be set by software when timer works in external clock, gated mode and encoder mode. While in trigger mode, the hardware can set the CEN bit automatically.

TIMER6/7 control register 2 (TIMERx_CTLR2)

Address offset: 0x04 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										MMC[2:0]			Res	erved	
										rw					

Bits	Fields	Descriptions
15:7	Reserved	Must be kept at reset value
6:4	MMC[2:0]	Master mode control
		These bits control the selection of TRGO signal, which is sent in master mode to slave
		timers for synchronization function.
		000: Reset. When the UPG bit in the TIMERx_EVG register is set or a reset is
		generated by the slave mode controller, a TRGO pulse occurs. And in the latter case,
		the signal on TRGO is delayed compared to the actual reset.
		001: Enable. This mode is useful to start several timers at the same time or to control a
		292

window in which a slave timer is enabled. In this mode the master mode controller
selects the counter enable signal TIMERx _EN as TRGO. The counter enable signal is
set when CEN control bit is set or the trigger input in gated mode is high. There is a
delay between the trigger input in gated mode and the TRGO output, except if the
master-slave mode is selected.
010: Update. In this mode the master mode controller selects the update event as
TRGO.
011: Capture/compare pulse. In this mode the master mode controller generates a
TRGO pulse when a capture or a compare match occurred.
100: Compare. In this mode the master mode controller selects the OC1REF signal is
used as TRGO.

101: Compare. In this mode the master mode controller selects the OC2REF signal is used as TRGO.

110: Compare. In this mode the master mode controller selects the OC3REF signal is used as TRGO.

111: Compare. In this mode the master mode controller selects the OC4REF signal is used as TRGO.

3:0 Reserved Must be kept at reset value

Address offset: 0x0C

TIMER6/7 DMA and interrupt enable register (TIMERx_DIE)

		Rese	t value:	0x000	0										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Reserved				UPDE				Reserved				UPIE
rw												rw			

Bits	Fields	Descriptions
15:9	Reserved	Must be kept at reset value.
8	UPDE	Update DMA request enable
		0: Update DMA request disabled
		1: Update DMA request enabled
7:1	Reserved	Must be kept at reset value.
0	UPIE	Update interrupt enable
		0: Update interrupt disabled
		1: Update interrupt enabled

TIMER6/7 status register (TIMERx_STR)

Address offset: 0x10 Reset value: 0x0000

Gig	a D e v	5 vice								C	GD32	2F10	x Use	er Ma	anual
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved												UPIF			
															rc_w0

Bits	Fields	Descriptions
15:1	Reserved	Must be kept at reset value.
0	UPIF	Update interrupt flag
		This bit is set by hardware on an update event and cleared by software.
		0: No update interrupt occurred
		1: Update interrupt occurred

TIMER6/7 event generation register (TIMERx_EVG)

Address offset: 0x14

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved													UPG		
															w

Bits	Fields	Descriptions
15:1	Reserved	Must be kept at reset value.
0	UPG	This bit can be set by software, and cleared by hardware automatically. When this bit is set, the counter is cleared if the center-aligned or upcounting mode is selected, else (downcounting) it takes the auto-reload value. The prescaler counter is cleared at the same time. 0: No generate an update event 1: Generate an update event

TIMER6/7 counter register (TIMERx_CNT)

Bits	Fields	Descriptions
15:0	CNT[15:0]	This bit-filed indicates the current counter value. Writing to this bit-filed can change the
		value of the counter.

15

TIMER6/7 prescaler register (TIMERx_PSC)

Address offset: 0x28 Reset value: 0x0000

PSC[15:0]	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

rw

Bits	Fields	Descriptions
15:0	PSC[15:0]	Prescaler value of the counter clock
		The PSC clock is divided by (PSC+1) to generate the counter clock. The value of this
		bit-filed will be loaded to the corresponding shadow register at every update event.

TIMER6/7 counter auto reload register (TIMERx_CARL)

Address offset: 0x2C Reset value: 0x0000														
14	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								0					
	CARL[15:0]													
	rw													

Bits	Fields	Descriptions
15:0	CARL[15:0]	Counter auto reload value
		This bit-filed specifies the autoreload value of the counter.

9.4. General timer (TIMER9 and TIMER12)

9.4.1. Introduction

The general timer, known as TIMER15, may be used for a variety of purposes. It consists of one 16-bit up-counter; two 16-bit capture/compare registers (TIMERx_CHCCx), one 16-bit counter auto reload register (TIMERx_CARL) and several control registers. They can be used for a variety of purposes including general timer, input signal pulse width measurement or output waveform generation such as single pulse generation or PWM output.

The general (TIMER9 and TIMER12) timers are completely independent. They do not share any resources but can be synchronized together.

9.4.2. Main features

■ 16-bit up auto-reload counter.

- 16-bit programmable prescaler that allows division of the counter clock frequency by any factor between 1 and 65536.
- Up to 2 independent channels support functions including input capture, compare match output, generation of PWM waveform (edge and center-aligned Mode), and single pulse mode output.
- Interrupt generation by update, trigger event, input capture event, output compare match event or break input
- Synchronization circuit to control TIMER9/12 with external signals or to interconnect several timers together.

9.4.3. Function description

Figure below provides details on the internal configuration of the advanced timer.

Figure 9-80 General timer block diagram (TIMER9 and TIMER12)

Prescaler counter

The prescaler can divide the timer clock (PCLK) to the counter clock (CNT_CLK) by any factor between 1 and 65536. It is controlled through prescaler register (TIMERx_PSC) which can be changed on the fly but be taken into account at the next update event.

Figure 9-81 Counter timing diagram with prescaler division change from 1 to 2

Figure 9-82 Counter timing diagram with prescaler division change from 1 to 4

Upcounting mode

In this mode the counter counts continuously from 0 to the counter-reload value, which is defined in the TIMERx_CARL register, in a count-up direction. Once the counter reaches the counter reload value, the counter restarts to count once again from 0. The update event is

generated at each counter overflow. The counting direction bit DIR in the TIMERx_CTLR1 register should be set to 0 for the upcounting mode.

When the update event is set by the UPG bit in the TIMERx_EVG register, the counter value will be initialized to 0 and generates an update event.

If set the UPDIS bit in TIMERx_CTLR1 register, the update event is disabled.

When an update event occurs, all the registers (autoreload register, prescaler register) are updated.

The following figures show some examples of the counter behavior for different clock frequencies when TIMERx_CARL=0x63.

Figure 9-84 Counter timing diagram, internal clock divided by 2

Figure 9-85 Counter timing diagram, internal clock divided by 4

Figure 9-86 Counter timing diagram, internal clock divided by N

Figure 9-88 Counter timing diagram, update event when ARSE=1

Downcounting mode

In this mode the counter counts continuously from the counter reload value, which is defined in the TIMERx_CARL register, to 0 in a count-down direction. Once the counter reaches 0, the counter restarts to count once again from the counter-reload value. If the repetition counter is set, the update event generated after the number of underflow. Else the update event is generated at each counter underflow. The counting direction bit DIR in the TIMERx_CTLR1 register should be set to 1 for the down counting mode.

When the update event is set by the UPG bit in the TIMERx_EVG register, the counter value will be initialized to the counter-reload value and generates an update event.

If set the UPDIS bit in TIMERx_CTLR1 register, the update event is disabled.

When an update event occurs, all the registers (repeat counter, reload register, prescaler register) are updated.

Figure 9-89 Counter timing diagram, internal clock divided by 1

Figure 9-91 Counter timing diagram, internal clock divided by 4

Figure 9-92 Counter timing diagram, internal clock divided by N

Figure 9-93 Counter timing diagram, update event

Center-aligned counting mode

In the center-aligned counting mode, the counter counts up from 0 to the counter-reload value and then counts down to 0 alternatively. The Timer module generates an overflow event when the counter counts to the counter-reload value subtract 1 in the up-counting mode and generates an underflow event when the counter counts to 1 in the down-counting mode. The counting direction bit DIR in the TIMERx_CTLR1 register is read-only and indicates the counting direction when in the center- aligned mode. The counting direction is updated by hardware automatically.

Setting the UPG bit in the TIMERx_EVG register will initialize the counter value to 0 irrespective of whether the counter is counting up or down in the center-align counting mode and generates an update event.

The UPIF bit in the TIMERx_EVG register can be set to 1 when an underflow event at count-down (CAM in TIMERx_CTLR1 is "01"), an overflow event at count-up (CAM in TIMERx_CTLR1 is "10") or both of them occur (CAM in TIMERx_CTLR1 is "11").

If set the UPDIS bit in the TIMERx_CTLR1 register, the update event is disabled.

When an update event occurs, all the registers (autoreload register, prescaler register) are updated.

The following figures show some examples of the counter behavior for different clock frequencies when TIMERx_CARL=0x5.

Figure 9-94 Counter timing diagram, internal clock divided by 1, TIMERx_CARL = 0x5

Figure 9-95 Counter timing diagram, internal clock divided by 2

Figure 9-96 Counter timing diagram, internal clock divided by 4, TIMERx_CARL=0x63

Figure 9-97 Counter timing diagram, internal clock divided by N

Figure 9-99 Counter timing diagram, Update event with ARSE=1 (counter overflow)

Clock selection

The following describes the Timer Module clock controller which determines the clock source of the internal prescaler counter.

Internal timer clock PCLK

The default internal clock source is the APB2 clock CK_APB2 used to drive the counter prescaler when the slave mode is disabled. If the slave mode controller is enabled by setting SMC field in the TIMERx_SMC register to an available value including 0x1, 0x2, 0x3 and 0x7, the prescaler is clocked by other clock sources selected by the TRGS field in the TIMERx_SMC register and described as follows. When the slave mode selection bits SMC are set to 0x4 or 0x5 or 0x6, the internal clock PCLK is the counter prescaler driving clock source.

Internal trigger inputs (ITI)

The counter prescaler can count during each rising or falling edge of the ITI signal. This mode can be selected by setting the SMC field to 0x6 in the TIMERx_SMC register;here the counter will act as an event counter. The input event, known as ITI here, can be selected by setting the TRGS field. When the ITI signal is selected as the clock source, the internal edge detection circuitry will generate a clock pulse during each ITI signal rising or falling edge to drive the counter prescaler.

External input pin (TIx)

The counter prescaler can be driven to count during each rising or falling edge on the external pin TIMERx_ TIx. This mode can be selected by setting SMC field to 0x7 and the TRGS field to 0x4, 0x5 or 0x6. Note that the TIx is derived from the TIMERx_TIx sampled by a digital filter.

Capture/compare channels

The TIMER9 (or TIMER12) has two independent channels which can be used as capture inputs or compare match outputs. Each channel is built around a channel capture compare register including an input stage, channel controller and an output stage.

Input capture stage

The input stage consists of a digital filter, a channel polarity selection, edge detection and a channel prescaler. The channel input signal (TIx) is sampled by a digital filter to generate a filtered input signal TIxF. Then the channel polarity and the edge detection block can generate a TIxFPx signal for the input capture function. The effective input event number can be set by the channel input prescaler register (CHxICP).

Figure 9-101 Capture/compare channel (example: channel 1 input stage)

Channel controller

The GPTIMER has four independent channels which can be used as capture inputs or compare match outputs.

When used in the input capture mode, the counter value is captured into the TIMERx_CHCCx shadow register first and then transferred into the TIMERx_CHCCx preload register when the capture event occurs.

When used in the compare match output mode, the contents of the TIMER1_CHCCx preload register is copied into the associated shadow register; the counter value is then compared with the register value.

Figure 9-102 Capture/compare channel 1 main circuit

Output stage

The TIMER9/TIMER12 has two channels for compare match, single pulse or PWM output function.

Match detected on CHCC1 Interrupt generated if enabled

When the channel is used as a capture input, the counter value is captured into the Channel Capture/Compare Register (TIMERx_CHCCx) when an effective input signal transition occurs. Once the capture event occurs, the CHxIF flag in the TIMER1_STR register is set. If the CHxIF bit is already set, i.e., the flag has not yet been cleared by software, and another capture event on this channel occurs, the corresponding channel Over-Capture flag, named CHxOF, will be set.Once the capture event occurs, a DMA request is generated depending on the CHxIE bit and an interrupt is generated depending on the CHxIE bit

The input capture mode can be also used for pulse width measurement from signals on the TIMERx_CHx pins (TIx).

Channel Output Reference Signal

When the TIMER9/TIMER12 is used in the compare match output mode, the OCxREF signal (Channel x Output Reference signal) is defined by setting the CHxOM bits. The OCxREF signal has several types of output function. These include, keeping the original level by setting the CHxOM field to 0x00, set to 1 by setting the CHxOM field to 0x01, set to 0 by setting the CHxOM field to 0x02 or signal toggle by setting the CHxOM field to 0x03 when the counter value matches the content of the TIMERx_CHCCx register.

The PWM mode 1 and PWM mode 2 outputs are also another kind of OCxREF output which is setup by setting the CHxOM field to 0x06/0x07. In these modes, the OCxREF signal level is changed according to the counting direction and the relationship between the counter value and the TIMERx_CHCCx content. With regard to a more detailed description refer to the relative bit definition.

Another special function of the OCxREF signal is a forced output which can be achieved by setting the CHxOM field to 0x04/0x05. Here the output can be forced to an inactive/active level irrespective of the comparison condition between the counter and the TIMERx_CHCCx values.

The OCxREF signal can be forced to 0 when the ETIF signal is derived from the external TIMERx_ ETI pin and when it is set to a high level by setting the CHxOCE bit to 1 in the TIMERx_CHCTLR1 register. The OCxREF signal will not return to its active level until the next update event occurs.

Single Pulse Mode

Once the timer is set to operate in the single pulse mode, it is not necessary to set the timer enable bit CEN in the TIMERx_CTLR1 register to 1 to enable the counter. The trigger to generate a pulse can be sourced from the trigger signals edge or by setting the CEN bit to 1 using software. Setting the CEN bit to 1 or a trigger from the trigger signals edge can generate a pulse and then keep the CEN bit at a high state until the update event occurs or the CEN bit is written to 0 by software. If the CEN bit is cleared to 0 using software, the counter will be stopped and its value held. If the CEN bit is automatically cleared to 0 by a hardware update event, the counter will be reinitialized.

In the Single Pulse mode, the trigger active edge which sets the CEN bit to 1 will enable the counter. However, there exist several clock delays to perform the comparison result between the counter value and the TIMERx_CHCCx value. In order to reduce the delay to a minimum value, the user can set the CHxOEF bit in each TIMERx_CHCTLR1 register. After a trigger rising edge occurs in the single pulse mode, the OCxREF signal will immediately be forced to the state which the OCxREF signal will change to, as the compare match event occurs without taking the comparison result into account. The CHxOEF bit is available only when the output channel is configured to operate in the PWM1 or PWM2 output mode and the trigger source is derived from the trigger signal.

Slave Controller

The TIMER9/TIMER12 can be synchronized with an external trigger in several modes including the Restart mode, the Pause mode and the Trigger mode which is selected by the SMC field in the TIMERx_SMC register. The trigger input of these modes can be selected by the TRGS field in the TIMERx_SMC register, below to TI1 signal as an example. The operation modes in the Slave Controller are described in the accompanying sections.

Restart mode

The counter and its prescaler can be reinitialized in response to a rising edge of the TI1 signal. When a TI1 rising edge occurs, the update event software generation bit named UPG will automatically be asserted by hardware and the trigger event flag will also be set. Then the counter and prescaler will be reinitialized. Although the UPG bit is set to 1 by hardware, the update event does not really occur. It depends upon whether the update event disable control bit UPDIS is set to 1 or not. If UPDIS is set to 1 to disable the update event to occur, there will no update event will be generated, however the counter and prescaler are still reinitialized when the TI1 rising edge occurs. If the UPDIS bit in the TIMERx_CTLR1 register is cleared to enable the update event to occur, an update event will be generated together with the TI1 rising edge, then all the preloaded registers will be updated.

Figure 9-106 Control circuit in restart mode

Pause mode

In the Pause Mode, the selected TI1 input signal level is used to control the counter start/stop operation. The counter starts to count when the selected TI1 signal is at a high level and stops counting when the TI1 signal is changed to a low level, here the counter will maintain its present value and will not be reset.

Figure 9-107 Control circuit in pause mode

Trigger mode

After the counter is disabled to count, the counter can resume counting when a TI1 rising edge signal occurs. When an TI1 rising edge occurs, the counter will start to count from the current value in the counter. Note that the TI1 signal is only used to enable the counter to resume counting and has no effect on controlling the counter to stop counting.

Timer Interconnection

The timers can be internally connected together for timer chaining or synchronization. This can be implemented by configuring one timer to operate in the Master mode while configuring another timer to be in the Slave mode. The following figures present several examples of trigger selection for the master and slave modes.

Figure below shows the timer15 trigger selection when it is configured in slave mode.

Figure 9-109 Timer9 Master/Slave mode timer example

Other interconnection examples:

■ Timer2 as prescaler for timer9

We configure Timer2 as a prescaler for Timer9. Refer to Figure below for connections. Do as follow:

- Configure Timer2 in master mode and select its Update Event (UPE) as trigger output (MMC=010 in the TIMER2_CTLR2 register). Then timer2 driver a periodic signal on each counter overflow.
- 2. Configure the Timer2 period (TIMER2_CARL registers).
- Select the Timer9 input trigger source from Timer2 (TRGS=000 in the TIMER9_SMC register).
- 4. Configure Timer9 in external clock mode 1 (SMC=111 in TIMER9_SMC register).
- 5. Start Timer9 by writing '1 in the CEN bit (TIMER9_CTLR1 register).
- 6. Start Timer2 by writing '1 in the CEN bit (TIMER2_CTLR1 register).
- Start timer9 with timer2's Enable/Update signal

First, we enable Timer9 with the enable out of Timer2. Refer to Figure below. Timer9 starts counting from its current value on the divided internal clock after trigger by timer2 enable output.

When Timer9 receives the trigger signal its CEN bit is automatically set and the counter

counts until we disable timer9. Both counter clock frequencies are divided by 3 by the prescaler compared to PCLK (fCNT_CLK = f PCLK /3). Do as follow:

- Configure Timer2 master mode to send its enable signal as trigger output(MMC=001 in the TIMER2_CTLR2 register)
- 2. Configure Timer9 to select the input trigger from Timer 2 (TRGS=000 in the TIMER9_SMC register).
- 3. Configure Timer9 in trigger mode (SMC=110 in TIMER9_SMC register).
- 4. Start Timer2 by writing 1 in the CEN bit (TIMER2_CTLR1 register).

Figure 9-110 Triggering timer 9 with Enable of timer 2

In this example, we also can use update Event as trigger source instead of enable signal. Refer to figure below. Do as follow:

- Configure Timer2 in master mode and send its Update Event (UPE) as trigger output (MMC=010 in the TIMER2_CTLR2 register).
- 7. Configure the Timer2 period (TIMER2_CARL registers).
- Configure Timer9 to get the input trigger from Timer2 (TRGS=000 in the TIMER9_SMC register).
- 9. Configure Timer9 in trigger mode (SMC=110 in TIMER9_SMC register).
- 10. Start Timer2 by writing '1 in the CEN bit (TIMER2_CTLR1 register).

Figure 9-111 Triggering timer9 with update of timer2

■ Enable timer9 count with timer2's enable/OC1 Ref. signal

In this example, we control the enable of Timer9 with the enable output of Timer2. Refer to figure below. Timer9 counts on the divided internal clock only when Timer2 is enable. Both counter clock frequencies are divided by 3 by the prescaler compared to PCLK (fCNT_CLK = fPCLK/3). Do as follow:

- 1. Configure Timer2 in master mode and Output enable signal as trigger output (MMC=001 in the TIMER2_CTLR2 register).
- 2. Configure Timer9 to get the input trigger from Timer 2 (TRGS=000 in the TIMER9_SMC register).
- 3. Configure Timer9 in pause mode (SMC=101 in TIMER9_SMC register).
- 4. Enable Timer9 by writing '1 in the CEN bit (TIMER9_CTLR1 register).
- 5. Start Timer2 by writing '1 in the CEN bit (TIMER2_CTLR2 register).
- 6. Stop Timer2 by writing '0 in the CEN bit (TIMER2_CTLR2 register).

Figure 9-112 Gating Timer9 with enable of timer 2

PCLK						
TIMER2_EN						_
TIMER2_CNT_REG	61	Х	62	6	3	_
TIMER9_TRGIF				 		 -
TIMER9_CNT_REG	 11	Х	12	1	3	-

In this example, we also can use OCx_Ref as trigger source instead of enable signal output. Do as follow:

- Configure Timer2 in master mode and Output Compare 1 Reference (OC1REF) signal as trigger output (MMC=100 in the TIMER2_CTLR2 register).
- 8. Configure the Timer 2 OC1REF waveform (TIMER2_ CHCTLR1 register).
- 9. Configure Timer9 to get the input trigger from Timer 2 (TRGS=000 in the TIMER9_SMC register).
- 10. Configure Timer9 in pause mode (SMC=101 in TIMER9_SMC register).
- 11. Enable Timer9 by writing '1 in the CEN bit (TIMER9_CTLR1 register).
- 12. Start Timer 2 by writing '1 in the CEN bit (TIMER2_CTLR1 register).

Figure 9-113 Gating Timer9 with OC1REF of timer 2

■ Using an external trigger to start 2 timers synchronously

We configure the start of Timer9 is triggered by the enable of Timer 2, and timer 2 is triggered by its TI1 input rises edge. To ensure 2 timers start synchronously, timer 2 must be configured in Master/Slave mode. Do as follow:

- Configure Timer2 slave mode to get the input trigger from TI1 (TRGS=100 in the TIMER2_SMC register).
- 7. Configure Timer2 in trigger mode (SMC=110 in the TIMER2_SMC register).
- 8. Configure the Timer2 in Master/Slave mode by writing MSM =1 (TIMER2_SMC register).
- Configure Timer9 to get the input trigger from Timer 2 (TRGS=000 in the TIMER9_SMC register).
- 10. Configure Timer9 in trigger mode (SMC=110 in the TIMER9_SMC register).

When a rising edge occurs on Timer 2's TI1, two timer counters starts counting synchronously on the internal clock and both TIF flags are set.

5011/	
PCLK	
TIMER2_TI1	
TIMER2_TRGIF	
TIMER2_EN	
TIMER2_CK	
TIMER2_CNT_REG	 00 01 02 03
TIMER9_TRGIF TIMER9_EN	
TIMER9_CK	
TIMER9_CNT_REG	00 01 02 03

Timer debug mode

When the Cortex[™]-M3 halted, and the DBG_TIMERx_STOP configuration bit in MCUDBG module set to 1, the TIMERx counter stops.

9.4.4. TIMER9/TIMER12 registers

TIMERx control register 1 (TIMERx_CTLR1)

Address offset: 0x00 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved			CDI	/[1:0]	ARSE	CAM	[1:0]	DIR	SPM	UPS	UPDIS	CEN		
				r	w	rw	rv	/	rw	rw	rw	rw	rw		

Bits	Fields	Descriptions
15:10	Reserved	Must be kept at reset value
9:8	CDIV[1:0]	Clock division
		The CDIV bits can be configured by software to specify division ratio between the timer
		clock (PCLK) and the dead-time and sampling clock (DTS), which is used by the
		dead-time generators and the digital filters.

		00: f _{DTS} =f _{PCLK} 01: f _{DTS} = f _{PCLK} /2 10: f _{DTS} = f _{PCLK} /4 11: Reserved
7	ARSE	Auto-reload shadow enable 0: The shadow register for TIMERx_ CARL register is disabled 1: The shadow register TIMERx_ CARL register is enabled
6:5	CAM[1:0]	Center-aligned mode selection 00: No center-aligned mode (edge-aligned mode). The direction of the counter is specified by the DIR bit. 01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare interrupt flags of channels, which are configured in output mode (CHxM=00 in TIMERx_CHCTLRx register), are set only when the counter is counting down. 10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare interrupt flags of channels, which are configured in output mode (CHxM=00 in TIMERx_CHCTLRx register), are set only when the counter is counting up. 11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare interrupt flags of channels, which are configured in output mode (CHxM=00 in TIMERx_CHCTLRx register), are set only when the counter is counting up. 11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare interrupt flags of channels, which are configured in output mode (CHxM=00 in TIMERx_CHCTLRx register), are set only when the counter is counting both up and down. After the counter is enabled, can not be switched from edge-aligned mode to center-aligned mode.
4	DIR	Direction 0: Count up 1: Count down This bit is read only when the timer is configured in Center-aligned mode or Encoder mode.
3	SPM	Single pulse mode.0: Counter continues after update event.1: The CEN is cleared by hardware and the counter stops at next update event.
2	UPS	 Update source This bit is used to select the update event sources by software. 0: When enabled, any of the following events generate an update interrupt: The UPG bit is set The counter generates an overflow or underflow event The slave mode controller generates an update event. 1: When enabled, only counter overflow/underflow generates an update interrupt.
1	UPDIS	Update disable. This bit is used to enable or disable the update event generation. 0: update event enable. The update event is generate and the buffered registers are loaded with their preloaded values when one of the following events occurs:

- The UPG bit is set

- The counter generates an overflow or underflow event

The slave mode controller generates an update event.

1: update event disable. The buffered registers keep their value, while the counter and the prescaler are reinitialized if the UPG bit is set or if the slave mode controller generates a hardware reset event.

0 CEN Counter enable

0: counter disable

_

1: counter enable

The CEN bit must be set by software when timer works in external clock, pause mode and encoder mode. While in trigger mode, the hardware can set the CEN bit automatically.

TIMERx slave mode control register (TIMx_SMC)

Address offset: 0x08

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved							Т	RGS[2:0]		Reserved		SMC[2:0]			
										rw				rw	

Bits	Fields	Descriptions
15:8	Reserved	Must be kept at reset value.
7	MSM	Master-slave mode
		The effect of an event on the trigger input is delayed in this mode to allow a perfect
		synchronization between the current timer and its slaves through TRGO. If we want to
		synchronize several timers on a single external event, this mode can be used.
		0: Master-slave mode disable
		1: Master-slave mode enable
6:4	TRGS[2:0]	Trigger selection
		This bit-field specifies which signal is selected as the trigger input, which is used to
		synchronize the counter.
		000: Internal trigger input 0 (ITR0)
		001: Internal trigger input 1 (ITR1)
		010: Internal trigger input 2 (ITR2)
		011: Internal trigger input 3 (ITR3)
		100: TI1 edge flag (TI1F_ED)
		101: Filtered channel 1 input (TI1FP1)
		110: Filtered channel 2 Input (TI2FP2)
		111: Reserved.
		These bits must not be changed when slave mode is enabled.

GigaDevi	ce	GD32F10x User Manual
3	Reserved	Must be kept at reset value.
2:0	SMC[2:0]	Slave mode control
		000: Disable mode. The prescaler is clocked directly by the internal clock when CEN bit
		is set high.
		001: Quadrature decoder mode 1. The counter counts on TI2FP2 edge, while the
		direction depends on TI1FP1 level.
		010: Quadrature decoder mode 2. The counter counts on TI1FP1 edge, while the
		direction depends on TI2FP2 level.
		011: Quadrature decoder mode 3. The counter counts on both TI1FP1 and TI2FP2
		edge, while the direction depends on each other.
		100: Restart Mode. The counter is reinitialized and the shadow registers are updated on
		the rising edge of the selected trigger input.
		101: Pause Mode. The trigger input enables the counter clock when it is high and
		disables the counter when it is low.
		110: Trigger Mode. A rising edge of the trigger input enables the counter. The counter
		cannot be disabled by the slave mode controller.
		111: External Clock Mode 1. The counter counts on the rising edges of the selected
		trigger.
		Because TI1F_ED outputs 1 pulse for each transition on TI1F, and the pause mode
		checks the level of the trigger signal, when TI1F_ED is selected as the trigger input, the
		pause mode must not be used.

TIMERx interrupt enable register (TIMERx_DIE)

Address offset: 0x0C Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved						TRGIE		Reserved		CH2IE	CH1IE	UPIE			
									rw				rw	rw	rw

Bits	Fields	Descriptions
15:7	Reserved	Must be kept at reset value.
6	TRGIE	Trigger interrupt enable
		0: Trigger interrupt disabled
		1: Trigger interrupt enabled
5:3	Reserved	Must be kept at reset value.
2	CH2IE	Channel 2 interrupt enable
		0: Channel 2 interrupt disabled
		1: Channel 2 interrupt enabled
1	CH1IE	Channel 1 interrupt enable
		0: Channel 1 interrupt disabled

1: Channel 1 interrupt enabled

0 UPIE Update interrupt enable 0: Update interrupt disabled 1: Update interrupt enabled

TIMERx status register (TIMERx_STR)

Address offset: 0x10 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved				CH2OF	CH1OF	Reserved.		TRGIF	Reserved.			CH2IF	CH1IF	UPIF	
					rc_w0	rc_w0			rc_w0				rc_w0	rc_w0	rc_w0

Bits	Fields	Descriptions
15:11	Reserved	Must be kept at reset value.
10	CH2OF	Channel 2 overcapture flag
		Refer to CH1OF description
9	CH1OF	Channel 1 overcapture flag
		When channel 1 is configured in input mode, this flag is set by hardware when a
		capture event occurs while CH1IF flag has already been set. This flag is cleared by
		software.
		0: No overcapture interrupt occurred
		1: Overcapture interrupt occurred
8:7	Reserved	Must be kept at reset value.
6	TRGIF	Trigger interrupt flag
		This flag is set by hardware on trigger event and cleared by software. When the slave
		mode controller is enabled in all modes but pause mode, an active edge on TRGI input
		generates a trigger event. When the slave mode controller is enabled in pause mode
		both edges on TRGI input generates a trigger event.
		0: No trigger event occurred.
		1: Trigger interrupt occurred.
5:3	Reserved	Must be kept at reset value.
2	CH2IF	Channel 2 interrupt enable
		Refer to CH1IF description
1	CH1IF	Channel 1 interrupt flag
		This flag is set by hardware and cleared by software. When channel 1 is in input mode,
		this flag is set when a capture event occurs. When channel 1 is in output mode, this
		flag is set when a compare event occurs.
		0: No Channel 1 interrupt occurred

1: Channel 1 interrupt occurred

0 UPIF Update interrupt flag This bit is set by hardware on an update event and cleared by software. 0: No update interrupt occurred 1: Update interrupt occurred

TIMERx event generation register (TIMERx_EVG)

Address offset: 0x14 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			R	eserved					TRGG		Reserved		CH2G	CH1G	UPG
									w				w	w	w

Bits	Fields	Descriptions
15:7	Reserved	Must be kept at reset value.
6	TRGG	Trigger event generation
		This bit is set by software and cleared by hardware automatically. When this bit is set,
		the TRGIF flag in TIMERx_STR register is set, related interrupt can occur if enabled.
		0: No generate a trigger event
		1: Generate a trigger event
5:3	Reserved	Must be kept at reset value.
2	CH2G	Channel 2 capture or compare event generation
		Refer to CH1G description
1	CH1G	Channel 1 capture or compare event generation
		This bit is set by software in order to generate a capture or compare event in channel
		1, it is automatically cleared by hardware. When this bit is set, the CC1IF flag is set, the
		corresponding interrupt is sent if enabled. In addition, if channel 1 is configured in input
		mode, the current value of the counter is captured in TIMERx_CHCC1 register, and
		the CH1OF flag is set if the CH1IF flag was already high.
		0: No generate a channel 1 capture or compare event
		1: Generate a channel 1 capture or compare event
0	UPG	This bit can be set by software, and cleared by hardware automatically. When this bit is
		set, the counter is cleared if the center-aligned or upcounting mode is selected, else
		(downcounting) it takes the auto-reload value. The prescaler counter is cleared at the
		same time.
		0: No generate an update event
		1: Generate an update event

TIMERx channel control register 1 (TIMERx_CHCTLR1)

Address offset: 0x18 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CH2 OCE	(CH2OM[2:0)]	CH2 OSE	CH2 OFE	CH2N	<i>I</i> [1·0]	CH1 OCE	С	H1OM[2:	D]	CH1OSE	CH1M[1:0]		
	CH2I	CF[3:0]		CH2IC	CP[1:0]	01121	n[1.0]		CH1IC	CF[3:0]		CH1ICP[1:0]	0111	M[1.0]
		rw		rw rw					r	w		rw	r	w	

Output compare mode:

Bits	Fields	Descriptions
15	CH2OCE	Channel 2 output compare clear enable.
		Refer to CH1OCE description.
14:12	CH2OM[2:0]	Channel 2 output compare mode
		Refer to CH1OM description.
11	CH2OSE	Channel 2 output compare shadow enable
		Refer to CH1OSE description.
10	CH2OFE	Channel 2 output compare fast enable
		Refer to CH1OFE description.
9:8	CH2M[1:0]	Channel 2 mode selection
		This bit-field specifies the direction of the channel and the input signal selection. This
		bit-field is writable only when the channel is OFF (CH2E bit in TIMERx_CHE register is reset).
		00: channel 2 is configured as output
		01: channel 2 is configured as input, IC2 is mapped on TI2
		10: channel 2 is configured as input, IC2 is mapped on TI1
		11: channel 2 is configured as input, IC2 is mapped on TRC. This mode is working only
		if an internal trigger input is selected through TRGS bits in TIMERx_SMC register.
7	CH10CE	Channel 1 output compare clear enable.
		When this bit is set, the OC1Ref signal is cleared when High level is detected on ETIF input.
		0: Channel 1 output compare clear disable
		1: Channel 1 output compare clear enable
6:4	CH1OM[2:0]	Channel 1 output compare mode
		This bit-field specifies the behavior of the output reference signal OC1REF which
		drives OC1. OC1REF is active high, while OC1 active level depends on CH1P and bit.
		000: Frozen. The OC1REF signal keep stable, independent of the comparison
		between the output compare register TIMERx_CHCC1 and the counter.
		001: Set high on match. OC1REF signal is forced high when the counter matches the
		output compare register TIMERx_CHCC1.

010: Set low on match. OC1REF signal is forced low when the counter matches the c output compare register TIMERx_CHCC1.

011: Toggle on match. OC1REF toggles when the counter matches the c output compare register TIMERx_CHCC1.

100: Force low. OC1REF is forced low level.

101: Force high. OC1REF is forced high level.

110: PWM mode 1. When counting up, OC1REF is high as long as the counter is smaller than TIMERx_CHCC1 else low. When counting down, OC1REF is low as long as the counter is larger than TIMERx_CHCC1 else high.

111: PWM mode 2. When counting up, OC1REF is low as long as the counter is smaller than TIMERx_CHCC1 else high. When counting down, OC1REF is high as long as the counter is larger than TIMERx_CHCC1 else low.

When configured in PWM mode, the OCREF level changes only when the output compare mode switches from "frozen" mode to "PWM" mode or when the result of the comparison changes.

3 CH1OSE Channel 1 output compare shadow enable When this bit is set, the shadow register of TIMERx_CHCC1 register, which updates at

each update event will be enabled.

0: Channel 1 output compare shadow disable

1: Channel 1 output compare shadow enable

The PWM mode can be used without validating the shadow register only in one pulse mode (OPM bit set in TIMERx_CTLR1 register is set).

2 CH1OFE Channel 1 output compare fast enable

When this bit is set, the effect of an event on the trigger in input on the CC1 output will be accelerated if the channel is configured in PWM1 or PWM2 mode. The output channel will treat an active edge on the trigger input as a compare match, and OC1 is set to the compare level independently from the result of the comparison.

0: Channel 1 output compare fast disable. The minimum delay from an edge on the trigger input to activate CC1 output is 5 clock cycles.

1: Channel 1 output compare fast enable. The minimum delay from an edge on the trigger input to activate CC1 output is 3 clock cycles.

1:0 CH1M[1:0] Channel 1 mode selection

This bit-field specifies the direction of the channel and the input signal selection. This bit-field is writable only when the channel is OFF (CH1E bit in TIMERx_CHE register is reset).

00: channel 1 is configured as output

01: channel 1 is configured as input, IC1 is mapped on TI1

10: channel 1 is configured as input, IC1 is mapped on TI2

11: channel 1 is configured as input, IC1 is mapped on TRC. This mode is working only

if an internal trigger input is selected through TRGS bits in TIMERx_SMC register.

Input capture mode

Bits	Fields	Descriptions
15:12	CH2ICF[3:0]	Channel 2 input capture filter control
		Refer to CH1ICF description
11:10	CH2ICP[1:0]	Channel 2 input capture prescaler
		Refer to CH1ICP description
9:8	CH2M[1:0]	Channel 2 mode selection
		This bit-field specifies the direction of the channel and the input signal selection. This
		bit-field is writable only when the channel is OFF (CH2E bit in TIMERx_CHE register is
		reset).
		00: channel 2 is configured as output
		01: channel 2 is configured as input, IC2 is mapped on TI2
		10: channel 2 is configured as input, IC2 is mapped on TI1
		11: channel 2 is configured as input, IC2 is mapped on TRC. This mode is working only
		if an internal trigger input is selected through TRGS bits in TIMERx_SMC register.
7:4	CH1ICF[3:0]	Channel 1 input capture filter control
		An event counter is used in the digital filter, in which a transition on the output occurs
		after N input events. This bit-field specifies the frequency used to sample TI1 input
		signal and the length of the digital filter applied to TI1.
		0000: Filter disable, f _{SAMP} = f _{DTS} , N=1
		0001: f _{SAMP} = f _{PCLK} , N=2
		0010: f _{SAMP} = f _{PCLK} , N=4
		0011: f _{SAMP} = f _{PCLK} , N=8
		0100: f _{SAMP} =f _{DTS} /2, N=6
		0101: f _{SAMP} =f _{DTS} /2, N=8
		0110: f _{SAMP} =f _{DTS} /4, N=6
		0111: f _{SAMP} =f _{DTS} /4, N=8
		1000: f _{SAMP} =f _{DTS} /8, N=6
		1001: f _{SAMP} =f _{DTS} /8, N=8
		1010: f _{SAMP} =f _{DTS} /16, N=5
		1011: f _{SAMP} =f _{DTS} /16, N=6
		1100: f _{SAMP} =f _{DTS} /16, N=8
		1101: f _{SAMP} =f _{DTS} /32, N=5
		1110: f _{SAMP} =f _{DTS} /32, N=6
		1111: f _{SAMP} =f _{DTS} /32, N=8
3:2	CH1ICP[1:0]	Channel 1 input capture prescaler
		This bit-field specifies the ratio of the prescaler on channel 1 input. The prescaler is
		reset when CH1E bit in TIMERx_CHE register is reset.
		00: prescaler disable, capture is done on each channel input edge
		01: capture is done every 2 channel input edges
		10: capture is done every 4channel input edges
		11: capture is done every 8 channel input edges

1:0	CH1M[1:0]	Channel 1 mode selection
		This bit-field specifies the direction of the channel and the input signal selection. This
		bit-field is writable only when the channel is OFF(CH1E bit in TIMERx_CHE register is
		reset).
		00: channel 1 is configured as output
		01: channel 1 is configured as input, IC1 is mapped on TI1
		10: channel 1 is configured as input, IC1 is mapped on TI2
		11: channel 1 is configured as input, IC1 is mapped on TRC. This mode is working only
		if an internal trigger input is selected through TRGS bits in TIMERx_SMC register.

TIMERx channel enable register (TIMERx_CHE)

Address offset: 0x20 Reset value: 0x0000

15	14	14 13 12 11 10 9 8 7 6									4	3	2	1	0
Reserved										CH2P	CH2E	Rese	rved	CH1P	CH1E
										rw	rw			rw	rw

Bits	Fields	Descriptions
15: 6	Reserved	Must be kept at reset value.
5	CH2P	Channel 2 polarity
		Refer to CH1P description.
4	CH2E	Channel 2 enable
		Refer to CH1E description.
3:2	Reserved	Must be kept at reset value.
1	CH1P	Channel 1 polarity
		When channel 1 is configured in input mode, this bit specifies the IC1 signal polarity.
		When channel 1 is configured in output mode, this bit specifies the output signal
		polarity.
		0: Channel 1 active high.
		1: Channel 1 active low.
0	CH1E	Channel 1 enable
		When channel 1 is configured in input mode, setting this bit enables OC1 signal in
		active state. When channel 1 is configured in output mode, setting this bit enables the
		capture event in channel1.
		0: Channel 1 disabled.
		1: Channel 1 enabled.

TIMERx counter register (TIMERx_CNT)

Address offset: 0x24 Reset value: 0x0000

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNT[15:0]																

rw

Bits	Fields	Descriptions
15:0	CNT[15:0]	This bit-filed indicates the current counter value. Writing to this bit-filed can change the
		value of the counter.

TIMERx prescaler register (TIMERx_PSC)

Address offset: 0x28 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
PSC[15:0]																
	rw															

rw

Bits	Fields	Descriptions
15:0	PSC[15:0]	Prescaler value of the counter clock
		The PSC clock is divided by (PSC+1) to generate the counter clock. The value of this
		bit-filed will be loaded to the corresponding shadow register at every update event.

TIMERx counter auto reload register (TIMERx_CARL)

		Addre Reset	ss offse value:	et: 0x20 0x0000											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CARL[1	5:0]							
	rw														

 Bits
 Fields
 Descriptions

 15:0
 CARL[15:0]
 Counter auto reload value

This bit-filed specifies the auto reload value of the counter.

TIMERx channel 1 capture compare register (TIMERx_CHCC1)

Address offset: 0x34 Reset value: 0x0000

Giga	Device									GD)32F	10x	Jser	Mar	nual
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CHCC1[[15:0]							
							rw								

Bits	Fields	Descriptions	
15:0	CHCC1[15:0]	Capture or compare value of channel1	
		When channel1 is configured in input mode, this bit-filed indicates the counter value	
		corresponding to the last capture event. And this bit-filed is read-only.	
		When channel1 is configured in output mode, this bit-filed contains value to be	
		compared to the counter. When the corresponding shadow register is enabled, the	
		shadow register updates every update event.	

TIMERx channel 2 capture compare register (TIMERx_CHCC2)

Address offset: 0x38
Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CHCC2[15:0]														
							rw								

Bits	Fields	Descriptions
15:0	CHCC2[15:0]	Capture or compare value of channel2
		When channel 2 is configured in input mode, this bit-filed indicates the counter value
		corresponding to the last capture event. And this bit-filed is read-only.
		When channel 2 is configured in output mode, this bit-filed contains value to be
		compared to the counter. When the corresponding shadow register is enabled, the
		shadow register updates every update event.

9.5. General timer (TIMER10/11/13/14)

9.5.1. Introduction

The general timer (TIMER10/11/13/14) consists of one 16-bit up -counter; one capture/compare register (TIMERx_CHCCx), one counter auto reload register (TIMERx_CARL) and several control registers. They can be used for a variety of purposes including general timer, input signal pulse width measurement or output waveform generation such as output compare or PWM output.

9.5.2. Main features

16-bit up auto-reload counter.

- 16-bit programmable prescaler that allows division of the counter clock frequency by any factor between 1 and 65536.
- One independent channel supports functions including input capture, compare match output, and generation of PWM waveform (edge and center-aligned mode).
- Interrupt generation by update, input capture event, or output compare match event.

9.5.3. Function description

Figure below provides details on the internal configuration of the generic timer.

Prescaler counter

The prescaler can divide the timer clock (PCLK) to the counter clock (CNT_CLK) by any factor between 1 and 65536. It is controlled through prescaler register (TIMERx_PSC) which can be changed on the fly but be taken into account at the next update event.

Figure 9-117 Counter timing diagram with prescaler division change from 1 to 4

Upcounting mode

In this mode the counter counts continuously from 0 to the counter-reload value. Once the counter reaches the counter reload value, the counter restarts to count once again from 0. The update event is generated at each counter overflow.

When the update event is set by the UPG bit in the TIMERx_EVG register, the counter value will be initialized to 0 and generates an update event.

If set the UPDIS bit in TIMERx_CTLR1 register, the update event is disabled.

When an update event occurs, all the registers (autoreload register, prescaler register) are updated.

The following figures show some examples of the counter behavior for different clock frequencies when TIMERx_CARL=0x63.

Figure 9-118 Counter timing diagram, internal clock divided by 1

Figure 9-119 Counter timing diagram, internal clock divided by 2

Figure 9-121 Counter timing diagram, internal clock divided by N

Figure 9-123 Counter timing diagram, update event when ARSE=1

Downcounting mode

In this mode the counter counts continuously from the counter reload value, which is defined in the TIMERx_CARL register, to 0 in a count-down direction. Once the counter reaches 0, the counter restarts to count once again from the counter-reload value. If the repetition counter is set, the update event generated after the number of underflow. Else the update event is generated at each counter underflow. The counting direction bit DIR in the TIMERx_CTLR1 register should be set to 1 for the down counting mode.

When the update event is set by the UPG bit in the TIMERx_EVG register, the counter value will be initialized to the counter-reload value and generates an update event.

If set the UPDIS bit in TIMERx_CTLR1 register, the update event is disabled.

When an update event occurs, all the registers (repeat counter, reload register, prescaler register) are updated.

Figure 9-124 Counter timing diagram, internal clock divided by 1

Figure 9-126 Counter timing diagram, internal clock divided by 4

Figure 9-128 Counter timing diagram, update event

Center-aligned counting mode

In the center-aligned counting mode, the counter counts up from 0 to the counter-reload value and then counts down to 0 alternatively. The Timer module generates an overflow event when the counter counts to the counter-reload value subtract 1 in the up-counting mode and generates an underflow event when the counter counts to 1 in the down-counting mode. The counting direction bit DIR in the TIMERx_CTLR1 register is read-only and indicates the counting direction when in the center- aligned mode. The counting direction is updated by hardware automatically.

Setting the UPG bit in the TIMERx_EVG register will initialize the counter value to 0 irrespective of whether the counter is counting up or down in the center-align counting mode and generates an update event.

The UPIF bit in the TIMERx_EVG register can be set to 1 when an underflow event at count-down (CAM in TIMERx_CTLR1 is "01"), an overflow event at count-up (CAM in TIMERx_CTLR1 is "10") or both of them occur (CAM in TIMERx_CTLR1 is "11").

If set the UPDIS bit in the TIMERx_CTLR1 register, the update event is disabled.

When an update event occurs, all the registers (autoreload register, prescaler register) are updated.

The following figures show some examples of the counter behavior for different clock frequencies when TIMERx_CARL=0x5.

Figure 9-129 Counter timing diagram, internal clock divided by 1, TIMERx_CARL = 0x5

Figure 9-130 Counter timing diagram, internal clock divided by 2

Figure 9-131 Counter timing diagram, internal clock divided by 4, TIMERx_CARL=0x63

Figure 9-132 Counter timing diagram, internal clock divided by N

Figure 9-133 Counter timing diagram, update event with ARSE=1(counter underflow)

Figure 9-134 Counter timing diagram, Update event with ARSE=1 (counter overflow)

Clock selection

Basic timer has the unique clock source which is controlled by RCC. Counter and prescaler counter are clocked by this internal clock, except UPG is asserted. UPG's assert will initial counter and prescaler counter.

Capture/compare channels

The TIMER10/11/13/14 has one independent channel which can be used as capture inputs or compare match outputs. Each channel is built around a channel capture compare register including an input stage, channel controller and an output stage.

Input capture stage

The input stage consists of a digital filter, a channel polarity selection, edge detection and a channel prescaler. The channel input signal (TIx) can be chosen to come from the TIMERx_CH1 signal. The channel input signal (TIx) is sampled by a digital filter to generate a filtered input signal TIxF. Then the channel polarity and the edge detection block can generate a TIxFPx signal for the input capture function. The effective input event number can be set by the channel input prescaler register (CHxICP).

Channel controller

The GPTIMER has one independent channels which can be used as capture inputs or compare match outputs.

When used in the input capture mode, the counter value is captured into the TIMERx_CHCCx shadow register first and then transferred into the TIMERx_CHCCx preload register when the capture event occurs.

When used in the compare match output mode, the contents of the TIMERx_CHCCx preload register is copied into the associated shadow register; the counter value is then compared with the register value.

Figure 9-137 Capture/compare channel 1 main circuit

Output stage

The TIMER10/11/13/14 has one channel for compare match or PWM output function.

Figure 9-138 Output stage of capture/compare channel

Figure 9-139 Output compare mode, toggle on OC1

When the channel is used as a capture input, the counter value is captured into the Channel Capture/Compare Register (TIMERx_CHCCx) when an effective input signal transition occurs. Once the capture event occurs, the CHxIF flag in the TIMERx_STR register is set. If the CHxIF bit is already set, i.e., the flag has not yet been cleared by software, and another capture event on this channel occurs, the corresponding channel Over-Capture flag, named CHxOF, will be set.

The input capture mode can be also used for pulse width measurement from signals on the TIMERx_CHx pins (TIx).

Channel Output Reference Signal

When the TIMER10/11/13/14 is used in the compare match output mode, the OCxREF signal (Channel x Output Reference signal) is defined by setting the CHxOM bits. The OCxREF signal has several types of output function. These include, keeping the original level by setting the CHxOM field to 0x00, set to 1 by setting the CHxOM field to 0x01, set to 0 by setting the CHxOM field to 0x02 or signal toggle by setting the CHxOM field to 0x03 when

the counter value matches the content of the TIMERx_CHCCx register.

The PWM mode 1 and PWM mode 2 outputs are also another kind of OCxREF output which is setup by setting the CHxOM field to 0x06/0x07. In these modes, the OCxREF signal level is changed according to the counting direction and the relationship between the counter value and the TIMERx_CHCCx content. With regard to a more detailed description refer to the relative bit definition.

Another special function of the OCxREF signal is a forced output which can be achieved by setting the CHxOM field to 0x04/0x05. Here the output can be forced to an inactive/active level irrespective of the comparison condition between the counter and the TIMERx_CHCCx values.

The OCxREF signal can be forced to 0 when the ETIF signal is derived from the external TIMERx_ ETI pin and when it is set to a high level by setting the CHxOCE bit to 1 in the TIMERx_CHCTLR1 register. The OCxREF signal will not return to its active level until the next update event occurs.

Single Pulse Mode

Once the timer is set to operate in the single pulse mode, it is not necessary to set the timer enable bit CEN in the TIMERx_CTLR1 register to 1 to enable the counter. The trigger to generate a pulse can be sourced from the trigger signals edge or by setting the CEN bit to 1 using software. Setting the CEN bit to 1 or a trigger from the trigger signals edge can generate a pulse and then keep the CEN bit at a high state until the update event occurs or the CEN bit is written to 0 by software. If the CEN bit is cleared to 0 using software, the counter will be stopped and its value held. If the CEN bit is automatically cleared to 0 by a hardware update event, the counter will be reinitialized.

In the Single Pulse mode, the trigger active edge which sets the CEN bit to 1 will enable the counter. However, there exist several clock delays to perform the comparison result between the counter value and the TIMERx_CHCCx value. In order to reduce the delay to a minimum value, the user can set the CHxOEF bit in each TIMERx_CHCTLR1 register. After a trigger rising occurs in the single pulse mode, the OCxREF signal will immediately be forced to the state which the OCxREF signal will change to, as the compare match event occurs without taking the comparison result into account. The CHxOEF bit is available only when the output channel is configured to operate in the PWM1 or PWM2 output mode and the trigger source is derived from the trigger signal.

Figure 9-140 Single pulse mode

Timer debug mode

When the Cortex[™]-M3 halted, and the DBG_TIMERx_STOP configuration bit in MCUDBG module set to 1, the TIMERx counter stops.

9.5.4. TIMER10/11/13/14 registers

TIMERx control register 1 (TIMERx_CTLR1)

Address offset: 0x00 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved						CDI	/[1:0]	ARSE	CAM	[1:0]	DIR	SPM	UPS	UPDIS	CEN
						r	w	rw	rw		rw	rw	rw	rw	rw

Bits	Fields	Descriptions
15:10	Reserved	Must be kept at reset value
9:8	CDIV[1:0]	Clock division
		The CDIV bits can be configured by software to specify division ratio between the timer
		clock (PCLK) and the dead-time and sampling clock (DTS), which is used by the
		dead-time generators and the digital filters.
		00: f _{DTS} =f _{PCLK}
		01: f _{DTS} = f _{PCLK} /2

		10: f _{DTS} = f _{PCLK} /4
		11: Reserved
7		
1	ARSE	Auto-reload snadow enable
		0: The shadow register for TIMERx_CARL register is disabled
		1: The shadow register TIMERX_ CARL register is enabled
6:5	CAM[1:0]	Center-aligned mode selection
		00: No center-aligned mode (edge-aligned mode). The direction of the counter is
		specified by the DIR bit.
		01: Center-aligned mode 1. The counter counts up and down alternatively. Output
		compare interrupt flags of channels, which are configured in output mode (CHxM=00 in
		TIMERx_CHCTLRx register), are set only when the counter is counting down.
		10: Center-aligned mode 2. The counter counts up and down alternatively. Output
		compare interrupt flags of channels, which are configured in output mode (CHxM=00 in
		TIMERx_CHCTLRx register), are set only when the counter is counting up.
		11: Center-aligned mode 3. The counter counts up and down alternatively. Output
		compare interrupt flags of channels, which are configured in output mode (CHxM=00 in
		TIMERx_CHCTLRx register), are set only when the counter is counting both up and
		down.
		After the counter is enabled, can not be switched from edge-aligned mode to
		center-aligned mode.
		-
4	DIR	Direction
		0: Count up
		1: Count down
		This bit is read only when the timer is configured in Center-aligned mode or Encoder
		mode.
3	SPM	Single pulse mode.
		0: Counter continues after update event.
		1: The CEN is cleared by hardware and the counter stops at next update event.
2	UPS	Update source
L	010	This bit is used to select the update event sources by software
		0: When enabled, any of the following events generate an update interrupt:
		- The LIPG bit is set
		- The counter generates an overflow or underflow event
		- The slave mode controller generates an undate event
		1: When enabled, only counter overflow/underflow generates an undate interrupt
1	UPDIS	Update disable.
		This bit is used to enable or disable the update event generation.
		0: update event enable. The update event is generate and the buffered registers are
		loaded with their preloaded values when one of the following events occurs:
		- The UPG bit is set
		 The counter generates an overflow or underflow event

The slave mode controller generates an update event.1: update event disable. The buffered registers keep their value, while the counter and

the prescaler are reinitialized if the UPG bit is set or if the slave mode controller generates a hardware reset event.

0 CEN Counter enable

0: counter disable

1: counter enable

The CEN bit must be set by software when timer works in external clock, pause mode and encoder mode. While in trigger mode, the hardware can set the CEN bit automatically.

TIMERx control register 2 (TIMERx_CTLR2)

Address offset: 0x04 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved								١	MMC[2:0]			Rese	erved		
										rw					

Bits	Fields	Descriptions
15:7	Reserved	Must be kept at reset value
6:4	MMC[2:0]	Master mode control
		These bits control the selection of TRGO signal, which is sent in master mode to slave
		timers for synchronization function.
		000: Reset. When the UPG bit in the TIMERx_EVG register is set or a reset is
		generated by the slave mode controller, a TRGO pulse occurs. And in the latter case,
		the signal on TRGO is delayed compared to the actual reset.
		001: Enable. This mode is useful to start several timers at the same time or to control a
		window in which a slave timer is enabled. In this mode the master mode controller
		selects the counter enable signal TIMERx_EN as TRGO. The counter enable signal is
		set when CEN control bit is set or the trigger input in pause mode is high. There is a
		delay between the trigger input in pause mode and the TRGO output, except if the
		master-slave mode is selected.
		010: Update. In this mode the master mode controller selects the update event as
		TRGO.
		011: Capture/ compare pulse. In this mode the master mode controller generates a
		TRGO pulse when a capture or a compare match occurred.
		100: Compare. In this mode the master mode controller selects the OC1REF signal is
		used as TRGO
		101: Compare. In this mode the master mode controller selects the OC2REF signal is
		used as TRGO
		110: Compare. In this mode the master mode controller selects the OC3REF signal is

used as TRGO 111: Compare. In this mode the master mode controller selects the OC4REF signal is used as TRGO

3:0 Reserved Must b

Must be kept at reset value.

TIMERx DMA and interrupt status register (TIMERx_STR)

Address offset: 0x10 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved							H1OF Reserved							CH1IF	UPIF
						rc_w0								rc_w0	rc_w0

Bits	Fields	Descriptions
15:10	Reserved	Must be kept at reset value.
9	CH1OF	Channel 1 overcapture flag
		When channel 1 is configured in input mode, this flag is set by hardware when a
		capture event occurs while CH1IF flag has already been set. This flag is cleared by
		software.
		0: No overcapture interrupt occurred
		1: Overcapture interrupt occurred
8:2	Reserved	Must be kept at reset value.
1	CH1IF	Channel 1 interrupt flag
		This flag is set by hardware and cleared by software. When channel 1 is in input mode,
		this flag is set when a capture event occurs. When channel 1 is in output mode, this
		flag is set when a compare event occurs.
		0: No Channel 1 interrupt occurred
		1: Channel 1 interrupt occurred
0	UPIF	Update interrupt flag
		This bit is set by hardware on an update event and cleared by software.
		0: No update interrupt occurred
		1: Update interrupt occurred
	TIMERx ev	ent generation register (TIMERx_EVG)
	Address offs	et: 0x14
	Reset value:	0x0000

w

w

		This bit is set by software in order to generate a capture or compare event in channel
		1, it is automatically cleared by hardware. When this bit is set, the CC1IF flag is set, the
		corresponding interrupt or DMA request is sent if enabled. In addition, if channel 1 is
		configured in input mode, the current value of the counter is captured in
		TIMERx_CHCC1 register, and the CH1OF flag is set if the CH1IF flag was already
		high.
		0: No generate a channel 1 capture or compare event
		1: Generate a channel 1 capture or compare event
0	UPG	This bit can be set by software, and cleared by hardware automatically. When this bit is
		set, the counter is cleared if the center-aligned or upcounting mode is selected, else
		(downcounting)it takes the auto-reload value. The prescaler counter is cleared at the
		same time.
		0: No generate an update event
		1: Generate an update event

Channel 1 capture or compare event generation

TIMERx channel control register 1 (TIMERx_CHCTLR1)

Address offset: 0x18 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved								Res	С	H1OM[2:	0]	CH1OSE	CH1	M[1:0]	
									CH1IC	F[3:0]		CH1ICP[2	1:0]		
									rw	1		rw			rw

Output compare mode:

Bits	Fields	Descriptions
15:7	Reserved	Must be kept at reset value.
6:4	CH1OM[2:0]	Channel 1 output compare mode
		This bit-field specifies the behavior of the output reference signal OC1REF which
		drives OC1 and OC1N. OC1REF is active high, while OC1 and OC1N active level
		depends on CH1P and CH1NP bits.
		000: Frozen. The OC1REF signal keep stable, independent of the comparison
		between the output compare register TIMERx_CHCC1 and the counter.
		001: Set high on match. OC1REF signal is forced high when the counter matches the
		output compare register TIMERx_CHCC1.
		010: Set low on match. OC1REF signal is forced low when the counter matches the c

Fields

CH1G

Reserved

Descriptions

Must be kept at reset value.

Bits

15:2

1

	Input capture	mode
1:0	CH1M[1:0]	Channel 1 mode selection This bit-field specifies the direction of the channel and the input signal selection. This bit-field is writable only when the channel is OFF (CH1E bit in TIMERx_CHE register is reset). 00: channel 1 is configured as output 01: channel 1 is configured as input, IC1 is mapped on TI1 10: channel 1 is configured as input, IC1 is mapped on TI2 11: channel 1 is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TRGS bits in TIMER_SMC register.
		 When this bit is set, the effect of an event on the trigger in input on the CC output will be accelerated if the channel is configured in PWM1 or PWM2 mode. The output channel will treat an active edge on the trigger input as a compare match, and OC is set to the compare level independently from the result of the comparison. 0: Channel 1 output compare fast disable. The minimum delay from an edge on the trigger input to activate CC1 output is 5 clock cycles. 1: Channel 1 output compare fast enable. The minimum delay from an edge on the trigger input to activate CC1 output is 3 clock cycles.
2	CH10FE	 each update event will be enabled. 0: Channel 1 output compare shadow disable 1: Channel 1 output compare shadow enable The PWM mode can be used without validating the shadow register only in one pulse mode (OPM bit set in TIMERx_CTLR1 register is set). Channel 1 output compare fast enable
3	CH1OSE	output compare register TIMERx_CHCC1. 011: Toggle on match. OC1REF toggles when the counter matches the c output compare register TIMERx_CHCC1. 100: Force low. OC1REF is forced low level. 101: Force high. OC1REF is forced high level. 110: PWM mode 1. When counting up, OC1REF is high as long as the counter is smaller than TIMERx_CHCC1 else low. When counting down, OC1REF is low as long as the counter is larger than TIMERx_CHCC1else high. 111: PWM mode 2. When counting up, OC1REF is low as long as the counter is smaller than TIMERx_CHCC1 else high. When counting down, OC1REF is high as long as the counter is larger than TIMERx_CHCC1 else low. When configured in PWM mode, the OCREF level changes only when the output compare mode switches from "frozen" mode to "PWM" mode or when the result of the comparison changes. Channel 1 output compare shadow enable

Bits Fields

(\rightarrow)
GigaDevice

15:8	Reserved	Must be kept at reset value
7:4	CH1ICF[3:0]	Channel 1 input capture filter control
		An event counter is used in the digital filter, in which a transition on the output occurs
		after N input events. This bit-field specifies the frequency used to sample TI1 input
		signal and the length of the digital filter applied to TI1.
		0000: Filter disable, f _{SAMP} = f _{DTS} , N=1
		0001: f _{SAMP} = f _{PCLK} , N=2
		0010: f _{SAMP} = f _{PCLK} , N=4
		0011: f _{SAMP} = f _{PCLK} , N=8
		0100: f _{SAMP} =f _{DTS} /2, N=6
		0101: f _{SAMP} =f _{DTS} /2, N=8
		0110: f _{SAMP} =f _{DTS} /4, N=6
		0111: f _{SAMP} =f _{DTS} /4, N=8
		1000: f _{SAMP} =f _{DTS} /8, N=6
		1001: f _{SAMP} =f _{DTS} /8, N=8
		1010: f _{SAMP} =f _{DTS} /16, N=5
		1011: f _{SAMP} =f _{DTS} /16, N=6
		1100: f _{SAMP} =f _{DTS} /16, N=8
		1101: f _{SAMP} =f _{DTS} /32, N=5
		1110: f _{SAMP} =f _{DTS} /32, N=6
		1111: f _{SAMP} =f _{DTS} /32, N=8
3:2	CH1ICP[1:0]	Channel 1 input capture prescaler
		This bit-field specifies the ratio of the prescaler on channel 1 input. The prescaler is
		reset when CH1E bit in TIMERx_CHE register is reset.
		00: prescaler disable, capture is done on each channel input edge
		01: capture is done every 2 channel input edges
		10: capture is done every 4channel input edges
		11: capture is done every 8 channel input edges
1:0	CH1M[1:0]	Channel 1 mode selection
		This bit-field specifies the direction of the channel and the input signal selection. This
		bit-field is writable only when the channel is OFF (CH1E bit in TIMERx_CHE register is
		reset).
		00: channel 1 is configured as output
		01: channel 1 is configured as input, IC1 is mapped on TI1
		10: channel 1 is configured as input, IC1 is mapped on TI2
		11: channel 1 is configured as input, IC1 is mapped on TRC. This mode is working only
		if an internal trigger input is selected through TRGS bits in TIMERx_SMC register.

TIMERx channel enable register (TIMERx_CHE)

Address offset: 0x20 Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-------------------------------------	----	----	----	----	----	----	---	---	---	---	---	---	---	---	---	---

Reserved

rw rw

CH1E

CH1P

Bits	Fields	Descriptions
15:2	Reserved	Must be kept at reset value.
1	CH1P	 Channel 1 polarity When channel 1 is configured in input mode, this bit specifies the IC1 signal polarity. When channel 1 is configured in output mode, this bit specifies the output signal polarity. O: Channel 1 active high. 1: Channel 1 active low.
0	CH1E	Channel 1 enableWhen channel 1 is configured in input mode, setting this bit enables OC1 signal in active state. When channel 1 is configured in output mode, setting this bit enables the capture event in channel1.O: Channel 1 disabled.1: Channel 1 enabled.

TIMERx counter register (TIMERx_CNT)

		Addre Reset	ss offse value:	et: 0x24 0x0000	L)										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CNT[15:0]														
	rw														

Bits	Fields	Descriptions
15:0	CNT[15:0]	This bit-filed indicates the current counter value. Writing to this bit-filed can change the
		value of the counter.

TIMERx prescaler register (TIMERx_PSC)

		Addres Reset	ss offse value:	et: 0x28 0x0000	3										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PSC[1	5:0]							
							rw								
Bits		Fields		Descr	iptions										

C	5										~ ~ =				
Giga	Devio	: e								GD	32⊦	10x	Jser	Mar	nual
15:0		PSC[15:	0]	Presc	aler valu	ie of the	e counte	er clock							
				The P	SC cloc	k is divi	ided by	(PSC+′	1) to gei	nerate t	he cou	nter clo	ck. The	value o	f this
				bit-file	d will be	loaded	d to the	corresp	onding	shadov	v registe	er at ev	əry upda	ate eve	∩t.
		ТІМЕ	Rx co	ounter	auto re	əload	regist	er (TI	MERx	_CAR	L)				
		Addre	ss offs	et: 0x20	C										
		Reset	value:	0x0000	C										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CARL[1	5:0]							
							rw								
Bits		Fields		Desci	riptions										
15:0		CARL[15	5:0]	Count	er auto	reload \	value								
				This b	it-filed s	pecifies	s the au	to reloa	id value	of the	counter				
		TIME	Rx ch	annel	1 capt	ure co	ompar	e regi	ister (TIME	Rx_CH	ICC1)			
								_							
		Addre	ss offs	et: 0x34	4										
		Reset	value:	0x0000	C										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CHCC1[15:01	-	-	-	-			
L							rw								
Bits		Fields		Desci	riptions										
15:0		CHCC1[15:0]	Captu	re or co	mpare	value of	channe	el1						
				When	channe	I1 is co	nfigured	l in inpu	ut mode	, this bi	t-filed ir	ndicates	the co	unter va	lue
							-								

corresponding to the last capture event. And this bit-filed is read-only. When channel1 is configured in output mode, this bit-filed contains value to be compared to the counter. When the corresponding shadow register is enabled, the shadow register updates every update event.

10. Ethernet (ETH)

10.1. Introduction

This section applies only to GD32F107xx connectivity line devices.

The Ethernet peripheral of GD32F107xx contains the 10/100Mbps Ethernet MAC(media access controller), designed to provide optimized performance through the use of DMA hardware acceleration, support two standard communication interface with the physical layer (PHY): MII(media independent interface) and RMII(reduced media independent interface) to transmit and receive data.

10.2. Main features

MAC

- Support 10/100 Mbit/s data transfer rates.
- Support CSMA/CD Protocol for half-duplex Back-pressure operation.
- Support IEEE 802.3x flow control for full-duplex operation, Automatic transmission of pause frame on deassertion of flow control input.
- Option for automatic pad/CRC generation in transmit operation.
- Option for automatic pad/CRC stripping in receive operation.
- Option for frame length to support Standard frames with sizes up to 16 KB.
- Option for interframe gap (40-96 bit times in steps of 8).
- Support different receiving filter mode.
- Support IEEE 802.1Q VLAN tag detection for reception frames.
- Support mandatory network statistics with RMON/MIB counters (RFC2819/RFC2665).
- Support Detection of LAN wakeup frames and AMD Magic Packet frames.
- Support Receive feature for checksum off-load for received IPv4 and TCP packets encapsulated by the Ethernet frame.
- Support Enhanced receive feature for checking IPv4 header checksum and TCP, UDP, or ICMP checksum encapsulated in IPv4 or IPv6 datagrams.
- Support Ethernet frame time stamping as described in IEEE 1588-2002. 64 bit time stamps are given in each frame's transmit or receive status.
- Two independent FIFO of byte 2K for transmitting and receiving.
- Support statistics by generating pulses for frames dropped or corrupted (due to overflow) in the Receive FIFO.
- Automatic generation of PAUSE frame control or back pressure signal to the MAC core based on Receive FIFO-fill (threshold configurable) level.
- Discard frames on late collision, excessive collisions, excessive deferral and underrun conditions.
- Calculate and insert IPv4 header checksum and TCP, UDP, or ICMP checksum in

frames transmitted in Store-and-Forward mode.

DMA

- Support ring or chain descriptor chaining.
- Each descriptor can transfer up to 8 KB of data.
- Round-robin or fixed-priority arbitration between reception and transmission controller priority.

PTP

- Support IEEE1588 time synchronization function.
- Support two correction methods: Coarse or fine.
- Pulse per second output.

10.2.1. Block Diagram

The Ethernet module is composed of a MAC (media access controller) module, MII/RMII module and a DMA module by descriptor control.

Figure 10-1 ETH module block diagram

The MAC module is connected to the external PHY by MII or RMII through one selection bit (refer to AFIO_PCFR1 register). The SMI interface (MDIO and MDC), is used to configure and manage external PHY.

Transmitting data module includes:

- Tx DMA controller, used to read descriptors and data from memory and writes status to memory.

- Tx FIFO, used to cache for MAC transmission data.

- The MAC transmission control register group, used to control frame transmit.

Receiving data module includes:

- Rx DMA controller, used to read descriptors from memory and writes data and status to memory.

- MAC receive control register group, used to control frame receive and marked the receiving state.

- The receiving filter, can use a variety of filtering mode, filter out specific Ethernet frame

- Rx FIFO, delay a received frame to achieve, thus filter can filter out specific frames, and then receives the frame into the memory.

Note: The AHB clock frequency must be at least 25 MHz when the Ethernet is used.

10.2.2. MAC 802.3 Ethernet Packet

Data communication of MAC can use two frame format:

- Basic MAC frame format.
- Tagged MAC frame format (extension of the basic MAC frame format).

Figure 10-2 describes the structure of the frame (basic and Tagged) that includes the following fields:

Figure 10-2 MAC/Tagged MAC frame format

Note: The Ethernet controller transmits bytes least significant bit (lsb) first except FCS

10.2.3. Ethernet pins

Table shows the MAC module that pin is used default and remapping functions and specific configuration in MII/RMII mode.

MAC signals	Pin	Pin	MII	MII	RMII	RMII
		configuration	default	remap	default	remap
ETH_MDC	PC1	AF output push-pull	MDC		MDC	
		highspeed (50 MHz)				
ETH_MII_TXD2	PC2	AF output push-pull	TXD2			
		highspeed (50 MHz)				
ETH_MII_TX_CLK	PC3	Floating input	TX_CLK			
		(reset state)				
ETH_MII_CRS	PA0	Floating input	CRS			
		(reset state)				
ETH_RX_CLK	PA1	Floating input	RX_CLK		REF_CL	

Table 10-1 Ethernet pin configuration

ETH_RMII_REF_CLK		(reset state)			К	
ETH_MDIO	PA2	AF output push-pull	MDIO		MDIO	
		highspeed (50 MHz)			MDIO	
ETH_MII_COL	PA3	Floating input	COL			
		(reset state)				
ETH_MII_RX_DV	PA7	Floating input	RX_DV			
ETH_RMII_CRS_DV		(reset state)			CR5_DV	
ETH_MII_RXD0	PC4	Floating input	RXD0		RXD0	
ETH_RMII_RXD0		(reset state)				
ETH_MII_RXD1	PC5	Floating input	RXD1		RXD1	
ETH_RMII_RXD1		(reset state)				
	PB0	Floating input	RXD2			
ETH_MII_RXD2		(reset state)				
ETH_MII_RXD3	PB1	Floating input	RXD3			
		(reset state)				
ETH_PPS_OUT	PB5	AF output push-pull	PPS_OU		PPS_OU	
		highspeed (50 MHz)	Т		Т	
ETH_MII_TXD3	PB8	AF output push-pull	TXD3			
		highspeed (50 MHz)				
ETH_MII_RX_ER	PB10	Floating input	RX_ER			
		(reset state)				
ETH_MII_TX_EN	PB11	AF output push-pull	TX_EN			
ETH_RMII_TX_EN		highspeed (50 MHz)				
ETH_MII_TXD0	PB12	AF output push-pull	TXD0			
ETH_RMII_TXD0		highspeed (50 MHz)			TADU	
ETH_MII_TXD1	DB13	AF output push-pull	TXD1			
ETH_RMII_TXD1	T D I O	highspeed (50 MHz)			TXDT	
ETH_RMII_CRS_DV	PD8	Floating input		RX_DV		CRS_D
		(reset state)				V
ETH_MII_RXD0	PD9	Floating input	RXD	BXD0		RXD0
ETH_RMII_RXD0		(reset state)		10,000		10,000
ETH_MII_RXD1	PD10	Floating input	RXD1	RXD1		RXD1
ETH_RMII_RXD1		(reset state)		10.01		
ETH_MII_RXD2	PD11	Floating input	RXD2			
		(reset state)				
ETH_MII_RXD3	PD12	Floating input		RXD3		
		(reset state)				

10.3. Function description

10.3.1. Interface configuration

The Ethernet block can transmit and receive Ethernet packets from an off-chip Ethernet PHY connected through the MII/RMII interface. MII or RMII mode is selected by software and carry on the PHY management through the SMI interface.

MII/RMII selection

The application has to set the MII/RMII mode through configuration of the AFIO_PCFR1 register 23 bits MII_RMII_SEL while the Ethernet controller is under reset or before enabling the clocks. The MII mode is set by default.

Station management interface: SMI

Station management interface (SMI) through two wire: clock line(MDC) and data line(MDIO) for communication with the external PHY, it can access to the any PHY register. The interface supports accessing up to 32 PHYs, but only one register in one PHY can be addressed at the same time.

Two wires: MDC and MDIO Specific functions as follows:

- MDC: a clock of maximum frequency is 2.5 MHz. The pin remains low level in the idle state. The minimum high and low times for MDC must be 160 ns each, and the minimum period for MDC must be 400 ns in data transmission.

- MDIO: Used to transfer data in conjunction with the MDC clock line, receiving / sending data.

SMI write operation

Applications need to write transmission data to the ETH_MAC_PHYDR register and operate the ETH_MAC_PHYAR register as follows: Set the PHY device address and register address will operate, PW is set to 1, so that can enable write mode. After that set PB bit start transmission. In the process of transaction PB is always high until the transfer is complete SMI interface will clear it. The application can determine whether a transaction complete through PB bit. When PB is 1, the application should not change the PHY Address register contents or the PHY Data register. Write operations to the PHY Address register or the PHY Data Register during this period are ignored (the PB bit is high), and the transaction is completed without any error.

SMI read operation

Applications need to operate the ETH_MAC_PHYAR register as follows: Set the PHY device address and register address will operate, PW is set to 0, so that can enable read mode. After that set PB bit start reception. In the process of transaction PB is always high until the

transfer is complete SMI interface will clear it. The application can determine whether a transaction complete through PB bit. When PB is 1, the application should not change the PHY Address register contents or the PHY Data register. Write operations to the PHY Address register or the PHY Data Register during this period (the PB bit is high) are ignored, and the transaction is completed without any error.

Note: Because the PHY register address 16-31 register functions define by each manufacturer, access different PHY devices's this part registers should accord to the manufacturer manual to adjust the parameters of software. Details of Catalog that GD32F107 firmware library currently supports the PHY device can refer to firmware library related instructions.

SMI clock selection

The SMI clock is a divided clock whose source is the application clock (AHB clock). In order to guarantee the clock frequency is less than 2.5MHZ, according to the AHB clock frequency set the PHY address register related bit, select the appropriate frequency division factor. The following table lists the frequency factor corresponding AHB clock selection.

AHB clock	MDC clock	Selection
Reserved	-	0100, 0101, 0110, 0111
20~35MHz	AHB clock/16	0011
35~60MHz	AHB clock/26	0010
90~108 MHz	AHB clock/64	0001
60~90MHz	AHB clock/42	0000

Table 10-2 Clock range

Media-independent interface: MII

The media-independent interface (MII) defines the interconnection between the MAC sublayer and the PHY for data transfer at 10 Mbit/s and 100 Mbit/s.

Figure 10-3 Media independent interface signals

- MII_TX_CLK: clock signal for transmitting data. For the data transmission of 10M /s, the clock is 2.5MHz, for the data transmission of 100M /s, the clock is 25MHz.

- MII_RX_CLK: clock signal for receiving data. For the data transmission of 10M /s, the clock is 2.5MHz, for the data transmission of 100M /s, the clock is 25MHz.

- MII_TX_EN: Transmission enable signal. It must be asserted synchronously with the first bit of the preamble and must remain asserted while all bits to be transmitted are presented to the MII.

- MII_TXD [3:0]: Transmit data line, each 4 bit data transfer, data are valid in the MII_TX_EN signal is effective. MII_TXD [0] is the least significant bit, MII_TXD[3] is the most significant bit. While MII_TX_EN is deasserted the transmit data must have no effect upon the PHY.

- MII_CRS: Carrier sense signal, only working in half duplex mode. Controlled by the PHY, enable it when either the transmit or receive medium is non idle. The PHY must ensure that the MII_CRS signal remains asserted throughout the duration of a collision condition. This signal is not required to transition synchronously with respect to the TX and RX clocks.

- MII_COL: collision detection signal, only working in half duplex mode. Controlled by the PHY, enable it when detection of a collision on the medium and must remain asserted while the collision condition persists. This signal is not required to transition synchronously with respect to the TX and RX clocks.

- MII_RXD[3:0]: Receive data line, each 4 bit data transfer, data are valid in the MII_RX_DV signal is effective. MII_RXD[0] is the least significant bit, MII_RXD[3] is the most significant bit. While MII_RX_EN is deasserted and MII_RX_ER is asserted, a specific MII_RXD[3:0] value is used to indicate specific information (see Table 10-3).

- MII_RX_DV: Receive data enable signal. Controlled by the PHY, enable it when PHY is presenting on the MII for reception. It must be asserted synchronously with the first bit of the frame and must remain asserted while all bits to be transmitted are presented to the MII. It must be deasserted prior to the first clock cycle that follows the final bit. In order to receive the frame correctly, the effective signal starting no later than the SFD field.

- MII_RX_ER: Receive error signal.It must be asserted for one or more clock periods to indicate MAC detected an error in the receiving process. The specific error reason need to cooperate with the state of the MII_RX_DV and the MII_RXD[3:0] data value(see Table 10-3).

MII_RX_ERR	MII_RX_DV	MII_RXD[3:0]	Description
0	0	0000 to 1111	Normal inter-frame
1	0	0000	Normal inter-frame
1	0	0001 to 1101	Reserved
1	0	1110	False carrier indication
1	0	1111	Reserved
0	1	0000 to 1111	Normal inter-frame

Table 10-3 RX interface signal encoding

1	1	0000 to 1111	Data reception with		
			errors		

MII clock sources

To generate both TX_CLK and RX_CLK clock signals. The external PHY must be clocked with an external 25 MHz. The clock does not require the same with MAC clock. Can use the external 25MHz crystal or GD32F107xx microcontroller MCO pin provides the clock. When the clock source from MCO pins need to configure the appropriate PLL, ensure the MCO pin output clock for 25MHZ.

Reduced media-independent interface: RMII

The reduced media-independent interface (RMII) specification reduces the pin count when ethernet communication. According to the IEEE 802.3 standard, an MII contains 16 pins for data and control. The RMII specification is dedicated to reduce the pin count to 7 pins The RMII block has the following characteristics:

- The clock signal needs to be increased to 50MHz.
- MAC and external PHY need to use the same clock source
- Using the 2-bit wide data transceiver

MII/RMII bit transmission order

Each bit from the MII is transmitted on the RMII a dibit at a time with the order of dibit transmission. as follows: The first transmit / receive low 2 bits, then transmit / receive high 2 bits.

RMII clock sources

To ensure the synchronization of the clock source by the same clock source to the MAC and Ethernet PHY REF_CLK pins. Can use the external 50MHz crystal or GD32F107xx microcontroller MCO pin provides the clock. When the clock source from MCO pins need to

configure the appropriate PLL, ensure the MCO pin output clock for 50MHZ.

10.3.2. MAC

MAC module can achieve the following functions:

Data package (transmission and reception)

- Frame assembly (frame boundary delimitation and frame synchronization).
- Addressing (management source address and destination address).
- Error detection.

Medium access management (in half duplex mode)

- Medium allocation (prevent conflicts).
- Conflict resolution (dealing with conflict).

The MAC module can work in two modes:

- Half duplex mode: get the physical medium access using the CSMA/CD algorithm.
- Full duplex mode: when the following conditions, simultaneous transmission and reception without dealing with conflict (no CSMA/CD):

Physical media support to transmission and reception operations at the same time.

Only two sites access to the LAN, such as star network (now the majority of local area network using this structure).

Transmission process of MAC

The Ethernet special DMA and MAC control all transaction. Ethernet frames read from the system memory are pushed into the FIFO by the DMA After receiving the instruction application to sent, then according to the selected mode (threshold or store-and-forward mode, the specific definition see the next paragraph) pop data into MAC by the MII/RMII interface to send to the extern PHY, and can configure automatically hardware calculated CRC are added to the FCS domain of ethernet frame. The entire transmission process complete when the MAC controller received frame termination signal from transmit FIFO and ignore after non frame of initial data, until the receipt of the next frame start signal. When transmission completed, the transmission state information will be composed of MAC controller to return to the DMA controller, the application can through the DMA current transmit descriptor query it.

Operation for popping data from FIFO to the MAC controller has two modes:

In Threshold mode, as soon as the number of bytes in the FIFO crosses the configured threshold level (or when the end-of-frame is written before the threshold is crossed), the data is ready to be popped out and forwarded to the MAC controller. The threshold level

is configured using the TTHC bits of ETH_DMA_CTLR.

In Store-and-forward mode, only after a integrated frame is stored in the FIFO, the frame is popped towards the MAC controller. If the transmit FIFO size is smaller than the Ethernet frame to be transmitted, then the frame is popped towards the MAC controller when the transmit FIFO becomes almost full.

Handle special cases

In the transmission process due to the DMA idle transmit descriptor not enough or misuse of FTF bit in ETH_DMA_CTLR register (when this bit sets clear data in the FIFO and reset the FIFO pointer, this bit reset by hardware when empty operation is completed), fails to timely transmit data, MAC controller will identify the data underflow state. To receive only a frame start signal but did not receive the end of frame signals, MAC will ignore the start of frame in second frame data, second frame as a continuation of the previous frame.

if the data field length in transmission MAC frame is less than 46 or Tagged MAC frame is less than 42, can configure the MAC controller automatically add a bunch of content for the 0 data, make the data frame length in accordance with the relevant domain of definition of IEEE802.3 specification. At the same time, ignoring whether the configuration of the MAC controller will automatically add CRC, CRC value is filled into the FCS domain of the frame.

CRC calculation contains in addition to all the data domain outside the preamble, SFD and FCS domain. The encoding is defined by the following polynomial.

G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

- The ethernet frame of the CRC value is calculated as follows:
- The first two bits of the frame are complemented.
- The n-bits of the frame are the coefficients of a polynomial M(x) of degree (n-1). The first bit of the destination address corresponds to the xⁿ⁻¹ term and the last bit of the data field corresponds to the x⁰ term.
- M(x) is multiplied by x^{32} and divided by G(x), producing a remainder R(x) of degree \leq 31.
- The coefficients of R(x) are considered as a 32-bit sequence.
- The bit sequence is complemented and the result is the CRC.
- The 32-bits of the CRC value are placed in the frame check sequence. The x^{32} term is the first transmitted, the x^{0} term is the last one.

Transmission management of MAC

Jabber timer

If the jabber timer is enabled, disconnect the communication when ethernet frames transmit more than 2048 bytes (the default).

Operate on second frame in buffer

Because the DMA controller needs to wait for MAC controller update state information after complete transmission, to allow the application configuration and transmit the second frame, there can be at the most two frames inside a transmit FIFO. DMA can read the second frame data in memory before the first frame transmission is completed, only if the OSF bit of ETH_DMA_CTLR register is set, and put them into the FIFO, without waiting for the descriptor of first frame state update. If this bit is not set, DMA must push second frame to the FIFO after waiting for the DMA controller updates the transmission state information and releases the descriptor.

Retransmission during collision

If a collision event occurs on the MAC line interface in Half-duplex mode, the MAC attempts to retransmit. Because FIFO will release 96 bytes data space after pop these data for MAC transmitting and allowing the DMA to push new data into there. This means that frame can't retransmit if it transmits data number exceeds the threshold (96 bytes) or MAC controller indicates a late collision event.

Transmit FIFO flush operation

Application can clear Tx FIFO and reset the FIFO data pointer through FTF bit (bit 20) of ETH_DMA_CTLR register set. The Flush operation is immediate even if the Tx FIFO is in the middle of transferring a frame to the MAC controller. This results in an underflow event in the MAC transmitter, and the frame transmission is aborted. At the same time return state information of frame and transmit status words are transferred to the application for the number of frames that is flushed (including partial frames). The status of such a frame is marked with both underflow and frame flush events (TDES0 bits 1 and 13). The Flush operation is completed when the application (DMA) has accepted all of the Status words for the frames that were flushed. The FTF bit of ETH_DMA_CTLR register is then cleared. All data presented for transmission after a Flush operation are discarded unless they start with an SOF marker.

Transmit status word

MAC controller will return the transmit state information to application after frame is transmitted complete. These informations are reflected in the TDES0 [23:0]. If IEEE 1588 time stamping is enabled, a specific frames' 64-bit time stamp is returned.

Transmit flow control

The MAC controller manages transmission frame through back pressure (in half duplex mode), flow control (in full duplex mode) and the inter-frame.

■ Half duplex mode of back pressure

MAC controller transmit/receive used in half duplex mode, if a conflict occurs at any time frame transmission, MAC controller can be generated by back pressure to halt the receive

data. The method is by setting the ETH_MAC_FCTLR register FLCBBKPA bit (bit 0) to enable transmit flow control, sending a 32 bit jam signal 0x5555 5555, notify conflict to all other sites in net. In particular, if there is a conflict in the frame head transmission process (preamble period), MAC controller can send jam signal after preamble and SFD domain send complete. If the application presents a transmit frame request in back pressure period, controller will terminate back pressure immediately and arrange to transmission, restore back pressure when transmit complete. It should be noted that, if the back pressure for a period of time(more than 16 consecutive clashes occur) the remote site will give up the transmission due to too many conflicts. If IEEE 1588 time stamping is enabled for the transmit frame, then MAC controller add system time when transferring SFD domain to the MII bus.

■ Full-duplex mode of transmit flow control

The MAC controller uses "pause frame" for flow control in full duplex mode. Receiver can send a command to the sender for suspending transmission, such as when the receive buffer will overflow. If the application sets transmit flow control bit(TFCEN bit of ETH_MAC_FCTLR register), MAC generate and transmit Pause frame when needed in full duplex mode. Pause frames with the calculated CRC value and specific pause time, pause frames on the specific format refer to the relevant sections of IEEE 802.3 protocol. There are two ways to start transmit Pause frames when transmission flow control is enabled: 1, FLCBBKPA bit of ETH_MAC_FCTLR register is set by application. 2, Unprocessed data in the Rx FIFO reaches the threshold value of active flow control (RFA bits in ETH_MAC_FCTHR).

In the first case the value of pause time in the Pause frame is configured in the ETH_MAC_FCTLR register. If application wants to extend the pause time, or suspend the pause of last Pause frame indicating, needs to reconfigure pause time value of register (PTM domain in ETH_MAC_FCTLR register), and requests to transmit a new Pause frame.

In the second case, the value of pause time in the Pause frame is configured in the ETH_MAC_FCTLR register. If receiving FIFO is still higher than the threshold value of active flow control(RFA domain in ETH_MAC_FCTHR) when the pause time configured limit(PLTS domain in ETH_MAC_FCTLR register) reached , MAC will transmit a Pause frame. This process is repeated until the unprocessed data in the Rx FIFO less than the threshold value of deactive flow control (RFD bits in ETH_MAC_FCTHR). When the data in the receive FIFO is below the threshold value of deactive flow control(RFD bits in ETH_MAC_FCTHR) and the pause time has not yet arrived, MAC will transmit a pause frame that pause time value is 0, indicate to the remote end that the FIFO is ready to receive new data.

Transmit inter frame gap management

MAC controller manages the interval between two frames. In the gap between the transmission frame MAC will remain idle for a certain time that determined by the IG bit in the ETH_MAC_CFR register. In full duplex mode, MAC will begin transmitting frames after reaching the inter frame gap time configured. In half duplex mode, MAC follows the truncated binary exponential backoff algorithm. The MAC enables transmission after satisfying the inter

frame gap and backoff delays. Once the MII carrier signal is inactive, inter frame gap counter of MAC immediately began to work. At the same time, if the inter frame gap time configured as 96 bit time, the MAC resets the inter frame gap counter if it detects carrier during the first 2/3(64-bit times) of the frame interval time.

Transmit checksum offload

The MAC controller has a feature that transmit checksum offload, supports checksum calculation and insertion it in the transmit frame, and error detection in the receive frame. This section describes the operation of the transmit checksum offload.

Note:This function is enabled Only the TSFD bit in the ETH_DMA_CTLR register is set (Tx FIFO is configured to store-and-forward mode) and must ensure the FIFO deep enough to accommodate the integrate frame will be sent. If the depth is less than the frame length, only calculation and insertion IPv4 header checksum field.

See IETF specifications RFC 791, RFC 793, RFC 768, RFC 792, RFC 2460 and RFC 4443 for IPv4, TCP, UDP, ICMP, IPv6 and ICMPv6 packet header specifications, respectively.

IP header checksum

If the value is 0x0800 in Type field of Ethernet frame and the value is 0x4 in the IP datagram's Version field, checksum offload module marks the frame as IPV4 package and calculated value replace the checksum field in frame. The IPv6 header does not contain a checksum field, so the module will not change the value of the checksum IPv6 header. Checksum offload module also can check the correctness of the IP header and data in the receive FIFO. IP data error flags TDES0 (bit 12) and the IP header error flag TDES0 (bit 16) in the DMA transmit descriptor indicate the results of the calibration and operation.

Error status bit TDES0 (bit 12) is set by hardware under the following circumstances:

- In store-and-forward mode, the frame is transmitted to MAC controller before not complete push to the FIFO.

- The total frame length is less than the length of the data field marked in IP header.

Note: If the packet length is greater than the marked length, checksum module does not report errors, the excess data will be discarded as padding bytes. When the first type of error is detected, the value of the checksum does not insert a TCP, UDP or ICMP header. When the second type of error is detected, checksum calculation results will still insert the appropriate header fields.

Error status bit TDES0 (bit 16) is set by hardware under the following circumstances:

- For the IPv4 package, received the Ethernet type field value of 0x0800, but the IP datagram's Version field value is not equal to 0x4. For IPv6 package, received Ethernet type field is 0x86DD, but the IP datagram's Version field value is not equal to 0x6 version.

- IPv4 header length field value is less than the total length of the IP header (20 bytes).

- The total length of the frame header is less than the value of the IPv4 header length field

- The frame ends before the IPv6 header (40 bytes) or extension header (as given in the corresponding Header Length field in an extension header) has been completely received.

■ TCP/UDP/ICMP checksum

The checksum offload module processes the IPv4 or IPv6 header (including extension headers) and determines the type of frame(TCP,UDP or ICMP).

Note: Incomplete IP frames (IPv4 or IPv6), IP frames with security features (such as an authentication header or encapsulated security payload), and IPv6 frames with routing headers are bypassed and not processed by the checksum.

The checksum offload module calculates the TCP, UDP, or ICMP payload and insert into its corresponding field in the header. It has two modes as follows:

- In the first mode, the TCP, UDP, or ICMPv6 pseudo-header is not included in the checksum calculation and is assumed to be present in the input frame's checksum field. The checksum field is included in the checksum calculation, and then replaced by the final calculated checksum.

- In the second mode: Checksum offload module clears the contents of checksum field in the transmission frame, checksum calculation, calculation includes TCP, UDP, or ICMPv6 pseudo-header data, and will calculate the final result of the insertion of the transmission frame original checksum field.

Note: For ICMP packets over IPv4, the checksum field in the ICMP packet must always be 0x0000 in both modes due to such packets are not defined pseudo-headers.

MAC receive filters

The MAC filter is divided into error filtering (such as too short frame, CRC error and other bad frame filtering) and address filtering. Error filtering has been introduced in the front, this section mainly discusses the address filtering.

Address filtering

Address filtering using the static physical address (MAC address) filter and Hash list filter Implementation. If the FD bit in the ETH_MAC_FRMFR register is '0' (the default), MAC address filtering function enable. This function will be set according to the parameters of the application (frame filter register) to filter the destination / source address of unicast or multicast frame(The difference between an individual address and a group address is determined by the I/G bit in the destination address filed) and Report the results of the corresponding address filtering. Not through the filter for all frames will be discarded. Filters can also identify a multicast frame or broadcast frames.

Unicast destination address filter

By setting HUF bit in ETH_MAC_FRMFR register, application can choose to use static physical address (HUF bit is '0') or HASH list (HUF bit is '1') to achieve unicast filtering.

Static physical address filtering

MAC controller supports four MAC address to unicast filtering. In this way, the MAC compares all 48 bits of the received unicast address with the programmed MAC address for any match. By default, MacAddr0 always enabled. Each byte of MacAddr1–MacAddr3 register can be masked during comparison with the corresponding destination address byte of received frame by setting the corresponding Mask Byte Control bit in the register, in order to achieve the function of filtering the destination address of the frame group.

HASH list filtering

This filter uses a HASH mechanism. MAC used 64 bit HASH list to imperfect filtering for the unicast address. The first, MAC calculated the destination address of the received frame CRC value, then take the high 6 bits as the index to retrieve the HASH list. The CRC value is '000000' corresponds to the HASH list register bit 0, the CRC value is' 111111' corresponds to the HASH list register bit 63. If the CRC value corresponding to the HASH list bit is set, indicating that the frame through the HASH filter, otherwise the frame can not pass the HASH filter. The advantage of this type of filter is that it can cover any possible address just used a small table. The disadvantage is that the filter is imperfect, that is sometimes the frames should drop also be received.

Multicast destination address filter

Application can enable the multicast MAC address filtering by cleaning the MFD bit in frame filter register ETH_MAC_FRMFR. According to the value of HMF bits in ETH_MAC_FRMFR register can choose two ways similar unicast destination address filtering to address filtering.

Hash or perfect address filter

The DA filter can be configured to pass a frame when its DA matches either the Hash filter or the Perfect filter by setting the HPFLT bit in the Frame filter register and setting the corresponding HUF or HMF bits.

Broadcast address filter

MAC default unconditional receive any broadcast frames. But when setting BFRMD bit in the frame filter register ETH_MAC_FRMFR, MAC will discard all broadcast frames received.

Unicast source address filter

Enable MacAddr1-MacAddr3 register, and set the corresponding 30 bit in the MAC address high register, the MAC compares and filter the SA field in the received frame with the values programmed in the SA registers. MAC also supports the group filter on the source address. If the SAFLT bit in frame filter register ETH_MAC_FRMFR is set, MAC drop the frame failed to pass the source address filtering; otherwise filtered results will reflect by SAFF bit in RDES0 of DMA receive descriptors. When the SAFLT bit is set, the destination address filter is also at work, then the result of the SA and DA filters is AND'ed to determine whether the frame passes the filter. This means that, as long as the frame does not pass one of the filters, it will

be discarded. Frames only passing the entire filter frames can be forwarded to the application.

Inverse filtering operation

MAC can reverse filter-match result at the final output whether the destination address filtering or source address filtering. By setting the DAIFLT and SAIFLT bits in ETH_MAC_FRMFR register, this function can be enabled. DAIFLT bit is applicable for unicast and multicast frames DA filtering results, SAIFLT bit is applicable for unicast and multicast frames SA filtering results.

The following two tables summarize the destination address and source address filters working condition at different settings.

Frametype	P M	H P F L T	H U F	D A I F L T	H M F	M F D	B F R M D	DA filter operation		
	1	Х	Х	Х	Х	Х	Х	Pass		
Broadcast	0	Х	Х	Х	Х	Х	0	Pass		
	0	Х	Х	Х	Х	Х	1	Fail		
	1	Х	Х	Х	Х	Х	Х	Pass all frames		
	0	Х	0	0	Х	Х	Х	Pass on perfect/group filter match		
	0	Х	0	1	Х	Х	Х	Fail on perfect/Group filter match		
Unicast	0	0	1	0	Х	Х	Х	Pass on hash filter match		
	0	0	1	1	Х	Х	Х	Fail on hash filter match		
	0	1	1	0	Х	Х	Х	Pass on hash or perfect/Group filter match		
	0	1	1	1	Х	Х	Х	Fail on hash or perfect/Group filter match		
	1	Х	Х	Х	Х	Х	Х	Pass all frames		
	Х	Х	Х	Х	Х	1	Х	Pass all frames		
	0	x	x	0	0	0	x	Pass on Perfect/Group filter match and drop		
		~	^	0			^	PAUSE control frames if PCFRM = 0x		
	0	0	x	1	1	0	x	Pass on hash filter match and drop PAUSE		
	0	U	^			U	^	control frames if PCFRM = 0x		
Multicast	0	1	Y	1	1	0	Y	Pass on hash or perfect/Group filter match and		
municasi	0	I	^		I	0	^	drop PAUSE control frames if PCFRM = 0x		
	0	v	v	0	0	0	v	Fail on perfect/Group filter match and drop		
	0	^	^	0	U	0	^	PAUSE control frames if PCFRM = 0x		
	0	0	x	1	1	0	x	Fail on hash filter match and drop PAUSE control		
	0	0	^	1	1	0	^	frames if PCFRM = 0x		
	0	1	х	1	1	0	х	Fail on hash or perfect/Group filter match and drop PAUSE control frames if PCFRM = 0x		

Table 10-4 Destination address filtering table

Frametype	РМ	SAIFLT	SAFLT	SA filter operation
	1	Х	Pass all frames	
	0	0	0	Pass status on perfect/Group filter match but do not
	0			drop frames that fail
	0	1	0	Fail status on perfect/group filter match but do not drop
Unicast				frame
	0	0	1	Pass on perfect/group filter match and drop frames
				that fail
	0	4	4	Fail on perfect/group filter match and drop frames that
	0	1	1	fail

Table 10-5 Source address filtering table

Promiscuous mode

If the PM bit in ETH_MAC_FRMFR register is set, promiscuous mode will enable, then address filter invalid, all frames are passed the filter. At the same time the receive status information DA / SA error bit is always '0'.

PAUSE control frame filter

When MAC received PAUSE frame, it will detect 48 bits destination address field in the frame. If UPFDT bit in ETH_MAC_FCTLR register is 0, it is determined whether the value of the DA field conform to unique values with IEEE802.3 specification control frames. If UPFDT bit in ETH_MAC_FCTLR register is set, MAC additional compares DA field with the programmed MAC address for any match. If DA field match and receive flow control is enabled (RFCEN bit in ETH_MAC_FCTLR register is set), the corresponding PAUSE control frame function will be triggered.

Reception process of MAC

The MAC received frames will be pushed to the Rx FIFO. MAC strip the preamble and SFD in received frame, and starts pushing the frame data beginning with the first byte following the SFD to the Rx FIFO. If IEEE 1588 time stamping is enabled, MAC will record the current system time when any frame's SFD is detected. If the frame passes filter, this time stamp is passed on to the application.

The MAC automatic CRC and pad stripping function is active just when the length/type field of received frame is less than 0x600. MAC pushes the data of the frame to Rx FIFO up to the count specified in the length/type field, then starts dropping bytes (including the FCS field). If the value of Length/Type field is greater than or equal to 0x600, regardless of whether the option of automatic CRC and pad stripping function is enabled, the MAC pushes all received frame data to Rx FIFO. If the Watchdog Timer is enabled, the frame length is more than 2048 bytes (DA + SA + LT + data + padding + FCS) will be cut off. Even if the watchdog timer is not enabled, MAC still cut the frames length greater than 16KB, and to report a watchdog timeout event.

When Rx FIFO works at threshold mode, if the FIFO receives 64 bytes (the default value, set by the RTHC bits in ETH_DMA_CTLR register), began to pop up data from FIFO, and notify the DMA to receive. Upon completion of the EOF frame transfer, the status word sent to the DMA controller. In this mode, if the MAC sets to discard all error frames, some error frames may be not dropped. Because error informations are sented with status word, at this time the front portion of the frame has been received by DMA.

When Rx FIFO works at storage-and-forward mode (set by RSFD bit in ETH_DMA_CTLR), DMA reads frame out only after receiving FIFO complete receives a frame. In this mode, If MAC is configured to discard all error frames, such that only valid frames are read out and forwarded to the application. Once the MAC detects an SFD on the MII, a receive operation is started. The MAC controller strips the preamble and SFD before processing the frame. The header fields are checked by filtering and the FCS field used to verify the CRC for the frame. The frame is discarded by MAC if it fails to pass the address filter.

Reception management of MAC

Receive operation multiframe handling

It is different from Tx FIFO, due to the frame status is available immediately following the data of frame, the FIFO is capable of storing any number of frames into it, as long as it is not full.

Receive flow control

In full duplex mode, MAC can detect PAUSE frames, and follow the PAUSE frame parameters, suspended within a certain time to transmit data. This function can set by RFCEN bit in ETH_MAC_FCTLR register. If this function is not enabled, the MAC will ignore the received PAUSE frames. If this function is enabled, MAC will decode type, opcode and PAUSE time field in the received frame. If the control frame type field or opcode does not match (not 0x8808 and 0x00001), the frame length discrepancies (64 bytes), or CRC error is detected then the MAC will not suspend the transmission of data, otherwise the MAC transmitter pauses the transmission of any data frame for the duration of the decoded Pause time value, multiplied by the slot time (64 byte times for both 10/100 Mbit/s modes). Meanwhile, if MAC detects another Pause frame with a zero Pause time value, the Pause time is reseted and data is transmitted again. By configuring PCFRM bit in ETH_MAC_FRMFR register (ETH_MAC_FRMFR bit [7: 6]) values, can set the forwarding which receives the control frame to the application. If pass control frames function is enabled, MAC controller is judged PAUSE frames: In the case of a pause frame with a multicast DA, the MAC filters the frame based on the address match(0x0180 C200 0001). If the DA type of pause frame is unicast, the MAC filtering depends on whether the DA matched the contents of the MAC address 0 register when the UPFDT bit in ETH_MAC_FCTLR is set (detecting a pause frame even with a unicast destination address).

Receive checksum offload

Receive checksum offload is enabled by IP4CO bit in ETH_MAC_CFR register is set. Receive checksum offload can calculate the IPv4 header checksum and check whether it matches the contents of the IPv4 header checksum field. The MAC receiver identifies IPv4 or IPv6 frames by checking for value 0x0800 or 0x86DD, respectively, in the received Ethernet frame Type field. This method is also used to identify frames with VLAN tags. Header checksum error bits in DMA receive descriptor (the 7 bit in RDES0) reflects the header checksum result. The bit is set when received IP header has the following error occurred:

- Any mismatch between the receive checksum offload calculates IPv4 header checksums and checksum field in the received frame.
- Any mismatch between the data types of Ethernet type field and IP header version.
- Received frame length is less than the IPv4 header length field indicates the length, or IPv4 or IPv6 header is less than 20 bytes.

Receive checksum offload also identifies the data type of the IP packet is TCP, UDP or ICMP, and calculate their checksum according to TCP, UDP or ICMP specification. Calculation process includes data of TCP / UDP / ICMPv6 pseudo-header.Payload checksum error bits in DMA receive descriptor (the 0 bit in RDES0) reflects the payload checksum result. The bit is set when received IP paylaod has the following error occurred:

- Any mismatch between the receive checksum offload calculates TCP, UDP or ICMP checksums and checksum field of TCP, UDP or ICMP in the received frame.
- Any mismatch between the Received TCP, UDP or ICMP data length and length of IP header.

The received checksum offload does not calculate the following conditions: Incomplete IP packets, IP packets with security features, packets of IPv6 routing header and data type is not TCP, UDP or ICMP.

Error handling

- Rx FIFO receives the EOF data from the MAC after it is full. MAC controller will discard the entire frame and the overflow counter (located ETH_DMA_MFBOCNT register) plus 1, at the same time to return overflow error report with status information to the DMA, pointed out that due to overflow, resulting in a frame incomplete.
- If the receive FIFO is configured to store-and-forward mode, MAC can filter and discard all error frames. According to the value of FERF and FUF bit in ETH_DMA_CTLR register, receive FIFO can filter out the error frame and the frame that length is less than the minimum length.
- If the receive FIFO is configured to threshold mode, the frame can be discarded error frames only when the DMA read SOF of frame from receive FIFO, it has given the state information and the length.

Receive status word

At the receiving completion of the Ethernet frame, MAC will put the receiving state information to the application (DMA). Reception state information specific meaning with RDES0 bits [31: 0] description. The frame length of each received frame in case of switch applications needs to get inside the status at the end of each frame reception.

Note: The value of frame length is 0 means that for some reason (such as FIFO overflow or dynamically modify the filter value in the receiving process, resulting did not pass the filter, etc.) caused by the frame writing FIFO incomplete.

MAC loopback mode

MAC loopback mode is enabled by the LBM bit in ETH_MAC_CFR register is set, in this mode, the MAC transmitter send the ethernet frame to its own receiver. This mode is off by default.

10.3.3. MAC statistics counters: MSC

MAC statistics counters (MSC) maintain a set of registers for gathering statistics on the received and transmitted frames. In Section 10.4, "Ethernet Register Description" There is a detailed description of the function of these registers.

When the frame sending does not appear the following error, MSC transmit counter will automatically update:

- Jabber Timeout
- No Carrier/Loss of Carrier
- Late Collision
- Frame Underflow
- Excessive Deferral
- Excessive Collision

When the receiving frame does not appear the following error, MSC reception counter will automatically update:

- CRC error
- Runt Frame (shorter than 64 bytes)
- Alignment error (in 10/ 100 Mbit/s only)
- Length error (non-Type frames only)
- Out of Range (non-Type frames only, longer than maximum size)
- MII_RXER Input error

The maximum frame length of a frame is determined by the frame type:

- Untagged frame maxsize = 1518
- VLAN Frame maxsize = 1522

Note: When the discarded frame is the short frame that length less than 6 bytes (no complete receives the destination address), MSC reception counter also will be updated.

10.3.4. Wake Up Management: WUM

Ethernet modules support via remote frame or Magic Packet wakeup implement power management. The host system can be powered down, even including part of the Ethernet block itself, while the Ethernet block continues to listen to packets on the LAN. The PWD bit in ETH_MAC_WUMR register is set, will enable MAC controller WUM power-down state. In this state, MAC will discard all frames, rather than forward them to the application. At this time there are two ways to be able to exit the WUM power-down mode. The WFEN bit is set in ETH_MAC_WUMR register to enable remote wake-up frame, or the MPEN bit is set in ETH_MAC_WUMR register to enable Magic Packet. If both of them enable, MAC generates interrupt and exits power-down mode once the MAC receives a wake-up frame or Magic Packets.

Remote Wakeup frame detection

The WFEN bit in ETH_MAC_WUMR register is set can enable remote wake-up detection. When the MAC in WUM power-down mode, and remote wake-up enable bit set, MAC wake up frame filter active. If the received frame passes the address filtering of Filter configured, and if Filter CRC-16 matches the incoming examined pattern, then Identified received wake-up frame, and MAC returns to normal working operation. WUM only check whether the wake-up frame length error, FCS error, Dribble bit errors, MII errors, conflicts, and to ensure that the frame is not too short to wake frame. Even if the length of the wake-up frame exceeds 512 bytes, as long as the frame has a correct CRC value, it is still considered to be effective. When receiving the remote wake-up frame, the WUFR bit in ETH_MAC_WUMR register will be set. If remote wake-up interrupt is enabled, then a WUM interrupt is generated.

Remote wake-up frame filter register

Wake-up frame register a total of eight, to write on each of them, load the wakeup frame filter register one by one. The wanted values of the wakeup frame filter are loaded by sequentially loading eight times the wakeup frame filter register. The read operation is identical to the write operation, also requires continuous read 8 times wake-up frame filter register in order to read out all the values.

Figure 10-5 wakeup frame filter register	Figure 1	10-5	Wakeup	frame	filter	registe
--	----------	------	--------	-------	--------	---------

Wake-up frame filter register O	Filter O Byte Mask							
Wake-up frame filter register 1		Filter 1 Byte Mask						
Wake-up frame filter register 2		Filter 2 Byte Mask						
Wake-up frame filter register 3		Filter 3 Byte Mask						
Wake-up frame filter register 4	reserve	Filter 3 Command	reserve	Filter 2 Command	reserve	Filter 1 Command	reserve	Filter 0 Command
Wake-up frame filter register 5	Filter	3 Offset	Filter	2 Offset	Filter	Filter 1 Offset Filter 0 Offset		
Wake-up frame filter register 6	Filter 1 CRC - 16				Filter 0 CRC - 16			
Wake-up frame filter register 7		Filter 3	CRC - 16		Filter 2 CRC - 16			

Filter i Byte Mask

This register defines the use of filters i (i = 0 ~ 3) which byte check frame to determine whether the wake-up frame in bytes. Its 31 bit must be '0'; bit j [30: 0] is the byte mask bits, if the filter i (i = 0 ~ 3) of the j-bit (j = 0 ~ 30) to '1', the wake-up frame detection of CRC module will process the input frame of [offset filter i + j] bytes, otherwise ignore it.

Filter i Command

This 4-bit command controls the filter i operation. The highest bit (bit 3) is address type selection, if the bit is '1', the detection templates only to a multicast address is valid; if this bit is '0', then the detection template only unicast address is valid.

Filter i Offset

It is used in conjunction with Filter i Byte Mask. This register specifies the first byte of the frame offset filter i want to check. The minimum allowable value is 12, represents the 13 bit in the frame (offset value of 0 indicates the first bit in the frame).

■ Filter i CRC-16

This register contains the filter computed CRC_16 value, as well as the byte mask programmed to the wakeup filter register block.

Magic packet detection

The Ethernet block supports wake-up using Magic Packet technology (see 'Magic Packet technology', Advanced Micro Devices). A Magic Packet is a specially formed packet solely intended for wake-up purposes. This packet can be received, analyzed and recognized by the Ethernet block and used to trigger a wake-up event. Set MPEN bit in ETH_MAC_WUMR register can be enabled it. This type of frame format is as follows: 6 bytes of all 1 (0xFFFF FFFF FFFF) in anywhere after the destination and source address field, then there are 16 duplicate MAC addresses without any interruption and pause. If there is any discontinuity between repeat it 16 times, MAC need to re-detect 0xFFFF FFFF FFFF in the receive frame.

WUM module continuously monitors each frame sent to it. Those Magic Packet passing the address filtering, MAC will detect its compliance with Magic Packet format, once detected by WUM will make MAC wake-up from power down mode. MAC wake-up from WUM power-down mode after receiving a remote wakeup frame. Module also accepts multicast frames as Magic Packet frame.

Example: An example of a Magic Packet with station address 0x55 0x44 0x33 0x22 0x11

0x00 is the following (MISC indicates miscellaneous additional data bytes in the packet):

<DESTINATION> <SOURCE> <MISC>
FF FF FF FF FF FF
5544 3322 1100 5544 3322 1100 5544 3322 1100
5544 3322 1100 5544 3322 1100 5544 3322 1100
5544 3322 1100 5544 3322 1100 5544 3322 1100
5544 3322 1100 5544 3322 1100 5544 3322 1100

<MISC> <CRC>

Upon detecting a Magic Packet, the MPKR bit in ETH_MAC_WUMR register will be set. If the Magic Packet interrupted enabled, the corresponding interrupt is generate.

Precautions during system power-down

When the MCU is in stop mode, if external interrupt lines 19 enabled, WUM Ethernet module is still able to detect frames. Due to the MAC in power-down state also needs to Magic Packet / LAN wake-up frame detection, the REN bit in ETH_MAC_CFR register must be maintained set. The transmit function should however be turned disable during the power-down mode by clearing the TEN bit in the ETH_MAC_CFR register. Moreover, the Ethernet DMA should be disabled during the power-down mode, because it is not necessary that the magic packet/LAN wake up frame is forwarded to the SRAM. Application can disable the Ethernet DMA by clear the STE bit and the SRE bit (for the transmit DMA and the receive DMA, respectively) in the ETH_DMA_CTLR register.

The recommended power-down and wake-up sequence is as follows:

1. Disable the transmit DMA and wait for any previous frame transmissions to complete by detecting the bit 0 in the ETH_DMA_STR register(TS).

2. The TEN bit in ETH_MAC_CFR register and REN bit is cleared to '0' to disable MAC transmitter and receiver MAC.

3. Check the bit 6 in ETH_DMA_STR register (RS), waiting receive DMA read out all the frames in the receive FIFO.

4. Close receive DMA.

5. Configure and enable the external interrupt line 19, so that it can generate an interrupt or event.

6. If application configures the EXTI line 19 to generate an interrupt, it also need to write ETH_WKUP_IRQ interrupt handling procedures, which should clear the pending bit of the EXTI line 19.

7. Set MFEN / WFEN bit in ETH_MAC_WUMR register to enable Magic Packet / Wake on LAN frame detection.

8. Set PWD bit in ETH_MAC_WUMR register to enable power-down mode.

9. Set REN bit in ETH_MAC_CFR register, opens MAC receiver.

10. MCU enters stop mode.

11. After receiving a valid wake-up frame, the Ethernet module to exit power-down mode.

12. Read ETH_MAC_WUMR register to clear the power management event flags, enable MAC transmit function and the transmit and receive DMA.

13. Set the system clock: enable HSE and configure the clock parameters.

10.3.5. Precision time protocol: PTP

The majority of protocols is implemented by the UDP layer application software. The PTP module of MAC is mainly to support the record PTP packets the precision time sent and received from the MII, and returns it to the application, while providing the reference clock source and the reference clock source calibration and clock synchronization function.

Specific details about the precise time protocol can be found in IEEE 1588 standard

Reference clock source

To get the current time record, the system needs a reference time in 64-bit format (split into two 32-bit parts, with the higher 32 bits providing time in seconds, and the lower 32 bits indicating time in subseconds) as defined in the IEEE 1588 specification.

The PTP reference clock input is used to internally generate the reference time (also called the System Time) and to capture time stamps. Its frequency must be greater than or equal to the timestamp counter resolution. The synchronization accuracy target between the master node and the slaves is around 100 ns.

Synchronization accuracy and Deviation

The accuracy of time synchronization depends on the PTP reference clock input period, the characteristics of the oscillator (drift) and the frequency of the synchronization procedure.

Deviation of time stamp recorded is 1 reference clock cycles. If additional considering the deviation caused by time stamp counter resolution, need to be coupled with a half cycle.

System Time correction methods

The 64 bit PTP system time update by the PTP input reference clock, HCLK. The PTP system time is used as the souce to record transmission / reception time stamp. The system time initialization and calibration support two modes of coarse and fine. The purpose of calibration is to correct the frequency offset in the period of time specified in IEEE1588 protocol relative to the master clock from the slave clock.

Coarse correction mode means that, in the initialization, the initial value into the ETH_PTP_TMSHUR and ETH_PTP_TMSLUR register, and then updates the system clock counter. The offset value (Time stamp update register) is added to or subtracted from the system time. The Fine correction method unlike in the Coarse correction method where it is corrected in a single clock cycle. The longer correction time helps maintain linear time and does not introduce drastic changes (or a large jitter) in the reference time between PTP Sync message intervals. This method is referred to the value of ETH_PTP_TSACNT added to the accumulator in each HCLK cycle. PTP module will produce a pulse to increase the value of ETH_PTP_TMSLR register when the accumulator overflowing.Increased value determines by the value in ETH_PTP_SSINCR register. The following illustration shows the algorithm: **Figure 10-6 System time update using the Fine correction method**

The following is a concrete example is used to illustrate the specific method of fine correction mode to update the system time:

Assuming the accuracy of the system clock update circuit required to achieve 20ns, that is the frequency of updates is 50MHz. If the reference clock of HCLK is 66MHz, the ratio is calculated as 66 MHz/50 MHz = 1.32. Hence, the default addend value to be set in the register is $2^{32}/1.32$, which is equal to 0xC1F0 7C1F. If the reference clock frequency drifts lower, for example, down to 65MHz. Frequency ratio changes to 65/50 = 1.3, the value to be set in the addend register is $2^{32}/1.30 = 0xC4EC 4EC4$. If the reference clock drift higher, for example, up to 67MHz, the value addend register must be 0xBF0B 7672. In addition to configure the addend counter, also need to set increase subseconds register to ensure to achieve the precision of 20ns. The value of the register is to update values of time stamp low register after accumulator register overflow. Because the timestamp low register used 0 - 31 bit represent the system time sub second value, the precision is $10^9 ns/2^{31} = 0.46ns$. So in order to make the system time accuracy to 20ns, sub second increment register value should

be set to 20/0.467 = 43. For the frequency drift can be calculated through Sync messages using the software, and accordingly update value of accumulator register. Initially, the slave clock is set with ClockAddendValue in the Addend register.Value is ClockAddendValue = 2^{32} /the initial frequency ratio.

Note: The algorithm described below based on constant delay transferred between master and slave devices (MasterToSlaveDelay). Synchronous frequency ratio will be confirmed by the algorithm after a few Sync cycles, complete synchronization of the master-slave device clock.

Algorithm is as follows:

The definition of the current master clock time when sending Sync message is MasterClockTime (n) and slave device current clock time is SlaveClockTime (n). If the master and slave devices per transfer transmission delay are fixed, master clock count in the gap of the two Sync message, MasterClockCount(n) is given by:

MasterClockCount(n) = MasterClockTime(n) - MasterClockTime(n-1)

Slave clock count, SlaveClockCount(n) is given by:

SlaveClockCount (n) = SlaveClockTime (n) - SlaveClockTime (n-1)

Define the difference between the master and slave device clock count is ClockDiffCount (n), Current Sync cycle, ClockDiffCount (n) is given by:

ClockDiffCount(n) = MasterClockCount(n) - SlaveClockCount (n)

Define the new slave clock frequency-scaling factor for Synchronized with the master clock is FreqRatioNew. FreqRatioNew is given by:

FreqRatioNew= (MasterClockCount(n) + ClockDiffCount(n)) / SlaveClockCount (n)

Define the new value of addend register in slave device is ClockAddendValueNew, ClockAddendValueNew is given by:

ClockAddendValueNew = FreqRatio(n) × ClockAddendValue

In theory, this algorithm achieves lock in one Sync cycle. In fact due to the interference of external factors, such as network transmission delay and the operation environment change, calibration may require multiple Sync cycle.

Programming steps for system time generation initialization

Set Bit 0 in timestamp control register (ETH_PTP_TSCTLR), time stamping function is enabled. This function essentials to initialize, the proper sequence is the following:

- 1. Set bit 9 in the ETH_MAC_IMR register to mask the Time stamp trigger interrupt.
- 2. Set bit 0 in the ETH_PTP_TSCTLR registers to enable timestamp function.
- 3. According to the desired clock precision write sub seconds addend register.

- If it is fine correction mode, set the timestamp addend register, and set the bit 5 in timestamp control register ETH_PTP_TSCTLR. If it is coarse correction mode, jump directly to Step 6.
- 5. Poll the Time stamp control register until bit 5 in it is cleared.
- 6. If it is fine correction mode, set bit 1 in timestamp control register. If it is coarse correction mode, clean bit 1 in timestamp control register.
- 7. The correct time value is written to the timestamp update high register and timestamp updates low register.
- 8. Set bit 2 in time stamp control register initialization time stamp function.
- 9. The Time stamp counter starts operation as soon as the initialization is successful.

Note: If time stamp operation is disabled by clearing bit 0 in the ETH_PTP_TSCTLR register, application must repeat the above steps to restart the time stamp operation.

Programming steps for system time update in the Coarse correction method

- 1. Write the offset (may be negative) in the Time stamp update high and low registers.
- 2. Set bit 3 (TMSSTU) in time stamp control register to update the time stamp register.
- 3. Completion after waiting TMSSTU bit to '0'.

Programming steps for system time update in the Fine correction method

- 1. With the help of the algorithm explained in Section: System Time correction methods, Calculate the value of the desired system clock rate corresponding to the addend register.
- 2. The value is written to addend counter, set the bits 5 in ETH_PTP_TSCTLR register and update value to the PTP module.
- 3. Wait the time you want the new value of the Addend register to be active. For this purpose the application can open time stamp trigger interrupt after system time reach to the desired value, the expected time value is written to the expected time high and low register, and clean bit 9 in ETH_MAC_IMR register to allow time stamp interrupt.
- 4. Set bit 4 (TMSARU) in timestamp control register to enable time stamp interrupt.
- 5. When an interrupt is generated at this event, read out the value of ETH_MAC_ISR register to clear the corresponding interrupt flag.
- 6. Rewrite the old value to time stamp addend register and set bit 5 in ETH_PTP_TSCTLR register to update the value to PTP module.

Transmission / Reception of frames with the PTP feature

After enabled the IEEE1588 (PTP) timestamp function time stamp can be recorded when the 382

SFD of frame output from the MAC or MAC receives the frame. Each transmitted frame can be marked to indicate whether a time stamp must be captured or not for that frame, and the time stamp all received frames will be recorded. Together with time stamp recorded and the state information of frame, stored in the corresponding transmission / reception descriptor is sent back to the DMA controller. The 64-bit time stamp information of transmission frame is written back to the TDES2 and TDES3 fields, with TDES2 holding the time stamp's 32 least significant bits. The 64-bit time stamp information of reception frame is written back to the RDES2 and RDES3 fields, with RDES2 holding the time stamp's 32 least significant bits. See the detailed description in "Transmit DMA descriptor with IEEE1588 time stamp format", "Receive DMA descriptor with IEEE1588 time stamp format"

PTP trigger internal connection with TIMER2

MAC can provide trigger interrupt when the system time larger than the expected time. Using an interrupt introduces a known latency plus an uncertainty in the command execution time.

In order to calculate the time of this part, when the system time is greater than expected time, PTP module set an output signal. Set bit 29 in AFIO_PCFR1 Register, can enable this signal is internally connected to the ITR1 input of TIM2. Using this signal, the time can be calculated. No uncertainty is introduced since the clock of the timer (PCLK1: TIM2 APB1 clock) and PTP reference clock (HCLK) are synchronous.

PTP pulse-per-second output signal

Set bit 30 in AFIO_PCFR1 Register to enable the PPS output function. This function can output pulse width of 125ms is used to check the synchronization between all nodes in the network. To test the difference between the local clock and the master clock, this output can be connected to an oscilloscope. So that difference between two clocks can be measured.

10.3.6. DMA controller

Ethernet DMA was designed for packet as a unit to data transmission, Communication between the CPU and the DMA is achieved by the two kinds of data structures:

- Control and status register (CSR)
- Descriptor tables and data cache

Section 10.4 describes the details of the control and status registers. Segment "Send DMA descriptor" and "receive DMA descriptor" describes the specific circumstances of descriptor. Applications need to provide the physical memory for Storage of descriptor tables and data cache. Descriptors that reside in the GD32F107xx memory act as pointers to these buffers. There are two descriptor tables: one for reception, and one for transmission. Each descriptor queue number may be any value except 0. The base address of each table is stored in ETH_DMA_TDTAR and ETH_DMA_RDTAR register. Descriptors of transmission Constituted by four descriptor word (TDES0-TDES3), reception descriptors constituted by four of two four descriptors).

buffers. This enables the use of two physically addressed buffers, instead of two contiguous buffers in memory, this way is effective only when the invisible connections (ring structure). A data buffer resides in the Host's physical memory space, and consists of an entire frame or part of a frame, but cannot exceed a single frame. Buffers contain only data. The buffer status is maintained in the descriptor. A descriptor table is forward-linked (either implicitly or explicitly). Explicit chaining of descriptors is accomplished by configuring the second address chained in both receive and transmit descriptors (RDES1 [14] and TDES0 [20]), at this time RDES2 and TDES2 will be stored in cache address, RDES3 and TDES3 will store the next descriptor address, this connection descriptor can also be called descriptors chain structure. Implicitly chaining of descriptors is accomplished by clean the RDES1 [14] and TDES0 [20], at this time RDES2, TDES2 and RDES3, TDES3 will be stored in cache address. When DMA needs to point to next descriptor in the descriptor table, application is according to descriptors address in the physical memory, set DPSL field in the ETH_DMA_BCR register to identify the address offset between the last byte of before descriptor and the first byte of next descriptor. The offset value plus size of descriptor byte calculated the next descriptor address. The last one in descriptor table need to set the bit 21 in TDES0 and bit 15 in RDES1 to identify the current descriptor is the last one of the table, at this time the next descriptor descriptor is the first one of table. This descriptor table structure called ring structure. Data chaining refers to frames that span multiple data buffers. However, a single descriptor cannot span multiple frames. The DMA skips to the next frame buffer when the end of frame is detected. Data chaining can be enabled or disabled.

Figure 10-7 Descriptor ring and chain structure

Host data buffer alignment

In the system with 32-bit memory, the transcation and reception data buffers do not have any restrictions on start address alignment. But the DMA always initiates transfers with address aligned to the bus width, for the bytes not required are insteaded of dummy data. Examples

are as follows:

Example of buffer read: If the Transmit buffer address is 0x0000 0AA2, and 15 bytes need to be transferred, then the DMA will read five full words from address 0x0000 0AA0, but when sending data to the FIFO, the first two bytes and the last 3 bytes will be dropped.

Example of buffer write: If the Receive buffer address is 0x0000 0FF2, and 16 bytes of a received frame need to be transferred, then the DMA will write five full 32-bit data items from address 0x0000 0FF0. But the first 2 byte and the last 2 bytes will be substituted by the virtual bytes.

The effective length of the buffer

The process of transmitting frame, the transcation DMA transfers byte that effective length of cache indicated in TDES1 to the MAC controller. If the descriptor is marked as the first part of the frame (the FSG bit in TDES0 is '1'), DMA marks the first byte is sent to first of frame. If the descriptor is marked as the last part of the frame (the LSG bit in TDES0 is '1'), the DMA marks the last byte is sent to the end of frame. If a descriptor is not marked when receiving the frame data to the last part of the frame (the LSG bit in RDES0 is '0'), the number of valid data corresponding descriptors in cache is equal to the buffer length field minus offset of data buffer pointer when FSG bit in descriptor is marked as last, then the buffer may not be full (as indicated by the buffer size in RDES1). The application must read the frame length (FRML bits in RDES0 [29:16]) and subtract the sum of the buffer sizes of the preceding buffers in this frame to compute the amount of valid data in this final buffer. The receive DMA always uses a new descriptor to transfer the start of next frame.

DMA arbiter

There are two type of DMA arbiter: round-robin, and fixed-priority. DAB bit in ETH_DMA_BCR register is set to select round-robin. The arbiter allocates the databus in the ratio set by the RTPR bits in ETH_DMA_BCR, when both transmit and receive DMAs request access simultaneously. DAB bit is set to select fixed priority, the receive DMA always gets priority over the transmit DMA for data access when both transmit and receive DMAs request access simultaneously.

Error response to DMA

If the DMA error occurs during transmission, the DMA stop all operations, and updates the error bits and the fatal bus error bit in the Status register (ETH_DMA_STR register). Only DMA controller can resume operation after soft or hard resetting the peripheral of Ethernet and initializing the DMA again.

Initialization of a transfer using DMA

The initialization of DMA is as follows:

- 1. Set bus access parameters by Writting to ETH_DMA_BCR.
- 2. Write to the ETH_DMA_IER register to mask unnecessary interrupt causes.
- 3. The application provides the memorys that are used for transmit and receive descriptor table, and initialize the descriptor, write the base address of the received and transmit descriptor table to the ETH_DMA_RDTAR register and the ETH_DMA_TDTAR register.
- 4. Write to related registers to choose the desired filtering options.
- 5. The TEN and REN bit in ETH_MAC_CFR register of MAC is set to enable MAC transmit and receive operations. According to the auto-negotiation result (read from the PHY), sets the SPD and DPM bits and selects the communication mode (half / full duplex) and the communication speed (10Mbit / s or 100Mbit / s).
- 6. The bit13 (STE) and bit1 (SRE) in ETH_DMA_CTLR register are set to enable DMA transmission and reception.

Tx DMA configuration

TxDMA operation: default (non-OSF) mode

The transmit DMA engine in default mode proceeds as follows:

- 1. Transmit descriptor (TDES0-TDES3) is set base on data cache of Ethernet frame, and the BUSY bit in TDES0 is set.
- 2. The STE bit in ETH_DMA_CTLR register is set, DMA enters in run mode.
- 3. While in the Run state, the DMA polls the transmit descriptor table for frames requiring transmission. After polling starts, it continues in either sequential descriptor ring order or chained order. If the DMA detects the BUSY bit is cleaned, or if an error condition occurs, transmission is suspended and both the Transmit Buffer Unavailable (ETH_DMA_STR register [2]) and Normal Interrupt Summary (ETH_DMA_STR register [16]) bits are set. The transmit engine proceeds to Step 8.
- 4. If the BUSY bit in TDES0 [31] of the acquired descriptor is set, the DMA decodes the address of transmit data buffer from the acquired descriptor.
- 5. DMA retrieve data from memory and sent out.
- 6. If an Ethernet frame is stored over data buffers in multiple descriptors, the DMA closes the intermediate descriptor and fetches the next descriptor. Steps 3, 4, and 5 are repeated until the end of Ethernet frame data is transferred.
- 7. After the frame transmission is completed, if the completed interrupt bit of descriptor (TDES0 [30]) is set to '1', then DMA sets the transmit interrupt bit (bits [0] in ETH_DMA_STR register) to '1'. At this time if the DMA interrupt enabled, application enters the corresponding interrupt and the DMA controller returns to step 3.
- 8. In the suspended state, if application write any value to ETH_DMA_TPER register and

overflow interrupt flag is '0', DMA attempts to reacquire descriptors (therefore will return to step 3).

TxDMA operation: OSF mode

The OSF bit (bit 2) in ETH_DMA_CTLR register is set to enter this mode. In this mode, the transmit DMA can take the next frame without having to wait for the descriptor status information of the previous frame is processed. As the transmit process finishes transferring the first frame, it immediately polls the transmit descriptor table for the second frame. If the BUSY bit in TDES0 of the second frame is set, the DMA transmits the second frame before writing the status information of first frame. In OSF mode, DMA operation procedure is as follows:

- 1. Follow steps 1-6 operation in transmit DMA default mode.
- 2. Without closing the previous frame's last descriptor, the DMA fetches the next descriptor.
- If the DMA owns the acquired descriptor, the DMA decodes the transmit buffer address in this descriptor. If the DMA does not own the descriptor, the DMA goes into Suspend mode and skips to Step 7.
- 4. According to step 6 operation in transmit DMA default mode.
- 5. The DMA waits for the transmission status and time stamp of the previous frame. When the status is available,DMA cleans BUSY bit in TDES0, and returns possession of descriptor to CPU operation.
- 6. If the completed interrupt bit of descriptor (TDES0 [30]) is set, DMA sets the transmit interrupt bit (ETH_DMA_STR register bits [0]) to '1'. At this time if the DMA interrupt enabled, application enters the corresponding interrupt. If it is normal that the previous frame status information returned then skip to step 3. If data underflow error is generated, DMA into the suspended state, and skip to step 7.
- In Suspend mode, if the DMA receives the pending state information and time stamp, If time stamp function enabled, the DMA writes status information to TDES0 and writes time stamp to TDES2 and TDES3. It then sets relevant interrupts and returns to suspend mode.
- 8. In Suspend mode, if ETH_DMA_TPER register is written any value and overflow interrupt flag is '0', DMA attempt to reacquire the descriptor, and according to whether there is the pending state information skip to Step 1 or Step 2.

Transmit frame format

Data buffers in a normal transmit frame contain complete Ethernet frames, excluding preamble, pad bytes, and FCS fields. The destination address, Source Address, and Type/Len fields contain valid data. If DPAD and DCRC bits in TDES0 of transmit description are set, requires MAC controller must disable CRC or pad insertion, the buffer must have complete Ethernet frames (excluding preamble), including the CRC bytes.

Transmit frame processing

Frames can be data-chained and span over several buffers. TDES0 of FSG (bit 28) in the first descriptor and TDES0 of LSG (bit 29) in the last buffer should be set to mark the frame head and frame end when the frame is located in a different buffer cache. As the transmission starts, the first buffer descriptor tag frame header, DMA sending its contents to Tx FIFO, then transmit DMA will attempt to get the next descriptor. In the next descriptor if not marked the end of frame, that bit 29 in TDES0 is '0', indicating that the middle of a data frame is stored in the cache, After it successfully sent to the Tx FIFO, DMA will attempts to get the next descriptor until the descriptor is marked as the end of frame. After the last buffer of the frame has been transmitted, the DMA writes back the final status information to the TDES0 of the descriptor. If Interrupt on Completion (TDES0 [30]) is set, Transmit Interrupt (in ETH_DMA_STR register [0]) is set. Descriptors are released (BUSY bit in TDES0[31] is cleared) when the DMA finishes transferring the frame successfully.

Processing after Transmit polling suspended

DMA will keep querying the Tx descriptor after the transmission is started. If the following conditions happen, DMA can suspend the transmit polling and the current descriptor is fixed to the last descriptor. In suspension mode, application needs to write any value to transmit poll enable register ETH_DMA_TPER for resuming transmit poll.

- The DMA detects a descriptor owned by the CPU (TDES0 [31]=0), then it suspends query and normal interrupt summary bit (bit 16 in ETH_DMA_STR register) and send buffer unavailable bit (bit 2 in ETH_DMA_STR register) is set.
- DMA will abort the transmission of frame when detecting a transmit error due to underflow. The corresponding error bit in TDES0 is set and both the Abnormal Interrupt Summary (bit 15 in ETH_DMA_STR register) and Transmit Underflow bits (bit 5 in ETH_DMA_STR register) are set. The information is written to TDES0.

Transmit DMA descriptor with IEEE1588 time stamp format

If the IEEE1588 function enabled and the TTSEN bit is set when the BUSY bit is set '1', the MAC controller writes time stamp value to TDES2 and TDES3 and sets TTMSS bit after the frame transmission complete and descriptor closed by DMA (BUSY bit is cleared).

Tx DMA descriptors

The descriptor structure consists of four 32-bit words. The descriptions of TDES0, TDES1, TDES2 and TDES3 are given below.

Figure 10-8 Transmit descriptor

■ TDES0: Transmit descriptor Word0

		Conta	ains co	ontrol bi	ts, conf	iguratio	n bits a	and the	status	s inform	nation re	eturne	ed afte	er sendin	ıg.
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BUSY	INTC	LSG	FSG	DCRC	DPAD	TTSEN	Res	CM[1	:0]	TERM	тснм	R	les	TTMSS	IPHE
rw	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw			rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ES	JT	FRMF	IPPE	LCA	NCA	LCO	ECO	VFRM		COCN	IT[3:0]		EXD	UFE	DB
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
31	BUSY	BUSY bit
		The DMA clears this bit either when it completes the frame transmission or
		the buffers allocated in the descriptor are read completely. This bit of the
		frame's first descriptor must be set after all subsequent descriptors belonging
		to the same frame have been set.
		0: The descriptor is owned by the CPU
		1: The descriptor is owned by the DMA
30	INTC	Interrupt on completion bit
		When set, this bit sets the Transmit Interrupt (ETH_DMA_STR [0]) after the
		present frame has been transmitted.
29	LSG	Last segment bit
		When set, this bit indicates that the buffer contains the last segment of the
		frame.
		0: The buffer of descriptor is not stored the last block of frame
		1: The buffer of descriptor is stored the last block of frame
28	FSG	First segment bit
		When set, this bit indicates that the buffer contains the first segment of a
		frame.

GigaDe	Vice	GD32F10x User Manual
		0: The buffer of descriptor is not stored the first block of frame1: The buffer of descriptor is stored thefirst block of frame
27	DCRC	Disable CRC bit This is valid only when the first segment (TDES0 [28]) is set. 0: The MAC automatic append a cyclic redundancy check (CRC) to the end of the transmitted frame 1: The MAC does not append a CRC to the end of the transmitted frame
26	DPAD	Disable pad bit This is valid only when the first segment (TDES0 [28]) is set. 0: The DMA automatically adds padding and CRC to a frame shorter than 64 bytes, and the CRC field is added despite the state of the DC (TDES0[27]) bit 1: The MAC does not automatically add padding to a frame shorter than 64 bytes
25	TTSEN	Transmit time stamp enable bit. This field is only valid when the First segment control bit (TDES0[28]) is set. 0: Disable transmit time stamp function 1: When TMSEN is set (ETH_PTP_TSCTLR bit 0), IEEE1588 hardware time stamping is activated for the transmit frame described by the descriptor
24	Reserved	
23:22	CM[1:0]	Checksum mode bits 00: Checksum Insertion disabled 01: Only IP header checksum calculation and insertion are enabled 10: IP header checksum and payload checksum calculation and insertion are enabled, but pseudo-header checksum is not calculated in hardware 11: IP Header checksum and payload checksum calculation and insertion are enabled, and pseudo-header checksum is calculated in hardware.
21	TERM	Transmit end of ring mode bit This bit is used only in ring mode 0: The current descriptor is not the last of descriptor table 1: The descriptor list reached its final descriptor. The DMA returns to the base address of the list
20	ТСНМ	Second address chained mode bit This bit is used only in chain mode .When TDES0[20] is set, TB2S (TDES1[28:16]) is a "don't care" value. TDES0[21] takes precedence over TDES0[20]. 0: The second address in the descriptor is the second buffer address 1: The second address in the descriptor is the next descriptor address
19:18	Reserved	

\bigcirc		
GigaDevi	c e	GD32F10x User Manual
17	TTMSS	 Transmit time stamp status bit This bit is only valid when the descriptor's Last segment control bit (TDES0 [29]) is set. 0: Time stamp was not captured 1: A time stamp was captured for the described transmit frame and push into TDES2 and TDES3
16	IPHE	 IP header error bit The Ethernet length/type field value for an IPv4 or IPv6 frame must match the IP header version received with the packet. For IPv4 frames, an error status is indicated if the Header Length field has a value less than 0x5 or the header length in the IPv4 packet against the number ofheader bytes received from the application are mismatch. For IPv6 frames, a header error is reported if the main header length is not 40 Bytes 0: The MAC transmitter did not detect error in the IP datagram header 1: The MAC transmitter detected an error in the IP datagram header
15	ES	Error summary bit Indicates the logical OR of the following bits: TDES0[14]: Jabber timeout TDES0[13]: Frame flush TDES0[11]: Loss of carrier TDES0[10]: No carrier TDES0[10]: No carrier TDES0[9]: Late collision TDES0[8]: Excessive collision TDES0[8]: Excessive deferral TDES0[1]: Underflow error TDES0[16]: IP header error TDES0[12]: IP payload error
14	JT	Jabber timeout bit Only set when the MAC configuration register's JD bit is not set 0: No jabber timeout occurred 1: The MAC transmitter has experienced a jabber timeout
13	FRMF	Frame flushed bit This bit sets to flush the Tx FIFO by sofeware
12	IPPE	IP payload error bit The transmitter checks the payload length received in the IPv4 or IPv6 header against the actual number of TCP, UDP or ICMP packet bytes received from the application and issues an error status in case of a mismatch 0: No IP payload error occurred 1: MAC transmitter detected an error in the TCP, UDP, or ICMP IP datagram

		payload
11	LCA	Loss of carrier bit This is valid only for the frames transmitted without collision when the MAC operates in Half-duplex mode. 0: No loss of carrier occurred 1: A loss of carrier occurred during frame transmission (the MII_CRS signal was inactive for one or more transmit clock periods during frame transmission)
10	NCA	No carrier bit 0: PHY carrier sense signal is active 1: The Carrier Sense signal form the PHY was not asserted during transmission
9	LCO	Late collision bit This bit is not valid if the Underflow Error bit is set 0: No late collision occurred 1: Frame transmission was aborted due to a collision occurring after the collision window (64 byte times, including preamble, in MII mode)
8	ECO	Excessive collision bit If the RTD (Retry disable) bit in the MAC Configuration register is set, this bit is set after the first collision, and the transmission of the frame is aborted. 0: No excessive collision occurred 1: The transmission was aborted after 16 successive collisions while attempting to transmit the current frame
7	VFRM	VLAN frame bit 0: The transmitted frame was a normal frame 1: The transmitted frame was a VLAN-type frame
6:3	COCNT[3:0]	Collision count bits This 4-bit counter value indicates the number of collisions occurring before the frame was transmitted. The count is not valid when the Excessive collisions bit (TDES0 [8]) is set
2	EXD	Excessive deferral bit This is valid when the Deferral check (DFC) bit in the MAC configuration register is set high 0: No excessive deferral occurred 1: The transmission has ended because of excessive deferral of over 24 288 bit times
1	UFE	Underflow error bit Underflow error indicates that the DMA encountered an empty transmit buffer while transmitting the frame. The transmission process enters the Suspended state and sets both Transmit underflow (ETH_DMA_STR [5]) and Transmit

interrupt (ETH_DMA_STR [0]). 0: No Underflow error occurred 1: The MAC aborted the frame because data arrived late from

the RAM memory

0 DB Deferred bit

This bit is valid only in Half-duplex mode

0: No transmission Deferred occurred

1: The MAC defers before transmission because of the

presence of the carrier

TDES1: Transmit descriptor Word1

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	Reserve	d		TB2S[31:16]												
			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Reserved			TB1S[15:0]												
			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
Bits		Fields			De	Descriptions										
31:29 Reserved																
28:16 TB2S[⁻		TB2S[1	2:0] Transmit buffer 2 size bits													
				These bits indicate the second data buffer size in bytes. This field is not valid												
					if ⁻	TDES0	[20] is s	et.								
15:13		Reserv	ed													
12:0		TB1S[1	2:0]		Tra	ansmit l	ouffer 1	size bite	6							
				These bits indicate the first data buffer byte size in bytes. If this field is 0, the												
					DI	DMA ignores this buffer and uses Buffer 2 or the next descriptor, depending										

on the value of TCHM (TDES0 [20])

TDES2: Transmit descriptor Word2

TDES2 contains the address pointer to the first buffer of the descriptor or it contains time stamp data.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
TB1AP/TTSL[31:16]																
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
TB1AP/TTSL[15:0]																
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
Bits	Fields Descriptions															
31:0		TB1AP/	TTSL[3	31:0]	Tr	ansmit b	it buffer 1 address pointer / Transmit frame time stamp low bits									
	These bits have two different functions: they indicate to the DMA the location											cation				

of data in memory, and after all data are transferred, the DMA can then use these bits to pass back time stamp data.

TB1AP: When the software makes this descriptor available to the DMA (the BUSY bit is set in TDES0), these bits indicate the physical address of Buffer 1. There is no limitation on the buffer address alignment. See Host data buffer alignment section for further details on buffer address alignment. TTSL: Before it clears the BUSY bit in TDES0, the DMA updates this field with

the 32 least significant bits of the time stamp captured for the corresponding transmit frame (overwriting the value for TB1AP). This field has the time stamp only if time stamping is activated for this frame (see TTSEN, TDES0 bit 25) and if the Last segment control bit (LSG) in the descriptor is set.

TDES3: Transmit descriptor Word3

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TB2AP/TTSH[31:16]															
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TB2AP/TTSH[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields			De	scripti	ons								
31:0		TB2AP/	TTSH[3	31:0]	Transmit buffer 2 address pointer (Next descriptor address) / Transmit frame										
	time stamp high bits														
	These bits have two different functions: they indicate to the DMA the location														
					of data in memory, and after all data are transferred, the DMA can then use										
					these bits to pass back time stamp data.										
					TB	32AP: W	hen the	e softwar	e make	s this d	escripto	or availa	ble to tl	he DMA	(the
					BL	JSY bit i	s set in	TDES0)	, these	bits indi	cate the	e physic	al addr	ess of B	uffer 2
					wh	when a descriptor ring structure is used. If the Second address chained									
					(TI	(TDES1 [24]) bit is set, this address contains the pointer to the physical									
					memory where the next descriptor is present. The buffer address pointer										er
					mu	must be aligned to the bus width only when TDES1 [24] is set. (LSBs are									
					ignored internally.)										
					TTSH: Before it clears the BUSY bit in TDES0, the DMA updates this field										
					with the 32 most significant bits of the time stamp captured for the										
					corresponding transmit frame (overwriting the value for TB2AP). This field										
					has the time stamp only if time stamping is activated for this frame (see										
					TDES0 bit 25, TTSEN) and if the Last segment control bit (LSG) in the										
	descriptor is set.														

Rx DMA configuration

Receiving process of receive DMA controller, as detailed below:

1. DMA receive descriptor is initialized, the BUSY bit is set after completion.

- DMA enter the running state when the SRE bit (bit 1) in ETH_DMA_CTLR register is set. In this state, DMA will follow the order of the ring mode or chain modes according to settings to attempt to acquire receive descriptor. If the fetched descriptor is not free due to operation by cpu, the DMA enters the Suspend state and sets the receive buffer unavailable bits (ETH_DMA_STR [7]) to '1' and jumps to Step 9.
- 3. The DMA decodes the receive data buffer address from the acquired descriptors.
- 4. Processing the received frames and transfer data to the receive buffer from the Rx FIFO.
- 5. If the buffer is full or the frame transfer is complete, the Receive engine fetches the next descriptor from receive descriptor table.
- 6. If the current frame transfer is complete, the DMA proceeds to step 7. If the frame transfer is not complete (EOF is not yet transferred) and the DMA fails to fetch the next descriptor, the DMA sets the Descriptor error bit in RDES0 and closes the current descriptor (clears the BUSY bit) and marks it as intermediate by clearing the Last segment (LDES) bit in the RDES0 (marks it as last descriptor if flushing is enable), then proceeds to step 8. If the DMA fetched the next descriptor but the current frame transfer is not complete, the DMA closes the current descriptor as intermediate and returns to step 4.
- 7. If IEEE 1588 time stamping is enabled, the DMA writes the time stamp (if available) to the current descriptor's RDES2 and RDES3. It then takes the received frame's status and writes the status word to the RDES0, with the BUSY bit cleared and the LSG bit set.
- 8. In the suspended state, DMA will exit the suspended state jump to step 2 when the any value is written to receive poll enable register ETH_DMA_RPER or Rx FIFO receives the frame header of the next frame.

Note: If the time stamp function is enabled, but did not receive a valid timestamp value (for example, the receive FIFO overflow before unwritten time stamp), DMA writes all 1 to RDES2 and RDES3.

Receive descriptor acquisition

Descriptor acquisition is attempted if any of the following conditions is/are satisfied:

- When the DMA is placed in the Run state, the receive Start/Stop bit (ETH_DMA_CTLR register [1]) has been set immediately.
- The data buffer of the current descriptor is full before the end of the frame currently being transferred.
- Receiving the new frame after the receiving process pause due to the descriptor is owned by CPU (BUSY bit 0).
- Writing any value to receive poll enable register ETH_DMA_RPER.

Receive frame processing

The MAC transfers the received frames to the user memory only when the frame passes the address filter and the frame size is greater than or equal to the configurable threshold bytes set for the Rx FIFO, or when the complete frame is written to the FIFO in Store-and-forward mode. The Rx FIFO can be flushed due to the conflict, or receiving less than 64 bytes of frame caused by premature stop. When DMA starts to read the receive FIFO data, it sets the FDES bit in RDES0 of the current descriptor (RDES0 [9]), indicating that the first part of the frame is stored in the descriptor cache. The descriptors are released and the BUSY (RDES0[31]) bit is reset, when the data buffer fills up or the frame transfers complete. If the frame is contained in a single descriptor, both the LDES (RDES0[8]) and FDES (RDES0[9]) bits are set. The application can obtain the length of the received frames by reading FRML domain of RDES0. If the DINTC bit in RDES1 (bit 31) of receive descriptoris is not set, DMA sets Receive interrupt bit (ETH_DMA_STR [6]) when reception complete successfully, at this time if the related interrupt source is not masked, application enters the interrupt handling function. The same process repeats unless the DMA encounters a descriptor that the BUSY bit is reset. If this occurs, the receive process sets the receive buffer unavailable bit (ETH_DMA_STR register [7]) and then enters the Suspend state. The position in the receive table is retained.

Processing after Receive polling suspended

If the DMA receives the new frame after receiving process is suspended, DMA attempts to regain the current descriptor has been suspended. If the descriptor is now owned by the DMA, the receive process re-enters the Run state and starts frame reception. If the descriptor is still owned by CPU, while the DAFRF bit (bit 24) in the DMA control register ETH_DMA_CTLR is not set (the default state), DMA discards the frame at the top of the Rx FIFO, and the missed frame counter is incremented by 1. If more than one frame is stored in the Rx FIFO, the process repeats. The DMA can be prevented to discard or flush of the frame at the top of the Rx FIFO by setting the ETH_DMA_CTRL register bit 24 (DAFRF). At the same time, the receive process sets the receive buffer unavailable status bit and returns to the Suspend state.

Receive DMA descriptor with IEEE1588 time stamp format

If the IEEE1588 function enabled, the MAC controller writes the time stamp value to RDES2 and RDES3 before a frame with time stamp reception complete and the DMA cleans the BUSY bit.

Rx DMA descriptors

The descriptor structure consists of four 32-bit words. The descriptions of RDES0, RDES1, RDES2 and RDES3 are given below.

Figure 10-9 Receive descriptor

■ RDES0: Receive descriptor Word0

RDES0 contains the received frame status, the frame length and the descriptor ownership information.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
BUSY	DAFF							FRML[[13:0]									
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
ERRS	DERR	SAFF	LERR	OERR	VTAG	FDES	LDES	IPHCERR	LCO	FRMT	RWDT	RERR	DBERR	CERR	PCERR			
rw	rw	rw	rw												rw			
Bits		Fields			D	escript	ions											
31		BUSY			В	USY bit												
					T	ne DMA	clears	this bit ei	ther w	hen it co	omplete	s the fra	ame rece	eption o	r when			
					th	e buffer	s that a	are assoc	iated w	vith this	descript	tor are f	ull					
					0:	The de	scripto	r is owne	d by th	e CPU								
					1:	The de	scripto	r is owne	d by th	e DMA								
30					П	ostinativ	n addr	oss filtor	fail hit									
00		Bran			0.	No des	tination	address	filter d	loes not	nass o	courred						
					1.	1: A frame that failed the DA filter in the MAC Core												
					••	/ mam	o that h		Di tinte		11/1/10/0	010						
29:16		FRML[13:0]		F	rame lei	ngth bit	s										
					T	nese bit	s indica	ate the by	te leng	th of the	e receiv	ed fram	e that w	as trans	sferred			
					to	host m	emory(including	CRC).	This fie	eld is val	lid only	when la	st descr	iptor			
					(F	RDES0[8	3]) is se	et and des	scriptor	r error(R	RDES0[1	14]) is re	eset.This	s field is	valid			
					w	hen last	descri	ptor (RDE	ES0[8])	is set.	When th	ne last d	lescripto	r and e	rror			
					รเ	ummary	bits are	e not set,	this fie	ld indica	ates the	accum	ulated nu	umber o	f bytes			
					th	at have	been t	ransferre	d for th	e currei	nt frame							
15		ERRS			E	rror sum	nmary b	oit										
					T	nis field	is valid	only whe	en the l	last des	criptor (RDES0	[8]) is se	et.				
					In	dicates	the log	ical OR o	f the fo	ollowing	bit:							
					R	DES0[1]: CRC	error										

		RDES0[3]: Receive error
		RDES0[4]: Watchdog timeout
		RDES0[6]: Late collision
		RDES0[7]: Giant frame (This is not applicable when RDES0[7] indicates an
		IPV4 header checksum error.)
		RDES0[11]: Overflow error
		RDES0[14]: Descriptor error.
14	DERR	Descriptor error bit
		This field is valid only when the last descriptor (RDES0[8]) is set
		0: No descriptor error occurred
		1: Caused by a frame that does not fit within the current descriptor buffers,
		and that the DMA does not own the next descriptor
13	SAFF	Source address filter fail bit
		0: No source address filter fail occurred
		1: the SA field of frame failed the SA filter in the MAC Core
12	LERR	Length error bit
		This bit is valid only when the Frame type (RDES0[5]) bit is reset
		0: No length error occurred
		1: The actual length of the received frame does not match the value in
		the Length/ Type field
11	OERR	Overflow error bit
		0: No length error occurred
		1: The received frame was damaged due to buffer overflow
10	VTAG	VLAN tag bit
		0: Received frame is normal frame
		1: The frame pointed to by this descriptor is a VLAN frame tagged by the
		MAC core
9	FDES	First descriptor bit
		This bit is used only in ring mode
		0: The current descriptor is not the first of descriptor table
		1: This descriptor contains the first buffer of the frame. If the size of the first
		buffer is 0, the second buffer contains the beginning of the frame. If the size of
		the second buffer is also 0, the next descriptor contains the beginning of the
		frame
8	LDES	Last descriptor bit
		0: The current descriptor is not the last of descriptor table
		1: The buffers pointed to by this descriptor are the last buffers of the frame
7	IPHCERR	IPv header checksum error bit
		This error can be due to inconsistent Ethernet Type field and IP header
		Version field values, a header checksum mismatch in IPv4, or an Ethernet

		frame lacking the expected number of IP header bytes. 0: No IPv header checksum error occurred 1: An error in the IPv4 or IPv6 header
6	LCO	Late collision bit 0: No late collision occurred 1: A late collision has occurred while receiving the frame in Halfduplex mode
5	FRMT	Frame type bit This bit is not valid for Runt frames less than 14 bytes 0: The received frame is an IEEE802.3 frame 1: The receive frame is an Ethernet-type frame (the LT field is greater than or equal to 0x0600)
4	RWDT	Receive watchdog timeout 0: No receive watchdog timeout occurred 1: The receive watchdog timer has expired while receiving the current frame and the current frame is truncated after the watchdog timeout
3	RERR	Receive error bit Only set when the MAC configuration register's JBD bit is not set 0: No receive error occurred 1: The RX_ERR signal is asserted while RX_DV is asserted during frame reception
2	DBERR	Dribble bit error bit This bit is valid only in MII mode 0: No dribble bit error occurred 1: The received frame has a non-integer multiple of bytes (odd nibbles)
1	CERR	CRC error bit This field is valid only when the last descriptor (RDES0[8]) is set 0: No CRC error occurred 1: A cyclic redundancy check (CRC) error occurred on the received frame
0	PCERR	Payload checksum error bit 0: No payload checksum error occurred 1: The TCP, UDP or ICMP checksum the core calculated does not match the received encapsulated TCP, UDP or ICMP segment's Checksum field or when the received number of payload bytes does not match the value indicated in the Length field of the encapsulated IPv4 or IPv6 datagram in the received Ethernet frame

The following table shows the bit 7, bit 5, bit 0 value in RDES0 meaning:

Table 10-6 Error status in RDES0

checksum	type	payload	
error		checksum	
		error	
0	0	0	IEEE 802.3 Type frame (Length field value is less
0	0	0	than 0x0600.)
			IPv4/IPv6 Type frame with no IP header checksum
0	0	1	error and the payload check bypassed, due to an
			unsupported payload
0	1	0	IPv4/IPv6 Type frame, no checksum error detected
0		4	IPv4/IPv6 Type frame with a payload checksum error
0	Ĩ	1	(as described for PCERR) detected
1	0	0	Reserved
			A Type frame that is neither IPv4 or IPv6 (the
1	0	1	checksum offload engine bypasses checksum
			completely.)
4	4	0	IPv4/IPv6 Type frame with an IP header checksum
T		U	error (as described for IPHCERR) detected
1	1	1	IPv4/IPv6 Type frame with both IP header and
1			payload checksum errors detected

■ RDES1: Receive descriptor Word1

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
DINTC	Re	served		RB2S[12:0]											
rw			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RERM	RCHM	Reserved						R	B1S[12:0]					
rw	rw		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits	F	ields		Desc	ription	S									
31	C	DINTC			Disab	le inter	rupt on	complet	tion bit						
					0: RS	bit in E	TH_DN	/IA_STR	registe	er will n	ormally	set afte	er recei	ving the	;
					comp	leted, th	nen if er	nabled t	he corr	espond	ing inte	rrupt, tł	he inter	rupt will	
					trigge	r.									
					1: RS	bit in E	TH_DN	/A_STR	registe	er will is	not set	after r	eceiving	g the	
					comp	leted, s	o the co	orrespor	nding in	terrupt	will not	be trig	gered		
20.20		Posonvod													
30.29	Г	(eserveu													
28:16	F	RB2S[12:0]			Rece	ive buff	er 2 size	e bits							
					The s	econd	data bu	ffer size	, in byte	es. The	buffer s	size mu	ust be a	multiple	e of 4,
					8, or ²	16, dep	ending	on the b	us widt	hs (32,	64 or 12	28, resi	pectivel	y), ever	ı if the
					value	of RDE	ES3 (bu	ffer2 ad	dress p	ointer)	is not a	ligned t	to bus v	vidth. If	the
					buffer	· size is	not an	appropr	iate mu	Itiple of	4, 8 or	- 16. the	resultir	ng beha	vior is
					undef	ined. T	his field	is not v	alid if R	DES1	[14] is s	et		0	
15	F	RERM			Rece	ive end	of ring	bit							

		descriptor table
		1: The descriptor table reached its final descriptor. The DMA returns to
		the base address of the list
14	RCHM	Second address chained mode bit
		0: Unused chain mode, the descriptor in the second address points to the
		second buffer address.
		1: The second address in the descriptor is the next descriptor address rather
		than the second buffer address. When this bit is set, RBS2 (RDES1 [28:16])
		is a "don't care" value. RDES1[15] takes precedence over RDES1[14]
13	Reserved	
12:0	RB1S[12:0]	Receive buffer 1 size bits
		The first data buffer size in bytes. The buffer size must be a multiple of 4, 8 or
		16, depending upon the bus widths (32, 64 or 128), even if the value of
		RDES2 (buffer1 address pointer) is not aligned. When the buffer size is not a
		multiple of 4, 8 or 16, the resulting behavior is undefined. If this field is 0, the
		DMA ignores this buffer and uses Buffer 2 or next descriptor depending on
		the value of RCHM (bit 14)

RDES2: Receive descriptor Word2

~ . .

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RB1AP/R	TSL[31:16]						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RB1AP/R	TSL[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields			De	escripti	ons								
31:0	1:0 RB1AP/RTSL[31:0]					eceive b	uffer 1 a	address	pointer	/ Receiv	ve frame	e time s	tamp lo	w bits	

Receive buffer 1 address pointer / Receive frame time stamp low bits These bits take on two different functions: the application uses them to indicate to the DMA where to store the data in memory, and then after transferring all the data the DMA may use these bits to pass back time stamp data.

RB1AP: When the software makes this descriptor available to the DMA (at the moment that the BUSY bit is set to 1 in RDES0), these bits indicate the physical address of Buffer 1. There are no limitations on the buffer address alignment except for the following condition: the DMA uses the configured value for its address generation when the RDES2 value is used to store the start of frame. Note that the DMA performs a write operation with the RDES2 [3/2/1:0] bits as 0 during the transfer of the start of frame but the frame data is shifted as per the actual Buffer address pointer.

The DMA ignores RDES2 [3/2/1:0] (corresponding to bus width of 128/64/32) if the address pointer is to a buffer where the middle or last part of the frame

is stored.

RTSL: Before it clears the BUSY bit in RDES0, the DMA updates this field with the 32 leastsignificant bits of the time stamp captured for the corresponding receive frame (overwriting the value for RB1AP). This field has the time stamp only if time stamping is activated for this frame and if the Last segment control bit (LSG) in the descriptor is set

RDES3: Receive descriptor Word3

RDES3 contains the address pointer either to the second data buffer in the descriptor or to the next descriptor, or it contains time stamp data.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RB2AP/R	TSH[31:16	6]						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RB2AP/R	TSH[15:0]						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields			De	escripti	ions								
31:0		RB2AP	/RTSH[31:0]	Re	eceive b	ouffer 2 a	address	pointer	(next de	escripto	r addres	ss) / Re	ceive fra	ame
					tim	ne starr	np high b	oits							
					Th	ese bit	s take o	n two dil	fferent fu	unctions	: the ap	plicatio	n uses	them to	
					inc	dicate to	o the DN	1A the lo	ocation o	of where	e to stor	e the da	ata in m	emory,	and
					the	en after	transfei	ring all	the data	the DM	1A may	use the	se bits	to pass	back
					tin	ne stam	np data.								
					RE	32AP : \	When the	e softwa	are make	es this c	lescripto	or availa	able to t	the DMA	A (at
					the	e mome	ent that t	he BUS	Y bit is s	set to 1	in RDE	S0), the	ese bits	indicate	the
					ph	ysical a	address	of buffe	r 2 wher	n a desc	riptor ri	ng struc	cture is	used. If	the
					se	cond a	ddress c	hained	(RDES1	[24]) bi	it is set,	this ad	dress c	ontains	the
					ро	inter to	the phy	sical me	mory wł	nere the	e next de	escripto	r is pres	sent. If F	RDES1
					[24	1] is set	t, the but	fer (nex	t descrip	otor) ad	dress p	ointer m	nust be	bus	
					wi	dth-alig	ned (RD)ES3 [3,	2, or 1:	0] = 0, c	correspo	onding t	o a bus	width o	f 128,
					64	or 32.	LSBs ar	e ignore	ed intern	ally.) He	owever,	when F	RDES1	[24] is r	eset,
					the	ere are	no limita	ations or	n the RD)ES3 va	lue, exc	cept for	the follo	owing	
					CO	ndition	the DM	A uses i	the conf	igured \	alue for	r its buff	ter addi	ress	
					ge	neratio	n when		S3 valu	ie is use	ed to sto	ore the s	start of	frame. I	he
					DMA ignores RDES3 [3, 2, or 1:0] (corresponding to a bus width of 128, 64 or										
					32) If the address pointer is to a buffer where the middle or last part of the										
					Irame is stored.										
					KION: Before it clears the BUSY bit in RDESU, the DMA updates this field										iela
					WI			signinca			the vel	p captul			ld boc
					00 +h/	nespor	tamp or	Ju if time		ing is or	tiveted	and if +			nt Has
						e unie s		ny nume	e stamp	ing is at	Juvaleu	anunn	ne Lasi	segmen	n
					CO		(LSG) I	ii ine de	scriptor	is set					

10.3.7. Ethernet interrupts

Ethernet module, a total of two interrupt vectors, one for normal Ethernet operation, and another for Ethernet wake-up events mapped to the EXTI line19 (detection wake-up frame or Magic Packet).

The first interrupt vector for interrupts generated by the MAC and DMA, details see Section "MAC interrupt" and Section "DMA interrupt".

The second interrupt vector for interrupt generated by WUM module wake event. Wake-up event mapped to EXTI line 19, if enabled WUM interrupts and interrupt of rising the EXTI line 19, wake-up event occurs can make GD32F107xx microcontroller exit the low-power mode, while the two interrupt will be triggered.

Note: Reading WUM register will automatically clear wake-up frame received and Magic Packet received interrupt flag. However, since the registers for these flags are in the CLK_RX domain, there may be a significant delay before these flags is cleared by reading WUM register. If the RX clock is slow (in 10 Mbit mode) and the AHB bus is high-frequency, the delay is especially long. Thus the CPU may spuriously call the interrupt routine a second time even after reading ETH_MAC_WUMR. Thus, it may be necessary that the firmware waits the Wakeup Frame Received and Magic Packet Received bits are found to be at '0', then exits the interrupt service routine.

MAC interrupts

MAC controller has multiple interrupt trigger source. ETH_MAC_ISR register describes all types of interrupts can be generated. Users can set interrupt mask register ETH_MAC_IMR in the corresponding bit to prevent an event triggered interrupts.

Figure 10-10 MAC module interrupt masking scheme

DMA interrupts

DMA can generate interrupts according to action can be divided into normal and abnormal types. ETH_DMA_STR register contains all can trigger an interrupt bit and ETH_DMA_IER register contains the interrupt enable bit.

Since all interrupt sources share one interrupt vector, at the same time interrupt source generating events only can generate one interrupt. The driver must scan the ETH_DMA_STR register for the cause of the interrupt, and remove the corresponding bits of the ETH_DMA_STR register correctly in the end of the program.

Figure 10-11 Interrupt scheme

10.4. Ethernet register descriptions

10.4.1. Ethernet MAC configuration register (ETH_MAC_CFR)

Address offset: 0x0000

Reset value: 0x0000 8000

The MAC configuration register is the operation mode register of the MAC. It establishes receive and transmit operating modes.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Res	erved				WDD	JBD	Rese	erved		IG[2:0]		CSD
								rw	rw			rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	SPD	ROD	LBM	DPM	IP4CO	RTD	Res	APCD	BOL	[1:0]	DFC	TEN	REN	Res	erved
	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw	rw	rw		
Bits		Fields			Des	scriptio	ns								
31:24		Reserv	ed												
23		WD			Wa 0: T and 1: T fran	tchdog o The MAC I cuts of The MAC nes of u	disable Callows fany by Cdisabl p to 16	bit s no mor ytes rece les the w 384 byte	e than 2 eived afte vatchdog es	2 048 by er that g timer	ytes of t on the r	he fram	ne being , and ca	ı receiv an rece	ed
22		JBD	 Jabber disable bit 0: The MAC cuts off the transmitter if the application sends out more than 2 048 bytes of data during transmission 1: The MAC disables the jabber timer on the transmitter, and can transfer frames of up to 16 384 bytes 												
21:20		Reserv	ed												
19:17		IG[2:0]			Inte The tran 000 001 010 111 Not (IG	erframe (ese bits asmissio 2 96 bit 2 88 bit 2 80 bit 2 40 bit e: In Ha = 100) 0	gap bits control n. times times times lf-duple only. Lo	the minin the minin ex mode, ower valu	mum int the min ues are i	erframe iimum I not con	e gap be G can b sidered	etween be confi	frames gured fo	during or 64 bi	t times
16		CSD			Car 0: T eve	rier sen he MAC n aborts	se disa C transr s the tra	ble bit nitter ge ansmissio	nerates ons	such e	rrors du	ie to Ca	urrier Se	nse an	d

1: The MAC transmitter ignores the MII CRS signal during frame transmission in Half-duplex mode. No error is generated due to Loss of Carrier or No Carrier during such transmission

15	Reserved	
14	SPD	Fast Ethernet speed bit Indicates the speed in Fast Ethernet (MII) mode: 0: 10 Mbit/s 1: 100 Mbit/s
13	ROD	Receive own disable bit This bit is not applicable if the MAC is operating in Full-duplex mode 0: The MAC disables the reception of frames in Half-duplex mode 1: The MAC receives all packets that are given by the PHY while transmitting
12	LBM	Loopback mode bit 0: The MAC operates in normal mode 1: The MAC operates in loopback mode at the MII. The MII receive clock input (RX_CLK) is required for the loopback to work properly, as the transmit clock is not looped-back internally
11	DPM	Duplex mode bit 0: Half-duplex mode enable 1: Full-duplex mode enable
10	IP4CO	IPv4 checksum offload bit 0: The checksum offload function in the receiver is disabled 1: IPv4 checksum checking for received frame payloads' TCP/UDP/ICMP headers enable
9	RTD	 Retry disable bit This bit is applicable only in the Half-duplex mode 0: The MAC attempts retries based on the settings of BOL 1: The MAC attempts only 1 transmission. When a collision occurs on the MII, the MAC ignores the current frame transmission and reports a Frame Abort with excessive collision error in the transmit frame status
8	Reserved	
7	APCD	Automatic pad/CRC drop bit 0: The MAC passes all incoming frames unmodified 1: The MAC strips the Pad/FCS field on incoming frames only if the length's field value is less than or equal to 1 500 bytes. All received frames with length field greaterthan or equal to 1 501 bytes are passed on to the application without stripping the Pad/FCS field
6:5	BOL[1:0]	Back-off limit bits The Back-off limit determines the random integer number (r) of slot time

	delays (4 090 bit times for 1000 mbits and 512 bit times for 10/100 mbits) the
	MAC waits before rescheduling a transmission attempt during retries after a
	collision.
	Note: This bit is applicable only to Half-duplex mode.
	00: k = min (n, 10)
	01: k = min (n, 8)
	10: k = min (n, 4)
	11: k = min (n, 1),
	n = retransmission attempt. The random integer r takes the value in the range
	$0 \leq r < 2k$
DFC	Deferral check bit
	This bit is applicable only in Half-duplex mode
	0: The deferral check function is disabled and the MAC defers until the CRS
	signal goes inactive.
	1: The deferral check function is enabled in the MAC. The MAC issues a
	Frame Abort status, along with the excessive deferral error bit set in the
	transmit frame status when the transmit state machine is deferred for more
	than 24 288 bit times in 10/100 Mbit/s mode. Deferral begins when the
	transmitter is ready to transmit, but is prevented because of an active CRS
	(carrier sense) signal on the MII. Defer time is not cumulative. If the
	transmitter defers for 10 000 bit times, then transmits, collides, backs off, and
	then has to defer again after completion of back-off, the deferral timer resets
	to 0 and restarts
TEN	Transmitter enable bit
	0:The MAC transmit state machine is disabled after the completion of the
	transmission of the current frame, and does not transmit any further frames
	1: The transmit state machine of the MAC is enabled for transmission
REN	Receiver enable bit
	0: The MAC receive state machine is disabled after the completion of the
	reception of the current frame, and will not receive any further frames
	1: The MAC receiver state machine is enabled for receiving frames
Reserved	
	DFC TEN REN

10.4.2. Ethernet MAC frame filter register (ETH_MAC_FRMFR)

		Ac	dress	offset:	0x0004										
		Re	eset va	lue: 0x	0000 00	00									
		Th	ne MAC	frame	filter reg	gister co	ntains th	e filter co	ontrols fo	or receiv	ing fram	es			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
FD								Reserve	ed						
rw															

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved			HPFLT	SAFLT	SAIFLT	PCFR	M[1:0]	BFRMD	MFD	DAIFLT	HMF	HUF	PM
					rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields	;			Descrip	otions								
31		FD				Filter di	sable bit								
						0: The I	MAC rece	eiver for	words t	o the app	olication	only tho	se fram	es that	have
						passed	the SA/E	A addr	ess filte	r					
						1: The I	MAC rece	eiver for	words a	all receive	ed fram	es to the	applica	tion,	
						irrespec	ctive of w	hether t	hey hav	ve passe	d the ac	dress filt	er. The	result o	f the
						SA/DA	filtering is	s update	ed (pas	s or fail) i	n the co	orrespond	ling bits	in the	
						receive	status w	ord							
30:11		Reserv	ved												
10		אסבו ז	г			Hach o	r perfect t	iltor bit							
10			•			0. If the	HUF or	HMF bit	is set	only fram	es that	match th	e Hash	filter an	P
						passed			10 001,	only nam	loo that	matori tri	o naon	nitor ar	0
						1: If the	HMF or	HUF bit	is set,	the addre	ess filter	passes	frames	that ma	tch
						either th	ne perfec	t filterin	g or the	hash filte	ering				
9		SAFLT	Г			Source	address	filter bit							
-		-				The MA	C core c	ompare	s the S	A field of	the rec	eived frai	mes wit	h the va	lues
						progran	nmed in t	he enat	oled SA	registers	. If the d	comparis	on mate	ches, the	en the
						SA Mat	ch bit in t	he RxS	tatus w	ord is set	high				
						0: Sour	ce addre	ss filter	enable	disable					
						1: Sour	ce addre	ss filter	enable						
8		SAIFL	Т			Source	address	inverse	filtering	g bit					
						0: Sour	ce addre	ss inver	se filter	ing disab	le				
						1: Sour	ce addre	ss inver	se filter	ing enabl	e.The f	rames wł	nose SA	matche	es the
						SA regi	sters are	marked	l as fail	ing the S	A addre	ess filter			
7:6		PCFR	M[1:0]			Pass co	ontrol frar	nes bits	;						
						These b	oits contr	ol the fo	rwardir	ng of all c	ontrol fr	ames (in	cluding	unicast	and
						multicas	st PAUSE	frame	s).						
						Note the	at the pro	cessing	g of PAI	JSE cont	rol fram	ies deper	nds only	on RF	CEN
						in ETH_	_MAC_F	CTLR[2]							
						00 or 0′	1: MAC p	revents	all con	trol frame	es from	reaching	the app	olication	
						10: MA	C forward	ls all co	ntrol fra	ames to a	pplicati	on even i	f they fa	ail the	
						address	s filter								
						11: MA	torward	is contr	ol trame	es that pa	ass the a	address f	ilter		
5		BFRM	D			Broadca	ast frame	s disab	le bit						
						0: The a	address f	ilters pa	iss all re	eceived b	oroadca	st frames	;		
						1: The a	address f	ilters filt	er all in	coming b	oroadca	st frames	;		
4		MFD				Multicas	st filter di	sable bi	t						

Gig	a Device

		1: All received frames with a multicast destination address (first bit in the destination address field is '1') are passed
3	DAIFLT	Destination address inverse filtering bit
		0: Destination address inverse filtering disable
		1: Destination address inverse filtering enable
2	HMF	Hash multicast filter bit
		0: The MAC performs a perfect destination address filtering for multicast
		frames, that is, it compares the DA field with the values programmed in DA
		registers.
		1: MAC performs destination address filtering of received multicast frames
		according to the hash table
1	HUF	Hash unicast filter bit
		0: The MAC performs a perfect destination address filtering for unicast
		frames, that is, it compares the DA field with the values programmed in DA
		registers
		1: MAC performs destination address filtering of unicast frames according to
		the hash table
0	PM	Promiscuous mode bit
		0: Promiscuous mode disable
		1: Promiscuous mode enable, the address filters pass all incoming frames
		regardless of their destination or source address. The SA/DA filter fails status
		bits in the receive status word are always cleared when PM is set

0: Filtering of multicast frame depends on the HMF bit

10.4.3. Ethernet MAC hash list high register (ETH_MAC_HLHR)

		Addı Rese	ress off et value	fset: 0x e: 0x00	:0008 000 000	0									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							HLH[31:16]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							HLH	[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields			De	escripti	ons								
31:0		HLH[31	:0]		Ha	ash list h	high bits								

This field contains the upper 32 bits of Hash list

10.4.4. Ethernet MAC hash list low register (ETH_MAC_HLLR)

Address offset: 0x000C

		Rese	et value	e: 0x00	00 000	0									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							HLL[31:16]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							HLL	[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields			De	escriptio	ons								
31:0	HLL[31:0] Hash list low bits														

Hash list low bits

This field contains the lower 32 bits of the Hash list

register (ETH MAC DHVAR) 10 A E

10.4.	ວ.	Ethernet MAC PHY address register (ETH_MAC_PHYAR)													
		Address offset: 0x0010													
		Res	et valu	e: 0x00	00 00	00									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		PA[4:0]					PR[4:0]			Res		CR[2:0]		PW	PB
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw	rc_w1
Bits		Fields			D	escript	ions								
31:16		Reserv	ed												
15:11		PA[4:0]			Р	HY add	ress bits	;							
			These bits tell which of the 32 possible PHY devices are being accessed												
10.6			1		Þ	HV roai	etar hite								
10.0		1 1 1 4.0	I		т	nese bi	ts select	the des	sired PH	IY regist	er in th	ne select	ed PHY	' device	
5		Reserv	ed												
4:2		CLR[2:	0]		С	lock rar	nge bits								
					Т	ne CLR	clock ra	inge se	lection c	determin	es the	HCLK fr	equenc	y and is	used
					to	decide	the freq	luency	of the M	DC cloc	k:				
					S	electior	1		HCLK		Μ	DC Cloc	k		
						000		6	0-90 MH	Ηz	F	ICLK/42			
						001		9	0-108MI	Hz	ł	HCLK/64			
						010		2	0-35 M⊦	Ηz	F	ICLK/16			
						011		3	5-60 MH	Ηz	F	ICLK/26			
						100, 10	01, 110,	111 F	Reserved	d		-			

PW 1

PHY write bit

0: Read operation frome PHY

1: Write operation to PHY

0	РВ	PHY busy bit
		This bit is set by the application to indicate that a reads or writes access is in
		progress. Cleared by the MAC after operation complete. This bit should read
		a logic 0 before writing to ETH_MAC_PHYAR and ETH_MAC_PHYDR

10.4.6. Ethernet MAC MII data register (ETH_MAC_PHYDR)

		Addı Rese	ress off et value	set: 0x e: 0x00	:0014 000 000	0									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PD[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
31:16	Reserved	
15:0	PD[4:0]	PHY data bits
		This contains the 16-bit data value read from the PHY after a Read operation,
		or the 16-bit data value to be written to the PHY before a Write operation

10.4.7. Ethernet MAC flow control register (ETH_MAC_FCTLR)

Address offset: 0x0018

Reset value: 0x0000 0000

The Flow control register controls the generation and reception of the control (Pause Command) frames by the MAC.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								PTM[1	5:0]						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Res	erved				ZQPD	Res	PLTS	[1:0]	UPFDT	RFCEN	TFCEN	FLCB/BKPA
								rw		rw	rw	rw	rw	ſW	rw
Bits		Field	ls			Des	criptic	ons							
31:16	6	PTM	[15:0]			Pau	ise time	e bits							
						This	s field h	olds the	value t	o be us	ed in	the Paus	e Time fie	eld in the	transmit
						con	trol frar	me							
15:8		Rese	erved												

GigaD	S evice	GD32F10x User Manual						
7	ZQPD	Zero-quanta pause disable bit 0: Normal operation with automa generation is enabled 1: Disables the automatic genera the deassertion of the flow-contro	tic Zero-quanta pause control frame ation of Zero-quanta pause control frames on ol signal					
6	Reserved							
5:4	PLTS[1:0]	Pause low threshold bits This field configures the threshold frame is automatically retransmit less than the Pause Time configu 100H (256 slot-times), and PLTS automatically transmitted if initiat PAUSE frame is transmitted. Selection 00 01 10 11 Slot time is defined as time taken interface	d of the Pause timer at which the Pause ted. The threshold values should always be ured in bits[31:16]. For example, if PTM = 5 = 01, then a second PAUSE frame is red at 228 (256 – 28) slottimes after the first Threshold Pause time minus 4 slot times Pause time minus 28 slot times Pause time minus 144 slot times Pause time minus 256 slot times to transmit 512 bits (64 bytes) on the MII					
3	UPFDT	Unicast pause frame detect bit 0: The MAC detects only a Pause specified in the 802.3x standard 1: The MAC detects the Pause fr specified in the ETH_MAC_ADD addition to detecting Pause frame	e frame with the unique multicast address rames with the station's unicast address R0H and ETH_MAC_ADDR0L registers, in es with the unique multicast address					
2	RFCEN	Receive flow control enable bit 0: The decode function of the Pa 1: The MAC decodes the receive for a specified (Pause Time) time	use frame is disabled ed Pause frame and disables its transmitter					
1	TFCEN	Transmit flow control enable bit 0: The flow control operation in the transmit any Pause frames in Fu- is disabled in Half-duplex mode 1: The MAC enables the flow cor Full-duplex mode or the MAC enables Half-duplex mode	he MAC is disabled, and the MAC does not II-duplex mode or the back pressure feature htrol operation to transmit Pause frames in ables the back-pressure operation in					
0	FLCB/BKPA	Flow control busy/back pressure This bit initiates a Pause Control back pressure function in Half-du In Half-duplex mode, when this b	activate bit frame in Full-duplex mode and activates the uplex mode if TFCEN bit is set. it is set (and TFCEN is set), back pressure is					

asserted by the MAC core. During back pressure, when the MAC receives a new frame, the transmitter starts sending a JAM pattern resulting in a collision In Full-duplex mode, this bit should be read as 0 before writing to the Flow control register. This bit is set to initiate a Pause control frame. During a transfer of the Control frame, this bit continues to be set to signify that a frame transmission is in progress. After completion of the Pause control frame transmission, the MAC resets this bit to 0. The Flow control register should not be written to until this bit is cleared

10.4.8. Ethernet MAC flow control threshold register (ETH_MAC_FCTHR)

Address offset: 0x1080

		Re	eset va	alue: ()x0000	0015	,								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								Reser	ved						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Reserv	ed				F	RFD[2:0]		Res		RFA[2:0]	
									rw	rw	rw		rw	rw	rw
Bits		Field	ls			Des	scriptio	ons							
31:7		Rese	erved												
6:4		RFD	[2:0]			Thre	eshold	of deact	ive flow	contro	l				
						This	s field c	onfigure	s the th	reshold	l of the	e deactiv	e flow co	ntrol. The	value
						sho	uld alw	ays be le	ess thai	n the Th	nresho	ld of acti	ve flow c	ontrol valu	le
						con	figured	in bits [2	2:0]. Wł	nen the	value	of the un	processe	ed data in	Rx FIFO is
						less	than t	his value	e config	ured, th	e flow	control f	unction v	vill deactiv	e.
						000	: 256 b	ytes							
						001	: 512 b	ytes							
						010	: 768 b	ytes							
						011	: 1024	bytes							
						100	: 1280	bytes							
						101	: 1536	bytes							
						110	: 1792	bytes							
						111	: 1792	bytes							
3		Rese	erved												
2:0		RFA	[2:0]			Thre	eshold	of active	flow co	ontrol					
						This	s field c	onfigure	s the th	reshold	l of the	e active f	low contr	ol. If flow	control
						fund	ction er	nable, wł	nen the	value c	of the u	Inproces	sed data	in Rx FIF	O is more
						thar	n this v	alue con	figured	, the flo	w cont	trol functi	ion will ad	ctive.	
						000	: 256 b	ytes							
						001	: 512 b	ytes							

010: 768 bytes 011: 1024 bytes 100: 1280 bytes 101: 1536 bytes 110: 1792 bytes 111: 1792 bytes

10.4.9. Ethernet MAC VLAN tag register (ETH_MAC_VLTR)

Address offset: 0x001C

Reset value: 0x0000 0000

The VLAN tag register contains the IEEE 802.1Q VLAN Tag to identify the VLAN frames. The MAC compares the 13th and 14th bytes of the receiving frame (Length/Type) with 0x8100, and the following 2 bytes are compared with the VLAN tag; if a match occurs, the received VLAN bit in the receive frame status is set. The legal length of the frame is increased from 1518 bytes to 1522 bytes.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserve	ed							VLTC
															rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							VL	TI[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields			D	escript	ions								
31:17		Reserv	ed												
16		VLTC			1	2-bit VL	AN tag	compar	ison bit	ANI from	o'e fifte	onth or	d civto	onth hyto	
					U U	sed for	compar	ison.						entir byte	5 010
					1	: A 12-b	oit VLAN	l identifi	er, rathe	er than	the corr	plete 1	6-bit VL	AN tag,	is used
					fc	or comp	arison a	and filter	ring. Bits	s [11:0]	of the \	/LAN ta	ag are c	ompared	with
					tł	ne corre	spondir	ng field i	n the re	ceived	VLAN-t	agged f	rame		
15:0		VLTI[1	5:0]		V	LAN tag	g identif	ier (for ı	receive	frames)	bits				
					Т	his con	tains the	e 802.10	עLAN	tag to i	dentify	VLAN f	rames		
					lf	VLTI (\	/LTI [11	:0] if VL	TC is s	et) is all	zeros,	the MA	C does	not chec	k the
					fi	fteenth	and sixt	eenth b	ytes for	VLAN 1	ag com	parisor	n, and d	eclares a	ll
					fr	ames w	rith a Ty	vpe field	value o	f 0x810	0 as VL	AN fra	mes		

10.4.10. Ethernet MAC remote wakeup frame filter register (ETH_MAC_RWFFR)

Address offset: 0x0028

Reset value: 0x0000 0000

The Wakeup frame filter register is actually a pointer to eight (not transparent) such wakeup frame filter registers. Eight sequential write operations to this address with the offset (0x0028)

will write all wakeup frame filter registers. Eight sequential read operations from this address with the offset (0x0028) will read all wakeup frame filter registers. This register contains the higher 16 bits of the 7th MAC address. Refer to Remote wakeup frame filter register section for additional information.

Figure 10-12 Wakeup frame filter register

10.4.11. Ethernet MAC WUM register (ETH_MAC_WUMR)

Address offset: 0x002C

Reset value: 0x0000 0000

The ETH_MAC_WUMR programs the request wakeup events and monitors the wakeup events.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
WUFFRPR								Rese	erved						
rs															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserv	/ed			GU	Re	served	WUFR	MPKR	Re	served	WFEN	MPEN	PWD
						rw			rc_r	rc_r			rw	rw	rs
Bits	Fie	elds			De	scripti	ons								
31	WI	JFFRP	۲R		Wa	akeup f	rame f	ilter reg	ister poir	nter rese	t bit				
					W	nen set	, it res	ets the I	Remote	wakeup	frame	filter reg	gister poi	nter to 0	. It is
					au	tomatic	ally cl	eared af	ter 1 clo	ck cycle					
30.10	Re	served													
00.10	- NO	301400	•												
9	GL	J			Glo	obal un	icast b	oit							
					W	nen set	, it ena	ables an	y unicas	t packet	passe	ed addre	ess filterir	ng recog	nition
					to	be a wa	akeup	frame							
8:7	Re	served	I												

GigaD	b evice	GD32F10x User Manual
6	WUFR	Wakeup frame received bit
		This bit is cleared when this register is read
		0: Do not receive the wake-up frame
		1: The wakeup event was generated due to reception of a wakeup frame
5	MPKR	Magic packet received bit
		This bit is cleared when this register is read
		0: Do not receive the Magic Packet
		1: The wakeup event was generated by the reception of a Magic Packet
4:3	Reserved	
2	WFEN	Wakeup frame enable bit
		0: Disable the generation of a wakeup event due to wakeup frame reception
		1: Enable the generation of a wakeup event due to wakeup frame reception
1	MPEN	Magic Packet enable bit
		0: Disable the generation of a wakeup event due to Magic Packet reception
		1: Enable the generation of a wakeup event due to Magic Packet reception
0	PWD	Power down bit
		When this bit is set, MAC drops all received frames. This bit is cleared
		automatically when a magic packet or wakeup frame is received, and
		Power-down mode is disabled

10.4.12. Ethernet MAC interrupt status register (ETH_MAC_ISR)

Address offset: 0x0038 Reset value: 0x0000 0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			TMST	Re	served	MSCT	MSCR	MSC	WUM		Reserved	ł
						rc_r			r	r	r	r			
Bits		Fields			0	escripti	ons								
15:10		Reserv	red												
9		TMST			ר ר נ נ נ נ נ נ נ נ נ נ נ נ נ נ נ נ נ נ	ime stan his bit is : The sys nd low re : The sys me high	np trigg cleare stem til egister stem ti and lo	ger statu d when me value s me value w registe	s bit this regis e less tha e equals ers	ater is rea an the va or excee	ad lue spec ds the v	cified in t	the T	arget time d in the T	e high ⁻ arget
8:7		Reserv	ved												
6		MSCT			N C 1	ISC trans : All the t : An inter	smit st bits in t	atus bit this inter	rupt regis	ster (ETF	I_MSC_	_TISR) a R Regis	ire cl	eared	

Gian		GD32F10x User Manual
5	MSCR	MSC receive status bit
-		0: All the bits in this interrupt register (ETH_MSC_RISR) are cleared
		1: An interrupt is generated in the ETH_MSC_RISR register
4	MSC	MSC status bit
		0: Both MSCT and MSCR bits in this register are low
		1: Any of bits 6:5 is set high
3	WUM	WUM status bit
		This bit is cleared when both bits[6:5], of this last register, are cleared due to
		a read operation to the ETH_MAC_WUMR register
		0: Wake-up frame or Magic Packet is not received
		1: A Magic packet or Wake-on-LAN frame is received in Power-down Mode
2:0	Reserved	

10.4.13. Ethernet MAC interrupt mask register (ETH_MAC_IMR)

Address offset: 0x003C

Reset value: 0x0000 0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Res	erved			TMSTIM			Reserve	ed		WUMIM		Reserved	
						rw						rw			
Bits		Fields			D	escriptio	าร								
15:10		Reserv	ed												
9		TMSTI	М		Т	me stamp	trigg	er interr	upt mas	k bit					
					0	Enable th	ne tim	e stamp	interrup	ot gene	ration				
					1	Disable t	ne tim	ie stamp	o interru	pt gene	ration				
8:4		Reserv	ed												
3		WUMI	Ν		W	/UM interr	upt m	ask bit							
					0	Enable th	ie inte	errupt si	gnal due	e to the	setting	of the WL	JM		
					1	Disable t	ne inte	errupt s	ignal du	e to the	setting	of the W	JM		
					S	tatus bit in	ETH	_MAC_	ISR						
2:0		Reserv	red												

10.4.14. Ethernet MAC address 0 high register (ETH_MAC_ADDR0H)

		Add Res	ress of et valu	fset: 0> e: 0x00	x0040 010 FFI	FF									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MO								Reserve	d						
rw															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															417

							ADDR(DH[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields			Des	criptio	ns								
31		MO			Alwa	iys 1									
30:16		Reserve	d												
15:0		ADDR0H	H[15:0]		MAC	caddre	ss0 hig	gh[47:32] bits						
					This	field co	ontains	the upp	er 16 b	oits (47:3	2) of th	ie 6-byt	e MAC	address(). This
		is used by the MAC for filtering for received frames and for inserting the MAC													
					addr	ess in	the trai	nsmit flo	w contr	rol (Paus	se) fran	nes			

10.4.15. Ethernet MAC address 0 low register (ETH_MAC_ADDR0L)

Address offset: 0x0044 Reset value: 0xFFFF FFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ADDR	0L[31:16]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ADDF	ROL[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields			D	escript	ions								
31:0	0 ADDR0L[31:0]					IAC add	resss0	low [31:	0] bits						
					Т	his field	contain	s the lov	wer 32 I	bits of th	ne 6-byt	e MAC	addres	s0. This	is used
					b	y the MA	AC for fil	tering fo	or receiv	/ed fram	nes and	for inse	erting th	e MAC a	address
					in	the trai	nsmit flo	w contr	ol (Paus	se) fram	ies				

10.4.16. Ethernet MAC address 1 high register (ETH_MAC_ADDR1H)

						-									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
AFE	SAF			М	B[5:0]						Re	served			
rw	rw	rw	rw	rw	rw	rw	rw								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ADDR	1H[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits	F	Fields			D	escripti	ons								
31	A	٩FE			A	ddress f	ilter ena	ble bit							

Address offset: 0x0048

Reset value: 0x0000 FFFF

0: The address filters ignore the MAC address1 for filtering

1: The address filters use the MAC address1 for perfect filtering

GigaDe	Vice	GD32F10x User Manual
30	SAF	Source address filter bit
		0: The MAC address1[47:0] is used for comparison with the DA fields of the
		received frame
		1: The MAC address1[47:0] is used for comparison with the SA fields of the
		received frame
29:24	MB[5:0]	Mask byte bits
		When they are set high, the MAC core does not compare the corresponding
		byte of received DA/SA with the contents of the MAC address1 registers.
		Each bit controls the masking of the bytes as follows:
		- Bit 29: ETH_MAC_ADDR1H [15:8]
		- Bit 28: ETH_MAC_ADDR1H [7:0]
		- Bit 27: ETH_MAC_ADDR1L [31:24]
		– Bit 24: ETH_MACADDR1L [7:0]
23:16	Reserved	
15:0	ADDR1H[15:0]	MAC address1 high [47:32] bits
		This field contains the upper 16 bits (47:32) of the 6-byte second MAC
		address

10.4.17. Ethernet MAC address1 low register (ETH_MAC_ADDR1L)

Address offset: 0x004C Reset value: 0xFFFF FFFF 30 29 28 27 26 25 24 23

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ADDR	1L[31:16]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ADDF	R1L[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields			D	escript	ions								
31:0		ADDR1	L[31:0]		Ν	IAC add	ress1 lo	ow [31:0] bits						

This field contains the lower 32 bits of the 6-byte MAC address1

10.4.18. Ethernet MAC address 2 high register (ETH_MACADDR2H)

		Addr	ess off	set: 0x	0050										
		Rese	et value	e: 0x00	00 FFI	FF									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
AFE	SAF			М	B[5:0]						Re	served			
rw	rw	rw	rw	rw	rw	rw	rw								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

							ADDR2	2H[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields			Des	scriptio	ons								
31		AFE			Ado	dress fil	ter enal	ole bit							
					0: 7	The add	lress filt	ers igno	ore the I	MAC ac	dress2	for filte	ring		
					1: T	The add	lress filt	ers use	the MA	C addr	ess2 fo	r perfec	t filterir	ng	
30		SAF			Sou	urce ad	dress fil	ter bit							
					0: 1	The MA	C addre	ess2[47	:0] is us	ed for o	compari	son wit	h the D	A fields	of the
					rec	eived fr	ame								
					1: 7	The MA	C addre	ess2[47	:0] is us	ed for o	compari	son wit	h the S	A fields	of the
					rec	eived fr	ame								
29:24		MB[5:0]			Ma	sk byte	bits								
					Wh	en they	are set	t high, t	he MAC	core d	loes no	t compa	are the	correspo	onding
					byte	e of rec	eived D	A/SA w	vith the o	content	s of the	MAC a	ddress	2 registe	ers.
					Ead	ch bit co	ontrols t	he mas	king of t	the byte	es as fo	llows:			
					– B	it 29: E	TH_MA	C_ADD	R2H [1	5:8]					
					– B	it 28: E	TH_MA	C_ADD	R2H [7	:0]					
					– B	it 27: E	TH_MA	C_ADD	R2L [3	1:24]					
					– B	it 24: E	TH_MA	C_ADD	R2L [7:	0]					
23:16		Reserved	d												
15:0		ADDR2H	I[15:0]		MA	C addre	ess2 hig	gh [47:3	2] bits						
	15:0 <i>F</i>				Thi	s field c	ontains	the up	per 16 b	oits (47:	32) of t	he 6-by	te secc	ond MAC	
					uuu	1.0002									

10.4.19. Ethernet MAC address 2 low register (ETH_MACADDR2L)

		1103	et valu												
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ADDR	2L[31:16]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ADDF	R2L[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields			D	escript	ions								
31:0		ADDR2	2L[31:0]		Μ	AC add	ress2 lo	ow [31:0] bits						
					T	his field	contain	s the lov	wer 32 k	oits of th	ne 6-byt	e MAC	addres	s2	

Address offset: 0x0054 Reset value: 0xFFFF FFFF

10.4.20. Ethernet MAC address 3 high register (ETH_MAC_ADDR3H)

		Addre	ess off	set: 0x	0058										
		Rese	t value	e: 0x00	00 FF	FF									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
AFE	SAF			ME	B[5:0]						Re	served			
rw	rw	rw	rw	rw	rw	rw	rw								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ADDR	3H[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields			D	escripti	ons								
31		AFE			A	ddress f	ilter ena	ble bit							
					0:	The ad	dress filt	ters igno	ore the l	MAC ac	ldress3	for filte	ering		
					1:	The ad	dress filt	ters use	the MA	C addr	ess3 fo	r perfe	ct filterir	ıg	
30		SAF			S	ource ac	dress fi	lter bit							
					0:	The MA	AC addre	ess3[47	:0] is us	ed for c	ompari	ison wit	h the D	A fields	of the
					re	ceived f	rame								
					1:	The MA	C addre	ess3[47	:0] is us	ed for c	ompari	ison wit	h the S	A fields	of the
					re	ceived f	rame								
29:24		MB[5:0]			М	ask byte	e bits								
					W	hen the	y are se	t high, t	he MAC	core d	oes no	t compa	are the o	correspo	onding
					by	te of re	ceived D	DA/SA w	ith the	content	s of the	MAC a	ddress	3 registe	ers.
					Ea	ach bit c	ontrols	the mas	king of	the byte	es as fo	llows:			
					-	Bit 29: E	ETH_MA	C_ADE	DR3H [1	5:8]					
					-	Bit 28: E	ETH_MA	C_ADE	DR3H [7	:0]					
					-	Bit 27: E	ETH_MA	C_ADE	DR3L [3	1:24]					
								0 100		01					
					_	bit 24: E	IH_MA	C_ADL	73L [7	.0]					
23:16		Reserve	ed												
15:0		ADDR3H	H[15:0]		М	AC add	ress3 hig	gh [47:3	82] bits						
					Tł	nis field	contains	s the up	per 16 k	oits (47:	32) of t	he 6-by	rte seco	nd MAC	;
					ad	dress3									

10.4.21. Ethernet MAC address 3 low register (ETH_MAC_ADDR3L)

		Add	ress of	fset: 0	x005C										
		Res	et valu	e: 0xFl	FFF FF	FF									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ADDR	3L[31:16]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

							ADDF	R3L[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields			D	escripti	ons								
31:0		ADDR3	L[31:0]		М	AC add	ress3 lo	ow [31:0]	bits						
					Tł	nis field	contain	s the lov	ver 32 b	oits of th	ie 6-byt	e MAC	address	s3	

10.4.22. Ethernet MSC control register (ETH_MSC_CTLR)

		Ado Res	lress o set valu	ffset: (ue: 0x()x0100)000 00	000									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							F	Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Res	served						MCFZ	RTOR	CTSR	CTR
												rw	rw	rw	rw
Bits		Fields			[Descrip	otions								
21.4		Decer	(ad												

31:4	Reserved	
3	MCFZ	MSC counter freeze bit
		0: MSC counters to normal work
		1: Freezes all the MMC counters to their current value. (None of the MSC
		counters are updated due to any transmitted or received frame until this bit is
		cleared to 0. If any MSC counter is read with the RTOR set, then that counter
		is also cleared in this mode)
2	RTOR	Reset on read bit
		0: The MSC counters are not reset, after reading MSC counter
		1: The MSC counters are reset to zero after read (self-clearing after reset)
1	CTSR	Counter stop rollover bit
		0: The counters roll over to zero after it reaches the maximum value
		1: The counters does not roll over to zero after it reaches the maximum value
0	CTR	Counter reset bit
		This bit is cleared automatically after 1 clock cycle
		When it is set, all counters are reset

10.4.23. Ethernet MSC receive interrupt status register (ETH_MSC_RISR)

Address offset: 0x0104

Reset value: 0x0000 0000

The Ethernet MSC receive interrupt status register maintains the interrupts generated when receive statistic counters reach half their maximum values. An interrupt bit is cleared when

Gigai	Devi	се								G			v 036	FI IVIAI	iuai
		the	respe	ctive MS	SC c	ounter th	nat cau	sed the	e interrup	pt is rea	ıd.				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						R	eserved							RGUF	Res
														rc_r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Reserve	d				RFAE	RFCE			Reserve	ed	
									rc_r	rc_r					
Bits		Fields				Descrip	otions								
31:18		Reserv	red												
17		RGUF				Receive	ed Good	I Unicas	t Frames	bit					
						0: The r	eceivec	l, good i	unicast fra	ames, co	ounter	less th	an half c	of the max	kimum
						value									
						1: The r	eceivec	l, good i	unicast fra	ames, co	ounter	reache	s half th	e maximu	um
						value									
16:7		Reserv	red												
10. 1		100010	UU												
6		RFAE				Receive	ed frame	es alignr	nent erro	or bit					
						0: The r	eceivec	l frames	, with alig	gnment e	error, c	ounter	less tha	n half of t	he
						maximu	m value	9							
						1: The r	eceivec	l frames	, with alig	gnment e	error, c	ounter	reaches	half the	
						maximu	m value	9							
5		RFCE				Receive	ed frame	es CRC	error bit						
						0: The r	eceivec	l frames	, with CR	RC error,	counte	er less	than hal	f of the	
						maximu	m value	e							
						1: The r	eceivec	l frames	, with CR	RC error,	counte	er reac	hes half	the maxi	mum
						value									
4:0		Reserv	ved												

10.4.24. Ethernet MSC transmit interrupt status register (ETH_MSC_TISR)

Address offset: 0x0108

Reset value: 0x0000 0000

The Ethernet MSC transmit Interrupt register maintains the interrupts generated when transmit statistic counters reach half their maximum values. An interrupt bit is cleared when the respective MSC counter that caused the interrupt is read.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Rese	rved					TGF			Reserve	ed	
										rc_r					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TGFMSC	TGFSC							Re	eserved						

rc_r rc_r

Bits	Fields	Descriptions
31:22	Reserved	
21	TGF	Transmitted good frames bit
		0: The transmitted, good frames, counter less than half of the maximum value
		1: The transmitted, good frames, counter reaches half the maximum value
20:16	Reserved	
15	TGFMSC	Transmitted good frames more singlecollision bit
		0: The transmitted, good frames after more than a single collision, counter
		less than half of the maximum value
		1: The transmitted, good frames after more than a single collision, counter
		reaches half the maximum value
14	TGFSC	Transmitted good frames single collision bit
		0: The transmitted, good frames after a single collision, counter less than half
		of reaches half the maximum value
		1: The transmitted, good frames after a single collision, counter reaches half
		the maximum value

13:0 Reserved

10.4.25. Ethernet MSC receive interrupt mask register (ETH_MSC_RIMR)

Ad	dress	offset:	0x010	C									
Re	set va	lue: 0>	(0000	0000									
Th	e Ethe	rnet N	ISC re	ceive i	nterru	ot mas	k registe	er mainta	ins the	mask	s for in	terrupts	
ge	nerate	d whe	n the r	eceive	statis	tic cou	nters rea	ach half t	their m	aximuı	m value	Э	
29	28	27	26	25	24	23	22	21	20	19	18	17	

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						F	Reserved	ł						RGUFIM	Res
														rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Reserve	ed				RFAEIM	FRCEIM			Reserv	red	
									rw	rw					
Bits		Fields				Descr	iption	s							

Bits	Fields	Descriptions
31:18	Reserved	
17	RGUFIM	Received good unicast frames interrupt mask bit
		0: Generate the interrupt when the received, good unicast frames, counter
		reaches half the maximum value
		1: Mask the interrupt when the received, good unicast frames, counter
		reaches half the maximum value
16:7	Reserved	
6	RFAEIM	Received frames alignment error interrupt mask bit

		0: Generate the interrupt when the received frames, with alignment error,
		counter reaches half the maximum value
		1: Mask the interrupt when the received frames, with alignment error, counter
		reaches half the maximum value
5	RFCEIM	Received frame CRC error interrupt mask bit
		0: Generate the interrupt when the received frames, with CRC error, counter
		reaches half the maximum value
		1: Mask the interrupt when the received frames, with CRC error, counter
		reaches half the maximum value

4:0 Reserved

10.4.26. Ethernet MSC transmit interrupt mask register (ETH_MSC_TIMR)

Address offset: 0x0110

Reset value: 0x0000 0000

The Ethernet MSC transmit interrupt mask register maintains the masks for interrupts generated when the transmit statistic counters reach half their maximum value

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Reserve	t					TGFIM			Reserv	ed	
										rw					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TGFMSCIM	TGFSCIM							Re	eserved						

rw	rw	
Bits	Fields	Descriptions
31:22	Reserved	
21	TGFIM	Transmitted good frames interrupt mask bit
		0: Generate the interrupt when the transmitted, good frames, counter reaches
		half the maximum value
		1: Mask the interrupt when the transmitted, good frames, counter reaches half
		the maximum value
20:16	Reserved	
15	TGFMSCIN	A Transmitted good frames more singlecollision interrupt mask bit
		0: Generate the interrupt when the transmitted good frames after more than a
		single collision counter reaches half the maximum value
		1: Mask the interrupt when the transmitted good frames after more than a
		single collision counter reaches half the maximum value
14	TGFSCIM	Transmitted good frames single collision interrupt mask bit
		0: Generate the interrupt when the transmitted good frames after a single
		collision counter reaches half the maximum value
		1: Mask the interrupt when the transmitted good frames after a single collision

counter reaches half the maximum value

13:0 Reserved

10.4.27. Ethernet MSC transmitted good frames after a single collision counter

register (ETH_MSC_SCCNT)

Address offset: 0x014C

Reset value: 0x0000 0000

This register contains the number of successfully transmitted frames after a single collision in Half-duplex mode.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SCC[31:16]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							SCC	[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
Bits	F	ields			De	scriptio	ons								
31:0	S	CC[31:0	D]		Tra	nsmitte	d good	frames	single of	collision	counte	er bits			

10.4.28. Ethernet MSC transmitted good frames after more than a single collision counter register (ETH_MSC_MSCCNT)

Address offset: 0x0150

Reset value: 0x0000 0000

This register contains the number of successfully transmitted frames after more than a single collision in Half-duplex mode.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MSCC	[31:16]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							MSCO	C[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
Bits	F	ields			Des	scriptio	ons								
31:0	N	ISCC[3 [,]	1:0]		Tra	nsmitte	d good	frames	more s	ingle co	ollision o	counter	bits		

10.4.29. Ethernet MSC transmitted good frames counter register

(ETH_MSC_TGFCNT)

Address offset: 0x0168 Reset value: 0x0000 0000

TL 1

1.1

GD32F10x User Manual

		i nis r	egister	conta	ins the	numbe	er of go	bod fra	mes tra	ansmitt	ea.				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TGF[31:16]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TGF	[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
Bits	F	ields			De	scriptio	ons								
31:0	Т	GF[31:0)]		Tra	ansmitte	ed good	frames	counte	r bits					

. .

10.4.30. Ethernet MSC received frames with CRC error counter register (ETH_MSC_RFCECNT)

Address offset: 0x0194

Reset value: 0x0000 0000

This register contains the number of frames received with CRC error.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RFCE	R[31:16]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RFCE	R[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
Bits	F	Z3 Z0 Z1 Z0 Z3 Z4 Z3 Z2 Z1 Z0 13 10 17 11 10 I7 I7 <th< th=""><th></th></th<>													
21.0	D		01.01		Do		fromoo			ator bita					

31:0 RFCER[31:0] Received frames CRC error counter bits

. . .

1 . . .

.

10.4.31. Ethernet MSC received frames with alignment error counter register

(ETH_MSC_RFAECNT)

Address offset: 0x0198

Reset value: 0x0000 0000

This register contains the number of frames received with alignment (dribble) error.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RFAEF	R[31:16]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RFAE	R[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
Bits	F	ields			De	scriptio	ons								
31:0	R	FAER[3	31:0]		Re	ceived f	frames	alignme	nt error	counte	r bits				

10.4.32. Ethernet MSC received good unicast frames counter register

(ETH_MSC_RGUFCNT)

		Addre Reset	ess offs value:	et: 0x(01C4	0									
		This r	egister	conta	ins the	numb	er of go	ood uni	cast fra	ames r	eceive	d.			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RGUF	[31:16]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RGU	F[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
Bits	F	ields			De	scriptio	ons								
31:0	R	GUF[3	1:0]		Re	ceived	good ur	nicast fr	ames co	ounter b	oits				

10.4.33. Ethernet PTP time stamp control register (ETH_PTP_TSCTLR)

Address offset:	0x0700

Reset value: 0x0000 0000

This register controls the time stamp generation and update logic.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									Reserve	ed					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

	Reserved		TMSARU	TMSITEN	TMSSTU	TMSSTI	TMSFCU	TMSEN					
			rw	rw	rw	rw	rw	rw					
Bits	Fields	Descriptions											
31:6	Reserved												
5	TMSARU	Time stamp addenc	Time stamp addend register update bit										
		This bit is cleared when the update is completed. This register bit must be											
		read as zero before	read as zero before application can set it.										
		0: The time stamp a	0: The time stamp addend register's contents are not updated to the PTP										
		block for fine correc	block for fine correction										
		1: The time stamp a	: The time stamp addend register's contents are updated to the PTP block										
		for fine correction											

4	TMSITEN	Time stamp interrupt trigger enable bit
		0: Disable time stamp interrupt
		1: A time stamp interrupt is generated when the system time becomes greater
		than the value written in Target Time register. When the Time Stamp Trigger
		interrupt is generated, this bit is cleared
3	TMSSTU	Time stamp system time update bit

		Both the TMSSTU and TMSSTI bits must be read as zero before application
		can set this bit
		0: The system time is maintained
		1: The system time is updated (added to or subtracted from) with the value
		specified in the Time stamp high update and Time stamp low update
		registers. Once the update is completed in hardware, this bit is cleared
2	TMSSTI	Time stamp system time initialize bit
		This bit must be read as zero before application can set it.
		0: The system time is maintained
		1: The system time is initialized (overwritten) with the value specified in the
		Time stamp high update and Time stamp low update registers When
		initialization is complete, this bit is cleared
1	TMSFCU	Time stamp fine or coarse update bit
		0: The system time stamp is to be updated using the Coarse method
		1: The system time stamp is to be updated using the Fine method
0	TMSEN	Time stamp enable bit
		Application must always initialize the time stamp feature (system time) after
		setting this bit high.
		0: Disable time stamp function
		1: Time stamp function is enabled for transmit and receive frames

10.4.34. Ethernet PTP subsecond increment register (ETH_PTP_SSINCR)

Address offset: 0x0704

Reset value: 0x0000 0000

This register contains the 8-bit value by which the subsecond register is incremented. In Coarse mode, the value in this register is added to the system time every clock cycle of HCLK. In Fine mode, the value in this register is added to the system time whenever the accumulator gets an overflow.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved STMSSI[7:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits	F	ields			De	escripti	ions								
31:8	R	eserve	d												
7.0	ç	TMGGI	[7.0]		S,	istom ti	masuh	second	incrom	ont hite					
7.0	0	10001	[7.0]		5		ine sub	13600110	Increm						
					Th	ne value	e progra	ammed	in this r	egister i	s addeo	to the	content	s of the	

subsecond value of the system time in every update

10.4.35. Ethernet PTP time stamp high register (ETH_PTP_TMSHR)

		Addre Rese	ess off: t value	set: 0x : 0x00	0708 00 000	0									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STM	S[31:16]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							STN	/IS[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
Bits	F	ields			De	escript	ions								
31:0	S	TMS[3	1:0]		Sy	/stem ti	ime sec	ond bit	5						
					Tł	ne value	e in this	field in	dicates	the curr	ent valu	ie in se	conds o	of the Sys	stem
					Ti	me mai	intained	by the	core						

10.4.36. Ethernet PTP time stamp low register (ETH_PTP_TMSLR)

		Addre	ess offs	set: 0x	070C										
		Reset	t value	: 0x00	00 000	0									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
STS							:	STMSS[3	0:16]						
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							STM	SS[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
Bits	F	ields			De	escripti	ons								
31	S	TS			Sy	stem ti	me sigr	n bit							
					Th	is bit in	dicates	s a posit	ive or n	egative	time va	lue. Be	cause tl	ne syste	m time
					sh	ould alv	ways be	e positiv	ve, this l	oit is no	rmally z	ero			
30.0	S	TMSSI	30.01		Sv	stem ti	me sub	second	s bits						
00.0	0		00.0]		Су ть			field he		uhaaaar	dtime		ntation	with 0.4	6
					In	e value	e in this	neid na	is the si	ubsecor	ia time i	represe	ntation,	with 0.4	o ns
					ac	curacy									

10.4.37. Ethernet PTP time stamp high update register (ETH_PTP_TMSHUR)

Address offset: 0x0710

Reset value: 0x0000 0000

This register contains the most significant (higher) 32 bits of the time to be written to, added to, or subtracted from the System Time value. The Time stamp high update register, along with the Time stamp update low register, initializes or updates the system time maintained by

the MAC. Application must write both of these registers before setting the TMSSTI or TMSSTU bits in the Time stamp control register.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TMSU	JS[31:16]							
rw	rw	rw	rw	rw	rw	rw	Rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TMS	US[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits	F	ields	alds Descriptions												
31:0	Т	MSUS[[31:0]		Ti	me stai	mp upda	ate sec	ond bits						

The value in this field indicates the time, in seconds, to be initialized or added to the system time

10.4.38. Ethernet PTP time stamp low update register (ETH_PTP_TMSLUR)

Address offset: 0x0714 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TMSUPNS							TI	MSUSS[3	80:16]						
rw	rw	rw	rw	rw	rw	rw	Rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TMSUS	S[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
31	TMSUPNS	Time stamp update positive or negative sign bit
		This bit indicates positive or negative time value. When TMSSTI is set
		(system time initialization) this bit should be zero. If this bit is set when
		TMSSTU is set, the value in the Time stamp update registers is subtracted
		from the system time. Otherwise it is added to the system time
30:0	TMSUSS[30:0]	Time stamp update subseconds bits
		The value in this field indicates the subsecond time to be initialized or added
		to the system time

10.4.39. Ethernet PTP time stamp addend register (ETH_PTP_TSACNT)

Address offset: 0x0718

Reset value: 0x0000 0000

This register value is used only when the system time is configured for Fine update mode. This register content is added to a 32-bit accumulator in every clock cycle and the system time is updated whenever the accumulator overflows.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TMS	A[31:16]							
rw	rw	rw	rw	rw	rw	rw	Rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TMS	SA[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits	F	ields			Descriptions										
31:0	Т	MSA[3	1:0]		Ti	me star	np add	end bits							

Time stamp addend bits

This register indicates the 32-bit time value to be added to the Accumulator register to achieve time synchronization

Ethernet PTP expected time high register (ETH_PTP_ETHR) 10.4.40.

Address offset: 0x071C																
	Reset value: 0x0000 0000															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
ETSH[31:16]																
rw	rw	rw	rw	rw	rw	rw	Rw	rw	rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
ETSH[15:0]																
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
Bits	F	ields			D	Descriptions										
31:0	E	TSH[3	1:0]		E	Expected time stamp high bits										
	This register stores the time in seconds. When the time stamp value matches													natches		
or exceeds both Target time stamp registers, the MAC, if enabled, gen												nerates				
an interrupt																

Ethernet PTP expected time low register (ETH_PTP_ETLR) 10.4.41.

Address offset: 0x0720

	Reset value: 0x0000 0000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ETSL[31:16]															
rw	rw	rw	rw	rw	rw	rw	Rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETSL[15:0]															
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits	Fields Descriptions														
31:0	E	TSL[31	:0]	Expected time stamp low bits											
This register stores the time in (signed) nanoseconds. When the value of the												e of the			

time stamp matches or exceeds both Target time stamp registers, the MAC, if

enabled, generates an interrupt

10.4.42. Ethernet DMA bus control register (ETH_DMA_BCR)

		Λ.Ι.Ι													
Reset value: 0x0000 2101															
31	30	29 Rese		27 27	26	01 25	24	23	22	21	20	19	18	17	16
		Reser	ved			AA	FPBC	UIP			RX	DP[5:0]			FB
						rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RTPR[1	1:0]			PGE	BL[5:0]			Reserved			DPSL[4	:0]		DAB	SWR
rw	rw	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw	rw	rw	rs
Bits		Fields			0	Descrip	tions								
31:26		Reserve	ed												
25		AA			A	Address	aligned	bit							
					C): Disabl	e addre	ss-aligned	ł						
					1	: Enable	ed addre	ess-aligne	d If the	e FB bit	equals	1, the	AHB int	erface	
					ç	enerate	s all bur	sts aligne	d to the	e start a	address	LS bits	s. If the	FB bit eq	uals 0,
	the first burst (accessing the data buffer's start address) is not aligned, but												but		
	subsequent bursts are aligned to the address														
24	FPBL 4xPGBL mode bit														
					C): The P	GBL val	ue progra	mmed	(bits [2	2:17] a	nd bits	[13:8]) f	or the DI	AN
					c	lata nun	nber of b	eats to be	e trans	fered					
					1	: Multip	lie the P	GBL valu	e progi	ramme	d (bits [22:17] a	and bits	[13:8]) fo	our
					ť	imes for	the DM	A data nu	mber o	of beats	to be t	ransfer	ed		
23		UIP			ι	Jse inde	penden	t PBL bit							
					C): The P	GBL val	ue in bits	[13:8] i	is appli	cable fo	or both	DMA en	igines	
					1	: It conf	igures th	ne RxDMA	A to use	e the va	alue cor	nfigured	d in bits	[22:17] a	IS
					F	orogram	mable b	urst lengtl	n while	the PG	BL valu	ue in bit	ts [13:8]	is applic	able to
					٦	xDMA o	operatio	ns only							
22:17		RXDP[5	:0]		F	Rx DMA	PGBL b	oits							
					T	hese bi	ts indica	ite the ma	iximum	numbe	er of be	ats to b	e transf	ferred in	one
					F	RxDMA	transact	ion. RXDF	can b	e progi	ramme	d with p	ermissi	ble value	s of 1,
					2	2, 4, 8, 1	6, and 3	2. Any ot	her val	ue resu	ilts in u	ndefine	d behav	/ior. Thes	se bits
					a	ire valid	and app	olicable or	nly whe	en UIP i	s set hi	igh			
16		FB			F	ixed bu	rst bit								
					C): The A	HB uses		and IN	ICR bu	rst trans	sfer ope	erations		
					1	: The A	HB uses	only SIN	GLE, I	NCR4,	INCR8	or INC	R16 dui	ring start	of
					r	ormal b	urst trar	sfers							
15:14		RTPR[1	:0]		F	Rx Tx pr	iority rat	io bits							

		RxDMA requests are given priority over TxDMA requests in the following
		ratio:
		00: 1:1
		01: 2:1
		10: 3:1
		11: 4:1
		This is valid only when the DA bit is cleared
13:8	PGBL[5:0]	Programmable burst length bits
		These bits indicate the maximum number of beats to be transferred in one
		DMA transaction. PGBL can be programmed with permissible values of 1, 2,
		4, 8, 16, and 32. Any other value results in undefined behavior. When UIP is
		set, this PGBL value is applicable for TxDMA transactions only.
		The PGBL values have the following limitations:
		- The maximum number of beats (PGBL) possible is limited by the size of the
		– The FIFO has a constraint that the maximum beat supported is half the second second second second second second second second second second second seco
		depth of the FIFO.
		 If the PGBL is common for both transmit and receive DMA, the minimum Rx
		FIFO and Tx FIFO depths must be considered.
		 Do not program out-of-range PGBL values, because the system may not
		behave properly
7	Reserved	
6:2	DPSL[4:0]	Descriptor skip length bits
		This bit specifies the number of words to skip between two unchained
		descriptors. The address skipping starts from the end of current descriptor to
		the start of next descriptor. When DPSL value equals zero, the descriptor
		table is taken as contiguous by the DMA, in Ring mode
1	DAB	DMA Arbitration bit
		0: Round-robin with Rx:Tx priority given in bits [15:14] in this register
		1: Rx has priority over Tx
0	SWR	Software reset bit
		Read a 0 value in this bit before re-programming any register of the core
		0: MAC all subsystem to normal work.
		1: Reset all MAC Subsystem internal registers and logic. It is cleared
		automatically after the reset operation has completed in all of the core clock
		domains

10.4.43. Ethernet DMA transmit poll enable register (ETH_DMA_TPER)

Address offset: 0x1004 Reset value: 0x0000 0000

This register is used by the application to instruct the DMA to poll the transmit descriptor table. The TxDMA can go into Suspend mode due to an underflow error in a transmitted frame or due to the unavailability of descriptors owned by transmit DMA. Application can write any value into this register for attempting to re-fetching the current descriptor.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TPE	[31:16]							
							rw_wt								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TPI	E[15:0]							

rw_wt

Bits	Fields	Descriptions
31:0	TPE[31:0]	Transmit poll enable bits
		When these bits are written with any value, the DMA reads the current
		descriptor pointed to by the ETH_DMA_CTDAR register. If that descriptor is
		not available (owned by CPU), transmission returns to the Suspend state and
		ETH_DMA_STR register bit 2 is asserted. If the descriptor is available,
		transmission resumes

10.4.44. Ethernet DMA receive poll enable register (ETH_DMA_RPER)

Address offset: 0x1008

Reset value: 0x0000 0000

This register is used by the application to instruct the DMA to poll the receive descriptor table. This command is given to wake up the RxDMA from Suspend state.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RPE	E[31:16]							
							rw_wt								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RP	E[15:0]							
							rw_wt								
Bits	F	ields			D	escript	ions								
31:0	F	RPE[31:	0]		R	eceive	ooll ena	ble bits							
					W	hen the	ese bits	are writ	ten with	n any va	lue, the	DMA re	eads the	e current	

descriptor pointed to by the ETH_DMA_CRDAR register. If that descriptor is not available (owned by CPU), reception returns to the Suspended state and ETH_DMA_STR register bit 7 is not asserted. If the descriptor is available, the Receive DMA returns to active state

10.4.45. Ethernet DMA receive descriptor table address register

(ETH_DMA_RDTAR)

Address offset: 0x100C

Reset value: 0x0000 0000

The Receive descriptor table address register points to the start of the receive descriptor table. The descriptor tables reside in the GD32F107xx's physical memory space and must be word-aligned. The DMA internally converts it to bus-width aligned address by making the corresponding LS bits low. Writing to the ETH_DMA_RDTAR register is permitted only when reception is stopped.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SR	T[31:16]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							SR	T[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits	F	ields			D	escripti	ons								
31:0	0 SRT[31:0] Start address of receive table bits														
	This field contains the base address of the first descriptor in the receive														

descriptor table. The LSB bits [1/2/3:0] for 32/64/128-bit bus width) are internally ignored and taken as all-zero by the DMA. Hence these LSB bits are read only

10.4.46. Ethernet DMA transmit descriptor table address register

(ETH_DMATDTAR)

Address offset: 0x1010

Reset value: 0x0000 0000

The Transmit descriptor table address register points to the start of the transmit descriptor table. The descriptor tables reside in the GD32F107xx's physical memory space and must be word-aligned. The DMA internally converts it to bus-width-aligned address by taking the corresponding LSB to low. Writing to the ETH_DMA_TDTAR register is permitted only when transmission has stopped.

					-										
Bits	F	ields			D	escript	ions								
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
							ST	T[15:0]							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
							ST	Г[31:16]							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

31:0 STT[31:0]

Start address of transmit table bits

This field contains the base address of the first descriptor in the transmit descriptor table. The LSB bits [1/2/3:0] for 32/64/128-bit bus width) are internally ignored and taken as allzero by the DMA. Hence these LSB bits are read-only

10.4.47. Ethernet DMA status register (ETH_DMA_STR)

Address offset: 0x1014

Reset value: 0x0000 0000

The Status register contains all the status bits that the DMA reports to the application. The ETH_DMA_STR register bits are not cleared when read. Writing 1 to (unreserved) bits in ETH_DMA_STR register[16:0] clears them and writing 0 has no effect. Each field (bits [16:0]) can be masked by masking the appropriate bit in the ETH_DMA_IER register.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	rved	TST	WUM	MSC	Res		EB[2:0]			TP[2:0]			RPS[2:0]		NI
		r	r	r		r	r	r	r	r	r	r	r	r	rc_w1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AI	ER	FBE	Rese	erved	ET	RWT	RPSS	RBUS	RS	ΤU	RO	TJT	TBU	TPS	TS
rc_w1	rc_w1	rc_w1			rc_w1	rc_w1	rc_w1	rc_w1 r	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1
Bits		Fields			D	escripti	ons								
31:30		Reserve	ed												
29		TST			Ti	me stan	np trigge	r status	bit						
					Tł	ne softw	are mus	t read th	e MAC	C core's	status r	egister, o	clearing	its sou	rce, to
					re	set this	bit to 0.	When th	is bit i	s high ar	n interru	ıpt is ger	nerated	if enab	led.
					0:	Timesta	amp inte	rrupt ev	ent ha	s not occ	urred				
					1:	Genera	ite Times	stamp in	terrup	t event					
28		WUM			W	UM stat	us bit								
					Tł	ne softw	are mus	t read th	e corr	espondir	ng regis	ters in th	ne MAC	core to	o get
					th	e exact	cause of	f interrup	ot and	clear its	source	to reset	this bit f	to 0. Th	ie
					in	terrupt is	s genera	ted whe	n this	bit is hig	h if ena	bled.			
					0:	WUM ir	nterrupt	event ha	as not o	occurred					
					1:	Genera	ite WUM	l interrup	ot ever	nt					
27		MSC			M	SC statu	us bit								
					Tł	ne softw	are mus	t read th	e corr	espondir	ng regis	ters in th	ne MAC	core to	get
					th	e exact	cause of	f interrup	ot and	clear its	source	to reset	this bit #	to 0.Th	е
					in	terrupt is	s genera	ted whe	n this	bit is hig	h if ena	bled.			
					0:	MSC in	terrupt e	event ha	s not c	occurred					
					1:	Genera	te MSC	interrup	t even	t					
26		Reserve	ed												
25.00		ED[2.0]			г.	ror bito	ototuo hi	:.							
20.25						IUI DIIS	sialus D	n a tha tực		rror that	hoausod	a hus a	rror (orr	or reco	onso
					or		B intorfo			with the					OTD
					ro	nister [1	31) eot .	This field				n interrur			_011
					Ri	4 23	1 Error	durina d	ata tra	insfer by		i interiuț	<i>.</i>		
					ום	. 20		during d	ata tra	nsfer hv		, 1			
					Ri	t 24	1 Error	durina r	ala lia	nsfer		۱ ۱			
					Bi	t 24	1 Error	during re	ead tra	nsfer					

		0 Error during write transfer
		Bit 25 1 Error during descriptor access
		0 Error during data buffer access
22:20	TP[2:0]	Transmit process state bit
		These bits indicate the Transmit DMA FSM state. This field does not generate
		an interrupt.
		000: Stopped; Reset or Stop Transmit Command issued
		001: Running; Fetching transmit transfer descriptor
		010: Running; Waiting for status
		011: Running; Reading Data from host memory buffer and queuing it to
		transmit buffer (Tx FIFO)
		100, 101: Reserved for future use
		110: Suspended; Transmit descriptor unavailable or transmit buffer underflow
		111: Running; Closing transmit descriptor
19:17	RP[2:0]	Receive process state bit
		These bits indicate the Receive DMA FSM state. This field does not generate
		an interrupt.
		000: Stopped: Reset or Stop Receive Command issued
		001: Running: Fetching receive transfer descriptor
		010: Reserved for future use
		011: Running: Waiting for receive packet
		100: Suspended: Receive descriptor unavailable
		101: Running: Closing receive descriptor
		110: Reserved for future use
		111: Running: Transferring the receive packet data from receive buffer to host
		memory
16	NI	Normal interrupt summary
		The normal interrupt summary bit value is the logical OR of the following
		when the corresponding interrupt bits are enabled in the ETH_DMA_IER
		register:
		– ETH_DMA_STR [0]: Transmit interrupt
		– ETH_DMA_STR [2]: Transmit buffer unavailable
		– ETH_DMA_STR [6]: Receive interrupt
		– ETH_DMA_STR [14]: Early receive interrupt
		Only unmasked bits affect the normal interrupt summary bit.
		This is a sticky bit and it must be cleared (by writing a 1 to this bit) each time a
		corresponding bit that causes NI to be set is cleared
15	AI	Abnormal interrupt summary bit
		The abnormal interrupt summary bit value is the logical OR of the following
		when the corresponding interrupt bits are enabled in the ETH_DMA_IER
		register:
		 ETH_DMA_STR [1]:Transmit process stopped

		– ETH_DMA_STR [3]:Transmit jabber timeout
		– ETH_DMA_STR [4]: Receive FIFO overflow
		– ETH_DMA_STR [5]: Transmit underflow
		– ETH_DMA_STR [7]: Receive buffer unavailable
		 – ETH_DMA_STR [8]: Receive process stopped
		– ETH_DMA_STR [9]: Receive watchdog timeout
		– ETH_DMA_STR [10]: Early transmit interrupt
		– ETH_DMA_STR [13]: Fatal bus error
		Only unmasked bits affect the abnormal interrupt summary bit. This is a sticky
		bit and it must be cleared each time a corresponding bit that causes AI to be
		set is cleared
14	ER	Early receive status bit
		This bit is automatically cleared when the ETH_DMA_STR [6] is set.
		0: Frame data is not received
		1: The DMA had filled the first data buffer of the packet
13	FBE	Fatal bus error status bit
		When this bit is set, the corresponding DMA engine disables all its bus
		accesses.
		0: Bus error has not occurred
		1: A bus error occurred, as detailed in [25:23]
10.11		
12.11	Reserved	
10	ET	Early transmit status bit
10	ET	Early transmit status bit 0: The frame to be transmitted was not fully transferred to the Transmit FIFO
10	ET	Early transmit status bit 0: The frame to be transmitted was not fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO
12.11 10 9	Reserved ET RWT	Early transmit status bit 0: The frame to be transmitted was not fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO Receive watchdog timeout status bit
9	Reserved ET RWT	Early transmit status bit 0: The frame to be transmitted was not fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO Receive watchdog timeout status bit 0: A frame with a length less than 2 048 bytes is received
9	Reserved ET RWT	Early transmit status bit 0: The frame to be transmitted was not fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO Receive watchdog timeout status bit 0: A frame with a length less than 2 048 bytes is received 1: A frame with a length greater than 2 048 bytes is received
9 8	Reserved ET RWT RPS	Early transmit status bit 0: The frame to be transmitted was not fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO Receive watchdog timeout status bit 0: A frame with a length less than 2 048 bytes is received 1: A frame with a length greater than 2 048 bytes is received Receive process stopped status bit
12.11 10 9 8	Reserved ET RWT RPS	Early transmit status bit 0: The frame to be transmitted was not fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO Receive watchdog timeout status bit 0: A frame with a length less than 2 048 bytes is received 1: A frame with a length greater than 2 048 bytes is received Receive process stopped status bit 0: The receive process in Run state
12.11 10 9 8	Reserved ET RWT RPS	Early transmit status bit 0: The frame to be transmitted was not fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO Receive watchdog timeout status bit 0: A frame with a length less than 2 048 bytes is received 1: A frame with a length greater than 2 048 bytes is received Receive process stopped status bit 0: The receive process in Run state 1: The receive process enters the Stopped state
12.11 10 9 8 7	Reserved ET RWT RPS RBU	Early transmit status bit 0: The frame to be transmitted was not fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO Receive watchdog timeout status bit 0: A frame with a length less than 2 048 bytes is received 1: A frame with a length greater than 2 048 bytes is received Receive process stopped status bit 0: The receive process in Run state 1: The receive process enters the Stopped state Receive buffer unavailable status bit
12.11 10 9 8 7	Reserved ET RWT RPS RBU	Early transmit status bit 0: The frame to be transmitted was not fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO 1: The frame with a length less than 2 048 bytes is received 1: A frame with a length greater than 2 048 bytes is received 1: A frame with a length greater than 2 048 bytes is received 1: The receive process stopped status bit 0: The receive process in Run state 1: The receive process enters the Stopped state Receive buffer unavailable status bit This bit indicates that the next descriptor in the receive table is owned by the
12.11 10 9 8 7	Reserved ET RWT RPS RBU	Early transmit status bit 0: The frame to be transmitted was not fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO Receive watchdog timeout status bit 0: A frame with a length less than 2 048 bytes is received 1: A frame with a length greater than 2 048 bytes is received 1: A frame with a length greater than 2 048 bytes is received 1: The receive process in Run state 0: The receive process enters the Stopped state Receive buffer unavailable status bit This bit indicates that the next descriptor in the receive table is owned by the CPU and cannot be acquired by the DMA. Receive process is suspended. To
12.11 10 9 8 7	Reserved ET RWT RPS RBU	Early transmit status bit 0: The frame to be transmitted was not fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO Receive watchdog timeout status bit 0: A frame with a length less than 2 048 bytes is received 1: A frame with a length greater than 2 048 bytes is received Receive process stopped status bit 0: The receive process in Run state 1: The receive process enters the Stopped state Receive buffer unavailable status bit This bit indicates that the next descriptor in the receive table is owned by the CPU and cannot be acquired by the DMA. Receive process is suspended. To resume processing receive descriptors, the application should change the
12.11 10 9 8 7	Reserved ET RWT RPS RBU	Early transmit status bit 0: The frame to be transmitted was not fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO Receive watchdog timeout status bit 0: A frame with a length less than 2 048 bytes is received 1: A frame with a length greater than 2 048 bytes is received Receive process stopped status bit 0: The receive process in Run state 1: The receive process enters the Stopped state Receive buffer unavailable status bit This bit indicates that the next descriptor in the receive table is owned by the CPU and cannot be acquired by the DMA. Receive process is suspended. To resume processing receive descriptors, the application should change the ownership of the descriptor and issue a Receive Poll Enable command. If no
12.11 10 9 8 7	Reserved ET RWT RPS RBU	Early transmit status bit 0: The frame to be transmitted was not fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO Receive watchdog timeout status bit 0: A frame with a length less than 2 048 bytes is received 1: A frame with a length greater than 2 048 bytes is received Receive process stopped status bit 0: The receive process in Run state 1: The receive process enters the Stopped state Receive buffer unavailable status bit This bit indicates that the next descriptor in the receive table is owned by the CPU and cannot be acquired by the DMA. Receive process is suspended. To resume processing receive descriptors, the application should change the ownership of the descriptor and issue a Receive Poll Enable command. If no Receive Poll Enable is issued, receive process resumes when the next
12.11 10 9 8 7	Reserved ET RWT RPS RBU	Early transmit status bit 0: The frame to be transmitted was not fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO Receive watchdog timeout status bit 0: A frame with a length less than 2 048 bytes is received 1: A frame with a length greater than 2 048 bytes is received Receive process stopped status bit 0: The receive process in Run state 1: The receive process enters the Stopped state Receive buffer unavailable status bit This bit indicates that the next descriptor in the receive table is owned by the CPU and cannot be acquired by the DMA. Receive process is suspended. To resume processing receive descriptors, the application should change the ownership of the descriptor and issue a Receive Poll Enable command. If no Receive Poll Enable is issued, receive process resumes when the next recognized incoming frame is received
12.11 10 9 8 7 7 6	Reserved ET RWT RPS RBU RBU	Early transmit status bit 0: The frame to be transmitted was not fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO 1: The frame to be transmitted was fully transferred to the Transmit FIFO Receive watchdog timeout status bit 0: A frame with a length less than 2 048 bytes is received 1: A frame with a length greater than 2 048 bytes is received Receive process stopped status bit 0: The receive process in Run state 1: The receive process enters the Stopped state Receive buffer unavailable status bit This bit indicates that the next descriptor in the receive table is owned by the CPU and cannot be acquired by the DMA. Receive process is suspended. To resume processing receive descriptors, the application should change the ownership of the descriptor and issue a Receive Poll Enable command. If no Receive Poll Enable is issued, receive process resumes when the next recognized incoming frame is received Receive status bit

C	\rightarrow	CD22E10v Lloor Monual
Gigal	Device	GD32F10x User Manual
5	TU	Transmit underflow status bit
		Transmission is suspended and an underflow error TDES0 [1] is set.
		0: Underflow error has not occurred during frame transmission
		1: The transmit buffer had an underflow during frame transmission
4	RO	Receive overflow status bit
		0: Receive overflow error has not occurred during frame reception
		1: The receive buffer had an overflow during frame reception. If the partial
		frame is transferred to the application, the overflow status is set in RDES0 [11]
3	TJT	Transmit jabber timeout status bit
		0: Transmit jabber timeout has not occurred during frame transmission
		1: The transmit jabber timer expired. The transmission process is aborted and
		placed in the Stopped state. This causes the transmit labber timeout TDES0
		[14] flag to be asserted
2	TBU	Transmit buffer unavailable status bit
		This bit indicates that the next descriptor in the transmit list is owned by the
		CPU and cannot be acquired by the DMA. Transmission is suspended. Bits
		[22:20] explain the transmit process state transitions. To resume processing
		transmit descriptors, the application should change the ownership of the bit of
		the descriptor and then issue a Transmit Poll Enable command
1	TPS	Transmit process stopped status bit
		0: The transmission is not stopped
		1: The transmission is stopped
0	TS	Transmit status bit
		When the bit is set frame transmission is finished and TDES1 [31] is set in the
		first descriptor

10.4.48. Ethernet DMA control register (ETH_DMA_CTLR)

	Address offset: 0x1018													
	Reset value: 0x0000 0000													
	The operation mode register establishes the Transmit and Receive operating modes and													
	commands. The ETH_DMA_CTLR register should be last written as part of DMA													
	initi	alizati	on.											
30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved DTCERFD RSFD DAFRF Reserved TSFD FTF Reserved TTHO												TTHC[2]		

					rw	rw	rw	rw	rw	rw	rs				rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TTHC	[1:0]	STE			Reserve	ed		FERF	FUF	Res	RTH	HC[1:0]	OSF	SRE	Res
rw	rw	rw						rw	rw		rw	rw	rw	rw	

Bits	Fields	Descriptions
31:27	Reserved	
26	DTCERFD	Dropping of TCP/IP checksum error frames disable bit 0: All error frames are dropped if the FERF bit is reset 1: MAC does not drop frames that only have errors detected by the receive checksum offload module. Such frames do not have any errors (including FCS error) in the Ethernet frame received by the MAC but have errors in the encapsulated payload only
25	RSFD	Receive store and forward bit 0: The Rx FIFO operates in Cut-through mode, subject to the threshold specified by the RTHC bits 1: A frame is read from the Rx FIFO after the complete frame has been written to it, ignoring RTHC bits
24	DAFRF	Disable flushing of received frames bit 0: The RxDMA flushes any frames due to the unavailability of receive descriptors/buffers 1: The RxDMA does not flush any frames due to the unavailability of receive descriptors/buffers
23:22	Reserved	
21	TSFD	Transmit store and forward bit This bit should be changed only when transmission is stopped 0: The TTHC values specified by the ETH_DMA_CTLR register bits [16:14] are taken into account 1: Transmission starts when a full frame resides in the Transmit FIFO. the TTHC values specified by the ETH_DMA_CTLR register bits [16:14] are ignored
22:20	FTF	Flush transmit FIFO bit When this bit is set, the transmit FIFO controller logic is reset to its default values and thus all data in the Tx FIFO are lost/flushed. This bit is cleared internally when the flushing operation is complete. The Operation mode register should not be written to until this bit is cleared
19:17	Reserved	
16:14	TTHC[2:0]	Transmit threshold control bit These three bits control the threshold level of the Transmit FIFO and used only when the TSFD bit (Bit 21) is cleared. 000: 64 100: 40 001: 128 101: 32 010: 192 110: 24 011: 256 111: 16
13	STE	Start/stop transmission enable bit

0: The transmission process is placed in the Stopped state after completing the transmission of the current frame. The next descriptor position in the transmit table is saved, and becomes the current position when transmission is restarted. The Stop Transmission command is effective only when the transmission of the current frame is complete or when the transmission is in the Suspended state.

1: Transmission is placed in the Running state, and the DMA checks the transmit table at the current position for a frame to be transmitted. Descriptor acquisition is attempted either from the current position in the table, which is the transmit table base address set by the ETH_DMA_TDTAR register, or from the position retained when transmission was stopped previously. If the current descriptor is not owned by the DMA, transmission enters the Suspended state and the transmit buffer unavailable bit (ETH_DMA_STR [2]) is set. The Start Transmission command is effective only when transmission is stopped. If the command is issued before setting the DMA ETH_DMA_TDTAR register, the DMA behavior is unpredictable

12:8	Reserved	
7	FERF	Forward error frames bit 0: The Rx FIFO drops frames with error status (CRC error, collision error, giant frame, watchdog timeout, overflow). However, if the frame's start byte (write) pointer is already transferred to the read controller side (in Threshold mode), then the frames are not dropped. The Rx FIFO drops the error frames if that frame's start byte is not transferred. 1: All frames except runt error frames are forwarded to the DMA
6	FUF	Forward undersized good frames bit 0: The Rx FIFO drops all frames of less than 64 bytes, unless such a frame has already been transferred due to lower value of receive threshold 1: The Rx FIFO forwards undersized frames (frames with no error and length less than 64 bytes) including pad-bytes and CRC)
5	Reserved	
4:3	RTHC[1:0]	Receive threshold control bit These two bits control the threshold level of the Receive FIFO. Note: Note that value of 11 is not applicable if the configured Receive FIFO size is 128 bytes. Note: These bits are valid only when the RSFD bit is zero, and are ignored when the RSF bit is set to 1. 00: 64 01: 32 10: 96 11: 128
2	OSF	Operate on second frame bit

Giga	Device	GD32F10x User Manual
		0: The DMA to process a second frame of Transmit data after status for first
		frame is obtained
		1: The DMA to process a second frame of Transmit data even before status
		for first frame is obtained
1	SRE	Start/stop receive enable bit
		0: RxDMA operation is stopped after the transfer of the current frame. The
		next descriptor position in the receive table is saved and becomes the current
		position when the receive process is restarted. The Stop Receive command
		is effective only when the Receive process is in either the Running (waiting
		for receive packet) or the Suspended state.
		1: The receive process is placed in the Running state. The DMA attempts to
		acquire the descriptor from the receive table and processes incoming frames.
		Descriptor acquisition is attempted from the current position in the table,
		which is the address set by the ETH_DMA_RDTAR register or the position
		retained when the receive process was previously stopped. If no descriptor is
		owned by the DMA, reception is suspended and the receive buffer
		unavailable bit (ETH_DMA_STR [7]) is set. The Start Receive command is
		effective only when reception has stopped. If the command was issued before
		setting the ETH_DMA_RDTAR register, the DMA behavior is unpredictable

0 Reserved

10.4.49. Ethernet DMA interrupt enable register (ETH_DMA_IER)

Address offset: 0x101C

Reset value: 0x0000 0000

The Interrupt enable register enables the interrupts reported by ETH_DMA_STR. After a hardware or software reset, all interrupts are disabled.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Booon	od							
		116361760													
															rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AISEN	ERSN	FBESN	Rese	erved	ETIEN	RWTIEN	RPSIEN	RBUIEN	RIEN	TUIEN	ROIEN	TJTIEN	TBUIEN	TPSIEN	TIEN
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields Descriptions													
31.17		Posoru	bd												

31:17	Reserved
16	NISEN

Normal interrupt summary enable bit

0: A normal interrupt is disabled. This bit enables the following bits:

- ETH_DMA_STR [0]: Transmit Interrupt

- ETH_DMA_STR [2]: Transmit buffer unavailable

- ETH_DMA_STR [6]: Receive interrupt

- ETH_DMA_STR [14]: Early receive interrupt

		1: A normal interrupt is enabled
15	AISEN	Abnormal interrupt summary enable bit 0: An abnormal interrupt is disabled. This bit enables the following bits: - ETH_DMA_STR [1]: Transmit process stopped - ETH_DMA_STR [3]: Transmit jabber timeout - ETH_DMA_STR [4]: Receive overflow - ETH_DMA_STR [5]: Transmit underflow - ETH_DMA_STR [7]: Receive buffer unavailable - ETH_DMA_STR [7]: Receive process stopped - ETH_DMA_STR [8]: Receive process stopped - ETH_DMA_STR [9]: Receive watchdog timeout - ETH_DMA_STR [10]: Early transmit interrupt - ETH_DMA_STR [13]: Fatal bus error 1: An abnormal interrupt is enabled
14	ERSN	Early receive interrupt enable bit 0: The early receive interrupt is disabled 1: when the normal interrupt summary enable bit (ETH_DMA_IER register [16]) sets, the early receive interrupt is enabled
13	FBESN	Fatal bus error interrupt enable bit 0: The fatal bus error enable interrupt is disabled 1: when the abnormal interrupt summary enable bit (ETH_DMA_IER register [15]) sets, the fatal bus error interrupt is enabled
12:11	Reserved	
10	ETIEN	Early transmit interrupt enable bit 0: The early transmit interrupt is disabled 1: When the abnormal interrupt summary enable bit (ETH_DMA_IER register [15]) sets, the early transmit interrupt is enabled
9	RWTIEN	Receive watchdog timeout interrupt enable bit 0: The receive watchdog timeout interrupt is disabled 1: When the abnormal interrupt summary enable bit (ETH_DMA_IER register [15]) sets, the receive watchdog timeout interrupt is enabled.
8	RPSIEN	Receive process stopped interrupt enable bit 0: The receive stopped interrupt is disabled 1: When the abnormal interrupt summary enable bit (ETH_DMA_IER register [15]) sets, the receive stopped interrupt is enabled
7	RBUIEN	Receive buffer unavailable interrupt enable bit 0: The receive buffer unavailable interrupt is disabled 1: When the abnormal interrupt summary enable bit (ETH_DMA_IER register [15]) sets, the receive buffer unavailable interrupt is enabled
6	RIEN	Receive interrupt enable bit

		 0: The receive interrupt is disabled 1: When the normal interrupt summary enable bit (ETH_DMA_IER register [16]) sets, the receive interrupt is enabled
5	TUIEN	Underflow interrupt enable bit 0: The underflow interrupt is disabled 1: When the abnormal interrupt summary enable bit (ETH_DMA_IER register
4	ROIEN	Overflow interrupt enable bit 0: The overflow interrupt is disabled 1: When the abnormal interrupt summary enable bit (ETH_DMA_IER register [15]) sets, the receive overflow interrupt is enabled
3	TJTIEN	Transmit jabber timeout interrupt enable bit 0: The transmit jabber timeout interrupt is disabled 1: When the abnormal interrupt summary enable bit (ETH_DMA_IER register [15]) sets, the transmit jabber timeout interrupt is enabled
2	TBUIEN	Transmit buffer unavailable interrupt enable bit 0: The transmit buffer unavailable interrupt is disabled 1: When the normal interrupt summary enable bit (ETH_DMA_IER register [16]) sets, the transmit buffer unavailable interrupt is enabled
1	TPSIEN	Transmit process stopped interrupt enable bit 0: The transmission stopped interrupt is disabled 1: When the abnormal interrupt summary enable bit (ETH_DMA_IER register [15]) sets, the transmission stopped interrupt is enabled
0	TIEN	Transmit interrupt enable bit 0: The transmit interrupt is disabled 1: When the normal interrupt summary enable bit (ETH_DMA_IER register [16]) sets, the transmit interrupt is enabled

The Ethernet interrupt is generated only when the TST or WUM bits of the ETH_DMA_STR register is asserted with their corresponding interrupt are unmasked, or when the NI/AI Status bit is asserted and the corresponding Interrupt Enable bits (NISEN/AISEN) are enabled.

10.4.50. Ethernet DMA missed frame and buffer overflow counter register

(ETH_DMA_MFBOCNT)

Address offset: 0x1020

Reset value: 0x0000 0000

The DMA maintains two counters to track the number of missed frames during reception. This register reports the current value of the counter. The counter is used for diagnostic purposes. Bits [15:0] indicate missed frames due to the GD32F107xx buffer being

unavailable (no receive descriptor was available). Bits [27:17] indicate missed frames due to Rx FIFO overflow conditions and runt frames (good frames of less than 64 bytes).

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved OBFOC MSFA[10:0]										OBMFC					
										rc_r					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MSFC[15:0]															

		rC_r
Bits	Fields	Descriptions
31:29	Reserved	
28	OBFOC	Overflow bit for FIFO overflow counter bit
		Overflow bit for FIFO overflow counter
27:17	MSFA[10:0]	Missed frames by the application bits
		Indicates the number of frames missed by the application
16	OBMFC	Overflow bit for missed frame counter
15:0	MSFC[15:0]	Missed frames by the controller bits
		Indicates the number of frames missed by the Controller due to the MCU
		receive buffer being unavailable. This counter is incremented each time the
		DMA discards an incoming frame

10.4.51. Ethernet DMA current transmit descriptor address register (ETH_DMA_CTDAR)

Address offset: 0x1048 Reset value: 0x0000 0000 The Current host transmit descriptor register points to the start address of the current transmit descriptor read by the DMA.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	TDAP[31:16]														
r	r r r r r r r r r r r r r														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TDAP[15:0]														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
Bits	Fields Descriptions														
31:0	TDAP[31:0] transmit descriptor address pointer bits														
	Cleared on reset. Pointer updated by DMA during operation														

10.4.52. Ethernet DMA current receive descriptor address register

(ETH_DMA_CRDAR)

Address offset: 0x104C

Reset value: 0x0000 0000

The Current host receive descriptor register points to the start address of the current receive descriptor read by the DMA

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	RBAP[31:16]														
r	, , , , , , , , , , , , , , , , , , ,														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RBAP[15:0]														
r	r	r	rr	r	r	r	r	r	r	r	r	r	r	r	r
Bits	Fields Descriptions														
31:0	RBAP[31:0] receive descriptor address pointer bits														
	Cleared on Reset. Pointer updated by DMA during operation														

10.4.53. Ethernet DMA current transmit buffer address register

(ETH_DMA_CTBAR)

Address offset: 0x1050

Reset value: 0x0000 0000

The Current host transmit buffer address register points to the current transmit buffer address being read by the DMA.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TBA	P[31:16]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TBA	P[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
Bits	F	ields			De	escripti	ons								
31:0	Т	BAP[31	[0:		tra	insmit b	ouffer a	ddress p	oointer	bits					

Cleared on reset. Pointer updated by DMA during operation

10.4.54. Ethernet DMA current receive buffer address register

(ETH_DMA_CRBAR)

Address offset: 0x1054

Reset value: 0x0000 0000

The current host receive buffer address register points to the current receive buffer address

		being	read	by the	DMA.										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RBA	P[31:16]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RBA	AP[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
Bits	F	ields			De	escripti	ons								
31:0	F	RBAP[3	1:0]		re	ceive b	uffer ad	ldress p	ointer b	oits					

Cleared on reset. Pointer updated by DMA during operation

11. Watchdog (WDG)

11.1. Independent watchdog (IWDG)

11.1.1. Introduction

The Watchdog (WDG) Timer is a hardware timing circuitry that can be used to detect system failures due to software malfunctions. The GD32F10x has two watchdog peripherals, Independent watchdog and Window watchdog. They offer a combination of a high safety level, flexibility of use and timing accuracy. Both watchdog peripherals are offered to resolve malfunctions of software. The Watchdog will generate a reset (or an interrupt in window watchdog) when the counter reaches a given value. The Watchdog Timer counter can be stopped while the processor is in the debug mode. The register write protection function in independent watchdog can be enabled to prevent it from changing the configuration unexpectedly.

The independent watchdog (IWDG) has independent clock source (LSI). Thereupon the IWDG can operate even if the main clock fails. It's suitable for the situation that requires an independent environment and lower timing accuracy. The window watchdog (WWDG) is suitable for the situation that requires an accurate timing.

11.1.2. Main features

- Free-running 12-bit down-counter.
- Reset when the down-counter reaches 0, if the watchdog is enabled.
- Independent clock source, IWDG can operate even if the main clock fails such as in standby and Deep-sleep modes.
- Hardware independent watchdog bit, automatically start the IWDG at power on or not depending on this bit.
- IWDG debug mode config bit, the IWDG continues to work or stopped in debug mode depends on this bit.

11.1.3. Function description

The independent watchdog consists of an 8-stage prescaler and a 12-bit down-counter. Refer to the figure below for the functional blocks of the independent watchdog module.

Figure 11-1 Independent watchdog block diagram

The independent watchdog is enabled by writing the value 0xCCCC in the control register (IWDG_CTLR), and the counter starts counting down. When the counter reaches the value 0x000, a reset is generated.

Reload the counter by writing the value 0xAAAA in the control register anytime, the reload value is come from the IWDG_RLDR register. The software prevents the watchdog reset by reloading the counter before the counter reaches the value 0x000.

The independent watchdog can automatically start at power on when the hardware independent watchdog bit in the device option bytes is set. Then the software should reload the counter before the counter reaches 0x000.

The IWDG_PSR register and the IWDG_RLDR register are write-protected. Before writing these registers, the software should write the value 0x5555 in the control register. These registers will be protected again by writing any other value in the control register. When an update of the prescaler (IWDG_PSR) or the reload value (IWDG_RLDR) is on going, the status bit in IWDG_STR register is set.

If the IWDG_HOLD bit in DBG module is cleared, the IWDG continues to work even the Cortex[™]-M3 core halted (Debug mode). While the IWDG stops in Debug mode if the IWDG_HOLD bit is set.

Dresseler divider		Min timeout (ms) RL[11:0]=	Max timeout (ms) RL[11:0]=			
Prescaler divider	P3[2:0] Dits	0x000	0xFFF			
1/4	000	0.1	409.6			
1/8	001	0.2	819.2			
1/16	010	0.4	1638.4			
1/32	011	0.8	3276.8			
1/64	100	1.6	6553.6			
1/128	101	3.2	13107.2			
1/256	110 or 111	6.4	26214.4			

Table 11-1 Min/max IWDG timeout period at 40 kHz (LSI)

The IWDG timeout can be more accurately by calibrating the LSI.

Note:

- All the 10X devices. When after the execution of dog reload operation, need enter the deepsleep/standby mode immediately, must through the software setting, insert (more than 3) LSI clock interval in the middle of reload and stop/standby mode commands.
- All the 101 devices and the 103 devices whose FLASH are not more than 128K. When software finished the executing operation of IWDG, need enter the stand by mode immediately, need to ensure there is at least 100 us interval left between the two instructions.
- All the 101 devices and the 103 devices whose FLASH are not more than 128K. If you need access to the MCU debug mode, recommended to use hardware watchdog, or through the software setting to enable watchdog again after exit debug mode.

11.2. IWDG registers

11.2.1. Control register (IWDG_CTLR)

Address offset: 0x00 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CT[′	15:0]							
							w	0							

Bits	Fields	Descriptions
31:16	Reserved	Must be kept at reset value.
15:0	CT[15:0]	Write only. These bits have different functions when writing different values 0x5555: Disable the IWDG_PSR and IWDG_RLDR write protection.
		0xCCCC: Start the independent watchdog counter. When the counter reduces to 0, the
		independent watchdog generates a reset.
		0xAAAA: Reload the counter.

11.2.2. Prescaler register (IWDG_PSR)

Address offset: 0x04 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
01	00	20	20		20	20	<u> </u>	20	~~	~ .	20	10	10		10

Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved													PS[2:0]	
														rw	

Bits	Fields	Descriptions	Descriptions							
31:3	Reserved	Must be kept at reset va	lust be kept at reset value.							
2:0	PS[2:0]	Independent watchdog register before writing the PUD bit in the IWDG_ invalid. 000: 1/4 011: 1/32 110: 1/256 If several prescaler value PUD bit is reset before prescaler value it is not execution except in case	timer prescaler selection hese bits. When a write STR register is set and 001: 1/8 100: 1/64 111: 1/256 ues are used by the apple e changing the prescale t necessary to wait until e of low-power mode en	on. Write 0x5555 in the IWDG_CTLR operation to this register ongoing, the d the value read from this register is 010: 1/16 101: 1/128 oplication, it is mandatory to wait until er value. However, after updating the I PUD is reset before continuing code try.						

11.2.3. Reload register (IWDG_RLDR)

Address offset: 0x08 Reset value: 0x0000 0FFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved							RLD	[11:0]					
									r١	v					

Bits	Fields	Descriptions
31:12	Reserved	Must be kept at reset value.
11:0	RLD[11:0]	Independent watchdog counter reload value, Write 0xAAAA in the IWDG_CTLR register will reload the IWDG counter.
		These bits are write-protected. Write 0x5555 in the IWDG_CTLR register before
		writing these bits. When a write operation to this register ongoing, the RUD bit in
		the IWDG_STR register is set and the value read from this register is invalid.
		If several reload values are used by the application, it is mandatory to wait until
		RUD bit is reset before changing the reload value. However, after updating the
		reload value it is not necessary to wait until RUD is reset before continuing code

execution except in case of low-power mode entry.

11.2.4. Status register (IWDG_STR)

	Д F	Address Reset v	s offse [:] alue: (t: 0x0C)x0000	; 0000										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserv	/ed							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserv	ved							RUD	PUD
														ro	ro

Bits	Fields	Descriptions
31:2	Reserved	Must be kept at reset value.
1	RUD	Independent watchdog counter reload value update
		When a write operation to IWDG_RLDR register ongoing, this bit is set and the value
		read from IWDG_RLDR register is invalid.
0	PUD	Independent watchdog prescaler value update
		When a write operation to IWDG_PSR register ongoing, this bit is set and the value
		read from IWDG_PSR register is invalid.

11.3. Window watchdog (WWDG)

11.3.1. Introduction

The window watchdog (WWDG) is used to detect system failures due to software malfunctions. After the window watchdog start, the 7-bit downcounter reduce progressively. The watchdog causes a reset when the counter reached 0x3F (the T6 bit becomes cleared). The watchdog also cause a reset if the counter is refreshed before the counter reached the window register value. So the software should refresh the counter in a limited window. The window watchdog has an early wakeup interrupt, when the counter reached 0x40, the watchdog causes an interrupt if the interrupt is enabled.

The window watchdog (WWDG) clock is prescaled from the APB1 clock.

11.3.2. Main features

- Programmable free-running 7-bit downcounter
- Conditional reset, when WWDG is enabled. Reset when the counter reached 0x3F, or the counter is refreshed when the value of the counter is greater than the window

register value.

- Early wakeup interrupt (EWI): if the watchdog is started and the interrupt is enabled. The interrupt occurred when the counter reached 0x40
- WWDG debug mode config bit, the WWDG continues to work or stopped in debug mode depends on this bit.

11.3.3. Function description

If the window watchdog is enable (set the WDGEN bit in the WWDG_CTLR), the watchdog cause a reset when the counter reached 0x3F (the CNT[6] bit becomes cleared), the watchdog also cause a reset if the counter is refreshed before the counter reached the window register value.

Figure 11-2 Window watchdog block diagram

The software should reload the downcounter by writing the WWDG_CTLR register to prevent an MCU reset, and the WWDG_CTLR register should be written before the downcounter decreases to 0x3F and after the downcounter is lesser than the window value. The reload value must be between 0xFF and 0xC0.

The watchdog is always disabled after a reset. The software starts the watchdog by setting the WDGEN bit in the WWDG_CTLR register. Whenever window watchdog is enabled, the counter counts down all the time, the value of the counter should be greater than 0x3F, it implies that the T6 bit should be set. The CNT[5:0] determine the maximum time interval of two reloading. The countdown speed depends on the APB1 clock and the prescaler (WWDG_PSR). The Configuration register (WWDG_CFR) contains the window value (WIN[6:0]), the downcounter must be reloaded when its value is lesser than the window value and greater than 0x3F, otherwise the watchdog cause a reset.

The Early Wakeup Interrupt (EWI) is enabled by setting the EWI bit in the WWDG_CFR register, the interrupt is generated when the counter reached 0x40. The software can do something such as communications or data logging in the interrupt service routine (ISR) in order to analyse the reason of software malfunctions or save the important data before resetting the device. Moreover the software can reload the counter in ISR to manage a

software system check and so on, in this case, the WWDG will never generate a WWDG reset but used for other things.

The EWI interrupt is cleared by writing '0' to the EWIF bit in the WWDG_STR register.

Figure 11-1 Window watchdog timing diagram

Calculate the WWDG timeout by using the formula below.

 $t_{WWDG} = t_{PCLK1} \times 4096 \times 2^{PS} \times (cnt[5:0] + 1) (ms)$

where:

twwDG: WWDG timeout

t_{PCLK1}: APB1 clock period measured in ms

Refer to the table below for the minimum and maximum values of the t_{WWDG} .

Prescaler divider	PS[1:0]	Min timeout value	Max timeout value		
	10[1.0]	CNT[6:0] =0x40	CNT[6:0]=0x7F		
1/1	00	113 µs	7.28 ms		
1/2	01	227 µs	14.56 ms		
1/4	10	455 µs	29.12 ms		
1/8	11	910 µs	58.25 ms		

 Table 11-1 Min-max timeout value at 36 MHz (fPCLK1)

If the WWDG_HOLD bit in MCU DBG module is cleared, the WWDG continues to work even the Cortex[™]-M3 core halted (Debug mode). While the WWDG_HOLD bit is set, the WWDG stops in Debug mode.

11.4. WWDG registers

11.4.1. Control register (WWDG_CTLR)

Address offset: 0x00

		Rese	t value	: 0x00	00 007	F									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved						WDGEN				CNT[6:0]					
								rs				rw			

Bits	Fields	Descriptions
31:8	Reserved	Must be kept at reset value.
7	WDGEN	Start the window watchdog. Cleared by a hardware reset. Writing 0 has no effect. 0: window watchdog disabled 1: window watchdog enabled
6:0	CNT[6:0]	The value of the watchdog counter. The value decreases from 0x40 to 0x3F cause a reset. Writing this counter when the value of this counter is greater than the window value cause a reset.

11.4.2. Configuration register (WWDG_CFR)

Address offset: 0x04 Reset value: 0x0000 007F

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved			EWI	PS[1:0]	WIN[6:0]									
						rs	rv	v				rw			

Bits	Fields	Descriptions
31:10	Reserved	Must be kept at reset value.
9	EWI	Early wakeup interrupt. An interrupt occurs when the counter reaches 0x40 if the
		bit is set. It's cleared by a hardware reset. A write of 0 has no effect.
8:7	PS[1:0]	Prescaler. The time base of the watchdog counter
		00: PCLK1 / 4096 / 1
		01: PCLK1 / 4096 / 2
		10: PCLK1 / 4096 / 4
		11: PCLK1 / 4096 / 8
6:0	WIN[6:0]	The Window value. A reset occurs if writing watchdog counter (T bits in
		WWDG_CTLR) when the value of the watchdog counter is greater than the
		Window value.

11.4.3. Status register (WWDG_STR)

		Addre Rese	ess offs t value:	set: 0x0 : 0x000)8)0 000)									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										EWIF					
															rw

Bits Fields Descriptions

31:1 Reserved Must be kept at reset value.

0 EWIF Early wakeup interrupt flag. When the counter has reached 0x40, this bit is set by hardware even the interrupt is not enabled (EWI in WWDG_CFR is cleared). Clear it by writing 0. A write of '1 has no effect.

12. Analog to Digital converter (ADC)

12.1. Introduction

The 12-bit ADC is a successive approximation analog-to-digital converter. It has up to 18 multiplexed channels allowing it to measure signals from 16 external and 2 internal sources. The analog watchdog allows the application to detect if the input voltage goes outside the user-defined higher or lower thresholds. A/D conversion of the various channels can be performed in single, continuous, scan or discontinuous mode. The output of the ADC is stored in a left-aligned or right-aligned 16-bit data register.

12.2. ADC main features

- 12-bit resolution
- ADC conversion time: 1.0 u
- Programmable sampling time
- Configurable data alignment in data registers
- DMA request for regular data transfer
- Analog input channels: 16 external analog inputs, 1 channel for internal temperature sensor (V_{SENSE}), 1 channel for internal reference voltage (V_{REFINT}).
- Conversion modes: single, scan, continuous and discontinuous
- Dual mode(the device with two or more ADCs)
- Analog watchdog
- ADC supply requirements: 2.6V to 3.6V
- ADC input range: $V_{REF} \le V_{IN} \le V_{REF+}$
- Interrupt generation at the end of regular and inserted group conversions, and in case of analog watchdog
- External trigger on regular and inserted channels

12.3. ADC pins and internal signals

Table 12-1 ADC internal signals

Internal signal name	Signal type	Description
V _{SENSE}	Input	Internal temperature sensor output voltage
VREFINT	Input	Internal voltage reference output voltage

Table 12-2. ADC pins definition

Name	Signal type	Remarks
V(1)		Analog power supply equal to VDD and 2.6
V DDA	input, analog supply	$V \leq VDDA \leq 3.6 V$

V (1)	Input, analog supply	Ground for analog power supply equal to			
VSSA	ground	VSS			
	Input, analog	The positive reference voltage for the ADC,			
V REF+	reference positive	$2.6~V~\leqslant~V_{REF+}~\leqslant~V_{DDA}$			
N	Input, analog	The negative reference voltage for the			
V REF-	reference negative	ADC,VREF- = VSSA			
ADCx_IN[15:0]	Analog signals	Up to 16 external channels			

NOTE: 1. VDDA and VSSA have to be connected to VDD and VSS, respectively.

12.4. ADC function description

Figure 12-1 shows the ADC block diagram and Table 12-1 and Table 12-2 give the ADC pin description.

Figure 12-1 ADC module block diagram

12.4.1 Calibration (ADC_CLB)

The ADC has a foreground calibration feature. The application must not use the ADC during calibration and must wait until it is completed. Calibration should be performed before starting A/D conversion. The calibration is initiated by software by setting bit ADC_CLB=1.

ADC_CLB bit stays at 1 during all the calibration sequence. It is then cleared by hardware as soon the calibration completes.

When the ADC operating conditions change (V_{DDA} changes are the main contributor to ADC offset variations and temperature changes to a lesser extend), it is recommended to re-run a calibration cycle.

The internal analog calibration can be reset by setting the RSTCLB bit in ADC_CTLR2 register.

Calibration software procedure:

- 1. Ensure that ADCON=1
- 2. delay 14 ADCCLK to wait for ADC stability
- 3. Set RSTCLB (optional)
- 4. Set CLB=1
- 5. Wait until CLB=0

12.4.2 ADC clock

The ADCCLK clock provided by the Clock Controller is synchronous with the PCLK2 (APB2 clock). The maximum frequency is 14 MHz. The RCC controller has a dedicated programmable prescaler for the ADC clock.

12.4.3 Regular and inserted channel groups

The ADC supports 16 multiplexed channels and organizes the conversion results into two groups: a regular channel group and an inserted channel group.

In the regular group, a sequence of up to 16 conversions can be organized in a specific sequence. The ADC_RSQ1~ADC_RSQ3 registers specify the selected channels of the regular group. The RL[3:0] bits in the ADC_RSQ1 register specify the total conversion sequence length.

In the inserted group, a sequence of up to 4 conversions can be organized in a specific sequence. The ADC_ISQ register specify the selected channels of the inserted group. The IL[3:0] bits in the ADC_ISQ register specify the total conversion sequence length.

12.4.4 Conversion modes

Single conversion mode

This mode can be running on the regular channel group. In the single conversion mode, the ADC performs conversion on the channel specified in the ADC_RSQ1. This method is only used for one channel, if more channels must be used, please use DMA to read the data. Once the ADCON has been set high, the ADC samples and converts a single channel, when the corresponding software trigger or external trigger is active. After conversion of the single channel, the conversion data will be stored in the ADC_RDTR register, the EOC will be set.

An interrupt will be generated if the EOCIE or EOICIE bit is set.

Figure 12-2 Single conversion mode

Continuous conversion mode

This mode can be running on the regular channel group. The continuous conversion mode will be enabled when CTN bit in the ADC_CTLR2 register is set. This method is only used for one channel, if more channels must be used, please use DMA to read the data. In this mode, the ADC performs conversion on the channel specified in the ADC_RSQ1. Once the ADCON has been set high, the ADC samples and converts specified channel, when the corresponding software trigger or external trigger is active. The conversion data will be stored in the ADC_RDTR register.

Figure 12-3 Continuous conversion mode

Scan conversion mode

The scan conversion mode will be enabled when SM bit in the ADC_CTLR1 register is set. In this mode, the ADC performs conversion on the channels with a specific sequence specified in the ADC_RSQ1~ADC_RSQ3 registers or ADC_ISQ register. Once the ADCON has been set high, the ADC sample and convert specified channels one by one in the regular or inserted group till the end of the regular or inserted group, when the corresponding software trigger or external trigger is active. The conversion data will be stored in the ADC_RDTR or ADC_IDTRx register. After conversion of the regular or inserted channel group, the EOC or EOIC will be set. An interrupt will be generated if the EOCIE or EOICIE bit is set. The DMA bit in ADC_CTLR2 register must be set in scan mode.

Figure 12-4 Scan conversion mode, continuous enbale

Figure 12-5 Scan conversion mode, continuous disable

Discontinuous mode

For regular channel group, the discontinuous conversion mode will be enabled when DISRC bit in the ADC_CTLR1 register is set. In this mode, the ADC performs a short sequence of n conversions (n <=8) which is a part of the sequence of conversions selected in the ADC_RSQ1~ADC_RSQ3 registers. The value of n is defined by the DISNUM bits in the ADC_CTLR1 register. When the corresponding software trigger or external trigger is active, the ADC sample and covert the next n channels selected in the ADC_RSQ1~ADC_RSQ3 registers until all the channels in the regular sequence are done. The EOC will be set after every circle of the regular channel group. An interrupt will be generated if the EOCIE bit is set.

For inserted channel group, the discontinuous conversion mode will be enabled when DISIC bit in the ADC_CTLR1 register is set. In this mode, the ADC performs one conversion which

is a part of the sequence of conversions selected in the ADC_ISQ register. When the corresponding software trigger or external trigger is active, the ADC sample and covert the next channel selected in the ADC_ISQ register until all the channels in the inserted sequence are done. The EOIC will be set after every circle of the inserted channel group. An interrupt will be generated if the EOICIE bit is set.

The regular and inserted groups cannot both work in discontinuous conversion mode. Only for one group conversion can be set in discontinuous conversion mode.

Figure 12-6 Discontinuous conversion mode

12.4.5 Analog watchdog

The analog watchdog is enabled when the AWREN and AWIEN bits in the ADC_CTLR1 register are set for regular and inserted channel groups respectively. When the analog voltage converted by the ADC is below a low threshold or above a high threshold, the AWE bit in ADC_STR register will be set. An interrupt will be generated if the AWEIE bit is set. The ADC_AWHT and ADC_AWLT registers are used to specify the high and low threshold. The comparison is done before the alignment, so the threshold value is independent of the alignment, which is specified by the DAL bit in the ADC_CTLR2 register. One or more channels, which are select by the AWREN, AWIEN, AWSSM and AWCS[4:0] bits in ADC_CTLR1 register, can be monitored by the analog watchdog.

12.4.6 Inserted channel management

Auto-insertion

The inserted group channels are automatically converted after the regular group channels when the ICA bit in ADC_CTLR1 register set. In this mode, external trigger on inserted channels cannot be enabled. A sequence of up to 20 conversions programmed in the ADC_RSQ1~ADC_RSQ3 and ADC_ISQ registers can be used to convert in this mode. In addition to the ICA bit, if the CNT bit is also set, regular channels followed by inserted channels are continuously converted.

The auto insertion mode cannot be enabled when the discontinuous conversion mode is set.

Triggered insertion

If the ICA bit is cleared and SM bit is set, the triggered insertion occurs if a software or external trigger occurs during the regular group channel conversion. In this situation, the ADC abort from the current conversion and start the conversion of inserted channel sequence in scan mode. After the inserted channel group is done, the regular group channel conversion is resumed from the last aborted conversion.

12.4.7 Data alignment

The alignment of data stored after conversion can be specified by DAL bit in the ADC_CTLR2 register.

After decreased by the user-defined offset written in the ADC_ICOSn registers, the inserted group data value may be a negative value. The sign value is extended.

Figure 12-7 Data alignment

12.4.8 Programmable sample time

The number of ADC_CLK cycles which is used to sample the input voltage can be specified by the SPTn bits in the ADC_SPT1 and ADC_SPT2 registers. A different sample time can be specified for each channel. The total conversion time is "sampling time + 12.5" ADC_CLK cycles.

Example:

ADCCLK = 14MHz and sample time is 1.5 cycles, the total conversion time is "1.5+12.5(14)" cycles, that means 1us.

Note: The impedance of the external signal source or series resistance(R_{AIN}), between the source and PIN causes voltage drop, which increase the charging time of the capacitor. The following formula determines the maximum of the R_{AIN} for the ADC to obtain the best accuracy.

 $R_{AIN} + R_{ADC} < \frac{T_S}{f_{ADC} * C_{ADC} * Ln(2^{N+2})}$

			-	• • • • •
Table 12-3 Sv	mbol definition	of analog sign	al source r	esistance effect

Symbol	Parameter	Value
R _{AIN}	External input impedance	
R _{ADC}	Sampling switch resistance	MAX(R _{ADC})=0.2K
C _{ADC}	Internal sampling and hold	$MAX(C_{ADC})=40pF \text{ or } 8pF^{(1)}$
	capacitor	
f _{ADC}	ADC clock frequency	
Ν	ADC resolution	12
Ts	Sampling time	The unit is clock cycles, such
		as1.5, 7.5, 13.5, 28.5, 41.5,
		55.5, 71.5, 239.5

NOTE: 1.All the 101 devices and the 103 devices whose FLASH are not more than 128K, the capacitor are 40pF, others are 8pF.

12.4.9 External trigger

When the ETERC or ETEIC bits in ADC_CTLR2 register is set, conversion of regular or inserted group can be triggered by a rising edge of external trigger input. The ETSRC and ETSIC control bits are used to specify which out of 8 possible events can trigger conversion for the regular and inserted groups.

	Table 12-4	External trigger	for regular	channels for	ADC1 and ADC2
--	------------	------------------	-------------	--------------	---------------

ETSRC [2:0]	Trigger Source	Trigger Type
000	TM1_CH1	- Internal on-chip signal
001	TM1_CH2	
010	TM1_CH3	
011	TM2_CH2	
100	TM3_TRGO	
101	TM15_CH1	
110	EXTI_11/ TM8_TRGO ⁽¹⁾	External signal
111	SWRCST	Software trigger

Table 12-5 External trigger for inserted channels for ADC1 and ADC2

ETSRC[2:0]	Trigger Source	Trigger Type
000	TM1_TRGO	
001	TM1_CH4	
010	TM2_TRGO	Internal on-chip signal
011	TM2_CH1	
100	TM3_CH4	
101	TM15_TRGO	
110	EXTI_15/ TM8_CC4 ⁽¹⁾	External signal

111

Software trigger

NOTE: 1. TM8_CH4 event only available in high-density devices.

SWICST

Table 12-6 External trigger for regular channels for ADC3

ETSRC[2:0]	Trigger Source	Trigger Type
000	TM3_CH1	
001	TM2_CH3	
010	TM1_CH3	
011	TM8_CH1	Internal on-chip signal
100	TM8_ TRGO	
101	TM5_CH1	
110	TM5_CH3	
111	SWICST	Software trigger

Table 12-7 External trigger for inserted channels for ADC3

ETSRC[2:0]	Trigger Source	Trigger Type
000	TM1_TRGO	
001	TM1_CH4	
010	TM4_CH3	
011	TM8_CH2	Internal on-chip signal
100	TM8_CH4	
101	TM5_TRGO	
110	TM5_CH4	
111	SWICST	Software trigger

12.4.10 DMA request

The DMA request is used to transfer data of regular group for conversion of more than one channel. The ADC generates a DMA request at the end of conversion of a regular channel. When this request is received, the DMA will transfer the converted data from the ADC_RDTR register to the destination location which is specified by the user.

Note: Only ADC1 and ADC3 have this DMA capability. ADC2 converted data can be transferred in dual ADC mode.

12.4.11 Temperature sensor and internal reference voltage VREF

When the TSVREN bit of ADC_CTLR2 register is set, the temperature sensor channel (ADC1_CH16) and V_{REF} channel (ADC1_CH17) is enabled. The temperature sensor can be used to measure the ambient temperature of the device. The sensor output voltage can be converted into a digital value by ADC. The sampling time for the temperature sensor recommended to be set to 17.1 µs. When this sensor is not in use, it can be put in power down mode by resetting the TSVREN bit.

The output voltage of the temperature sensor changes linearly with temperature. Because there is an offset, which is up to 45 °C and varies from chip to chip due to process variation, on this line, the internal temperature sensor is more suited for applications that detect temperature variations instead of absolute temperatures. When it is used to detect accurate temperature, an external temperature sensor part should be used.

The internal voltage reference (V_{REF}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REF} is internally connected to the ADC_IN17 input channel.

12.4.12 ADC interrupts

The interrupt can be produced on end of conversion for regular and inserted groups and when the analog watchdog status bit is set. Separate interrupt enable bits are available for flexibility.

The interrupts of ADC1 and ADC2 are mapped into the same interrupt vector. The interrupts of ADC3 are mapped into a separate interrupt vector.

12.5. Dual ADC mode

In devices with two ADC, dual ADC mode can be used.

In dual ADC mode, the conversion starts alternately or simultaneously triggered by ADC1 master to ADC2 slave, according to the mode selected by the DUALMODE [2:0] bits in ADC1_CTLR1 register.

In dual mode, when configure the conversion which is triggered by an external event, the slave ADC must be configured as triggered by the software in order to prevent false triggers to start unwanted conversion. However, the external trigger must be enabled for ADC master and ADC slave.

The following modes can be configured:

- Independent mode
- Regular simultaneous mode
- Inserted simultaneous mode
- Fast interleaved mode
- Slow interleaved mode
- Alternate trigger mode
- Inserted simultaneous mode + regular simultaneous mode
- Regular simultaneous mode + alternate trigger mode
- Inserted simultaneous mode + fast Interleaved mode
- Inserted simultaneous mode + slow Interleaved mode

In dual ADC mode, the DMA bit must be set even if it is not used; the converted data of ADC slave can be read from the master data register.

Figure 12-8 Dual ADC block diagram

12.5.1 Independent mode

In this mode, the dual ADC synchronization is bypassed, and each ADC works independently

12.5.2 Regular simultaneous mode

This mode converts the regular channel simultaneously. The source of external trigger comes from the regular group MUX of ADC1 (selected by the ETSRC[2:0] bits in the ADC1_CTLR2 register). A simultaneous trigger is provided to ADC2.

At the end of conversion event on ADC1 or ADC2 an EOC interrupt is generated (if enabled on one of the two ADC interfaces) when the ADC1/ADC2 regular channels are all converted. The behavior of Regular simultaneous mode shows in the Figure 12-9.

A 32-bit DMA is used, which transfers ADC1_RDTR 32-bit register (the ADC1_RDTR 32-bit register containing the ADC2 converted data in the upper halfword and the ADC1 converted data in the lower halfword) to SRAM.

Note: 1.Do not convert the same channel on the two ADCs (no overlapping sampling times for the two ADCs when converting the same channel).

2. In simultaneous mode, exactly the same sampling time should be configured for the two channels that will be sampled simultaneously by ACD1 and ADC2.

Figure 12-9 Regular simultaneous mode on 16 channels

12.5.3 Inserted simultaneous mode

This mode converts the inserted channel simultaneously. The source of external trigger comes from the inserted group MUX of ADC1 (selected by the ETSIC[2:0] bits in the ADC1_CTLR2 register). A simultaneous trigger is provided to ADC2.

At the end of conversion event on ADC1 or ADC2, an EOIC interrupt is generated (if enabled on one of the two ADC interfaces). ADC1/ADC2 inserted channels are all converted, and the converted data is stored in the ADC_IDTRx registers of each ADC interface. The behavior of inserted simultaneous mode shows in the Figure 12-10.

Note: 1.Do not convert the same channel on the two ADCs (no overlapping sampling times for the two ADCs when converting the same channel).

2. In simultaneous mode, exactly the same sampling time should be configured for the two channels that will be sampled simultaneously by ACD1 and ADC2.

Figure 12-10 Inserted simultaneous mode on 4 channels

12.5.4 Fast interleaved mode

This mode can be running on the regular channel group (usually one channel). The source of external trigger comes from the regular channel MUX of ADC1(selected by the ETSRC[2:0] bits in the ADC1_CTLR2 register). When the trigger occurs, ADC2 runs immediately and ADC1 runs after 7 ADC clock cycles.

If the continuous mode is enabled for both ADC1 and ADC2, the selected regular channels of both ADCs are continuously converted. The behavior of inserted simultaneous mode shows in the Figure 12-11.

After an EOC interrupt is generated by ADC1 in case of setting the EOCIE bit, we can use a 32-bit DMA, which transfers to SRAM the ADC1_RDTR 32-bit register containing the ADC2

converted data in the upper halfword and the ADC1 converted data in the lower halfword. Note: The maximum sampling time allowed is <7 ADCCLK cycles to avoid the overlap between ADC1 and ADC2 sampling phases in the event that they convert the same channel. **Figure 12-11 Fast interleaved mode on 1 channel in continuous conversion mode**

12.5.5 Slow interleaved mode

This mode can be running on the regular channel group (usually one channel). The source of external trigger comes from the regular channel MUX of ADC1(selected by the ETSRC[2:0] bits in the ADC1_CTLR2 register). When the trigger occurs, ADC2 runs immediately, ADC1 runs after 14 ADC clock cycles, after the second 14 ADC clock cycles the ADC2 runs again.

Continuous mode can't be used in this mode, because it continuously converts the regular channel. The behavior of inserted simultaneous mode shows in the Figure 12-12.

After an EOC interrupt is generated by ADC1 (if enabled through the EOCIE bit), we can use a 32-bit DMA, which transfers to SRAM the ADC1_RDTR 32-bit register containing the ADC2 converted data in the upper halfword and the ADC1 converted data in the lower halfword.

Note: 1.The maximum sampling time allowed is <14 ADCCLK cycles to avoid the overlap between ADC1 and ADC2 sampling phases in the event that they convert the same channel. 2. For both the fast and slow interleaved mode, we must ensure that no external trigger for inserted channel occurs.

Figure 12-12 Slow interleaved mode on 1 channel

12.5.6 Alternate trigger mode

This mode can be running on the inserted channel group. The source of external trigger comes from the inserted channel MUX of ADC1 (selected by the ETSIC[2:0] bits in the ADC1_CTLR2 register).

If the continuous mode is enabled for both ADC1 and ADC2, when the first trigger occurs, all the inserted channels of ADC1 are converted. When the second trigger occurs, all the inserted channels of ADC2 are converted. The behavior of inserted simultaneous continuous mode shows in the Figure 12-13.

If the EOIC interrupt of ADC1 and ADC2 are enabled, when all the channels of ADC1 or ADC2 have been converted, the corresponded interrupt occurred.

If another external trigger occurs after all inserted group channels have been converted, the alternate trigger process restarts by converting ADC1 inserted group channels.

Figure 12-13 Alternate trigger: inserted channel group

If the discontinuous mode is enabled for both ADC1 and ADC2, when the first trigger occurs, the first inserted channel in ADC1 is converted. When the second trigger occurs, the first inserted channel in ADC2 is converted. Then the second channel in ADC1, the second channel in ADC2, and so on.

The behavior of inserted simultaneous discontinuous mode shows in the Figure 12-14.

If the EOIC interrupt of ADC1 and ADC2 are enabled. When all the channels of ADC1 or ADC2 have been converted, the corresponded interrupt occurred.

If another external trigger occurs after all inserted group channels have been converted then the alternate trigger process restarts.

Figure 12-14 Alternate trigger: inserted channels in discontinuous mode

12.5.7 Combined regular simultaneous + inserted simultaneous mode

In the independent mode, the conversion of regular group can be interrupted by the

conversion of inserted group. In the dual mode, it is also possible to interrupt simultaneous conversion of a regular group to insert simultaneous conversion of an inserted group. Note: In combined regular simultaneous + inserted simultaneous mode, the sampling time for the two ADCs should be configured the same.

12.5.8 Combined regular simultaneous + alternate trigger mode

It is possible to interrupt regular group simultaneous conversion to start alternate trigger conversion of an inserted group. The behavior of an alternate trigger interrupt a regular simultaneous conversion shows in the Figure 12-15.

When the inserted event occurs, the inserted alternate conversion is immediately started. If regular conversion is already running, in order to ensure synchronization after the inserted conversion, the regular conversion of both (master/slave) ADCs is stopped and resumed synchronously at the end of the inserted conversion.

Note: In combined regular simultaneous + alternate trigger mode, the sampling time for the two ADCs should be configured the same.

Figure 12-15 Regular simultaneous + alternate trigger mode

If one inserted trigger occurs during an inserted conversion that has interrupted a regular conversion, it will be ignored. Figure 12-16 shows the case (the third trigger is ignored).

Figure 12-16 Trigger occurs during inserted conversion

ADC1 regular	CH0 CH1	CH1 CH2	CH2 CH3	
ADC1 inserted	CH0		CH	Ю
ADC2 regular	CH7 CH8	CH8 CH9	CH9 CH10	Sample
ADC2 inserted		CH0]	
Inserted trigger		this	s trigger is ignored	Convert

12.5.9 Combined inserted simultaneous + interleaved mode

It is possible to interrupt an interleaved conversion (both fast and slow) with an inserted event. When the inserted trigger occurs, the interleaved conversion is interrupted and the inserted conversion starts, at the end of the inserted sequence the interleaved conversion is resumed. Figure 12-17 shows the behavior of this mode.

Figure 12-17 Interleaved single channel with inserted sequence CH1, CH2

12.6. ADC registers

12.6.1 ADC status register (ADC_STR)

Address offset: 0x00 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved									STRC	STIC	EOIC	EOC	AWE	
											rc_w0	rc_w0	rc_w0	rc_w0	rc_w0

Bits	Fields	Descriptions
31:5	Reserved	Must be kept at reset value
4	STRC	Start flag of regular channel group
		0: No regular channel group started
		1: Regular channel group started
		Set by hardware when regular channel conversion starts.
		Cleared by software writing 0 to it.
3	STIC	Start flag of inserted channel group
		0: No inserted channel group started
		1: Inserted channel group started
		Set by hardware when inserted channel group conversion starts.
		Cleared by software writing 0 to it.
2	EOIC	End of inserted group conversion flag
		0: No end of inserted group conversion
		1: End of inserted group conversion
		Set by hardware at the end of all inserted group channel conversion.
		Cleared by software writing 0 to it.
1	EOC	End of group conversion flag
		0: No end of group conversion

1: End of group conversion Set by hardware at the end of a regular or inserted group channel conversion. Cleared by software writing 0 to it or by reading the ADC_RDR register. Note: All the 101 devices and the of 103 devices whose FLASH are not more than 128K, the EOC flag should be cleared by software and can't be cleared by reading 16-bit ADC data register simultaneously. Others the EOC flag should be cleared by reading 16-bit ADC data register.

0 AWE Analog watchdog event flag 0: No analog watchdog even 1: Analog watchdog event Set by hardware when the converted voltage crosses the values programmed in the ADC_AWLT and ADC_AWHT registers. Cleared by software writing 0 to it.

12.6.2 ADC control register 1 (ADC_CTLR1)

Address offset: 0x04 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved								AWREN	AWIEN	Reserve	DUALMODE				
								rw	rw				r	w	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DI	SNUM[2	2:0]	DISIC	DISRC	ICA	AWSSM	SM	EOICIE	AWEIE	EOCIE		A	WCS[4:	0]	
	rw		rw	rw	rw	rw	rw	rw	rw	rw			rw		

B	Bits	Fields	Descriptions
3	1:24	Reserved	Must be kept at reset value
2	3	AWREN	Analog watchdog on regular channel enable
			0: Analog watchdog regular channel disable
			1: Analog watchdog regular channel enable
2	2	AWIEN	Analog watchdog on inserted channel enable
			0: Analog watchdog inserted channel disable
			1: Analog watchdog inserted channel enable
2	1:20	Reserved	Must be kept at reset value
1	9:16	DUALMODE	Dual mode selection
			These bits use to select the operating mode.
			0000: Independent mode.
			0001: Combined regular simultaneous + inserted simultaneous mode
			0010: Combined regular simultaneous + alternate trigger mode

		0011: Combined inserted simultaneous + fast interleaved mode
		0100: Combined inserted simultaneous + slow Interleaved mode
		0101: Inserted simultaneous mode only
		0110: Regular simultaneous mode only
		0111: Fast interleaved mode only
		1000: Slow interleaved mode only
		1001: Alternate trigger mode only
		Note: These bits are reserved in ADC2 and ADC3.
		In dual mode, the change of configuration will cause unpredictable consequences. We
		must disable dual mode before any configuration change.
15:13	DISNUM[2:0]	Number of conversions in discontinuous mode
		The number of channels to be converted after a trigger will be DISNUM+1
12	DISIC	Discontinuous mode on inserted channels
		0: Discontinuous mode on inserted channels disable
		1: Discontinuous mode on inserted channels enable
11	DISRC	Discontinuous mode on regular channels
		0: Discontinuous mode on regular channels disable
		1: Discontinuous mode on regular channels enable
10	ICA	Inserted channel group convert automatically
		0: Inserted channel group convert automatically disable
		1: Inserted channel group convert automatically enable
9	AWSSM	When in scan mode, analog watchdog is effective on a single channel
		0: Analog watchdog is effective on all channels
		1: Analog watchdog is effective on a single channel
8	SM	Scan mode
		0: scan mode enable
		1: scan mode disable
7	EOICIE	Interrupt enable for EOIC
		0: EOIC interrupt disable
		1: EOIC interrupt enable
6	AWEIE	Interrupt enable for AWE
		0: AWE interrupt disable
		1: AWE interrupt enable
5	EOCIE	Interrupt enable for EOC
		0: EOC interrupt disable
		1: EOC interrupt enable
4:0	AWCS	Analog watchdog channel select
		00000: ADC channel0
		00001: ADC channel1

00010: ADC channel2

.....

01111: ADC channel15

10000: ADC channel16

10001: ADC channel17

Other values are reserved.

Note: ADC1 analog Channel16 and Channel17 are internally connected to the temperature sensor and to $V_{\mbox{\scriptsize REFINT}}.$

ADC2 analog inputs Channel16 and Channel17 are internally connected to $V_{SS}.$ ADC3 analog inputs Channel9, Channel14, Channel15, Channel16 and Channel17 are connected to $V_{SS}.$

12.6.3 ADC control register 2 (ADC_CTLR2)

Address offset: 0x08

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								TSV	SWR	SWIC	ETE	FTO	0010-01		Deserved
			R	eserved				REN	CST	ST	RC	EIS	Reserved.		
								rw	rw	rw	rw		rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETEIC	ET	SIC[2	:0]	DAL	Rese	rved.	DMA	Reserved RSTCLB CLB			CLB	CTN	ADCON		
rw		rw		rw			rw					rw	rw	rw	rw

Bits	Fields	Descriptions
31:24	Reserved	Must be kept at reset value
23	TSVREN	Channel 16 and 17 enable of ADC1.
		0: Channel 16 and 17 of ADC1 disable
		1: Channel 16 and 17 of ADC1 enable
22	SWRCST	Start on regular channel.
		Set 1 on this bit starts a conversion of a group of regular channels if ETSRC is 111. It is
		set by software and cleared by software or by hardware after the conversion starts.
21	SWICST	Start on inserted channel.
		Set 1 on this bit starts a conversion of a group of inserted channels if ETSIC is 111. It is
		set by software and cleared by software or by hardware after the conversion starts.
20	ETERC	External trigger enable for regular channel
		0: External trigger for regular channel disable
		1: External trigger for regular channel enable
19:17	ETSRC[2:0]	External trigger select for regular channel
		For ADC1 and ADC2:

		000: Timer 1 CH1 001: Timer 1 CH2 010: Timer 1 CH3 011: Timer 2 CH2 100: Timer 3 TRGO 101: Timer 15 CH1 110: EXTI line 11 111: SWRCST
		For ADC3: 000: Timer 3 CH1 001: Timer 2 CH3 010: Timer 1 CH3 011: Timer 8 CH1 100: Timer 8 TRGO 101: Timer 5 CH1 110: Timer 5 CH3 111: SWICST
16	Reserved	Must be kept at reset value
15	ETEIC	External trigger enable for inserted channel 0: External trigger for inserted channel disable 1: External trigger for inserted channel enable
14:12	ETSIC[2:0]	External trigger select for inserted channel For ADC1 and ADC2: 000: Timer 1 TRGO 001: Timer 1 CH4 010: Timer 2 TRGO 011: Timer 2 CH1 100: Timer 3 CH4 101: Timer 15 TRGO 110: EXTI line15 111: SWICST For ADC3: 000: Timer 1 TRGO 001: Timer 1 CH4 010: Timer 4 CH3 011: Timer 8 CH2 100: Timer 8 CH4 101: Timer 5 TRGO 110: Timer 5 CH4 111: SWICST

11	DAL	Data alignment 0: LSB alignment 1: MSB alignment
10:9	Reserved	Must be kept at reset value
8	DMA	DMA request enable. 0: DMA request disable 1: DMA request enable
7:4	Reserved	Must be kept at reset value
3	RSTCLB	Reset calibration This bit is set by software and cleared by hardware after the calibration registers are initialized. 0: Calibration register initialize done. 1: Initialize calibration register start
2	CLB	ADC calibration 0: Calibration done 1: Calibration start
1	CTN	Continuous mode 0: Continuous mode disable 1: Continuous mode enable
0	ADCON	ADC ON. The ADC will be wake up when this bit is changed from low to high and take a stabilization time. When this bit is high and "1" is written to it with other bits of this register unchanged, the conversion will start. Note: the the 101 devices and the 103 devices whose FLASH are not more than 128K needs delay 14 ADCCLK to wait for ADC stability after set ADCON bit. 0: ADC disable and power down 1: ADC enable

12.6.4 ADC sample time register 1 (ADC_SPT1)

Address offset: 0x0C Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Reserved									SPT17[2:0]			SPT16[2:0]			SPT15[2:1]	
									rw			rw		r١	v	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
SPT																
15[0]		SP114[2:0]			5P113[2:0	1		5P112[2:0	Ŋ		5P111[2:0	Ŋ	2	PTT0[2:0	1	
rw	rw			rw				rw			rw			rw		

Bits	Fields	Descriptions
31:24	Reserved	Must be kept at reset value
23:0	SPTn[2:0]	Channel n sample time
		000: 1.5 cycles
		001: 7.5 cycles
		010: 13.5 cycles
		011: 28.5 cycles
		100: 41.5 cycles
		101: 55.5 cycles
		110: 71.5 cycles
		111: 239.5 cycles
		Note: ADC1 analog Channel16 and Channel17 are internally connected to the
		temperature sensor and to V _{REFINT} .
		ADC2 analog inputs Channel16 and Channel17 are internally connected to V_{SS} .
		ADC3 analog inputs Channel14, Channel15, Channel16 and Channel17 are
		connected to V _{SS} .

12.6.5 ADC sample time register 2 (ADC_SPT2)

Address offset: 0x10

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
Rese	erved	SPT9[2:0]			SPT8[2:0]				SPT7[2:0]	7[2:0] SPT6[2:0]				J SPT5[2:1]			
		rw				rw			rw			rw			rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
SPT																	
5[0]	SP14[2:0]				SPT3[2:0]			5P12[2:0	וי	SPT1[2:0] SPT0[2:			5P10[2:0]				
rw	rw				rw		rw				rw			rw			

Bits	Fields	Descriptions
31:30	Reserved	Must be kept at reset value
29:0	SPTn[2:0]	Channel sample time
		000: 1.5 cycles
		001: 7.5 cycles
		010: 13.5 cycles
		011: 28.5 cycles
		100: 41.5 cycles
		101: 55.5 cycles
		110: 71.5 cycles
		111: 239.5 cycles
		Note: ADC3 analog inputs Channel9 is connected to V _{SS} .

Reset value: 0x0000 0000

12.6.6 ADC inserted channel data offset register x (ADC_ICOSx) (x=1..4)

Address offset: 0x14-0x20 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserv	red							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved				ICOSn[11:0]											

rw

Bits	Fields	Descriptions
31:12	Reserved	Must be kept at reset value
11:0	ICOSn[11:0]	Data offset for inserted channel n These bits will be subtracted from the raw converted data when converting inserted
		channels. The conversion result can be read from in the ADC_IDTRx registers.

12.6.7 ADC watchdog high threshold register (ADC_AWHT)

Address offset: 0x24 Reset value: 0x0000 0FFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserv	ved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Res	erved		AWHT[11:0]											
rw															

Bits	Fields	Descriptions
31:12	Reserved	Must be kept at reset value
11:0	AWHT[11:0]	Analog watchdog high threshold
		These bits define the high threshold for the analog watchdog.

12.6.8 ADC watchdog low threshold register (ADC_AWLT)

		Addre Reset	ss offse value:	et: 0x28 0x0000	3 0000										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserv	red							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Res	erved						AWLT	[11:0]						
									r١	v					

Bits	Fields	Descriptions
31:12	Reserved	Must be kept at reset value
11:0	AWLT[11:0]	Analog watchdog low threshold
		These bits define the low threshold for the analog watchdog.

12.6.9 ADC regular sequence register 1 (ADC_RSQ1)

Address offset: 0x2C Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Reserve	ed			RL[3:0] RSQ16[4						6[4:1]		
									r	w		rw			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSQ16[0]		R	SQ15[4:0]		RSQ14[4:0]						R	SQ13[4:0	[4:0]		
rw	rW							rw					rw		

Bits	Fields	Descriptions
31:24	Reserved	Must be kept at reset value
23:20	RL	Regular channel group length.
		The total number of conversion in regular group equals to RL+1.
19:0	RSQn[4:0]	The channel number (017) are written to these bits to select a channel at the nth
		conversion in the regular channel group.

12.6.10 ADC regular sequence register 2 (ADC_RSQ2)

Address offset: 0x30 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserv	Reserved RSQ12[4:0]							F	RSQ11[4:0	D]			RSQ1	0[4:1]	
				rw					rw				r	w	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSQ10[0]		F	RSQ9[4:0]		RSQ8[4:0]						RSQ7[4:0]				
rw	rw						rw						rw		

Bits	Fields	Descriptions
31:30	Reserved	Must be kept at reset value
29:0	RSQn[4:0]	The channel number (017) are written to these bits to select a channel as the nth conversion in the regular channel group.

12.6.11 ADC regular sequence register 3 (ADC_RSQ3)

Address offset: 0x34 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 17 16 18 Reserved RSQ6[4:0] RSQ5[4:0] RSQ4[4:1] rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RSQ4[0] RSQ2[4:0] RSQ3[4:0] RSQ1[4:0] rw rw rw rw

Bits	Fields	Descriptions
31:30	Reserved	Must be kept at reset value
29:0	RSQn[4:0]	The channel number (017) are written to these bits to select a channel as the nth
		conversion in the regular channel group.

12.6.12 ADC inserted sequence register (ADC_ISQ)

Address offset: 0x38

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	Reserved										IL[1:0] ISQ4[4:1]					
										r	w		r	w		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
ISQ4[0]	ISQ3[4:0]						ISQ2[4:0]				ISQ1[4:0]					
rw	rw					rw				rw						

Bits	Fields	Descriptions							
31:22	Reserved	Must be kept at	t reset value						
21:20	IL	Inserted chann	el group length.						
		The total numb	er of conversion in regular group equals to IL+1.						
19:0	ISQn[4:0]	The channel nu	The channel number (017) are written to these bits to select a channel at the nth						
		conversion in th	conversion in the inserted channel group.						
		Unlike the regu	Unlike the regular conversion sequence, the inserted channels are converted starting						
		from (4-IL) , if II	L[1:0] length is less than 4.						
		IL	Insert channel order						
		3	ISQ1 >> JSQ2 >> JSQ3 >> JSQ4						
		2	ISQ2 >> JSQ3 >> JSQ4						
		1	ISQ3 >> JSQ4						
		0	ISQ4						

12.6.13 ADC inserted data register x (ADC_IDTRx) (x= 1..4)

Address offset: 0x3C - 0x48 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserv	/ed							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							IDTn[1	5:0]							

r

Bits	Fields	Descriptions
31:16	Reserved	Must be kept at reset value
15:0	IDTn[15:0]	Inserted number n conversion data
		These bits contain the number n conversion result, which is read only.

12.6.14 ADC regular data register (ADC_RDTR)

Address offset: 0x4C Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ADC2RDTR[31:16]														
	r														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RDTR[15:0]														

Bits	Fields	Descriptions
31:16	ADC2RDTR[31:16]	ADC2 regular channel data
		In ADC1: In dual mode, these bits contain the regular data of ADC2.
		In ADC2 and ADC3: these bits are not used.
15:0	RDTR[15:0]	Regular channel data
		These bits contain the conversion result from regular channel, which is read only.

13. Digital-to-analog converter (DAC)

13.1. DAC introduction

The 12-bit DAC module is a voltage output digital-to-analog converter. The DAC can be configured in 8 or 12 bit mode and may be used in conjunction with the DMA controller. The DAC has two output channels,each with its own converter. In dual DAC channel mode,conversions could be done independently or simultaneously when both channels are grouped together for synchronous update operation. An input reference pin VREF+(shared with ADC) is available for better resolution.

13.2. DAC main features

DAC main features are the following:

- 12-bit mode . Left or right data alignment
- Two DAC converters: one output channel each
- DMA capability for each channel
- Noise-wave generation
- Conversion update synchronously
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- Conversion trigged by external triggers
- Input voltage reference, VREF+

Figure 13-1 shows the DAC block diagram of a DAC channel.

1. In connectivity line devices, the TM8_TRGO trigger is replaced by TM3_TRGO Table 17 gives the DAC pin description.

Name	Signal type	Remarks				
		The positive reference				
VREF+	Input,analog reference positive	voltage for the DAC,				
		2.4V ≤VREF+ ≤VDDA(3.3V)				
VDDA	Input , analog supply	Analog power supply				
VSSA	Input , analog supply ground	Ground for analog power supply				
DAC_OUTx	Analog output signal	DAC channelx analog output				

Table 13-1 DAC pins

Note: The corresponding GPIO pin (PA4 or PA5) is automatically connected to the analog converter output (DAC_OUTx), Once the DAC channel is enabled. The PA4 or PA5 pin should first be configured to analog (AIN to avoid parasitic consumption).

13.3. DAC function description

13.3.1. DAC channel enable

Each DAC channel can be powered on by setting its corresponding ENx bit in the DAC_CTLR register.the DAC channel is then enabled after a startup time tWAKEUP. Note: The DENx is only macrocell can enables the analong DAC Channelx.The DAC Channelx digital interface is enabled even if the DENx bit is reset.

13.3.2. DAC output buffer enable

The DAC integrates two output buffer, which can be used to reduce the output impedance, and to drive external loads directly without an external operational amplifier. The DAC channel output buffer can be enabled and disabled using the DBOFFx bit in the DAC_CTLR register.

13.3.3. DAC data format

Depending on the selected configuration mode, the data has to be written in the specified register as described below:

- Single DAC channel, there are three possibilities:
- 1. right alignment 8-bit: DACDHRx[11:4] bits are stored into DAC_CxR8DHR [7:0] bits
- 2. right alignment12-bit: DACDHRx[11:0] bits are stored into DAC_CxR12DHR[11:0] bits
- 3. left alignment 12-bit: DACDHRx[11:0] bits are stored into DAC_CxL12DHR[15:4] bits

Depending on the loaded DAC_DHRx register, the data written by the shifted and stored into the DHRx(Data Holding Registerx, that are internal non-memory-mapped registers). The DHRx register will then be loaded into the DORx register either automatically, by software trigger or by an external event trigger.

- Dual DAC channels, there are three possibilities:
- right alignment 8-bit: data for DAC channel1,DACDHR1[11:4] bits are stored into DAC_DCR8DHR [7:0] bits. data for DAC channel2,DACDHR2[11:4] bits are stored into DAC_DCR8DHR [15:8] bits.
- right alignment12-bit: data for DAC channel1,DACDHR1[11:0] bits are stored into DAC_DCR12DHR [11:0] bits. data for DAC channel2, DACDHR2[11:0] bits are stored into DAC_DCR12DHR [27:16] bits
- left alignment 12-bit: data for DAC channel1,DACDHR1[11:0] bits are stored into DAC_DCL12DHR [15:4] bits. data for DAC channel2, DACDHR2[11:0] bits are stored into DAC_DCL12DHR[31:20] bits

Depending on the loaded DAC_DHRx register, the data written by the shifted and stored into the DHR1 and DHR2(Data Holding Registerx, that are internal non-memory-mapped registers). The DHR1 and DHR2 register will then be loaded into the C1ODR and C2ODR registers, respectively, either automatically, by software trigger or by an external event trigger.

13.3.4. DAC conversion

The DAC_DORx cannot be written directly and any data to transfer to the DAC channel must be performed by loading the DAC_DHRx register (write on DAC_C1R12DHR,DAC_C1L12DHR,DAC_C1R8DHR,DAC_C2R12DHR, DAC_C2L12DHR DAC_C2R8DHR, DAC_DCR12DHR, DAC_DCL12DHR, DAC_DCR8DHR).

If no hardware trigger is selected (TENx bit in DAC_CTLR register is reset),Data stored into the DAC_DHRx register are automatically transferred to the DAC_DORx register after one APB1 clock cycle.However, if a hardware trigger is selected (TENx bit in DAC_CTLR register is set) and a trigger occurs, the transfer is performed three APB1 clock cycles later

When DAC_CxODR is loaded with the DAC_DHRx contents, the analog output voltage Becomes available after a time of tSETTLING that depends on the power supply voltage and the analong output load.

Figure 13-2 Timing diagram for conversion with trigger disabled TEN = 0;

13.3.5. DAC output voltage

The analog output voltages on the DAC channel pin are determined by the following equation:

DAC output = V_{REF} *DOR/4095

Digital inputs are converted to output voltages on a linear conversion between 0 and VDDA.

13.3.6. DMA request

Each DAC channel has a DMA function. two DMA channel can be respectively used for DAC channel DMA requests

A DAC DMA request is generated when an external trigger (but not a software trigger) occurs while the DMAENx bit is set. The value of the DAC_DHRx register is then transferred to the DAC_CxODR register.

In dual mode, if both DMAENx bits are set, two DMA requests are generated. If only one DMA request is needed, you should set only the corresponding DMAENx bit. In this way, the application can manage both DAC channels in dual mode by using one DMA request and aunique DMA channel.

The DAC DMA request is not queued so that if a second external trigger arrivs before the acknowledgement of the last request, then the new request will not be serviced and no error is reported

13.3.7. DAC trigger

Conversion can then be triggered by an external event (timer counter, external interrupt

line), when the TENx control bit is set. The TSELx[2:0] control bits determine which out of 8 possible events will trigger conversion as shown in Table1.

DTSEL[2:0]	Trigger Source	Trigger Type					
000	Timer 6 TRGO	Internal signal from					
001	Timer 3 TRGO event in connectivity line	on-chip timers					
	devices or Timer 8 TRGO in high-density						
	and XL-density devices						
010	Timer 7 TRGO						
011	Timer 5 TRGO						
100	Timer 2 TRGO						
101	Timer 4 TRGO						
110	EXTI line9	External signal					
111	SWTRIG	Software trigger					

Table 13-2 External triggers

Each time a DAC interface detects a selected timer TRGO output,or a rising edge on the selected external interrupt line 9,the last data stored into the DAC_DHRx register is transferred into the DAC_CxODR register.The CxODR register is updated three APB1 Cycles after the trigger occurs.

If the software trigger is selected, the conversion starts once the SWTR bit is set. once the DAC_CxODR register has been loaded with the DAC_DHRx register contents.

Note: 1 TSELx[2:0] bit cannot be changed when the ENx bit is set.

2 When software trigger is selected, it takes only one APB1 clock cycle for DAC_DHRx-to-DAC_DORx register transfer.

13.3.8. Noise generation

In order to generate a variable-amplitude pseudonoise,a linear feedback shift register is available. The DAC noise generation is selected by setting WAVEx[1:0] to "01". The preloaded value in the LFSR is 0xAAA. This register is updated, three APB1 clock cycles after anch trigger event, following a specific calculation algorithm

Figure 13-3 DAC LFSR register calculation algorithm

The LFSR value, that may be masked partially or totally by means of the MAMPx[3:0] bits in the DAC_CTLR register, is added up to the DAC_DHRx contents without overflow and this value is then stored into the DAC_DORx register.

If LFSR is 0x0000, a '1' is injected into it (antilock -up mechanism).

It is possible to reset LFSR wave generation by resetting the WAVEx[1:0] bits.

Figure 13-4 DAC conversion(SW trigger enabled)with LFSR wave generation

Note: DAC trigger must be enabled for noise generation, by setting the TENx bit in the DAC_CTLR register.

13.3.9. Trigangle-wave generation

It is possible to add a small-amplitude triangular waveform on a DC or slowly varying signal.DAC triangle-wave generation is selected by setting WAVEx[1:0] to "10".The amplitude is configured through the MAMPx[3:0] bits in the DAC_CTLR register. An internal triangle counter is incremented three APB1 clock cycles after each trigger event. The value of this counter is then added to the DAC_DHRx register without overflow and the sum is stored into the DAC_CxODR register. The triangle counter is incremented while it is less than the maximum amplitude defined by the MAMPx[3:0] bits. Once the configured amplitude is reached, the counter is decremented down to 0, then incremented again and so on.

It is possible to reset triangle wave generation by resetting WAVEx[1:0] bits.

Figure 13-5 DAC triangle wave generation

Figure 13-6 DAC conversion (SW trigger enabled) with triangle wave generation

- Note: 1. DAC trigger must be enabled for noise generation, by setting the TENx bit in the DAC_CR register.
 - 2. MAMPx[3:0] bits must be configured before enabling the DAC, otherwise they cannot be changed.

13.4. Dual DAC channel conversion

the two DAC channels works at the same time, To efficiently use the bus bandwidth in applications, three dual registers are implemented: DCR8DHR, DCR12DHR and DCL12DHR.A unique register access is then required to drive both DAC channels at the same time.

For the two channels and these special registers, Eleven possible conversion modes are possible. The conversion mode in the case of can only use one DAC channel, still can operate through independent DHRx registers.

All modes are described in the paragraphs below.

13.4.1. Independent trigger without wave generation

To configure the DAC in this conversion mode, the following sequence is required:

- Set the two DAC channel trigger enable bits TEN1 and TEN2
- Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits
- Load the dual DAC channel data into the desired DHR register (DAC_DCR12DHR, DAC_DCL12DHR or DAC_DCR8DHR)

When a DAC channel1 trigger arrives, the DHR1 register is transferred into DAC_C1ODR (three APB1 clock cycles later).

When a DAC channel2 trigger arrives, the DHR2 register is transferred into DAC_C2ODR (three APB1 clock cycles later).

13.4.2. Independent trigger with same LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

- Set the two DAC channel trigger enable bits TEN1 and TEN2
- Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits
- Configure the two DAC channel WAVEx[1:0] bits as "01" and the same LFSR mask value in the MAMPx[3:0] bits
- Load the dual DAC channel data into the desired DHR register (DAC_DCR12DHR, DAC_DCL12DHR or DAC_DCR8DHR)

When the DAC channel 1 trigger event, LFSR1 counter with the same shielding value and the DHR1 register value added results to the DAC_C1ODR register (three APB1 clock cycles later), and then update the LFSR1 register

When the DAC channel 2 trigger event, LFSR2 counter with the sameshielding value and the DHR1 register value added results to the DAC_C2ODR register (three APB1 clock cycles later), and then update the LFSR2 register

13.4.3. Independent trigger with different LFSR gneneration

To configure the DAC in this conversion mode, the following sequence is required:

- Set the two DAC channel trigger enable bits TEN1 and TEN2
- Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits
- Configure the two DAC channel WAVEx[1:0] bits as "01" and set different LFSR masks values in the MAMP1[3:0] and MAMP2[3:0] bits
- Load the dual DAC channel data into the desired DHR register (DAC_DCR12DHR, DAC_DCL12DHR or DAC_DCR8DHR)

When a DAC channel1 trigger event arrives, the LFSR1 counter with the same shielding value configured by MAMP1[3:0], is added to the DHR1 register and the results is transferred into DAC_C1ODR (three APB1 clock cycles later). and then update the LFSR1 counter.

When a DAC channel2 trigger event arrives, the LFSR2 counter with the same shielding value configured by MAMP2[3:0], is added to the DHR2 register and the results is transferred into DAC_C2ODR (three APB1 clock cycles later). and then update the LFSR1 counter.

13.4.4. Independent trigger with same triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

- Set the two DAC channel trigger enable bits TEN1 and TEN2
- Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits
- Configure the two DAC channel WAVEx[1:0] bits as "1x" and the same maximum amplitude value in the MAMPx[3:0] bits
- Load the dual DAC channel data into the desired DHR register (DAC_DCR12DHR, DAC_DCL12DHR or DAC_DCR8DHR)

When the DAC channel 1 trigger events, the same triangle amplitude value plus the value of the DHR1 register, the results is transferred into the DAC_C1ODR (three APB1 clock cycles later), and then update the DAC channel 1 triangular wave counter.

When the DAC channel 2 trigger events, the same triangle amplitude value plus the value of the DHR2 register, the results is transferred into the DAC_C2ODR (three APB1 clock cycles later), and then update the DAC channel 2 triangular wave counter.

13.4.5. Independent trigger with different triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

- Set the two DAC channel trigger enable bits TEN1 and TEN2
- Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits
- Configure the two DAC channel WAVEx[1:0] bits as "1x" and set different maximum amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits.
- Load the dual DAC channel data into the desired DHR register (DAC_DCR12DHR, DAC_DCL12DHR or DAC_DCR8DHR)

When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with a triangle amplitude configured by MAMP1[3:0] plus DHR1 register and the results is transferred into DAC_C1ODR (three APB1 clock cycles later). and then update the DAC channel 1 triangular wave counter.

When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with a triangle amplitude configured by MAMP2[3:0] plus DHR1 register and the results is transferred into DAC_C2ODR (three APB1 clock cycles later). and then update the DAC channel 2 triangular wave counter.

13.4.6. Simultaneous software start

To configure the DAC in this conversion mode, the following sequence is required:

Load the dual DAC channel data to the desired DHR register(DAC_DCR12DHR, DAC_DCL12DHR or DAC_DCR8DHR)

In this configuration, one APB1 clock cycle later, the DHR1 and DHR2 registers are Transferred into DAC_C10DR and DAC_C20DR, respectively.

13.4.7. Simultaneous trigger without wave generation

To configure the DAC in this conversion mode, the following sequence is required:

- Set the two DAC channel trigger enable bits TEN1 and TEN2
- Configure the same trigger source for both DAC channel by setting the same value in the TSEL1[2:0] and TSEL2[2:0] bits
- Load the dual DAC channel data to the desired DHR register (DAC_DCR12DHR, DAC_DCL12DHR or DAC_DCR8DHR)

When a trigger arrives, the DHR1 and DHR2 registers are transferred into DAC_C1ODR and DAC_C2ODR, respectively (after three APB1 clock cycles).

13.4.8. Simultaneous trigger with same LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

- Set the two DAC channel trigger enable bits TEN1 and TEN2
- Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits
- Configure the two DAC channel WAVEx[1:0] bits as "01" and the same LFSR mask value in the MAMPx[3:0] bits
- Load the dual DAC channel data into the desired DHR register (DAC_DCR12DHR, DAC_DCL12DHR or DAC_DCR8DHR)

When DAC channel trigger arrives, the LFSR1 counter, with the same mask, is added to the DHR1 register and the results is transferred into DAC_C1ODR(three APB1 clock cycles later). Then the LFSR1 count is updated. Similarly, the LFSR2 counter, with the same mask is added to the DHR2 register and the results is transferred into DAC_C2ODR(three APB1 clock cycles later). Then the LFSR2 count is updated.

13.4.9. Simultaneous trigger with different LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

- Set the two DAC channel trigger enable bits TEN1 and TEN2 Configure different trigger sources for both DAC channels by setting same value in the TSEL1[2:0] and TSEL2[2:0] bits
- Configure the two DAC channel WAVEx[1:0] bits as "01" and the different LFSR masks value in the MAMP1[3:0] and MAMP2[3:0] bits
- Load the dual DAC channel data into the desired DHR register (DAC_DCR12DHR, DAC_DCL12DHR or DAC_DCR8DHR)

When DAC channel trigger arrives, the LFSR1 counter, with the mask configured by MAMP1[3:0], is added to the DHR1 register and the results is transferred into DAC_C1ODR (three APB1 clock cycles later). Then the LFSR1 count is updated. Similarly, the LFSR2 counter, with the mask configured by MAMP2[3:0], is added to the DHR2 register and the results is transferred into DAC_C2ODR (three APB1 clock cycles later). Then the LFSR2 count is updated.

13.4.10. Simultaneous trigger with same triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

- Set the two DAC channel trigger enable bits TEN1 and TEN2
- Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits
- Configure the two DAC channel WAVEx[1:0] bits as "1x" and the same maximum amplitude value in the MAMPx[3:0] bits
- Load the dual DAC channel data into the desired DHR register (DAC_DCR12DHR, DAC_DCL12DHR or DAC_DCR8DHR)

When a DAC channel trigger arrives, the DAC channel1 triangle counter, with same triangle amplitude is added to the DHR1 register and the results is transferred into DAC_C1ODR (three APB1 clock cycles later). Then the DAC channel1 triangle counter is updated. Similarly, the DAC channel2 triangle counter, with the same triangle amplitude is added to the DHR2 register and the results is transferred into DAC_C2ODR (three APB1 clock cycles later). Then the DAC channel2 triangle counter is updated.

13.4.11. Simultaneous trigger with different triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

- Set the two DAC channel trigger enable bits TEN1 and TEN2
- Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits
- Configure the two DAC channel WAVEx[1:0] bits as "1x" and set different maximum amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits
- Load the dual DAC channel data into the desired DHR register (DAC_DCR12DHR, DAC_DCL12DHR or DAC_DCR8DHR)

When a DAC channel trigger arrives, the DAC channel1 triangle counter, with a triangle amplitude configured by MAMP[3:0], is added to the DHR1 register and the results is transferred into DAC_C1ODR (three APB1 clock cycles later). Then the DAC channel1 triangle counter is updated. Similarly, the DAC channel2 triangle counter, with a triangle amplitude configured by MAMP2[3:0], is added to the DHR2 register and the results is transferred into DAC_C2ODR (three APB1 clock cycles later). Then the DAC channel2 triangle counter, with a triangle amplitude configured by MAMP2[3:0], is added to the DHR2 register and the results is transferred into DAC_C2ODR (three APB1 clock cycles later). Then the DAC channel2 triangle counter is updated.

13.5. DAC registers

13.5.1. DAC control register (DAC_CTLR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	Reserved		DDMAEN2		DMAN	1P2[3:0]		DWAVE	DWAVEL2[2:0] D]	DTEN2	DBOFF2	DEN2	
			rw		rw				rw		rw		rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Reserved		DDMAEN1		DMAN	1P1[3:0]		DWAVE	L1[2:0]	[DTSEL1[2:0]	DTEN1	DBOFF1	DEN1	
			rw			rw			rw		rw		rw	rw	rw	
	Bits	Field	ds	Des	criptio	ns										
	31:29	Rese	erved													
	28	DDN	IAEN2	DAC	C chanr	nel2 DM	A enat	ole								
				This	bit is set and cleared by software.											
				0: D	AC cha	annel2 [DMA m	node disabled								
				1: D	AC cha	annel2 E	DMA m	ode ena	bled							
	07.04															
	27:24	DIVIA	AMP2[3:0]			ieiz ma	sk/amp		elector	4	- 1. :					
				Ine		are writ	ten by	sonware		ectma	ask in wa	re ger	ieration r	node or		
				amp		n triang	e gene			- I:4 I -		4				
				000				R/ mang	gie Am		e equal to	i al ta C				
				000			1.0] 01									
				001												
				001			3:0] Of	LFSR/I	riangie	Ampli	tude equ	al to 1	5			
				010	U:Unma	ASK DITS	4:0] of	LFSR/I	riangle	Ampli	itude equ	al to s	31			
				010	1:Unma	ask dits[5:0] Of	LFSR/I	riangle	Ampli	tude equ	al to e	03			
				0110	U:Unma	ASK DITS		LFSR/I	riangie	Ampli	tude equ	alto 1	27			
				0111:0nmask bits[7:0] of LFSR/Triangle Amplitude equal to 255												
			1000:Unmask bits[8:0] o						riangle	Ampli	itude equ	al to 5	o11			
				100	1:Unma	ask bits[9:0] of	LFSR/T	riangle	Ampli	itude equ	al to 1	1023			
				101	0:Unma	ask bits[10:0] c	of LFSR/	Triangl	e Amp	olitude eq	ual to	2047			
				\geq 1011:Unmask bits[11:0] of LFSR/Triangle Amplitude equal to 4095												

Address offset: 0x00 Reset value: 0x0000 0000

23:22	DWAVE2[1:0]	 DAC channel2 noise/triangle wave generation enable These bits are set/reset by software 00: wave generation disabled 01: Noise wave generation enabled 1x: Triangle wave generation enabled Note: only used if bit DTEN2=1 (DAC channel2 trigger enabled)
21:19	DTSEL2[2:0]	 DAC channel2 trigger selection These bits select the external event used to trigger DAC channel2 000: Timer 6 TRGO event 001: Timer 3 TRGO event in connectivity line devices, Timer 8 TRGO in high-density and XL-density devices 010: Timer 7 TRGO event 011: Timer 5 TRGO event 100: Timer 2 TRGO event 101: Timer 4 TRGO event 110: External line9 111: Software trigger Note: only used if bit DTEN2=1 (DAC channel2 trigger enabled)
18	DTEN2	 DAC channel2 trigger enable This bit is set and cleared by software to enable/disable DAC channel2 trigger. 0: DAC channel2 trigger disabled and data transfer into DAC_DHRx register is transferred one APB1 clock cycle later to the DAC_C2ODR register. 1: DAC channel2 trigger enabled and data transfer into DAC_DHRx register is transferred one APB1 clock cycle later to the DAC_C2ODR register. Note: When software trigger is selected, it takes only one APB1 clock cycle for DAC_DHRx to DAC_C2ODR register transfer
17	DBOFF2	 DAC channel2 output buffer disable This bit is set and cleared by software to enable/disable DAC channel2 output buffer. 0: DAC channel2 output buffer enabled 1: DAC channel2 output buffer disabled
16	DEN2	DAC channel enableThis bit is set and cleared by software to enable/disable DAC channel2.0: DAC channel2 disabled1: DAC channel2 enabled

12	DDMAEN1	DAC channel1 DMA enable
		This bit is set and cleared by software.
		0: DAC channel1 DMA mode disabled
		1: DAC channel1 DMA mode enabled
11:8	DMAMP1[3:0]	DAC channel1 mask/amplitude selector
		These bits are written by software to select mask in ware generation mode or
		amplitude in triangle generation mode
		0000:Unmask bit0 of LFSR/Triangle Amplitude equal to 1
		0001:Unmask bits[1:0] of LFSR/Triangle Amplitude equal to 3
		0010:Unmask bits[2:0] of LFSR/Triangle Amplitude equal to 7
		0011:Unmask bits[3:0] of LFSR/Triangle Amplitude equal to 15
		0100:Unmask bits[4:0] of LFSR/Triangle Amplitude equal to 31
		0101:Unmask bits[5:0] of LFSR/Triangle Amplitude equal to 63
		0110:Unmask bits[6:0] of LFSR/Triangle Amplitude equal to 127
		0111:Unmask bits[7:0] of LFSR/Triangle Amplitude equal to 255
		1000:Unmask bits[8:0] of LFSR/Triangle Amplitude equal to 511
		1001:Unmask bits[9:0] of LFSR/Triangle Amplitude equal to 1023
		1010:Unmask bits[10:0] of LFSR/Triangle Amplitude equal to 2047
		\geq 1011:Unmask bits[11:0] of LFSR/Triangle Amplitude equal to 4095
7:6	DWAVE1[1:0]	DAC channel1 noise/triangle wave generation enable
		These bits are set/reset by software
		00: wave generation disabled
		01: Noise wave generation enabled
		1x: Triangle wave generation enabled
		Note: only used if bit DTEN1=1 (DAC channel1 trigger enabled)
5:3	DTSEL1[2:0]	DAC channel1 trigger selection
		These bits select the external event used to trigger DAC channel1
		000: Timer 6 TRGO event
		001: Timer 3 TRGO event in connectivity line devices, Timer 8 TRGO in
		high-density and XL-density devices
		010: Timer 7 TRGO event
		011: Timer 5 TRGO event
		100: Timer 2 TRGO event
		101: Timer 4 TRGO event
		110: External line9
		111: Software trigger
		Note: only used if bit DTEN1=1 (DAC channel1 trigger enabled)
2	DTEN1	DAC channel1 trigger enable
		This bit is set and cleared by software to enable/disable DAC channel1 trigger.

		0: DAC channel1 trigger disabled and data transfer into DAC_DHRx register is
		transferred one APB1 clock cycle later to the DAC_C1ODR register.
		1: DAC channel1 trigger enabled and data transfer into DAC_DHRx register is
		transferred one APB1 clock cycle later to the DAC_C1ODR register.
		Note: When software trigger is selected, it takes only one APB1 clock cycle for
		DAC_DHRx to DAC_C1ODR register transfer
1	DBOFF1	DAC channel1 output buffer disable
		This bit is set and cleared by software to enable/disable DAC channel1 output buffer.
		0: DAC channel1 output buffer enabled
		1: DAC channel1 output buffer disabled
0	DEN1	DAC channel enable
		This bit is set and cleared by software to enable/disable DAC channel1.
		0: DAC channel1 disabled
		1: DAC channel1 enabled

13.5.2. DAC software trigger register (DAC_SWTR)

Address offset: 0x04 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								Reserved	I						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved												SWTR2	SWTR1	
														w	W

Bits	Fields	Descriptions
31:2	Reserved	
1	SWTR2	 DAC channel2 software trigger This bit is set and cleared by software to enable/disable the software trigger. 0: Software trigger disabled 1: Software trigger enabled Note: This bit is reset by hardware (one APB1 clock cycle later) once the DAC_DHR2 register value is loaded to the DAC_C2ODR register.
0	SWTR1	 DAC channel1 software trigger This bit is set and cleared by software to enable/disable the software trigger. 0: Software trigger disabled 1: Software trigger enabled Note: This bit is reset by hardware (one APB1 clock cycle later) once the DAC_DHR1 register value is loaded to the DAC_C1ODR register.

13.5.3. DAC channel1 12-bit right-aligned data holding register (DAC_C1R12DHR)

Address offset: 0x08 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Res	erved						I	DAC_C1	DHR[11:0]]				
									rw						
-			-												

Bits Fields Descriptions

31:16 Reserved

11:0 DAC_C1DHR[11:0]

DAC channel1 12-bit right-aligned data

These bits are written by software which specify 12-bit data for DAC channel1.

13.5.4. DAC channel1 12-bit right-aligned data holding register (DAC_C1L12DHR)

Address offset: 0x0C Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					DAC_C1E	DHR[11:0]							Rese	rved	
					rw										
	Bits	Field	S	Des	scriptio	ns									
-	31:16	Reserv	ed												
	15:4	DAC_C1DHR[11:0] DAC channel1 12-bit left-aligned data These bits are written by software which specify 12-bit data for DAC channel1.												nel1.	
:	3:0	Reserve	ed					-			-				

13.5.5. DAC channel1 8-bit right-aligned data holding register (DAC_C1R8DHR)

Address offset: 0x10 Reset value: 0x0000 0000

Reserved									
15 14 13 12 11 10 9 8 7 6 5 4 3	1	0							
Reserved DAC_C1DHR[7:0]	DAC_C1DHR[7:0]								
rw									

Bits	Fields	Descriptions	
31:8	Reserved		

7:0 DAC_C1DHR[7:0] DAC channel1 8-bit left-aligned data

These bits are written by software which specify 8-bit data for DAC channel1.

13.5.6. DAC channel2 12-bit right-aligned data holding register (DAC_C2R12DHR)

Address offset: 0x14 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
				Reserved												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Rese	erved						I	DAC_C2	DHR[11:0]]					
				rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
Bits	F	ields		Desci	riptions											

31:12 Reserved

11:0 DAC_C2DHR[11:0] DAC channel2 12-bit left-aligned data

These bits are written by software which specify 12-bit data for DAC channel2.

13.5.7. DAC channel2 12-bit left-aligned data holding register (DAC_C2L12DHR)

Address offset: 0x18 Reset value: 0x0000 0000

3	1 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
1	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					DAC_C2D	HR[11:0]							Rese	erved	
					rw										
	Bits	Fields Descriptions													
-	31:16	Reserv	/ed												
	15:4	DAC_C2DHR[11:0] DAC channel1 12-bit left-aligned data													
					These b	its are v	written b	y softwa	are whi	ch spec	ify 12-b	it data f	or DAC	channe	2.
	3:0	Reserv	/ed												

13.5.8. DAC channel2 8-bit right-aligned data holding register (DAC_C2R8DHR)

		Addr	Address offset: 0x1C													
		Rese	et value	e: 0x00	00 000	0										
										~ .			10			
31	30) 29	28	27	26	25	24	23	22	21	20	19	18	17	16	
							Rese	rved								
15	14	4 13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			Res	erved							DACC2	DHR[7:0]				
			Res	erved				ſW	rw	ſW	DACC2 rw	DHR[7:0] rw	rw	rw	ſW	
В	its	Fields	Res	erved Des	scriptio	ns		rw	rw	rw	DACC2 rw	DHR[7:0] rw	rw	rw	rw	
<u>в</u> 3	its 1:8	Fields	Res	erved Des	scriptio	ns		rw	rw	rw	DACC2 rw	DHR[7:0] rw	rw	rw	rw	
<u>В</u> 3	its 1:8	Fields Reserved	Res		scriptio	ns		rw	rw	rw	DACC2 rw	rw	rw	rw	rw	
<u>В</u> 3 7	its 1:8 7:0	Fields Reserved DAC_C2	Res	erved Des :0] DA	scriptio	ns Inel2 8-I	oit right-	rw	rw data	rw	DACC2 rw	rw	rw	rw	rw	

501

13.5.9. Dual DAC 12-bit right-aligned data holding register (DAC_DCR12DHR)

		Address offset: 0x20													
		Res	et valu	e: 0x00	000 000	0									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Re	eserved						[DAC_C2E	DHR [11:0]				
									rw						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Re	eserved						[DAC_C1E	DHR [11:0]				
		rw													
Bi	ts	Field	S	Descriptions											
3	1:28	Reserv	ed												
2	7:16	16 DAC_C2DHR[11:0] DAC channel2 12-bit right-aligned data These bits are written by software which specify 12-bit data for DAC									C channe	əl2.			
1	5:12	2 Reserved													
1	1:0	DAC_C1DHR[11:0] DAC channel1 12-bit right-aligned data These bits are written by software which specify 12-bit data for DAC channel1.										el1.			

13.5.10. Dual DAC 12-bit left-aligned data holding register (DAC_DCL12DHR)

Address offset: 0x24 Reset value: 0x0000 0000

3′	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						DAC_C2D	HR [31:20]						Rese	rved	
						rw										
15	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						DAC_C1E	DHR [15:4]							Rese	rved	
						rw										
_	Bits	5	Fields	S	De	scriptio	ons									
	31	:20	DAC_C	2DHR	[11:0]	DAC c	hannel2	12-bit l	eft-align	ed data	a					
						These b	oits are v	vritten k	by softwa	are whi	ch spec	ify 12-b	oit data f	or DAC	channel	2.
	19:	:16	Reserve	ed												
	15	• 1			11.01		hannali	10 hit l	oft olign	od dota						
	10	.4	DAC_C		[11.0]				en-align		1				- h - n - a - l	4
			_			meset	Jis are v	vinten t	by softwa	are whi	ch spec	ing 12-0	ni uata f		channel	1.
	3:0)	Reserve	ed												

13.5.11. Dual channel2 8-bit right-aligned data holding register (DAC_DCR8DHR)

Address offset: 0x28 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		-	DAC_C2	DHR [15:	8]	-	-	DAC_C1DHR [7:0]								
			rw									rw				
_	Bits	Fields	S	De	scriptions											
	31:20	31:20 DAC_C2DHR[11:0]		[11:0]	DAC channel2 8-bit right-aligned data											
					These	bits are	written	by softw	vare wh	ich spe	cify 8-b	it data f	or DAC	channel	2.	
	19:16	Reserve	ed													
	15:4	DAC_C1DHR[11:0]			DAC channel1 8-bit right-aligned data These bits are written by software which specify 8-bit data for DAC channel1.											
	3:0	Reserve	ed					,		-1 -	,					

13.5.12. DAC channel1 output data register (DAC_C1ODR)

Address offset: 0x2C															
	Reset value: 0x0000 0000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved					DAC_ODR1[11:0]										
									rw						
Bi	ts	Field	S	De	scriptio	ns									
31:12		Reserv	ed												
11:0		DAC_OI	DR1[11:	0]	DAC ch These b	annel1 oits are i	data out read onl	put y,they	contair	n data c	output fo	or DAC	channel	1.	

13.5.13. DAC channel2 output data register (DAC_C2ODR)

		Add	ress off	fset: 0x	:30										
		Reset value: 0x0000 0000													
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	eserved	DAC_ODR2[11:0]												
									rw						
Bit	s	Fields		Desc	riptions										
	31:12	Reserv													
	11:0	11:0 DAC_ODR2[11:0]			DAC channel1 data output These bits are read only, they contain data output for DAC channel2.										

14. Inter-integrated circuit (I2C) interface

14.1. Introduction

The I2C (inter-integrated circuit) module provides an I2C interface which is an industry standard two line serial interface for MCU to communicate with external I2C interface.I2C bus uses two serial lines: a serial data line, SDA, and a serial clock line, SCL.

The I2C interface implements standard I2C protocol at standard or fast speed as well as CRC calculation and checking, SMBus (system management bus) and PMBus (power management bus). It also supports multi-master I2C bus. The I2C interface provides DMA mode for users to reduce CPU overload.

14.2. Main features

- Parallel-bus to I2C-bus protocol converter and interface
- Both master and slave functions with the same interface
- Bi-directional data transfer between master and slave
- Supports 7-bit and 10-bit addressing and general call addressing
- Multi-master capability
- Supports Standard Speed (up to 100 kHz) and Fast Speed (up to 400 kHz)
- Configurable SCL stretching in slave mode
- Supports DMA mode
- SMBus 2.0 and PMBus compatible
- 2 Interrupts: one for successful byte transmission and the other for error event
- Optional PEC (packet error checking) generation and check

14.3. Function description

Figure 1-6 below provides details on the internal configuration of the I2C interface.

Figure 14-1 I2C module block diagram

Table 14-1 Definition of I2C-bus terminology

Term	Description										
Transmitter	ne device which sends data to the bus										
Receiver	he device which receives data from the bus										
Master	the device which initiates a transfer, generates clock signals and										
	terminates a transfer										
Slave	he device addressed by a master										
Multi-master	more than one master can attempt to control the bus at the same time										
	without corrupting the message										
Synchronization	procedure to synchronize the clock signals of two or more devices										
Arbitration	procedure to ensure that, if more than one master simultaneously tries to										
	control the bus, only one is allowed to do so and the winning message is										
	not corrupted										

14.3.1. SDA and SCL lines

The I2C module has two external lines, the serial data SDA and serial clock SCL lines. The

two wires carry information between the devices connected to the bus.

Both SDA and SCL are bidirectional lines, connected to a positive supply voltage via ccurrent-source or pull-up resistor. When the bus is free, both lines are HIGH. The output stages of devices connected to the bus must have an open-drain or open-collect or to perform the wired-AND function. Data on the I2C-bus can be transferred at rates of up to 100 kbit/s in the standard-mode and up to 400 kbit/s in the fast mode. Due to the variety of different technology devices (CMOS, NMOS, bipolar) that can be connected to the I2C-bus, the levels of the logical '0' (LOW) and '1' (HIGH) are not fixed and depend on the associated level of VDD.

14.3.2. Data validation

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW (see Figure 14-2). One clock pulse is generated for each data bit transferred.

Figure 14-2 Data validation

14.3.3. Start and stop condition

All transactions begin with a START (S) and are terminated by a STOP (P) (see Figure 14-3).A HIGH to LOW transition on the SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.

Figure 14-3 Start and stop condition

14.3.4. Clock synchronization

Two masters can begin transmitting on a free bus at the same time and there must be a method for deciding which takes control of the bus and complete its transmission. This is done by clock synchronization and arbitration. In single master systems, clock

synchronization and arbitration are not needed.

Clock synchronization is performed using the wired-AND connection of I2C interfaces to the SCL line. This means that a HIGH to LOW transition on the SCL line causes the masters concerned to start counting off their LOW period and, once a master clock has gone LOW, it holds the SCL line in that state until the clock HIGH state is reached (see Figure 14-4). However, if another clock is still within its LOW period, the LOW to HIGH transition of this clock may not change the state of the SCL line. The SCL line is therefore held LOW by the master with the longest LOW period. Masters with shorter LOW periods enter a HIGH wait-state during this time.

14.3.5. Arbitration

Arbitration, like synchronization, refers to a portion of the protocol required only if more than one master is used in the system. Slaves are not involved in the arbitration procedure.

A master may start a transfer only if the bus is free. Two masters may generate a START condition within the minimum hold time of the START condition which results in a valid START condition on the bus. Arbitration is then required to determine which master will complete its transmission.

Arbitration proceeds bit by bit. During every bit, while SCL is HIGH, each master checks to see if the SDA level matches what it has sent. This process may take many bits. Two masters can actually complete an entire transaction without error, as long as the transmissions are identical. The first time a master tries to send a HIGH, but detects that the SDA level is LOW, the master knows that it has lost the arbitration and turns off its SDA output driver. The other master goes on to complete its transaction.

Figure 14-5 SDA Line arbitration

14.3.6. I2C communication flow

Each I2C device is recognized by a unique address (whether it is a microcontroller, LCD driver, memory or keyboard interface) and can operate as either a transmitter or receiver, depending on the function of the device.

An I2C slave will continue to detect addresses after a start condition on I2C bus and compare the detected address with its own address which is programmable by software. Once the two addresses matches, the I2C slave will send an ACK to the I2C bus and responses to the following command on I2C bus: transmitting or receiving desired data. Additionally, if General Call is enabled by software, an I2C slave always responses to a General Call Address (0x00). The I2C block support both 7-bit and 10-bit addresses.

An I2C master always initiates or end a transfer using Start or Stop condition and it's also responsible for SCL clock generation.

Figure 14-6 I2C communication flow with 7-bit address.

Figure 14-7 I2C communication flow with 10-bit address.

	1 1 1 1 0 X X	0						 		
S	SLAVE ADDRESS 1st 7 BITS	R/W	A1	SLAVE ADDRESS 2nd BYTE	A2	DATA	Α	 DATA	A/Ā	P

14.3.7. Programming model

An I2C device such as LCD driver may be only a receiver, whereas a memory can both receive and transmit data. In addition to transmitters and receivers, devices can also be considered as masters or slaves when performing data transfers. A master is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time ,any device addressed is considered a slave.

An I2C device is able to transmit or receive data whether it's a master or a slave, thus, there're 4 operation modes for an I2C device:

- Master Transmitter
- Master Receiver
- Slave Transmitter
- Slave Receiver

I2C block supports all of the four I2C modes. After system reset, it works in slave mode. If it's programmed by software and finishes sending a Start condition on I2C bus, it changes into master mode. The I2C changes back to slave mode after it's programmed by software and finishes sending a Stop Condition on I2C bus.

Programming model in slave transmitting mode

As it shows in below, software should follow these steps to operate I2C block in slave mode for transmitting some data to the I2C bus:

- First of all, software should enable I2C peripheral clock as well as configure clock related registers in I2C_CTLR2 to make sure correct I2C timing. After enabled and configured, I2C operates in its default slave state and waits for Start condition followed by Address on I2C bus.
- 2. After receiving a Start condition followed by a matched address, either in 7-bit format or in 10-bit format, the I2C hardware sets the ADDSEND bit in I2C_STR1 register, which should be monitored by software either by polling or interrupt. Now software should read I2C_STR1 and then I2C_STR2 to clear ADDSEND bit. If the address is in 10-bit format, the I2C master should then generate a Restart condition and send a header to the I2C bus. The slave sets ADDSEND bit again after it detects the restart condition and the following header. Software also clears the ADDSEND bit again by reading I2C_STR1 and then I2C_STR2.
- 3. Now I2C enters data transmission stage and hardware sets TBE bit because both the shift register and data register I2C_DTR are empty. Software now write the first byte data to I2C_DTR register, but the TBE is not cleared because the written byte in I2C_DTR is moved to internal shift register immediately. The I2C begins to transmit data to I2C bus as soon as shift register is not empty.

- 4. During the first byte's transmission, software can write the second byte to I2C_DTR, and this time TBE is cleared because neither I2C_DTR nor shift register is empty.
- 5. Any time TBE is set, software can write a byte to I2C_DTR as long as there are still data to be transmitted.
- 6. During the second last byte's transmission, software writes the last data to I2C_DTR to clear the TBE flag and doesn't care TBE anymore. So TBE will be seted after the byte's transmission and not cleared until a Stop condition.
- 7. I2C master doesn't acknowledge to the last byte according to the I2C protocol, so after sending the last byte, I2C slave will wait for the Stop condition on I2C bus and sets AE (acknowledge Fault) bit to notify software that transmission completes. Software clears AE bit by writing 0 to it.

Figure 14-8 Programming model for slave transmitting

Programming model in slave receiving mode

As it shows in figure below, software should follow these steps to operate I2C block in slave mode for receiving some data from the I2C bus:

- First of all, software should enable I2C peripheral clock as well as configure clock related registers in I2C_CTLR2 to make sure correct I2C timing. After enabled and configured, I2C operates in its default slave state and waits for Start condition followed by Address on I2C bus.
- After receiving a Start condition followed by a matched 7-bit or 10-bit address, the I2C hardware sets the ADDSEND bit in I2C status register, which should be monitored by software either by polling or interrupt. Now software should read I2C_STR1 and then I2C_STR2 to clear ADDSEND bit. The I2C begins to receive data to I2C bus as soon as ADDSEND bit is cleared.
- 3. As soon as the first byte is received, RBNE is set by hardware. Software now can read the first byte from I2C_DTR and RBNE is cleared as well.
- 4. Any time RBNE is set, software can read a byte to I2C_DTR.
- 5. After last byte is received, RBNE is set. Software reads the last byte.
- 6. STPDET bit is set when I2C detects a Stop condition on I2C bus and software reads I2C_STR1 and then writes I2C_CTLR1 to clear the STPDET bit.

Figure 14-9 Programming model for slave receiving

Programming model in master transmitting mode

As it shows in figure below, software should follow these steps to operate I2C block in master mode for transmitting some data to the I2C bus:

- First of all, software should enable I2C peripheral clock as well as configure clock related registers in I2C_CTLR2 to make sure correct I2C timing. After enabled and configured, I2C operates in its default slave state and waits for Start condition followed by Address on I2C bus.
- 2. Software set GENSTA bit requesting I2C to generate a Start condition to I2C bus.
- 3. After sending a Start condition, the I2C hardware sets the SBSEND bit in I2C status register and enters master mode. Now software should clear the SBSEND bit by reading I2C_STR1 and then writing a 7-bit address or header of a 10-bit address to I2C_DTR. I2C begins to send address or header to I2C bus as soon as SBSEND bit is cleared. If the address sent is a header of 10-bit address, the hardware sets ADD10S END bit after sending header and software should clear the ADD10SEND bit by reading I2C_STR1 and writing 10-bit lower address to I2C_DTR.
- 4. After the 7-bit or 10-bit address is sent, the I2C hardware sets the ADDSEND bit and

software should clear the ADDSEND bit by reading I2C_STR1 and then I2C_STR2.

- 5. Now I2C enters data transmission stage and hardware sets TBE bit because both the shift register and data register I2C_DTR are empty. Software now write the first byte data to I2C_DTR register, but the TBE is not cleared because the written byte in I2C_DTR is moved to internal shift register immediately. The I2C begins to transmit data to I2C bus as soon as shift register is not empty.
- 6. During the first byte's transmission, software can write the second byte to I2C_DTR, and this time TBE is cleared because neither I2C_DTR nor shift register is empty.
- 7. Any time TBE is set, software can write a byte to I2C_DTR as long as there are still data to be transmitted.
- 8. During the second last byte's transmission, software writes the last data to I2C_DTR to clear the TBE flag and doesn't care TBE anymore. So TBE will be asserted after the byte's transmission and not cleared until a Stop condition.
- After sending the last byte, I2C master sets BTC bit because both shift register and I2C_DTR are empty. Software should program a Stop request now, and the I2C clears both TBE and BTC flags after sending a Stop condition.

Programming model in master receiving mode

In master receiving mode, a master is responsible for generating NACK for the last byte reception and then sending STOP condition on I2C bus. So, special attention should be paid to ensure the correct ending of data receiving. Two solutions for master receiving is provided here for your application: Solution A and B. Solution A requires the software's quick response to I2C events, while Solution B doesn't.

Solution A

 First of all, software should enable I2C peripheral clock as well as configure clock related registers in I2C_CTLR2 to make sure correct I2C timing. After enabled and configured, I2C operates in its default slave state and waits for Start condition followed by Address on I2C bus.

- 2. Software set GENSTA bit requesting I2C to generate a Start condition to I2C bus.
- 3. After sending a Start condition, the I2C hardware sets the SBSEND bit in I2C status register and enters master mode. Now software should clear the SBSEND bit by reading I2C_STR1 and then writing a 7-bit address or header of a 10-bit address to I2C_DTR. I2C begins to send address or header to I2C bus as soon as SBSEND bit is cleared. If the address sent is a header of 10-bit address, the hardware sets ADD10SEND bit after sending header and software should clear the ADD10SEND bit by reading I2C_STR1 and writing 10-bit lower address to I2C_DTR.
- 4. After the 7-bit or 10-bit address is sent, the I2C hardware sets the ADDSEND bit and software should clear the ADDSEND bit by reading I2C_STR1 and then I2C_STR2. If the address is in 10-bit format, software should then set Start bit again to generate a Restart condition on I2C bus and SBSEND is set after the Restart is sent out. Software should clear the SBSEND bit by reading I2C_STR1 and writing header toI2C_DTR. Then the header is sent out to I2C bus, and ADDSEND is set again. Software should again clear ADDSEND by reading I2C_STR1 and then I2C_STR2.
- 5. As soon as the first byte is received, RBNE is set by hardware. Software now can read the first byte from I2C_DTRand RBNE is cleared as well.
- 6. Any time RBNE is set, software can read a byte from I2C_DTR,
- After the second last byte is received, the software should clear ACKEN bit and set GENSTP bit. These actions should complete before the end of the last byte's receiving to ensure that NACK is sent for the last byte.
- 8. After last byte is received, RBNE is set. Software reads the last byte. I2C doesn't send ACK to the last byte and generate a Stop condition after the transmission of the last byte.

Above steps requires byte number N>1. If N=1, step 7 should be performed after Step 4 and completes before the end of the single byte's receiving.

Figure 14-11 Programming model for master receiving using Solution A

Solution B

- First of all, software should enable I2C peripheral clock as well as configure clock related registers in I2C_CTLR2 to make sure correct I2C timing. After enabled and configured, I2C operates in its default slave state and waits for Start condition followed by Address on I2C bus.
- 2. Software set GENSTA bit requesting I2C to generate a Start condition to I2C bus.
- 3. After sending a Start condition, the I2C hardware sets the SBSEND bit in I2C status register and enters master mode. Now software should clear the SBSEND bit by

GD32F10x User Manual

reading I2C_STR1 and then writing a 7-bit address or header of a 10-bit address toI2C_DTR. I2C begins to send address or header to I2C bus as soon as SBSEND bit is cleared. If the address sent is a header of 10-bit address, the hardware sets ADD10SEND bit after sending header and software should clear the ADD10SEND bit by reading I2C_STR1 and writing 10-bit lower address toI2C_DTR.

- 4. After the 7-bit or 10-bit address is sent, the I2C hardware sets the ADDSEND bit and software should clear the ADDSEND bit by reading I2C_STR1 and then I2C_STR2. If the address is in 10-bit format, software should then set Start bit again to generate a Restart condition on I2C bus and SBSEND is set after the Restart is sent out. Software should clear the SBSEND bit by reading I2C_STR1 and writing header toI2C_DTR. Then the header is sent out to I2C bus, and ADDSEND is set again. Software should again clear ADDSEND by reading I2C_STR1 and then I2C_STR2.
- 5. As soon as the first byte is received, RBNE is set by hardware. Software now can read the first byte from I2C_DTR and RBNE is cleared as well.
- Any time RBNE is set, software can read a byte from I2C_DTR until the master receives N-3 bytes.
- As shown in Figure 14-12, the N-2 byte is not read out by software, so after the N-1 byte is received, bothBTC and RBNE are asserted. The bus is stretched by master to prevent the reception of the last byte. Then software should clear ACKEN bit.
- 8. Software reads out N-2 byte, clearing BTC. After this the N-1 byte is moved from shift register to I2C_DTR and bus is released and begins to receive the last byte.
- 9. After last byte is received, both BTC and RBNE is set again. Software sets GENSTP bit and master sends out a Stop condition on bus.
- 10. Software reads the N-1 byte, clearing BTC. After this the last byte is moved from shift register to I2C_DTR.
- 11. Software reads the last byte, clearing RBNE.

Above steps require that byte number N>2. N=1 or N=2 are similar:

N=1

In Step4, software should reset ACK bit before clearing ADDSEND bit and set GENSTP bit after clearing ADDSEND bit. Step 5 is the last step when N=1.

N=2

In Step 2, software should set POAP bit before set GENSTA bit. In Step 4, software should reset ACKEN bit before clearing ADDSEND bit. In Step 5, software should wait until BTC is seted and then set GENSTP bit and reads I2C_DTR twice..

Figure 14-12 Programming model for master receiving using Solution B

I2C Line State	Hardware Action	Software Flow
		1) Software initialization
IDLE		2) Set GENSTA
Master generates Start	•	
SCL stretched by master	Set SBSEND	→ 3) Clear SBSEND
Master sends Header Slave sends Acknowledge	•	
SCL stretched by master	Set ADD10SEND	→ 4) Clear ADD10SEND
Master sends Address Slave sends Acknowledge	←	
SCL stretched by master	Set ADDSEND	→ 4) Clear ADDSEND
Mostor gonoraton Dostart		4) Set GENSTA
condition	•	
SCL stretched by master	Set SBSEND	4) Clear SBSEND
Master sends Header Slave sends Acknowledge		
SCL stretched by master		4) Clear ADDSEND
Slave sends DATA(1) Master sends Acknowledge	•	
(Data transmission)		→ 5) Read DATA(1)
Slave sends DATA(N-2) Master sends Acknowledge		6) Read DATA(N-3)
Slave sends DATA(N-1) Master sends Acknowledge	Set RBNE	
SCL stretched by master	└─▶ Set RBNE和BTC	→ 7) Clear ACKEN
Slave sends DATA(N)	4	8) Kead DATA(N-2)
Master DON'T send Ack	Set RBNF和BTC	
SCL stretched by master		7) Set GENSTP
Master generates stop condition	•	8) Read DATA(N-1)
		9) Read NDATA

Programming model for DMA mode

As is shown in Programming Model, each time TBE or RBNE is asserted, software should write or read a byte, this may cause CPU's high overload. DMA can be used to process TBE

and RBNE flag: each time TBE or RBNE is asserted. DMA does a read or write operation automatically.

14.3.8. Packet error checking

There is a CRC-8 calculator in I2C block to perform Packet Error Checking for I2C data. The polynomial of the CRC is x8 + x2 + x + 1 which is compatible with the SMBus protocol. If enabled by setting PECEN bit, the PEC will calculate all the data transmitted through I2C including Address. I2C is able to send out the PEC value after the last data byte or check the received PEC value with its calculated PEC using the PECTRANS bit. In DMA mode, the I2C will send or check PEC value automatically if PECEN bit is set.

14.3.9. SMBus support

The System Management Bus (abbreviated to SMBus or SMB) is a single-ended simple two-wire bus for the purpose of lightweight communication. Most commonly it is found in computer motherboards for communication with the power source for ON/OFF instructions. It is derived from I2C for communication with low-bandwidth devices on a motherboard, especially power related chips such as a laptop's rechargeable battery subsystem (see Smart Battery Data).

SMBus protocol

Each message transaction on SMBus follows the format of one of the defined SMBus protocols. The SMBus protocols are a subset of the data transfer formats defined in the I2C specifications. I2C devices that can be accessed through one of the SMBus protocols are compatible with the SMBus specifications. I2C devices that do not adhere to these protocols cannot be accessed by standard methods as defined in the SMBus and ACPI specifications.

Address resolution protocol

The SMBus uses I2C hardware and I2C hardware addressing, but adds second-level software for building special systems. In particular its specifications include an Address Resolution Protocol that can make dynamic address allocations. Dynamic reconfiguration of the hardware and software allow bus devices to be 'hot-plugged' and used immediately, without restarting the system. The devices are recognized automatically and assigned unique addresses. This advantage results in a plug-and-play user interface. In both those protocols there is a very useful distinction made between a System Host and all the other devices in the system that can have the names and functions of masters or slaves.

Time-out feature

SMBus has a time-out feature which resets devices if a communication takes too long. This explains the minimum clock frequency of 10 kHz to prevent locking up the bus. I2C can be a 'DC' bus, meaning that a slave device stretches the master clock when performing some

GD32F10x User Manual

routine while the master is accessing it. This will notify to the master that the slave is busy but does not want to lose the communication. The slave device will allow continuation after its task is complete. There is no limit in the I2C bus protocol as to how long this delay can be, whereas for a SMBus system, it would be limited to 35ms. SMBus protocol just assumes that if something takes too long, then it means that there is a problem on the bus and that all devices must reset in order to clear this mode. Slave devices are not then allowed to hold the clock low too long.

Packet error checking

SMBus 2.0 and 1.1 allow enabling Packet Error Checking (PEC). In that mode, a PEC (packet error code) byte is appended at the end of each transaction. The byte is calculated as CRC-8 checksum, calculated over the entire message including the address and read/write bit. The polynomial used is x8+x2+x+1 (the CRC-8-ATM HEC algorithm, initialized to zero).

SMBus alert

The SMBus has an extra optional shared interrupt signal called SMBALERT# which can be used by slaves to tell the host to ask its slaves about events of interest. SMBus also defines a less common "Host Notify Protocol", providing similar notifications but passing more data and building on the I2C multi-master mode.

14.3.10. Status, errors and interrupts

There are several status and error flags in I2C, and interrupt may be asserted from these flags by setting some register bits (refer to I2C register for detail).

Event Flag Name	Description
SBSEND	Start condition sent (master)
ADDSEND	Address sent or received
ADD10SEND	Header of 10-bit address sent
STPDET	Stop condition detected
BTC	Byte transmission completes
TBE	I2C_DTR is empty when transmitting
RBNE	I2C_DTR is not empty when receiving

Table 14-2 Event status flags

Table 14-3 I2C error flags

I2C Error Name	Description						
BE	Bus error						
LOSTARB	Arbitration lost						
RYORE	Over-run or under-run when SCL stretch is						
RAORE	disabled.						
AE	No acknowledge received						

GD32F10x User Manual

I2C Error Name	Description
PECE	CRC value doesn't match
SMBTO	Bus timeout in SMBus mode
SMBALTS	SMBus Alert

14.4. I2C registers

14.4.1. I2C control register 1 (I2C_CTLR1)

Address offset: 0x00 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SRESET	Reserved.	SALT	PECTRANS	POAP	ACKEN	GENSTP	GENSTA	DISSTRC	GCEN	PECEN	ARPEN	SMBSEL	Reserved.	SMBEN	I2CEN
rw		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		rw	rw

Bits	Fields	Descriptions
15	SRESET	Software reset I2C, software should wait until the I2C lines are released to reset the
		12C
		0: I2C is not under reset
		1: I2C is under reset
14	Reserved	Must keep the reset value
13	SALT	Software can set and clear this bit and hardware can clear this bit.
		0: Don't issue alert through SMBA
		1: Issue alert through SMBA pin
12	PECTRANS	PEC Transfer
		Software sets and clears this bit while hardware clears this bit when PEC is
		transferred or START/STOP condition detectedor I2CEN=0
		0: Don't transfer PEC value
		1: Transfer PEC
11	POAP	Position of ACK/PEC's meaning
		This bit is set and cleared by software and cleared by hardware when I2CEN=0
		0: ACKEN bit decides whether to send ACK or not for the current byte that is being
		received. PEC bit indicates that PECTRANS is in shift register.
		1: ACKEN bit decides whether to send ACK or not for the next byte, PECTRANS bit
		indicates that the next byte to be received is PEC
10	ACKEN	Whether or not to send an ACK
		This bit is set and cleared by software and cleared by hardware when I2CEN=0
		0: ACK will not be sent

		1: ACK will be sent
9	GENSTP	Generate a STOP condition on I2C bus This bit is set and cleared by software and set by hardware when SMBUs timeout and cleared by hardware when STOP condition detected. 0: STOP will not be sent 1: STOP will be sent
8	GENSTA	Generate a START condition on I2C bus This bit is set and cleared by software and and cleared by hardware when START condition detected or I2CEN=0 0: START will not be sent 1: START will be sent
7	DISSTRC	Whether to stretch SCL low when data is not ready in slave mode. This bit is set and cleared by software. 0: SCL Stretching is enabled 1: SCL Stretching is disabled
6	GCEN	Whether or not to response to a General Call (0x00) 0: Slave won't response to a General Call 1: Slave will response to a General Call
5	PECEN	PEC Calculation Switch 0: PEC Calculation off 1: PEC Calculation on
4	ARPEN	ARP protocol in SMBus switch 0: ARP is disabled 1: ARP is enabled
3	SMBSEL	SMBusType Selection 0: Device 1: Host
2	Reserved	Must keep the reset value
1	SMBEN	SMBus/I2C mode switch 0: I2C mode 1: SMBus mode
0	I2CEN	I2C peripheral enable 0: I2C is disabled 1: I2C is enabled

14.4.2. I2C control register 2 (I2C_CTLR2)

Address offset: 0x04

Reset value: 0x0000

GD32F10x User Manual

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	Reserved		DMALST	DMAON	BIE	EE	EIE	Rese	rved	I2CCLK[5:0]							
			rw	rw	rw	rw	rw										
Bits		Field	s	Descriptions													
15:1	3	Rese	erved	Must k	eep the re	eset value											
12		DMA	LST	Flag ir	ndicating E	MA last tra	ansfer										
				0: Next DMA EOT is not the last transfer													
				1: Nex	t DMA EC	T is the la	st transfer										
11		DMA	ON	DMA modeswitch													
				0: DMA mode disabled													
				1: DM	A mode ei	nabled											
10		BIE		Buffer	interrupt e	enable											
				0: No interrupt asserted when $TBE = 1$ or $RBNE = 1$													
				1: Inte	rrupt asse	rted when	TBE = 1 or	RBNE	= 1 if	ITEV	TEN=1						
9		EE		Event interrupt enable													
				0: Eve	0: Event interrupt disabled												
				1: Eve	1: Event interrupt enabled, means that interrupt will be generated when SBSEND,												
				ADDS	ADDSEND, ADD10SEND, STPDET or BTC flag asserted or TBE=1 or RBNE=1 if												
				BIE=1													
8		EIE		Error i	nterrupt e	nable											
				0: Erro	or interrupt	disabled											
				1: Erro	or interrupt	enabled, i	means that	interru	pt will	be ge	nerate	d wher	n BE, L	OSTA	ARB,		
				AE, R	XORE, PE	CE, SMB1	O or SMB	ALTS fl	ag as	serted							
7:6		Rese	erved	Must k	eep the re	eset value											
5:0		I2CC	LK[5:0]	I2C Peripheral clock frequency													
				I2CCL	K[5:0]sho	uld be the	frequency c	f input	APB	clock	in MHz	which	ı is at l	east 2			
				0h - 1l	n: Not allo	wed											
				2h - 36	6h: 2 MHz	~36MHz											
				37h - 6	63h: Not a	llowed due	to the limit	ation o	f APE	3 clock							

14.4.3. I2C own address register 1 (I2C_AR1)

Address offset: 0x08 Reset value: 0x0000

15	14	13	12	11	10	9	8	7 6 5 4 3 2 1							0
ADDFORMAT		F	Reserved	ADDRE	ADDRESS[7:1]							ADDRESS0			
rw			r	w	rw							rw			
															524

Bits	Fields	Descriptions
15	ADDFORMAT	Address mode for the I2C Slave
		0: 7-bit Address
		1: 10-bit Address
14:10	Reserved	Must keep the reset value
9:8	ADDRESS[9:8]	Highest two bits of a 10-bit address
7:1	ADDRESS[7:1]	7-bit address or Lowest 7 bits of a 10-bit address
0	ADDRESS0	R/W bit of an I2C address

14.4.4. I2C own address register 2 (I2C_AR2)

Address offset: 0x0C Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved									ADDRESS2[7:1]						
											rw				rw

Bits	Fields	Descriptions
15:8	Reserved	Must keep the reset value
7:1	ADDRESS2[7:1]	Second I2C address for the slave in Dual-Address mode
0	DUADEN	Dual-Address Mode switch
		0: Dual-Address mode disable
		1: Dual-address mode is enabled

14.4.5. I2C transfer buffer register (I2C_DTR)

		Addre Reset	ss offse value:	et: 0x10 0x0000)											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Reserved									TRB[7:0]						
											r	w				

Bits	Fields	Descriptions
7:0	TRB[7:0]	Transmission or reception data buffer register.

14.4.6. I2C transfer status register 1 (I2C_STR1)

Address offset: 0x14 Reset value: 0x0000

15	14 13	12	11	10	9	8	7	6	5	4	3	2	1	0	
SMB ALTS	SMBTO Reserved	d. PECE	RXORE	AE	LOSTARB	BE	TBE	RBNE	Reserved.	STPDET	ADD10SEND	BTC	ADDSEND	SBSEND	
rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	r	r		r	r	r	r	r	
Bits	Fields		Desc	riptior	าร										
15	SMBALTS		SMBu	is Aler	t status										
			This b	oit is se	et by har	dware	and	cleare	d by writ	ting 0.					
			0: SM	BA pir	n not pull	ed do	wn (d	levice	mode) c	or no Ale	ert detecte	d (hos	st mode)		
			1: SM	BA pir	n pulled o	down	(devid	ce moc	le) or Al	ert dete	ected (host	mode	e)		
14	SMBTO		Timeout signal in SMBus mode												
			This bit is set by hardware and cleared by writing 0.												
			0: No timeout error												
			1: Timeout event occurs (SCL is low for 25 ms)												
13	Reserved		Must keep the reset value												
12	PECE		PEC (error v	/hen rece	eivina	data								
			This b	oit is se	et by har	dware	and	cleare	d by writ	tina 0.					
			0: Re	ceived	PEC an	d calc	culate	d PEC	match						
			1: Re	ceived	PEC an	d calc	ulate	d PEC	don't m	atch. 12	C will send	d NAC	CK carele	ss of	
			ACKE	N bit.						,					
11	RXORE		Over-	run or	under-ru	ın situ	ation	occurs	s in slav	e mode	, when SC	L stre	tching is		
			disabl	ed. In	slave re	ceivin	g moo	de, if th	ne last b	yte in I2	2C_DTR is	not r	ead out w	/hile the	
			follow	ing by	te is alre	ady re	eceive	ed, ove	er-run oc	curs. In	slave trar	smitti	ing mode	, if the	
			currer	nt byte	is alread	dy ser	nt out,	while	the I2C	_DTR is	s still empty	y, unc	ler-run oc	curs.	
			This t	oit is se	et by har	dware	and	cleare	d by writ	ting 0.					
			0: No	over-r	un or un	der-ru	in occ	curs							
			1: Ove	ər-run	or under	-run c	occurs	6							
10	AE		Ackno	owledg	je Failure	9									
			This b	oit is se	et by har	dware	and	cleare	d by writ	ting 0.					
			0: No	Ackno	owledge	Failur	е								
			1: Acł	nowle	edge Fail	ure									
9	LOSTARB		Arbitr	ation L	ost in m	aster	mode								
			This t	oit is se	et by har	dware	and	cleare	d by writ	ting 0.					
			0: No	Arbitra	ation Los	st									
			1: Arb	itratio	n Lost oc	curs	and th	ne I2C	block cł	nanges	back to sla	ave m	ode.		
8	BE		A bus	error	occurs ir	ndicati	ion a	unexpe	ected St	art or S	top conditi	on on	I2C bus		

		This bit is set by hardware and cleared by writing 0.
		0: No bus error
		1: A bus error detected
7	TBE	I2C_DTR is Empty during transmitting
		This bit is set by hardware after it moves a byte from I2C_DTR to shift register and
		cleared by writing a byte to I2C_DTR. If both the shift register and I2C_DTR are
		empty, writing I2C_DTR won't clear TBE (refer to Programming Model for detail).
		0:I2C_DTR is not empty
		1:I2C_DTR is empty, software can write
6	RBNE	TRBR is not Empty during receiving
		This bit is set by hardware after it moves a byte from shift register to I2C_DTR and
		cleared by reading it. If both BTC and RBNE are asserted, reading I2C_DTR won't
		clear RBNE because the shift register's byte is moved to I2C_DTR immediately.
		0: TRBRis empty
		1: TRBR is not empty, software can read
5	Reserved	Must keep the reset value
4	STPDET	Stop condition detected in slave mode
		This bit is set by hardware and cleared by reading I2C_STR1 and then writing CTLR1
		0: Stop condition not detected in slave mode
		1: Stop condition detected in slave mode
3	ADD10SEND	Header of 10-bit address is sent in master mode
		This bit is set by hardware and cleared by reading I2C_STR1 and writing I2C_DTR.
		0: No header of 10-bit address sent in master mode
		1: Header of 10-bit address is sent in master mode
2	BTC	Byte Transmission Finishes.
		If a byte is already received in shift register but I2C_DTR is still full in receiving mode
		or a byte is already sent out from shift register but I2C_DTR is still empty in
		transmitting mode, the BTC flag is asserted if SCL stretching enabled.
		This bit is set by hardware and cleared by reading I2C_STR1 and reading or writing
		I2C_DTR.
		0:BTC not asserted
		1: BTC asserted
1	ADDSEND	Address is sent in master mode or received and matches in slave mode.
		This bit is set by hardware and cleared by reading I2C_STR1 and reading SR2.
		0: No address sent or received
		1: Address sent out in master mode or a matched address is received in salve mode
0	SBSEND	Start condition sent out in master mode
		This bit is set by hardware and cleared by reading I2C_STR1 and writing I2C_DTR
		0: No start condition sent
		1: Start condition sent

14.4.7. I2C transfer status register 2 (I2C_STR2)

Address offset: 0x18 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ECV[7:0]								DUMODF	HSTSMB	DEFSMB	RXGC	Reserved.	TRS	I2CBSY	MASTER
r								r	r	r	r		r	r	r

Bits	Fields	Descriptions
15:8	ECV[7:0]	Packet Error Checking Value that calculated by hardware when PEC is enabled.
7	DUMODF	Dual Flag in slave mode indicating which address is matched in dual-address mode
		This bit is cleared by hardware after a Stop or a Start condition or I2CEN=0
		0: OAR1 address matches
		1: OAR2 address matches
6	HSTSMB	SMBus Host Header detected in slave mode
		This bit is cleared by hardware after a Stop or a Start condition or I2CEN=0
		0: No SMBus Host Header detected
		1: SMBus Host Header detected
5	DEFSMB	SMBus host header in slave mode
		This bit is cleared by hardware after a Stop or a Start condition or I2CEN=0.
		0: SMBus Device has no default address
		1: Received a default address for SMBus Device
4	RXGC	General call address (00h) received.
		This bit is cleared by hardware after a Stop or a Start condition or I2CEN=0.
		0: No general call address (00h) received
		1: General call address (00h) received
3	Reserved	Must keep the reset value
2	TRS	Whether the I2C is a transmitter or a receiver
		This bit is cleared by hardware after a Stop or a Start condition or I2CEN=0 or
		LOSTARB.
		0: Receiver
		1: Transmitter
1	I2CBSY	Busy flag
		This bit is cleared by hardware after a Stop condition
		0: No I2C communication.
		1: I2C communication active.
0	MASTER	A flag indicating whether I2C block is in master or slave mode.
		This bit is cleared by hardware after a Stop or a Start condition or I2CEN=0 or

LOSTARB. 0: Slave mode

1: Master mode

14.4.8. I2C clock configure register (I2C_CLKR)

Address offset: 0x1C

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
FAST	DTCY	Rese	erved	CLK						C[11:0]						
rw	rw								rv	v						

Bits	Fields	Descriptions
15	FAST	I2C speed selection in master mode
		0: Standard speed
		1: Fast speed
14	DTCY	Duty cycle in fast mode
		$0:T_{low}/T_{high} = 2$
		1: $T_{low}/T_{high} = 16/9$
13:12	Reserved	Must keep the reset value
11:0	CLKC[11:0]	I2C Clock control in master mode
		In standard speed mode: $T_{\rm high}=T_{\rm low}=CCR*T_{PCLK1}$
		In fast speed mode if DTCY=0:
		$T_{\rm high}~=CCR*T_{\rm PCLK1}$, $T_{\rm low}~=2*CCR*T_{\rm PCLK1}$
		In fast speed mode if DTCY=1:
		$T_{high} = 9 * CCR * T_{PCLK1}$, $T_{low} = 16 * CCR * T_{PCLK1}$

14.4.9. I2C Rise Time register (I2C_RTR)

Address offset: 0x20

Reset value: 0x0002

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved											RISETI	ME[5:0]		

rw

Bits	Fields	Descriptions
15:6	Reserved	Must keep the reset value
5:0	RISETIME [5:0]	Maximum rise time in master mode
		The RISETIME value should be the maximum SCL rise time incremented by 1.

15.1. Introduction

The SPI/I2S module can communicate with external devices using the SPI protocol or the I2S audio protocol.

The Serial Peripheral Interface (SPI) provides an SPI protocol data transmit and receive function in both master and slave mode. The SPI interface uses 4 pins, among which are the serial data input and output lines MISO and MOSI, the clock line (SCK), and the slave select line (NSS). One SPI device acts as a master which controls the data flow using the NSS and SCK signals to indicate the start of the data communication and the data sampling rate. To receive a data byte, the streamed data bits are latched on a specific clock edge and stored in the data register. Data transmission is carried in a similar way but with a reverse sequence. The configuration fault detection provides a capability for multi-master applications. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking.

The inter-IC sound function supports four audio standards, including I2S Phillips standard, MSB justified standard, LSB justified standard, and PCM standard. It can operate in four modes, including master transmission mode, master reception mode, slave transmission mode, and slave reception mode.

15.2. Main features

15.2.1. SPI features

- Master or slave operation
- Programmable clock bit rate
- Programmable clock polarity and phase
- Separate transmit and receive buffer, 16 bits wide
- Programmable data frame size, 8 or 16 bits
- Programmable data order, transmit MSB-first or LSB-first
- Hardware CRC calculation and transmit automatic CRC error checking
- Full-duplex synchronous transfers on three lines
- Simplex synchronous transfers on two lines

- NSS work in software mode or hardware mode for both master and slave
- SPI bus busy status flag
- Transmission and reception flags with interrupt capability
- Master configuration fault, overrun and CRC error flags with interrupt capability
- Transmission and reception by DMA capability

15.2.2. I2S features

- Supported I2S standards:
- I2S Phillips standard
- MSB justified standard
- LSB justified standard
- PCM standard (both short and long frame synchronization mode)
- Supported operation modes:
- Master transmission
- Master reception
- Slave transmission
- Slave reception
- The data length can be 16 bits, 24 bits or 32 bits
- The channel length can be 16 bits or 32 bits
- 16-bit shift register for transmission and reception
- Data direction is always MSB first
- 8-bit programmable linear prescaler to reach accurate audio sample frequencies from 8 kHz to 192 kHz
- Programmable idle state clock polarity
- Master clock can be output to drive an external audio component
- Error flags including the transmission underrun error flag (TXURE) and the reception overrun error flag (RXORE)
- DMA capability for both transmission and reception

15.3. SPI function description

15.3.1. Pin configuration

- The SPI is connected to external devices through 2-4 pins in different mode:
- MISO: This pin is used to receive data in master mode (Master In) or transmit data in slave mode (Slave Out).
- MOSI: This pin is used to transmit data in master mode (Master Out) or receive data in slave mode (Slave In).
- SCK: This pin is used to output clock in master mode or receive clock in slave mode.
- NSS: In hardware mode (SWNSSEN bit is cleared), the NSS pin can be used as an input. The NSS pin should be driven high in master mode or driven low in slave mode. It was a fault if the NSS pin is driven low in master mode, CONFE bit will be set and MSTMODE will be cleared by hardware. The NSS pin is driven high in slave mode means the chip is not selected, the SPI would not work until the NSS pin is driven low. In software mode (SWNSSEN bit is set), the SWNSS bit replace the function of the NSS pin, the NSS pin can be used as a standard IO ports. In addition, the NSS pin can be used as an output in master mode when NSSDRV is set, the NSS pin will be driven low when SPI start.
- Typical interconnections between a single master and a single slave:

Figure 15-1 Single master/ single slave application

The MOSI pins are connected, the MISO pins are connected and the SCK pins are connected. Data is transferred from master to slave by MOSI line and transferred from slave to master by MISO line. The clock is created in master and transferred to slave by SCK. In

GD32F10x User Manual

hardware mode (SWNSSEN bit is cleared), the NSS is driven high in master mode or driven low in slave mode; in software mode (SWNSSEN bit is set), the NSS pin is not used.

The master device controls the communication by the clock. When the master device transmits data to the slave device via MOSI pin, it send clock to the slave device at same time via SCK pin, the slave receive data via MOSI pin and transmits data via MISO pin according to the clock.

The NSS pin can be used in software mode or hardware mode by the SWNSSEN bit in the SPI_CTLR1 register.

Hardware NSS mode (SWNSSEN = 0)

Depending on the NSSDRV bit in SPI_CTLR2 register, the NSS pin can be used as input or output (only in master mode).

- NSS output enabled (SWNSSEN = 0, NSSDRV = 1)
 - This configuration is used only in master mode. The NSS signal is driven low when the master starts the communication (start transmits clock) and is kept low until the SPI is disabled.
- NSS output disabled (SWNSSEN = 0, NSSDRV = 0)
 The NSS pin is used as input. In master mode, the NSS pin should be driven high.
 In slave mode, the NSS pin acts as a chip select, the slave is selected when NSS is low and deselected when NSS high.

Software NSS mode (SWNSSEN = 1) The SWNSS bit in SPI_CTLR1 replace the function of the NSS pin, in master mode, the SWNSS bit should be set. In slave mode, the slave is selected when SWNSS is cleared and deselected when SWNSS is set. The NSS pin is not used in SPI communication.

Clock phase and clock polarity

Using the SCKPL and SCKPH bits in SPI_CTLR1 register, four types of the timing relationship can be configured. The SCKPL bit controls the steady state value of the clock. If the SCKPL is cleared, the SCK pin is low when idle. If the SCKPL is set, the SCK pin is high when idle.

The SCKPH determines the timing of capturing the data. If the SCKPH is cleared, capturing the first data at the first edge on the SCK pin. If the SCKPH is set, capturing the first data at the second edge on the SCK pin.

The following figure shows an SPI transfer with the four types of timing relationship:

Figure 15-2 SPI data clock timing diagram

Data frame format

Data can be shifted out either MSB-first or LSB-first depending on the value of the LF bit in the SPI_CTLR1 Register.

Depending on the LF bit in SPI_CTLR1 register, the MSB (LF=0) or the LSB (LF=1) will be send out at first. And the data is 8 bit or 16 bit depending on the FF16 bit in the SPI_CTLR1 register.

15.3.2. SPI slave mode

In slave mode, the serial clock is received form master device, the PSC[2:0] bits in the SPI_CTLR1 register are useless. The communication is control by the master device and the slave should be enabled before the master send the clock.

SPI slave mode configuration steps:

1. Program data format (FF16 bit in the SPI_CTLR1 register).

- Program the timing relationships (SCKPL and SCKPH bits in the SPI_CTLR1 register). They must be configured in the same way as the master device.
- 3. Program the frame format (LF bit in the SPI_CTLR1 register), it must be same as the master device.
- 4. Program the NSS mode (SWNSSEN bit in the SPI_CTLR1 register). In hardware mode (SWNSSEN=0), the NSS pin must be connected to a low level signal during transmit sequence. In software mode (SWNSSEN=1), the SWNSS bit in the SPI_CTLR1 register must be cleared during transmit sequence.

Set the slave mode (Clear the MSTMODE bit). Enable the SPI (set the SPIEN bit).

Transmit sequence

The slave transmit begins when the slave receives the clock via the SCK pin, the LSB or MSB transmit on its MOSI pin, the other bits are loaded from transmit buffer to shift-register. The TBE bit is set and the software writes the second data to the transmit buffer if it is necessary. The hardware transmits the bits in the shift-register according the clock received.

Receive sequence

After the last sampling clock edge, data transfer is complete, the data in shift register is copied to receive buffer and the RBNE bit in SPI_STR register is set. Reading SPI_DTR returns the data in receive buffer and the RBNE bit is cleared by reading the SPI_DTR register.

15.3.3. SPI master mode

In the master configuration, the serial clock is generated on the SCK pin.

In master mode, the serial clock is generated by the PCLK (PCLK2 for SPI1 or PCLK1 for SPI2), the PSC[2:0] is the baud rate.

SPI master mode configuration steps:

- 1. Program the PSC[2:0] bits to define the baud rate.
- 2. Program data format (FF16 bit in the SPI_CTLR1 register).
- 3. Program the timing relationships (SCKPL and SCKPH bits in the SPI_CTLR1 register). They must be configured in the same way as the slave device.
- 4. Program the frame format (LF bit in the SPI_CTLR1 register), it must be same as the slave device.
- 5. Program the NSS mode (SWNSSEN bit in the SPI_CTLR1 register). If the NSS pin is used as input, in hardware mode (SWNSSEN=0), the NSS pin must be connected to a high level signal. In software mode (SWNSSEN=1), the SWNSS bit in the SPI_CTLR1 register must be set. If the NSS pin is used as input, the NSSDRV bit should be set, and the NSS pin will be driven low when the transfer begins.

Set the master mode (Set the MSTMODE bit). Enable the SPI (set the SPIEN bit).

Transmit sequence

The master transmit begins when a data is written in the transmit buffer, the LSB or MSB transmit on its MOSI pin, the other bits are loaded from transmit buffer to shift-register. The TBE bit is set after the data is loaded from transmit buffer to shift-register. A continuous data can be transmitted if the data is put in the transmit buffer. Write DTR register when the TBE bit is set.

Receive sequence

After the last sampling clock edge, data transfer is complete, the data in shift register is copied to receive buffer and the RBNE bit in SPI_STR register is set. Reading SPI_DTR returns the data in receive buffer and the RBNE bit is cleared by reading the SPI_DTR register.

15.3.4. SPI simplex communication

The SPI is able to work in simplex mode in 2 configurations.

- Set the BDM bit in the SPI_CTLR1 register. The clock is transmitted form the SCK pin of master to the SCK pin of slave. The data is transmitted between the MOSI pin of the master and the MISO pin of the slave. The transfer direction is defined by the BDOE bit in the SPI_CTLR1 register, the BDOE bit in master and slave must be different. If the BDOE is set in master and cleared in slave, the data is transmitted from master to slave, If the BDOE is cleared in master and set in slave, the data is transmitted from slave to master.
- 2. BDM is cleared; the RO bit in master and in slave should be different in simplex communication. If the RO bit is cleared in master and set in slave, the data is transmitted from master to slave, the MOSI pin of master output the data and the MOSI pin of slave receive the data, the MISO pins are not used. If the RO bit is set in master and cleared in slave, the data is transmitted from slave to master, the MISO pin of slave output the data and the MISO pin of master receive the data, the MISO pin slave to master, the MISO pin of slave output the data and the MISO pin of master receive the data, the MOSI pins are not used. Anyway the clock is generated in master and transmitted to slave by SCK pins.

In simplex communication, if the master is configured in receive only mode and the slave is configured in transmit only mode, the master starts receiving data immediately when the SPI is enable. The slave should get ready before the master enables the SPI, and writing data in transmit buffer in a limited time. The master should disable the SPI (clear the SPIEN bit) after the last second data is received; the last data is being transmitted at that time, and the SPI will be disabled by hardware after the last data received.

15.3.5. Data Rx and Tx procedures

There is two buffers for each SPI model, transmit buffer and receive buffer, a write access to 536

the SPI_DTR stores the data into the transmit buffer and a read access to the SPI_DTR return the data in the receive buffer.

When the previous data is transmitted over, the data in the transmit buffer is copied to the shift register, and the TBE bit is set by hardware, then the software can write the next data to the transmit buffer by writing it to the SPI_DTR register if it is necessary, an interrupt is generated when the TBE is set if the TBEIE bit in the SPI_CTLR2 register is set. Writing the SPI_DTR register can clear the TBE bit. Writing the SPI_DTR register when the TBE bit is cleared will cover the data stored in the transmit buffer.

When the last bit of one data is captured on the sampling clock edge, the data received and stored in shift register, then the hardware copy the data in shift register to the receive buffer and set the RBNE bit. It's ready to be read by software. An interrupt is generated when the RBNE is set if the RBNEIE bit in the SPI_CTLR2 register is set. Reading the SPI_DTR register can clear the RBNE bit. If one data is received when the RBNE is set (the last data have not be read), the RXORE bit is set to indicate that was fault.

15.3.6. CRC calculation

CRC calculation increase communication reliability. Two CRC calculators are implemented for transmitted data and received data. The calculators calculate the CRC value serially on each bit. The polynomial used in calculation is programmable and stored in SPI_CPR register.

CRC calculation is enabled by setting the CRCEN bit in the SPI_CTLR1 register. In full duplex or transmitter only mode, the software should set the CRCNT bit immediately after the last data is written to the SPI_DTR, last the SPI_TCR will be transmitted after the last data. If the data is transmitted by DMA, the SPI_TCR is transmitted by hardware and the CRCNT is not used. When the SPI_TCR is being transmitted, the data received is considered to be the CRC value of the received data, the calculator is switched off and the data is compared with the SPI_RCR, the CRCE is set if they are different.

In received only mode, the software should write the CRCNT bit after the second last data has been received (The last data is being received at that time), The CRC value of the received data is received after the last data and is compared with the SPI_RCR, the CRCE is set if they are different.

The CRC value is transmitted only when the transmit buffer is empty. During CRC transmission, the CRC calculator is switched off.

SPI communication using the CRC:

- 1. Program the SCKPL, SCKPH, LF, PSC, SWNSSEN, SWNSS and MSTMODE values.
- 2. Program the polynomial in the SPI_CPR register.
- 3. Enable the CRC calculation by setting the CRCEN bit in the SPI_CTLR1 register.
- 4. Enable the SPI by setting the SPIEN bit in the SPI_CTLR1 register.
- 5. Start the communication.

- 6. In full duplex or transmitter-only mode, set the CRCNT bit immediately after the last data is written to the SPI_DTR. In receiver only mode, set the bit CRCNT after the reception of the second to last data. CRC calculation is switched off during the CRC transfer.
- 7. The SPI transfer the CRC value after the last data. The received CRC value is compared with the SPI_RCR, the CRCE is set if they are different.

If the CRCEN is set in slave mode, CRC calculator is still work even if the NSS pin is pulled high. The CRC value should be cleared on both master and slave sides in order to resynchronize the master and slave for their respective CRC calculation. The CRC value (SPI_RCR and SPI_TCR) is cleared when the SPIEN bit or the CRCEN is cleared.

15.3.7. Status flags and error flags

Status flags

Transmit buffer empty flag (TBE) This bit is set when the transmit buffer is empty, the software can write the next data to the transmit buffer by writing it to the SPI_DTR register. If the TBEIE bit is set, an interrupt is generated when TBE is set. The TBE bit is cleared by writing it to the SPI_DTR register.

Receive buffer not empty flag (RBNE) This bit is set when receive buffer is not empty, one data is received and stored in the receive buffer, and software can read the data by reading the SPI_DTR register. If the RBNEIE bit is set, an interrupt is generated when RBNE is set. The RBNE bit is cleared by reading the SPI_DTR register.

SPI Transmitting On-Going flag (TRANS) This TRANS flag is set and cleared by hardware. It indicates the state of the communication layer of the SPI. The TRANS flag is useful to detect the end of a transfer if the software wants to disable the SPI. This avoids corrupting the last transfer. For this, the procedure described below must be strictly respected.

The TRANS bit is set when a transfer starts, except in bidirectional receive only mode of master device (MSTMODE=1 and BDM=1 and BDOE=0). It is cleared when the SPI is disabled or a configuration fault occurs (CONFE=1). When communication is not continuous, the TRANS flag is low between each communication. When communication is continuous, the TRANS flag is low between each communication in slave mode and kept high during all the transfers in master mode.

Error flags

Configuration Fault Error (CONFE)

In NSS hardware mode and the NSSDRV is not enable, the CONFE is set when the NSS pin is pulled low. In NSS software mode, the CONFE is set when the SWNSS bit is low. When

GD32F10x User Manual

the CONFE is set, an interrupt is generated if the ERRIE bit is set; the SPIEN bit and the MSTMODE bit are cleared by hardware, the SPI is disabled and the device is forced into slave mode.

The CONFE bit is cleared by the following software sequence:

- 1. Read from or write to the SPI_STR register.
- 2. Write to the SPI_CTLR1 register.

The SPIEN and MSTMODE bits are write protection until the CONFE is cleared. The CONFE bit of the slave cannot be set. In a multi-master configuration, the device can be in slave mode with CONFE bit set, which means there might have been a multi-master conflict for system control.

Rx Overrun Error (RXORE)

The RXORE bit is set if a data is received when the RBNE is set. That means, the last data has not be read out and the new data is received. The receive buffer contents will be cover with the newly received data, and the last data is lost. An interrupt is generated when the RXORE bit is set if the ERRIE bit is set.

The RXORE bit is cleared by the following software sequence: a read access to SPI_DTR register, then a read access to SPI_STR register.

CRC error (CRCE)

When the CRCEN bit is set, the CRC calculation result of the received data in the SPI_RCR register is compared with the received CRC value after the last data, the CRCE is set when they are different. Clear the CRCE bit by writing 0 to this bit, write 1 to this bit has no effect.

15.3.8. Disabling the SPI

When a transfer is finished, the software stop the SPI by clearing the SPIEN bit. In some configurations, the last transfer is ongoing after the SPIEN is cleared. To avoid corrupting the last transfer, follow the steps below:

Full-duplex mode

- 1. Wait until RBNE=1 to receive the last data
- 2. Wait until TBE=1
- 3. Wait until TRANS=0
- 4. Disable the SPI (SPIEN=0), enter the Halt mode or disable the peripheral clock

Transmit-only mode

- 1. The last data is written into the SPI_DTR register
- 2. Wait until TBE=1
- 3. Wait until TRANS=0
- 4. Disable the SPI (SPIEN=0), enter the Halt mode or disable the peripheral clock

Receive-only mode of master

- 1. Wait for the second last RBNE=1
- 2. Wait for one SPI clock cycle (using a software loop) before disabling the SPI (SPIEN=0)
- 3. Wait for the last RBNE=1 before entering the Halt mode or disabling the peripheral clock

Receive-only mode of slave

- 1. The SPI can be disabled (write SPIEN=0) at any time, the SPI is effectively disabled after the current transfer complete
- 2. Wait until TRANS = 0 then entering the Halt mode or disabling the peripheral clock.

15.3.9. DMA requests

Using DMA to transmit or receive data will let the SPI operate at its maximum speed. Read and Write SPI_DTR is fast enough and it's no interstice between data that will be transmitted.

A DMA access is enabled if the DMATE bit or the DMARE bit in the SPI_CTLR2 register is set. When the TBE is set, a DMA request is issued in transmit channel of DMA, the TBE bit is cleared after the DMA writes a data to SPI_DTR register. When the RBNE is set, a DMA request is issued in receive channel of DMA, the RBNE bit is cleared after the DMA reads a data from SPI_DTR register.

When the SPI is used only to transmit data, it is possible to enable only the SPI Tx DMA channel. In this case, the RXORE flag is set because the data received are not read.

When the SPI is used only to receive data, it is possible to enable only the SPI Rx DMA channel.

In transmission mode, when the DMA has written all the data to be transmitted (flag TCIF is set in the DMA_IFR register), the TRANS flag can be monitored to ensure that the SPI communication is complete. This is required to avoid corrupting the last transmission before disabling the SPI or entering the Deep-sleep mode. The software must first wait until TBE=1 and then until TRANS=0.

Figure 15-3 Transmission using DMA

Figure 15-4 Reception using DMA

Clock		\prod	Ш	Л	Γ	Ľ	Г	\square	Л	Л	Л	Π	П	Л				ſ	_
Receive						Ľ													
RBNE						ļ							Γ					ļ	
DMA reques	;t					ļ	Ë							Ĺ					Ĺ
DMA read							ļ						ļ	Ĺ				ij	<u> </u>
RX buffer						Ż	D1						Ľ	i		D2		ť	D3
DMA TCIF																			

If the CRCEN bit is set when using DMA in SPI communication, the CRC value transmitted and received after the last data are automatic. The CRCNT is no useful. The CRC value in receive buffer should be read to clear the RBNE bit.

15.3.10. SPI interrupts

Table 15-1 SPI interrupt requests

Interrupt event	Event flag	Enable Control bit
Transmit buffer empty	TBE	TBEIE
Receive buffer not empty	RBNE	RBNEIE
Configuration Fault Error	CONFE	
Rx Overrun Error	RXORE	ERRIE
CRC error	CRCE	

15.4. I2S function description

15.4.1. General description

The block diagram of I2S is shown in the following figure.

Figure 15-5 I2S block diagram

The I2S shares the same pins, flags, interrupts, data buffers, and shift register with SPI. When the I2SSEL bit in the SPI_I2SCTLR register is set, the resources are occupied by I2S. Or, they are used by SPI.

There are four pins on the I2S interface, including I2S_CK, I2S_WS, I2S_SD, and I2S_MCK. I2S_CK is the serial clock signal, which shares the same pin with SPI_SCK. I2S_WS is the data control signal, which shares the same pin with SPI_NSS. I2S_SD is the serial data signal, which shares the same pin with SPI_MOSI. I2S_MCK is the master clock signal, which shares the same pin with SPI_MOSI. I2S_MCK is the master clock signal, which shares the same pin with SPI_MOSI. I2S_MCK is the master clock signal, which shares the same pin with SPI_MOSI. I2S_MCK is the master clock signal, which shares the same pin with SPI_MISO. I2S_MCK is an optional signal for I2S interface. It produces a frequency rate equal to 256 x Fs, where Fs is the audio sampling frequency.

There are five sub modules to support I2S function, including control registers, clock generator, master control logic, slave control logic and shift register. All the user configuration registers are implemented in the control registers module, including the TX buffer and RX buffer. The clock generator is used to produce I2S communication clock in master mode. The master control logic is implemented to generate the I2S_WS signal and control the communication in master mode. The slave control logic is implemented to control the communication in slave mode according to the received I2SCK and I2S_WS. The shift register handles the serial data transmission and reception on I2S_SD.

15.4.2. Supported audio standards

The I2S audio standard is selected by the I2SSTD bits in the SPI_I2SCTLR register. Four audio standards are supported, including I2S Phillips standard, MSB justified standard, LSB justified standard, and PCM standard. All standards except PCM handle audio data time-multiplexed on two channels (the left channel and the right channel). For these standards, the I2S_WS signal indicates the channel side. For PCM standard, the I2S_WS signal indicates frame synchronization information.

The data length and the channel length are configured by the DTLEN bits and CHLEN bit in the SPI_I2SCTLR register. Since the channel length must be greater than or equal to the data length, four packet types are available. They are 16-bit data packed in 16-bit frame, 16-bit data packed in 32-bit frame, 24-bit data packed in 32-bit frame, and 32-bit data packed in 32-bit frame. The data buffer for transmission and reception is 16-bit wide. In the case that the data length is 24 bits or 32 bits, two write or read operations to or from the SPI_DTR register are needed to complete a frame. In the case that the data length is 16 bits, only one write or read operation to or from the SPI_DTR register is needed to complete a frame. When using 16-bit data packed in 32-bit frame, 16-bit 0 is inserted by hardware automatically to extend the data to 32-bit format.

For all standards and packet types, the most significant bit is always sent first. For all standards based on two channels time-multiplexed, the channel left is always sent first followed by the channel right.

I2S Phillips standard

For I2S Phillips standard, I2S_WS and I2S_SD are updated on the falling edge of I2S_CK. The timing diagrams for each configuration are shown below.

Figure15-6 I2S Phillips standard timing diagram (DTLEN=00, CHLEN=0, CKPL=0)

Figure15-7 I2S Phillips standard timing diagram (DTLEN=00, CHLEN=0, CKPL=1)

When the packet type is 16-bit data packed in 16-bit frame, only one write or read operation to or from the SPI_DTR register is needed to complete a frame.

Figure15-8 I2S Phillips standard timing diagram (DTLEN=10, CHLEN=1, CKPL=0)

Figure15-9 I2S Phillips standard timing diagram (DTLEN=10, CHLEN=1, CKPL=1)

When the packet type is 32-bit data packed in 32-bit frame, two write or read operations to or from the SPI_DTR register are needed to complete a frame. In transmission mode, if 0x8899AABB is going to be sent, the first data written to the SPI_DTR register should be 0x8899, and the second one should be 0xAABB. In reception mode, if 0x8899AABB is received, the first data read from the SPI_DTR register should be 0x8899, and the second one should be 0xAABB.

Figure15-10 I2S Phillips standard timing diagram (DTLEN=01, CHLEN=1, CKPL=0)

Figure15-11 I2S Phillips standard timing diagram (DTLEN=01, CHLEN=1, CKPL=1)

When the packet type is 24-bit data packed in 32-bit frame, two write or read operations to or from the SPI_DTR register are needed to complete a frame. In transmission mode, if 0x8899AA is going to be sent, the first data written to the SPI_DTR register should be 0x8899, and the second one should be 0xAAXX (the 8 LSB could be any value, but forced to 0x00 instead by hardware). In reception mode, if 0x8899AA is received, the first data read from the SPI_DTR register should be 0x8899, and the second one should be 0x8899.

Figure15-12 I2S Phillips standard timing diagram (DTLEN=00, CHLEN=1, CKPL=0)

Figure15-13 I2S Phillips standard timing diagram (DTLEN=00, CHLEN=1, CKPL=1)

When the packet type is 16-bit data packed in 32-bit frame, only one write or read operation to or from the SPI_DTR register is needed to complete a frame. The 16 remaining bits are forced by hardware to 0x0000 to extend the data to 32-bit format.

MSB justified standard

For MSB justified standard, I2S_WS and I2S_SD are updated on the falling edge of I2S_CK. The SPI_DTR register is handled in the exactly same way as that for I2S Phillips standard. The timing diagrams for each configuration are shown below.

Figure15-14 MSB justified standard timing diagram (DTLEN=00, CHLEN=0, CKPL=0)

Figure15-15 MSB justified standard timing diagram (DTLEN=00, CHLEN=0, CKPL=1)

Figure15-16 MSB justified standard timing diagram (DTLEN=10, CHLEN=1, CKPL=0)

Figure15-17 MSB justified standard timing diagram (DTLEN=10, CHLEN=1, CKPL=1)

Figure15-18 MSB justified standard timing diagram (DTLEN=01, CHLEN=1, CKPL=0)

Figure15-19 MSB justified standard timing diagram (DTLEN=01, CHLEN=1, CKPL=1)

Figure15-20 MSB justified standard timing diagram (DTLEN=00, CHLEN=1, CKPL=0)

Figure15-21 MSB justified standard timing diagram (DTLEN=00, CHLEN=1, CKPL=1)

LSB justified standard

For LSB justified standard, I2S_WS and I2S_SD are updated on the falling edge of I2S_CK. In the case that the channel length is equal to the data length, LSB justified standard and MSB justified standard are exactly the same. In the case that the channel length is greater than the data length, the valid data is aligned to LSB for LSB justified standard while the valid data is aligned to MSB for MSB justified standard. The timing diagrams for the cases that the channel length is greater than the data length is greater than the data length are shown below.

Figure 15-22 LSB justified standard timing diagram (DTLEN=01, CHLEN=1, CKPL=0)

When the packet type is 24-bit data packed in 32-bit frame, two write or read operations to or from the SPI_DTR register are needed to complete a frame. In transmission mode, if 0x8899AA is going to be sent, the first data written to the SPI_DTR register should be 0xXX88 (the 8 MSB could be any value, but forced to 0x00 instead by hardware), and the second one should be 0x99AA. In reception mode, if 0x8899AA is received, the first data

read from the SPI_DTR register should be 0x0088, and the second one should be 0x99AA.

Figure 15-24 LSB justified standard timing diagram (DTLEN=00, CHLEN=1, CKPL=0)

Figure 15-25 LSB justified standard timing diagram (DTLEN=00, CHLEN=1, CKPL=1)

When the packet type is 16-bit data packed in 32-bit frame, only one write or read operation to or from the SPI_DTR register is needed to complete a frame. The 16 remaining bits are forced by hardware to 0x0000 to extend the data to 32-bit format.

PCM standard

For PCM standard, I2S_WS and I2S_SD are updated on the rising edge of I2S_CK, and the I2S_WS signal indicates frame synchronization information. Both the short frame synchronization mode and the long frame synchronization mode are available and configurable using the PCMSM bit in the SPI_I2SCTLR register. The SPI_DTR register is handled in the exactly same way as that for I2S Phillips standard. The timing diagrams for each configuration of the short frame synchronization mode are shown below.

Figure15-26 PCM standard short frame synchronization mode timing diagram (DTLEN=00, CHLEN=0, CKPL=0)

Figure15-27 PCM standard short frame synchronization mode timing diagram (DTLEN=00, CHLEN=0, CKPL=1)

Figure15-28 PCM standard short frame synchronization mode timing diagram (DTLEN=10, CHLEN=1, CKPL=0)

Figure15-29 PCM standard short frame synchronization mode timing diagram (DTLEN=10, CHLEN=1, CKPL=1)

Figure15-30 PCM standard short frame synchronization mode timing diagram (DTLEN=01, CHLEN=1, CKPL=0)

Figure15-31 PCM standard short frame synchronization mode timing diagram (DTLEN=01, CHLEN=1, CKPL=1)

Figure15-32 PCM standard short frame synchronization mode timing diagram (DTLEN=00, CHLEN=1, CKPL=0)

Figure15-33 PCM standard short frame synchronization mode timing diagram (DTLEN=00, CHLEN=1, CKPL=1)

The timing diagrams for each configuration of the long frame synchronization mode are

shown below.

Figure15-34 PCM standard long frame synchronization mode timing diagram (DTLEN=00, CHLEN=0, CKPL=0)

Figure15-35 PCM standard long frame synchronization mode timing diagram (DTLEN=00, CHLEN=0, CKPL=1)

Figure15-36 PCM standard long frame synchronization mode timing diagram (DTLEN=10, CHLEN=1, CKPL=0)

Figure15-37. PCM standard long frame synchronization mode timing diagram (DTLEN=10, CHLEN=1, CKPL=1)

Figure15-38 PCM standard long frame synchronization mode timing diagram (DTLEN=01, CHLEN=1, CKPL=0)

Figure15-39 PCM standard long frame synchronization mode timing diagram (DTLEN=01, CHLEN=1, CKPL=1)

Figure15-40 PCM standard long frame synchronization mode timing diagram (DTLEN=00, CHLEN=1, CKPL=0)

Figure15-41 PCM standard long frame synchronization mode timing diagram (DTLEN=00, CHLEN=1, CKPL=1)

15.4.3. Clock generator

Figure 15-42 Block diagram of I2S clock generator

The block diagram of I2S clock generator is shown above. The I2S interface clocks are configured by the DIV bits, the OF bit, the MCKOE bit in the SPI_I2SCKP register and the CHLEN bit in the SPI_I2SCTLR register. The I2SCLK source can be either SYSCLK or the PLL3 clock(CK_PLL3*2) in order to achieve the maximum accuracy. The I2S bitrate can be calculated by the formulas shown in the following table.

Table 15-2 I2S bitrate calculation formulas

МСКОЕ	CHLEN	Formula
0	0	12SCLK / (DIV * 2 + OF)
0	1	I2SCLK / (DIV * 2 + OF)
1	0	12SCLK / (8 * (DIV * 2 + OF))
1	1	I2SCLK / (4 * (DIV * 2 + OF))

The relationship between audio sampling frequency (Fs) and I2S bitrate is defined by the following formula.

Fs = I2S bitrate / (number of bits per channel * number of channels)

So, in order to get the desired audio sampling frequency, the clock generator needs to be configured according to the formulas listed in the following table.

МСКОЕ	CHLEN	Formula
0	0	I2SCLK / (32 * (DIV * 2 + OF))
0	1	I2SCLK / (64 * (DIV * 2 + OF))
1	0	I2SCLK / (256 * (DIV * 2 + OF))
1	1	I2SCLK / (256 * (DIV * 2 + OF))

Table 15-3 Audio sampling frequency calculation formulas

The following three tables are provide the configuration and precision of audio sampling frequencies under different clock configuration.

Tamat				С	HLEN = 0		CHLEN = 1					
Fs(Hz)	(MHz)	MCKOE	DIV	OF	Real Fs(Hz)	Error	DIV	OF	Real Fs(Hz)	Error		
96000	72	No	11	1	97826.09	1.90%	6	0	93750	2.34%		
96000	72	Yes	1	1	93750	2.34%	1	1	93750	2.34%		
96000	108	No	17	1	96428.57	0.45%	9	0	93750	2.34%		
96000	108	Yes	2	0	105468.8	9.86%	2	0	105468.8	9.86%		
48000	72	No	23	1	47872.34	0.27%	11	1	48913.04	1.90%		
48000	72	Yes	3	0	46875	2.34%	3	0	46875	2.34%		
48000	108	No	35	0	48214.29	0.45%	17	1	48214.29	0.45%		
48000	108	Yes	4	1	46875	2.34%	4	1	46875	2.34%		
44100	72	No	25	1	44117.65	0.04%	13	0	43269.23	1.88%		
44100	72	Yes	3	0	46875	6.29%	3	0	46875	6.29%		
44100	108	No	38	1	43831.17	0.61%	19	0	44407.89	0.70%		
44100	108	Yes	5	0	42187.5	4.34%	5	0	42187.5	4.34%		
32000	72	No	35	0	32142.86	0.45%	17	1	32142.86	0.45%		
32000	72	Yes	4	1	31250	2.34%	4	1	31250	2.34%		
32000	108	No	52	1	32142.86	0.45%	26	1	31839.62	0.50%		
32000	108	Yes	6	1	32451.92	1.41%	6	1	32451.92	1.41%		
22050	72	No	51	0	22058.82	0.04%	25	1	22058.82	0.04%		
22050	72	Yes	6	1	21634.62	1.88%	6	1	21634.62	1.88%		
22050	108	No	76	1	22058.82	0.04%	38	1	21915.58	0.61%		
22050	108	Yes	9	1	22203.95	0.70%	9	1	22203.95	0.70%		
16000	72	No	70	0	16071.43	0.45%	35	0	16071.43	0.45%		
16000	72	Yes	9	0	15625	2.34%	9	0	15625	2.34%		
16000	108	No	105	1	15995.26	0.03%	52	1	16071.43	0.45%		
16000	108	Yes	13	0	16225.96	1.41%	13	0	16225.96	1.41%		

Table 15-4 Audio sampling frequency configuration and precision using SYSCLK

Torgot	eveci k			С	HLEN = 0		CHLEN = 1						
Fs(Hz)	(MHz)	MCKOE	DIV	OF	Real Fs(Hz)	Error	DIV	OF	Real Fs(Hz)	Error			
11025	72	No	102	0	11029.41	0.04%	51	0	11029.41	0.04%			
11025	72	Yes	13	0	10817.31	1.88%	13	0	10817.31	1.88%			
11025	108	No	153	0	11029.41	0.04%	76	1	11029.41	0.04%			
11025	108	Yes	19	0	11101.97	0.70%	19	0	11101.97	0.70%			
8000	72	No	140	1	8007.117	0.09%	70	1	7978.723	0.27%			
8000	72	Yes	17	1	8035.714	0.45%	17	1	8035.714	0.45%			
8000	108	No	211	0	7997.63	0.03%	105	1	7997.63	0.03%			
8000	108	Yes	26	1	7959.906	0.50%	26	1	7959.906	0.50%			

Table	15-5	Audio	sampling	frequency	configuration	and	precision	using	25MHz a	and
PLL3										

Torgot	MCK				CHL	.EN = 0		CHLEN = 1							
Fs(Hz)	OE	PRE	PLL3	DIV	OF	Real	Error	PRE	PLL3	DIV	OF	Real	Error		
		DV2	MF			FS(HZ)		DIV2	MF			FS(HZ)			
96000	No	6	14	19	0	95942.98	0.0594%	6	14	9	1	95942.98	0.0594%		
96000	Yes	4	8	2	0	97656.25	1.7253%	4	8	2	0	97656.25	1.7253%		
48000	No	7	20	46	1	48003.07	0.0064%	12	14	9	1	47971.49	0.0594%		
48000	Yes	13	16	2	1	48076.92	0.1603%	13	16	2	1	48076.92	0.1603%		
44100	No	8	14	25	1	44102.82	0.0064%	8	14	13	0	44102.82	0.0064%		
44100	Yes	5	9	4	0	43945.31	0.3508%	5	9	4	0	43945.31	0.3508%		
32000	No	11	16	35	1	32010.24	0.0320%	4	10	30	1	32018.44	0.0576%		
32000	Yes	5	9	5	1	31960.23	0.1243%	5	9	5	1	31960.23	0.1243%		
22050	No	8	14	35	1	22051.41	0.0064%	8	14	30	1	22051.41	0.0064%		
22050	Yes	5	13	11	1	22078.8	0.1306%	5	13	11	1	22078.8	0.1306%		
16000	No	7	20	139	1	16001.02	0.0064%	11	16	35	1	16005.12	0.0320%		
16000	Yes	9	14	9	1	15990.5	0.0594%	9	14	9	1	15990.5	0.0594%		
11025	No	8	14	124	0	11025.71	0.0064%	8	14	62	0	11025.71	0.0064%		
11025	Yes	8	14	15	1	11025.71	0.0064%	8	14	15	1	11025.71	0.0064%		
8000	No	9	20	217	0	8000.512	0.0064%	9	20	108	1	8000.512	0.0064%		
8000	Yes	4	10	30	1	8004.611	0.0576%	4	10	30	1	8004.611	0.0576%		

Table 15-6	Audio :	sampling	frequency	configuration	and	precision	using	14.7456N	IHz
and PLL3									

Torgot	MCK				CHL	EN = 0		CHLEN = 1							
Fs(Hz)	OE	PRE DV2	PLL3 MF	DIV	OF	Real Fs(Hz)	Error	PRE DV2	PLL3 MF	DIV	OF	Real Fs(Hz)	Error		
96000	No	3	10	16	0	96000	0.0000%	3	10	8	0	96000	0.0000%		
96000	Yes	3	10	2	0	96000	0.0000%	3	10	2	0	96000	0.0000%		
48000	No	3	10	32	0	48000	0.0000%	3	10	16	0	48000	0.0000%		

Torgot	MCK				CHL	EN = 0		CHLEN = 1								
Fs(Hz)	OE	PRE DV2	PLL3 MF	DIV	OF	Real Fs(Hz)	Error	PRE DV2	PLL3 MF	DIV	OF	Real Fs(Hz)	Error			
48000	Yes	3	10	4	0	48000	0.0000%	3	10	4	0	48000	0.0000%			
44100	No	4	9	23	1	44119.15	0.0434%	4	13	17	0	44047.06	0.1200%			
44100	Yes	4	20	6	1	44307.69	0.4710%	4	20	6	1	44307.69	0.4710%			
32000	No	3	10	48	0	32000	0.0000%	3	10	24	0	32000	0.0000%			
32000	Yes	3	10	6	0	32000	0.0000%	3	10	6	0	32000	0.0000%			
22050	No	4	20	104	1	22047.85	0.0098%	4	9	32	1	22059.57	0.0434%			
22050	Yes	4	13	8	1	22023.53	0.1200%	4	13	8	1	22023.53	0.1200%			
16000	No	3	10	96	0	16000	0.0000%	3	10	48	0	16000	0.0000%			
16000	Yes	3	10	12	0	16000	0.0000%	3	10	12	0	16000	0.0000%			
11025	No	4	20	209	1	11023.92	0.0098%	4	20	104	1	11023.92	0.0098%			
11025	Yes	4	13	17	0	11011.76	0.1200%	4	13	17	0	11011.76	0.1200%			
8000	No	3	10	192	0	8000	0.0000%	3	10	96	0	8000	0.0000%			
8000	Yes	3	10	24	0	8000	0.0000%	3	10	24	0	8000	0.0000%			

15.4.4. Operation

Operation modes

The operation mode is selected by the I2SOM bits in the SPI_I2SCTLR register. There are four available operation modes, including master transmission mode, master reception mode, slave transmission mode, and slave reception mode. The direction of I2S interface signals for each operation mode is shown in the following table.

Table 15-7 Direction of I2S	interface signals for	each operation mode

Operation mode	I2S_MCK	I2S_CK	I2S_WS	I2S_SD
Master transmission	output or NU ⁽¹⁾	output	output	output
Master reception	output or NU ⁽¹⁾	output	output	input
Slave transmission	input or NU ⁽¹⁾	input	input	output
Slave reception	input or NU ⁽¹⁾	input	input	input

1. NU means the pin is not used by I2S and can be used by other functions.

Status flags and interrupts

There are six status flags implemented in the SPI_STR register, including TBE, RBNE, TRANS, I2SCH, TXURE, and RXORE. The user can use them to fully monitor the state of the I2S bus.

Transmit buffer empty flag (TBE)

This bit is set when the transmit buffer is empty. An interrupt may be generated if the TBEIE bit in the SPI_CTLR2 register is set. The software can write the next data to the transmit buffer by writing it to the SPI_DTR register. The TBE bit is cleared by a write operation to the SPI_DTR register.

Receive buffer not empty flag (RBNE)

This bit is set when receive buffer is not empty. An interrupt may be generated if the RBNEIE bit in the SPI_CTLR2 register is set. It indicates valid data has been received and stored in the receive buffer. The software can read the data by reading the SPI_DTR register. The RBNE bit is cleared by a read operation to the SPI_DTR register.

■ Transmitting On-Going flag (TRANS)

This TRANS flag is set and cleared by hardware. It indicates the state of the communication layer of the I2S. The TRANS flag is useful to detect the end of a transfer if the software wants to disable the I2S. This avoids corrupting the last transfer. For this, the procedure described below must be strictly respected. The TRANS flag is set when a transfer starts, except in master reception mode where the flag is kept low during reception. It is cleared when the I2S is disenabled or a transfer complete. When communication is not continuous, the TRANS flag is low between each communication. When communication is continuous, the TRANS flag is kept high during all the transfers in master transmission mode, and goes low for one I2S clock cycle between each transfer in slave mode.

■ I2S channel side flag (I2SCH)

In transmission mode, this flag is refreshed at the moment when the TBE flag goes high, indicating the channel side to which the data to transfer belongs. In reception mode, this flag is refreshed at the moment when the RBNE flag goes high, indicating the channel side to which the received data belongs. Notice that in case of error (TXURE or RXORE) this flag becomes not reliable and I2S needs to be switched off and switched on before resuming the communication. Besides, this flag has no meaning in the PCM standard.

Transmission underrun error flag (TXURE)

This flag is set when the first clock for data transmission appears while the transmit buffer is still empty in slave transmission mode. An interrupt may be generated if the ERRIE bit in the SPI_CTLR2 register is set. This flag is cleared by a read operation to the SPI_STR register.

Reception overrun error flag (RXORE)

This flag is set when data are received and the previous data has not been read from the SPI_DTR register yet in reception mode. An interrupt may be generated if the ERRIE bit in the SPI_CTLR2 register is set. In the case, the contents in receive buffer are not updated with the newly received data. A read operation to the SPI_DTR register returns the previous correctly received data. All other subsequently received half-words are lost. This flag is cleared by a read access to the SPI_DTR register followed by a

read access to the SPI_STR register.

I2S interrupt events and corresponding enable bits are summed up in the following table.

Interrupt event	Flag	Enable bit
Transmit buffer empty	TBE	TBEIE
Receive buffer not empty	RBNE	RBNEIE
Transmission underrun error	TXURE	ERRIE
Reception overrun error	RXORE	ERRIE

Initialization sequence

I2S initialization sequence contains the five steps shown below. In order to initialize I2S working in master mode, all the five steps should be done. In order to initialize I2S working in slave mode, only step 2, step 3 and step 4 should be done.

- Step 1: Configure the DIV[7:0] bits, the OF bit, and the MCKOE bit in the SPI_I2SCKP register, in order to define the I2S bitrate and whether I2S_MCK needs to be provided or not.
- Step 2: Configure the CKPL in the SPI_I2SCTLR register, in order to define the idle state clock polarity.
- Step 3: Configure the I2SSEL bit, the I2SSTD[1:0] bits, the PCMSM bit, the I2SOM[1:0] bits, the DTLEN[1:0] bits, and the CHLEN bit in the SPI_I2SCTLR register, in order to define the I2S feature.
- Step 4: Configure the TBEIE bit, the RBNEIE bit, the ERRIE bit, the DMATE bit, and the DMARE bit in the SPI_CTLR2 register, in order to select the potential interrupt sources and the DMA capabilities. This step is optional.
- Step 5: Set the I2SEN bit in the SPI_I2SCTLR register to enable I2S.

Master transmission sequence

The TBE flag is used to control the transmission sequence. As is mentioned before, the TBE flag indicates the transmit buffer is empty, and may generate an interrupt if the TBEIE bit in the SPI_CTLR2 register is set. At the beginning, the transmit buffer is empty (TBE is high) and no transmission sequence is processing in the shift register. When a half word is written to the SPI_DTR register (TBE goes low), the data is transferred from the transmit buffer to the shift register (TBE goes high) immediately. At the moment, the transmission sequence begins. The data is parallel loaded into the 16-bit shift register, and shifted out serially to the I2S_SD pin, MSB first. The next data should be written to the SPI_DTR register, when the TBE flag is high. After a write operation to the SPI_DTR register, the TBE flag goes low. When the current transmission finishes, the data in the transmit buffer is loaded into the shift

register, and the TBE flag goes back high. To ensure a continuous audio data transmission, it is mandatory to write the SPI_DTR register with the next data to transmit before the end of the current transmission.

For all standards except PCM, the I2SCH flag is used to distinguish the channel side to which the data to transfer belongs. The I2SCH flag is refreshed at the moment when the TBE flag goes high. At the beginning, the I2SCH flag is low, indicating the left channel data should be written to the SPI_DTR register.

In order to switch off I2S, it is mandatory to clear the I2SEN bit after the TBE flag is high and the TRANS flag is low.

Master reception sequence

The RBNE flag is used to control the reception sequence. As is mentioned before, the RBNE flag indicates the receive buffer is not empty, and may generate an interrupt if the RBNEIE bit in the SPI_CTLR2 register is set. The reception sequence begins immediately when the I2SEN bit in the SPI_I2SCTLR register is set. At the beginning, the receive buffer is empty (RBNE is low). When a reception sequence finishes, the received data in the shift register is loaded into the receive buffer (RBNE goes high). The data should be read from the SPI_DTR register, when the RBNE flag is high. After a read operation to the SPI_DTR register, the RBNE flag goes low. It is mandatory to read the SPI_DTR register before the end of the next reception. Or, reception overrun error occurs. The RXORE flag is set and an interrupt may be generated if the ERRIE bit in the SPI_CTLR2 register is set. In this case, it is mandatory to switch off and switch on I2S before resuming the communication.

For all standards except PCM, the I2SCH flag is used to distinguish the channel side to which the received data belongs. The I2SCH flag is refreshed at the moment when the RBNE flag goes high.

In order to switch off I2S, specific actions are required to ensure that I2S completes the transfer cycle properly without initiating a new data transfer. The actions depend on the audio standard selected, and on the configuration of the data length and the channel length. The actions for each case are described below.

- 16-bit data packed in 32-bit frame in the LSB justified standard (DTLEN = 00, CHLEN = 1, and I2SSTD = 10)
- 1. Wait for the second to last RBNE
- 2. Then wait 17 I2S clock cycles
- 3. Clear the I2SEN bit
- 16-bit data packed in 32-bit frame in the audio standards except the LSB justified standard (DTLEN = 00, CHLEN = 1, and I2SSTD is not equal to 10)
- 1. Wait for the last RBNE
- 2. Then wait one I2S clock cycle

- 3. Clear the I2SEN bit
- For all other cases
- 1. Wait for the second to last RBNE
- 2. Then wait one I2S clock cycle
- 3. Clear the I2SEN bit

Slave transmission sequence

The transmission sequence in slave mode is similar to that in master mode. The difference between them is described below.

In slave mode, the slave has to be enabled before the external master starts the communication. The transmission sequence begins when the external master sends the clock and when the I2S_WS signal requests the transfer of data. The data has to be written to the SPI_DTR register before the master initiates the communication. To ensure a continuous audio data transmission, it is mandatory to write the SPI_DTR register with the next data to transmit before the end of the current transmission. Or, transmission underrun error occurs. The TXURE flag is set and an interrupt may be generated if the ERRIE bit in the SPI_CTLR2 register is set. In this case, it is mandatory to switch off and switch on I2S before resuming the communication. In slave mode, I2SCH is sensitive to the I2S_WS signal coming from the external master.

In order to switch off I2S, it is mandatory to clear the I2SEN bit after the TBE flag is high and the TRANS flag is low.

Slave reception sequence

The reception sequence in slave mode is similar to that in master mode. The difference between them is described below.

In slave mode, the slave has to be enabled before the external master starts the communication. The reception sequence begins when the external master sends the clock and when the I2S_WS signal requests the transfer of data. In slave mode, I2SCH is sensitive to the I2S_WS signal coming from the external master.

In order to switch off I2S, it is mandatory to clear the I2SEN bit immediately after receiving the last RBNE.

15.4.5. DMA features

DMA is working in exactly the same way as for the SPI mode. The only difference is that the CRC feature is not available in I2S mode.

15.5. SPI registers

15.5.1. SPI control register 1 (SPI_CTLR1)

Address offset: 0x00 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5 4 3	2	1	0
BDM	BDOE	CRCEN	CRCNT	FF16	RO	SWNSSEN	SWNSS	LF	SPIEN	PSC [2:0]	MSTMODE	SCKPL	SCKPH
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits Fields Descriptions 15 BDM **Bidirectional Enable** 0: 2 line unidirectional transmit mode 1: 1 line bidirectional transmit mode. The information transfer between the MOSI pin in master and the MISO pin in slave. 14 BDOE **Bidirectional Transmit Output Enable** When BDM is set, This bit determines the direction of transfer. 0: Work in receive-only mode 1: Work in transmit-only mode 13 CRCEN **CRC** Calculation Enable 0: CRC calculation is disabled 1: CRC calculation is enabled. 12 CRCNT **CRC** Transfer Next 0: Next transfer is Data 1: Next transfer is CRC value (TCR) When the transfers are managed by DMA, CRC value is transferred by hardware. This bit should be cleared. In full duplex or transmitter only modes, set this bit after the last data is written to SPI_DTR register. In receive only mode, set this bit after the second last data is received. 11 FF16 Data frame format 0: 8-bit data frame format 1: 16-bit data frame format 10 RO Receive only When BDM is cleared, this bit determines the direction of transfer. 0: Full duplex 1: Receive-only

9	SWNSSEN	NSS Software Mode Selection 0: NSS hardware mode. The NSS pin input depends on IO. 1: NSS software mode. The NSS pin input depends on SWNSS bit.
8	SWNSS	NSS Pin Selection In NSS Software Mode 0: NSS pin is pull low. 1: NSS pin is pull high This bit has an effect only when the SWNSSEN bit is set.
7	LF	LSB First Mode 0: Transmit MSB first 1: Transmit LSB first
6	SPIEN	SPI Enable 0: SPI peripheral is disabled 1: SPI peripheral is enabled
5:3	PSC	Master Clock Prescaler Selection000: PCLK/2100: PCLK/32001: PCLK/4101: PCLK/64010: PCLK/8110: PCLK/128011: PCLK/16111: PCLK/256PCLK means PCLK2 when use SPI1 or PCLK1 when use SPI2
2	MSTMODE	Master Selection 0: Slave mode 1: Master mode
1	SCKPL	Clock Polarity Selection 0: CLK pin is pulled low when SPI is idle 1: CLK pin is pulled high when SPI is idle
0	SCKPH	Clock Phase Selection 0: Capture the first data at the first clock transition. 1: Capture the first data at the second clock transition

15.5.2. SPI control register 2 (SPI_CTLR2)

		Ado Res	dress o set valu	offset: ue: 0x	0x04 0000										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved							TBEIE	RBNEIE	ERRIE	Rese	erved.	NSSDRV	DMATE	DMARE
								rw	rw	rw			rw	rw	rw

Bits Fields Descriptions

15:8	Reserved	Must be kept at reset value.
7	TBEIE	Transmit Buffer Empty Interrupt Enable 0: TBE interrupt is disenabled. 1: TBE interrupt is enabled. An interrupt is generated when the TBE bit is set
6	RBNEIE	Receive Buffer Not Empty Interrupt Enable 0: RBNE interrupt is disenabled. 1: RBNE interrupt is enabled. An interrupt is generated when the RBNE bit is set
5	ERRIE	Errors Interrupt Enable.0: Error interrupt is disabled.1: Error interrupt is enabled. An interrupt is generated when the CRCE bit or the CONFE bit or the RXORE bit or the TXURE bit is set.
4:3	Reserved	Must be kept at reset value.
2	NSSDRV	Drive NSS Output 0: NSS output is disabled. 1: NSS output is enabled. If the NSS pin is configured as output, the NSS pin is pulled low in master mode when SPI is enabled. If the NSS pin is configured as input, the NSS pin should be pulled high in master mode, and this bit has on effect.
1	DMATE	Transmit Buffer DMA Enable 0: Transmit buffer DMA is disabled 1: Transmit buffer DMA is enabled, when the TBE bit in SPI_STR is set, it will be a DMA request at corresponding DMA channel.
0	DMARE	Receive Buffer DMA Enable 0: Receive buffer DMA is disabled 1: Receive buffer DMA is enabled, when the RBNE bit in SPI_STR is set, it will be a DMA request at corresponding DMA channel.

15.5.3. SPI status register (SPI_STR)

Address offset: 0x08

Reset value: 0x0002

15	14	13	12	11	11 10 9 8		7	6	5	4	3	2	1	0	
Reserved								TRANS	RXORE	CONFE	CRCE	TXURE	I2SCH	TBE	RBNE
								r	r	r	rc_w0	r	r	r	r

Bits	Fields	Descriptions
15:8	Reserved	Must be kept at reset value.
7	TRANS	Transmitting On-going Bit

		 0: SPI or I2S is idle. 1: SPI or I2S is currently transmitting and/or receiving a frame, or the transmit buffer is not empty. This bit is set and cleared by hardware.
6	RXORE	Reception Overrun Error Bit 0: No reception overrun error occurred. 1: Reception overrun error occurred. This bit is set by hardware and cleared by a read operation on the SPI_DTR register followed by a read access to the SPI_STR register.
5	CONFE	 SPI Configuration error 0: No configuration fault occurred 1: Configuration fault occurred. (In master mode, the NSS pin is pulled low in NSS hardware mode or SWNSS bit is low in NSS software mode.) This bit is set by hardware and cleared by a read or write operation on the SPI_STR register followed by a write access to the SPI_CTLR1 register. This bit is not used in I2S mode.
4	CRCE	SPI CRC Error Bit 0: The SPI_RCR value is equals to the received CRC data at last. 1: The SPI_RCR value is not equals to the received CRC data at last. This bit is set by hardware and cleared by software writing 0. This bit is not used in I2S mode.
3	TXURE	Transmission underrun error bit 0: No transmission underrun error occurred. 1: Transmission underrun error occurred. This bit is set by hardware and cleared by a read operation on the SPI_STR register. This bit is not used in SPI mode.
2	I2SCH	 I2S channel side 0: Channel Left has to be transmitted or has been received. 1: Channel Right has to be transmitted or has been received. This bit is set and cleared by hardware. This bit is not used in SPI mode, and has no meaning in the I2S PCM mode.
1	TBE	Transmit Buffer Empty 0: Transmit buffer is not empty 1: Transmit buffer is empty
0	RBNE	Receive Buffer Not Empty 0: Receive buffer is empty 1: Receive buffer is not empty

15.5.4. SPI data register (SPI_DTR)

Address offset: 0x0C Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DTR[15	5:0]							
	rw														
Bits	Fields		Descriptions												
15:0	DTR[15:0]	Data transfer register. The hardware has two buffers, including transmit buffer and receive												
			buffer. Write data to DTR will save the data to transmit buffer and read data from DTR will get												

buffer. Write data to DTR will save the data to transmit buffer and read data from DTR will get the data from receive buffer.

When the data frame format is set to 8-bit data, the DTR[15:8] is forced to 0 and the DTR[7:0] is used for transmission and reception, transmit buffer and receive buffer are 8-bit. If the Data frame format is set to 16-bit data, the DTR[15:0] is used for transmission and reception, transmit buffer and receive buffer are 16-bit.

15.5.5. SPI CRC polynomial register (SPI_CPR)

		Address Reset va	offset: 0 alue: 0x0)x10)007											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CPR [1	5:0]							
							rw								

Bits Fields Descriptions

15:0 CPR[15:0] This register contains the CRC polynomial and used for CRC calculation. The default value is 0007h.

15.5.6. SPI RX CRC register (SPI_RCR)

		Addres Reset v	s offset value: 0	t: 0x14)x0000											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RCR[1	5:0]							
							r								

Bits	Fields	Descriptions
15:0	RCR	When the CRCEN bit of SPI_CTLR1 is set, the hardware computes the CRC value of

the received bytes and save them in RCR register. If the Data frame format is set to 8-bit data, CRC calculation is done based on CRC8 standard, and save the value in RCR[7:0], when the Data frame format is set to 16-bit data, CRC calculation is done based on CRC16 standard, and save the value in RCR[15:0].

The hardware computes the CRC value after each received bit, when the TRANS is set, a read to this register could return an intermediate value.

This register is reset when the CRCEN bit or the SPIEN bit of SPI_CTLR1 is cleared.

15.5.7. SPI TX CRC register (SPI_TCR)

Address offset: 0x18 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TCR[18	5:0]							

r

Bits	Fields	Descriptions
15:0	TCR	When the CRCEN bit of SPI_CTLR1 is set, the hardware computes the CRC value of the
		transmitted bytes and save them in TCR register. If the Data frame format is set to 8-bit data, CRC
		calculation is done based on CRC8 standard, and save the value in TCR[7:0], when the Data
		frame format is set to 16-bit data, CRC calculation is done based on CRC16 standard, and save
		the value in TCR[15:0].
		The hardware computes the CRC value after each transmitted bit, when the TRANS is set, a read
		to this register could return an intermediate value. The different frame format (LF bit of the
		SPI_CTLR1) will get different CRC value.
		This register is reset when the CRCEN bit or the SPIEN bit of SPI_CTLR1 is cleared.

15.5.8. SPI I2S control register (SPI_I2SCTLR)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Reserv	/ed		12SSEL	I2SEN I2SOM		PCMSM	Reserved.	12SSTD		CKPL	DTLEN		CHLEN		
				rw	rw	ľW	,	rw	rw rw			rw	rv	N	rw	
	Bits				Field	S		De	Descriptions							
	15:12				Rese	rved		mu	ist be kept	at reset va	lue					
		11			12SSE	ΞL		I2S mode selection								
								0: 5	SPI mode							
								1:	I2S mode							
								Th	is bit shoul	d be config	gured v	when SF	Pl or I2	S is		

Address offset: 0x1C Reset value: 0x0000

		_
disonablad		
uisenabieu.		

10	I2SEN	I2S enable 0: I2S is disenable 1: I2S is enable This bit is not used in SPI mode.
9:8	I2SOM	I2S operation mode 00: Slave transmission mode 01: Slave reception mode 10: Master transmission mode 11: Master reception mode This bit should be configured when I2S is disenabled. This bit is not used in SPI mode.
7	PCMSM	PCM frame synchronization mode 0: Short frame synchronization 1: long frame synchronization This bit has a meaning only when PCM standard is used. This bit should be configured when I2S is disenabled. This bit is not used in SPI mode.
6	Reserved	Must be kept at reset value
5:4	I2SSTD	I2S standard selection 00: I2S Phillips standard 01: MSB justified standard 10: LSB justified standard 11: PCM standard These bits should be configured when I2S is disenabled. These bits are not used in SPI mode.
3	CKPL	Idle state clock polarity 0: The idle state of I2S_CK is low level 1: The idle state of I2S_CK is high level This bit should be configured when I2S is disenabled. This bit is not used in SPI mode.
2:1	DTLEN	Data length 00: 16 bits 01: 24 bits 10: 32 bits 11: Reserved These bits should be configured when I2S is disenabled. These bits are not used in SPI mode.
0	CHLEN	Channel length 0: 16 bits

1: 32 bits

The channel length must be equal to or greater than the data length.

This bit should be configured when I2S is disenabled.

This bit is not used in SPI mode.

15.5.9. SPI I2S clock prescaler register (SPI_I2SCKP)

Address offset: 0x20 Reset value: 0x0002

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Res	erved			MCKOE	OF		DIV						
						rw	rw				rw				

Bits	Fields	Descriptions
15:10	Reserved	must be kept at reset value
9	MCKOE	I2S_MCK output enable
		0: I2S_MCK output is disenable
		1: I2S_MCK output is enable
		This bit should be configured when I2S is disenabled.
		This bit is not used in SPI mode.
8	OF	Odd factor for the prescaler
		0: Real divider value is DIV * 2
		1: Real divider value is DIV * 2 + 1
		This bit should be configured when I2S is disenabled.
		This bit is not used in SPI mode.
7:0	DIV	Dividing factor for the prescaler
		Real divider value is DIV * 2 + OF.
		DIV must not be 0.
		These bits should be configured when I2S is disenabled.
		These bits are not used in SPI mode.

16. Backup registers (BKP)

16.1. Introduction

The Backup registers are located in the Backup domain that remains powered-on by V_{BAT} even if V_{DD} power is shut down, they are forty two 16-bit (84 bytes) registers for data protection of user application data, and the wake-up action from Standby mode or system reset are not affect these registers.

In addition, the BKP registers can be used to implement the tamper detection and RTC calibration function.

After reset, any write access to the registers in Backup domain is disabled, that is, the Backup registers and RTC cannot be written to access. In order to enable access to the Backup registers and RTC, the Power and Backup interface clocks should be enabled firstly by setting the PWREN and BKPEN bits in the RCC_APB1CCR register, and write access to the registers in Backup domain should be enabled by set the BKPWE bit in the PWR_CTLR register.

16.2. Main features

- 84 bytes Backup registers which can keep data under power saving mode. If tamper event is detected, Backup registers will be reset
- The active level of Tamper source (PC13) can be configured
- RTC Clock Calibration register provides RTC alarm and second output selection, and sets the calibration value
- Tamper interrupt event register (BKP_TIER) can control tamper detection with interrupt or event capability

16.3. Function description

16.3.1. RTC clock calibration

In order to improve the RTC clock accuracy, the MCU provides the RTC output for calibration function. The RTC clock, the frequency is $f_{RTCCLK}/64$, can be output on the PC13. It is enabled by setting the RCCOE bit in the BKP_RCCR register.

The calibration value is set by RCCV[6:0] in the BKP_RCCR register, and the calibration function can slow down the RTC clock by steps of 1000000/2^20 ppm.

16.3.2. Tamper detection

In order to protect the important user data, the MCU provides the tamper detection function,

and it can be independently enabled on TAMPER pin by setting corresponding TPE bit in the BKP_TPCR register. To prevent the tamper event from losing, the edge detection is logically ANDed with the TPE bit, used for tamper detection signal. So the tamper detection configuration should be set before enable TAMPER pin. When the tamper event is detected, the corresponding TEF bit in the BKP_TIER register will be set. Tamper event can generate an interrupt if tamper interrupt is enabled. Any tamper event will reset all Backup data registers.

Note: When TPAL=0/1, if the TAMPER pin is already high/low before it is enabled(by setting TPE bit), an extra tamper event is detected, while there was no rising/falling edge on the TAMPER pin after TPE bit was set.

16.4. BKP registers

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

16.4.1. Backup data register x (BKP_DRx) (x= 1..42)

Address offset: 0x04 to 0x28, 0x40 to 0xBC Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							BKD [[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields		Des	criptio	าร									
15:0		BKD[1	5:0]	Bac	kup dat	а									
				The	se bits a	are used	d for gen	eral pu	rpose d	ata sto	rage. Tł	ne conte	ents of th	ne BKP_	DRx
				regi	ster will	remain	even if t	he wak	e-up ac	tion fro	m Stan	dby moo	de or sy	stem res	set or
				pow	er reset	t.									

16.4.2. RTC clock calibration register (BKP_RCCR)

Address offset: 0x2C

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reser	ved			ROS	ROE	RCCOE	RCCV[6:0]						
						rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits		Fields			Descrip	tions									
15:10		Reser	ved		Must be kept at reset value										
9		ROS			RTC out	put selecti	on								
					0: RTC alarm pulse is selected as the RTC output										
					1: RTC second pulse is selected as the RTC output										
This bit is reset only by a								kup doma	in rese	et.					

GigaDevia	c e	GD32F10x User Manual
8	ROE	RTC output enable
		0: Disenable RTC output
		1: Enable RTC output
		When enable, the TAMPER pin will output the RTC output.
		This bit is reset only by a Backup domain reset.
7	RCCOE	RTC clock calibration output enable
		0: Disenable RTC clock calibration output
		1: Enable RTC clock Calibration output
		When enable, the TAMPER pin will output the RTC clock. ROE has the priority over
		RCCOE. When ROE is set, the TAMPER pin will output the RTC output whether
		RCCOE is set or not.
		This bit is reset only by a POR/PDR.
6:0	RCCV[6:0]	RTC clock calibration value
		The value indicates how many clock pulses are ignored every 2^20 clock pulses.

16.4.3. Tamper pin control register (BKP_TPCR)

Address offset: 0x30 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reser	ved							TPAL	TPE

			rw	rw
Bits	Fields	Descriptions		
15:2	Reserved	Must be kept at reset value		
1	TPAL	TAMPER pin active level		
		0: The TAMPER pin is active high		
		1: The TAMPER pin is active low		
0	TPE	TAMPER pin enable		
		0: The TAMPER pin is free for GPIO functions		
		1: The TAMPER pin is dedicated for the Backup Reset function. The act	ive level c	on the
		TAMPER pin resets all data of the BKP_DRx register.		

16.4.4. Tamper interrupt event register (BKP_TIER)

Address offset: 0x34 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			TIF	TEF		I	Reserved	ł		TIE	TIR	TER
						r	r						rw	w	w
Bits		Fields	;	De	scripti	ons									

15:10	Reserved	Must be kept at reset value
9	TIF	Tamper interrupt flag
		0: No tamper interrupt occurred
		1: A tamper interrupt occurred
		This bit is reset by writing 1 to the TIR bit or the TIE bit being 0.
8	TEF	Tamper event flag
		0: No tamper event occurred
		1: A tamper event occurred
		This bit is reset by writing 1 to the TER bit.
7:3	Reserved	Must be kept at reset value
2	TIE	Tamper interrupt enable
		0: Disenable the tamper interrupt
		1: Enable the tamper interrupt
		This bit is reset only by a system reset and wake-up from Standby mode.
1	TIR	Tamper interrupt reset
		0: No effect
		1: Reset the TIF bit
		This bit is always read as 0.
0	TER	Tamper event reset
		0: No effect
		1: Reset the TEF bit
		This bit is always read as 0.

17. Universal synchronous asynchronous receiver transmitter (USART)

17.1. Introduction

The Universal Synchronous Asynchronous Receiver Transceiver (USART) provides a flexible full duplex data exchange using synchronous or asynchronous transfer. The USART is used to transfer data between serial interfaces, and is also commonly used for RS232 standard communication. It also offers a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver.

It supports half-duplex single wire synchronous communication, LIN (local interconnection network), Smartcard Protocol and IrDA (infrared data association) SIR ENDEC specification, It also supports modem operations (CTS/RTS) and multiprocessor communication.

The USART also supports DMA function for high speed data communication.

17.2. Main features

- Full duplex, asynchronous communications
- Half duplex single wire communications
- NRZ standard format (Mark/Space)
- Programmable baud-rate generator allowing speeds up to 6.75 MBits/s when the clock frequency is108 MHz and oversampling is by 16.
- Fully programmable serial interface characteristics:
 - Even, odd or no-parity bit generation/detection
 - A data word length can be 8 or 9 bits
 - 1, 1.5 or 2 stop bit generation
- Configurable data polarity
- Configurable multibuffer communication using centralized DMA
- Separate enable bits for Transmitter and Receiver
- Transfer detection flags:
 - Receive buffer full
 - Transmit buffer empty
 - End of Transmission flags
- Parity control:
 - Transmits parity bit
 - Checks parity of received data byte
- Error detection: Overrun, Noise, Frame and Parity error
- LIN Break generation and detection

- IrDA Support
- Synchronous mode and transmitter clock output for synchronous transmission
- ISO 7816-3 compliant smart card interface
- Multiprocessor communication
 - Enter into mute mode if address match does not occur
 - Wake up from mute mode by idle line or address mark detection
- 10 interrupt sources with flags:
 - CTS changes
 - LIN break detection
 - Transmit data register empty
 - Transmission complete
 - Receive data register full
 - Idle line detected
 - Overrun error
 - Framing error
 - Noise error
 - Parity error

17.3. Function description

The interface is externally connected to another device by the main pins listed as following.

Pin	Туре	Description
RX	Input	Receive Data
ТΧ	Output	Transmit Data. high level When enabled
	I/O (single-wire/smartcard	but nothing to be transmitted
	mode)	
СК	Output	Serial clock for synchronous
		communication
nCTS	Input	Clear to send in Hardware flow control
		mode
nRTS	Output	Request to send in Hardware flow control
		mode

Table 17-1 USART important pins description

Figure 17-1 USART module block diagram

17.3.1. USART transmitter

When the transmit enable bit (TEN) in USART_CTLR1 register is set, the transmitter clock pulses are generated by the baud rate generator, and output on the CK pin. Then the serial bit stream is sent after an idle frame by the transmitter according to the programmed configuration in the control registers.

In case of transmission corruption, the TEN bit should not be disabled when transmission is ongoing.

If the data can be written to the USART_DR without overwriting the previous one, the TBE bit is asserted. And it is cleared when the data is written.

If a frame is transmitted and the TBE bit is asserted, the TC bit will be set. An interrupt is generated if the corresponding interrupt enable bit (TCIE) is set in the USART_CTLR1 register.

Refer to the following procedure for the USART transmission:

- 1. Set the UEN bit in USART_CTLR1 to enable the USART
- 2. Write the WL bit in USART_CTLR1 to set the data bits length
- 3. Set the stop bits length in USART_CTLR2.

- 4. Enable DMA (DENT bit) in USART_CTLR3 if multibuffer communication is selected.
- 5. Set the baud rate in USART_BRR.
- 6. Set the TEN bit in USART_CTLR1.
- 7. Wait for the TBE being asserted
- 8. Write the data to in the USART_DR register
- 9. Wait until TC=1 to finish.

It is necessary to wait for the TC bit asserted before disabling the USART or entering the power saving mode.

Reading the USART_STR then writing the USART_DR can clear the TC bit. And writing '0' directly to TC bit can also clear the TC bit for multibuffer communication

The break frame is sent when the SBKCMD bit is set, and SBKCMD bit is reset after the transmission.

Stop bit length (bit)	Description
1	default value
1.5	Smartcard mode for transmitting and receiving
0.5	Smartcard mode for receiving
2	normal USART, single-wire and modem modes

Table 17-2 Stop bits configuration

Figure 17-2 USART character frame (9 bits data and 1 stop bit)

The MSB bit is taken as the parity bit if parity control is enabled.

If there is even number of '1s' in the data bits (the LSB bits), the parity bit should be '0' (even parity) or '1' (odd parity).

17.3.2. USART receiver

The receiver receives a bit stream after a valid start pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also performed.

If a frame is received and the RBNE bit is asserted, the USART_DR and associated bits in USART_STR can be read. An interrupt is generated if the corresponding interrupt enable bit (RBNEIE) is set in the USART_CTLR1 register.

The RBNE bit must be cleared before the next data arrived, or an overrun error will occur.

In case of reception corruption, the REN bit should not be disabled when reception is ongoing.

The RBNE bit can be cleared by directly reading the USART_DR in multibuffer communication. DMA read in multibuffer communication can also clear the RBNE bit.

Refer to the following procedure for the USART receiving:

- 1. Set the UEN bit in USART_CTLR1 to enable the USART
- 2. Write the WL bit in USART_CTLR1 to set the data bits length
- 3. Set the stop bits length in USART_CTLR2.
- 4. Enable DMA (DENR bit) in USART_CTLR3 if multibuffer communication is selected.
- 5. Set the baud rate in USART_BRR.
- 6. Set the REN bit in USART_CTLR1

17.3.3. Reception errors

An overrun error occurs, if the next data arrived or the previous DMA request has not been serviced when the RBNE bit is set. The ORE bit in the USART_STR register is set.

The internal baud-rate reference clock is used to over sample RX line for data recovery. If a noise error occurs, the NE in USART_STR is set at the rising edge of the RBNE bit and the invalid data is received from the shift register.

A framing error occurs when the stop bit is not detected at the expected time. If a framing error occurs, the FE in USART_STR is set at the rising edge of the RBNE bit and the invalid data is received from the shift register.

17.3.4. Baud rate generation

The baud-rate divisor is a 16-bit number consisting of a 12-bit integer and a 4-bit fractional part. The number formed by these two values is used by the baud-rate generator to determine the bit period. Having a fractional baud-rate divider allows the USART to generate all the standard baud rates.

The baud-rate divider (USARTDIV) has the following relationship to the system clock:

$$USARTDIV = \frac{UCLK}{16 \times Baud Rate}$$

The choice of the USART clock (UCLK) is done through the Clock Control system (see the Reset and clock control (RCC) section). The clock source must be chosen before enabling the USART (by setting the UEN bit).

17.3.5. Multi-processor communication

In multiprocessor communication, the mute mode for the unaddressed receivers is introduced. During a reception, the target receiver is active and receives the full message contents while the unintended message recipients are in the mute mode. Idle line detection

and address mark detection can be used to enter or exit the mute mode.

In idle line detection, the USART enters the mute mode when the RWU bit in the USART_CTLR1 register is written to 1. It exits as soon as the idle frame is detected. Then RWU bit in the USART_CTLR1 register is cleared by hardware but the IDLEF bit in USART_STR is not set.

In address mark detection, the bytes with their MSB bit set are recognized as address byte. The 4 LSB bits in the address byte are the address of the target receiver. The receivers compare the address byte with the address of their own, then enter or exit the mute mode (set or reset the RWU bit) according to the result.

17.3.6. LIN mode

The local interconnection network mode is enabled by setting the LMEN bit in USART_CTLR2. The CKEN, STB bit in USART_CTLR2 and the SCEN, HDEN, IREN bits in USART_CTLR3 should be reset in LIN mode.

The LIN transmission procedure is almost the same as the normal transmission procedure. The data bits length can only be 8. And the break frame is 13-bit '0s'.

Break detection is totally independent from the normal USART receiver. So a break can be detected during the idle state or during a frame.

When the receiver is enabled and a start bit has been detected, the circuit samples the next bit.

During the break detection, when the framing error occurs, the break detection cancels only until the RX line becomes high level. Then start bit detection begins. If 10/11 (configured by the LBDL bit in USART_CTLR2) consecutive bits are detected as '0' before a delimiter character (high level), the LIN break detection flag is also set in USART_STR.

Figure 17-3 Frame error detection and break frame detection in LIN mode

Rx Line	DATA0	DATA1	BREAK FRAME	DATA2	DATA3
FE					
LBDF					

17.3.7. Half-duplex communication mode

The half-duplex communication mode is enabled by setting the HDEN bit in USART_CTLR3. The LMEN, CKEN bits in USART_CTLR2 and SCEN, IREN bits in USART_CTLR3 should be reset in half-duplex communication mode.

Only one wire is used in half-duplex mode. The TX and RX pins are connected together internally. The TX pin should be configured as IO pin. The conflicts should be controlled by the software. When the TEN bit is set, the data in the data register will be sent.

17.3.8. Synchronous mode

The USART can be used for full-duplex synchronous serial communications only in master mode, by setting the CKEN bit in USART_CTLR2. The LMEN bit in USART_CTLR2 and SCEN, HDEN, IREN bits in USART_CTLR3 should be reset in synchronous mode. The CK pin is the synchronous USART transmitter clock output, and can be only activated when the TEN bit is enabled. No clock pulse will be sent to the CK pin during the start bit and stop bit transmission. The LBCP bit in USART_CTLR2 can be used to determine whether the clock is output or not during the LSB (address index) bit transmission. The clock output is also not activated during idle and break frame sending. The CPH bit in USART_CTLR2 can be used to determine whether data is captured on the first or the second clock edge. The CPL bit in USART_CTLR2 can be used to configure the clock polarity in the USART Synchronous Mode idle state.

These 3 bits (CPL, CPH, LBCP) should not be changed while the transmitter or the receiver is enabled

The clock is synchronized with the data transmitted. The receiver in synchronous mode samples the data on the transmitter clock without any oversampling.

Figure 17-4 Example of USART in synchronous mode

17.3.9. Smartcard (ISO7816) mode

The smartcard mode is an asynchronous mode, which is enabled by setting the SCEN bit in USART_CTLR3. The LMEN bit in USART_CTLR2 and HDEN, IREN bits in USART_CTLR3 should be reset in smartcard mode.

A clock is provided to the smart card if the CKEN bit is set. The clock can be divided for other use.

The frame consists of 1 start bit, 9 data bits (1 parity bit included) and 1.5 stop bits.

The smartcard mode is a half-duplex communication protocol. When connected to a Smartcard, the TX pin must be configured as open drain and drives a bidirectional line that is also driven by the Smartcard.

Figure 17-6 ISO7816-3 frame format

ISO 7816-3 frame without parity error

Comparing to the time in normal operation, the transmission time from transmit shift register to the TX pin is delayed half baud clock, and the TC flag assertion time delayed a certain value wrote in the guard time register. In Smartcard mode an empty transmit shift register triggers the guard time counter to count up to the programmed value in the Guard Time register. TC is forced low during this time. When the guard time counter reaches the programmed value TC is asserted high

During USART reception, the TX line is pulled low for a baud clock after finishing receiving the frame if a parity error is detected. This signal is the 'NACK' signal to smart card. Then a frame error occurred in smart card side. The RBNE/receive DMA request is not activated if the received character is erroneous. According to the protocol, the smart card can resend the data..

The 'NACK' signal will be sent to the USART if the NACK bit in USART_CTLR3 is set. And the USART will not take the 'NACK' signal as the start bit.

The idle frame and break frame do not apply for the smartcard mode.

17.3.10. IrDA SIR ENDEC mode

The IrDA mode is enabled by setting the IREN bit in USART_CTLR3. The LMEN, STB, CKEN bits in USART_CTLR2 and HDEN, SCEN bits in USART_CTLR3 should be reset in

IrDA mode.

In IrDA SIR physical layer, an infrared light pulse (a Return to Zero signal) represent the logic '0'. The pulse width should be 3/16 of a bit period. The IrDA could not detect the pulse if the pulse width is less than 1 PSC clock. While it can detect some pulse by chance if the pulse width is greater than 1 but smaller than 2 times PSC clock.

The USART data frame is modulated in SIR Transmit encoder. The modulated signal is transmitted by the infrared LED. The baud rate should not be larger than 115200 for the encoder.

The SIR decoder receives the modulated signal and outputs the data frame decoded. The polarity of modulated signal transmitted by the encoder is opposite to that received by the decoder. Then the decoder input is usually the high level and a start bit is decoded if the input signal is low.

The transmission and the reception should not be carried out at the same time in the IrDA SIR ENDEC block.

For power saving mode:

- Transmitter: The pulse width can be 3 times the low-power baud rate.
- Receiver: The same as normal mode.

Figure 17-7 IrDA SIR ENDEC module

Figure 17-8 IrDA data modulation

17.3.11. Hardware flow control

Using the nCTS input and the nRTS output to control the serial data flow is called hardware flow control. The RTS flow control is enabled by writing '1' to the RTSEN bit in USART_CTLR3 and the CTS flow control is enabled by write '1' to the CTSEN bit in USART_CTLR3.

Figure 17-9 Hardware flow control between two USARTs

RTS flow control

USART receiver can receive data only when the nRTS signal is low, and the signal does not go high until the data frame reception is finished. The next reception occurs when the nRTS signal goes low again. The signal keeps high when the receive register is full.

CTS flow control

If the TBE bit in USART_STR is '0' and the nCTS signal is low, the transmitter transmits the data frame. When the nCTS signal goes high during a transmission, the transmitter stops

after the current transmission is accomplished.

Figure 17-10 Hardware flow control

17.3.12. DMA requests

DMA can be used for USART continuously communication. The DENT bit in USART_CTLR3 is used to enable the DMA transmission, and the DENR bit in USART_CTLR3 is used to enable the DMA reception.

DMA transmission configuration:

- 1. Configuring the DMA registers, which the destination address (USART_DR register address), the source address (memory address), the total number of bytes to be transferred, channel priority, DMA interrupts are written to.
- 2. Writing '0' to the TC bit in USART_STR to clear it.
- 3. Writing '1' to the DENT bit in the DMA control register to enable the DMA channel.

The TC flag in USART_STR is set later than the time when the TCIF flag is set in DMA_STR. It remains reset during the data transfers, and is set when the USART communication finished. Entering the Deep-sleep mode or disabling the USART will lead to the transfer corruption when the TC bit is not set.

DMA reception configuration: configuring the DMA registers, which the destination address (memory address), the source address (USART_DR register address), the total number of bytes to be transferred, channel priority, DMA interrupts are written to.

The RBNE event occurs as soon as the data is received.

17.3.13. USART interrupts

The USART interrupt events and flags are listed in the table below.

Table 17-3 USART interrupt requests

|--|

Transmit data register empty	TBE	TBEIE		
CTS flag	CTSF	CTSIE		
Transmission complete	тс	TCIE		
Received data ready to be read	RBNE	DDNEIE		
Overrun error detected	ORE	RDINEIE		
Idle line detected	IDLEF	IDLEIE		
Parity error	PE	PEIE		
Break detected flag in LIN mode	LBDF	LBDIE		
Reception Errors (Noise flag,				
overrun error, framing error) in	NE or ORE or FE	ERIE		
DMA reception				

All of the interrupt events are ORed together before being sent to the interrupt controller, so the USART can only generate a single interrupt request to the controller at any given time. Software can service multiple interrupt events in a single interrupt service routine

17.4. USART registers

17.4.1. USART status register (USART_STR)

Address offset: 0x00 Reset value: 0x0000_00C0

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						CTSF	LBDF	TBE	тс	RBNE	IDLEF	ORE	NE	FE	PE
						rc_w0	rc_w0	r	rc_w0	rc_w0	r	r	r	r	r

Bits	Fields	Descriptions
31:10	Reserved	Forced by hardware to 0.
9	CTSF	CTS change flag
		0: No change occurred on the nCTS status line
		1: A change occurred on the nCTS status line. An interrupt will occur if the CTSIE bit is
		set in USART_CTLR3.
		Set by hardware when the nCTS input toggles
		It is cleared by software (by writing it to 0).
8	LBDF	LIN break detected flag
		0: LIN Break is not detected
		1: LIN Break is detected. An interrupt will occur if the LBDIE bit is set in
		USART_CTLR2.
		Set by hardware when the LIN break is detected.
		It is cleared by software (by writing it to 0).
7	TBE	Transmit data register empty
		0: Data is not transferred to the shift register
		1: Data is transferred to the shift register. An interrupt will occur if the TBEIE bit is set in
		USART_CTLR1.
		Set by hardware when the content of the USART_DR register has been transferred
		into the transmit shift register .Cleared by a write to the USART_DR.
6	TC	Transmission complete
		0: Transmission is not complete
		1: Transmission is complete. An interrupt will occur if the TCIE bit is set in
		USART_CTLR1.
		Set by hardware if the transmission of a frame containing data is complete and if the
		TBE bit is set.
		It is cleared by software (by writing it to 0).

Gigal) Device	GD32F10x User Manual
5	RBNE	Read data buffer not empty 0: Data is not received 1: Data is received and ready to be read. An interrupt will occur if the RBNEIE bit is set in USART_CTLR1. Set by hardware when the content of the receive shift register has been transferred to the USART_DR. Cleared by reading the USART_DR or it is also cleared by software (by writing it to 0).
4	IDLEF	IDLE line detected flag 0: No Idle Line is detected 1: Idle Line is detected. An interrupt will occur if the IDLEIE bit is set in USART_CTLR1. Set by hardware when an Idle Line is detected. It will not be set again until the RBNE bit has been set itself Cleared by a software sequence.
3	ORE	Overrun error 0: No Overrun error is detected 1: Overrun error is detected. An interrupt will occur if the RBNEIE bit is set in USART_CTLR1. In multibuffer communication, an interrupt will occur if the EIE bit is set in USART_CTLR1. Set by hardware when the word in the receive shift register is ready to be transferred into the USART_DR register while the RBNE bit is set. Cleared by a software sequence.
2	NE	Noise error flag 0: No noise error is detected 1: Noise error is detected. In multibuffer communication, an interrupt will occur if the EIE bit is set in USART_CTLR1. Set by hardware when noise error is detected on a received frame. Cleared by a software sequence.
1	FE	Framing error 0: No Framing error is detected 1: Framing error or break character is detected. In multibuffer communication, an interrupt will occur if the EIE bit is set in USART_CTLR1. Set by hardware when a de-synchronization, excessive noise or a break character is detected. Cleared by a software sequence.
0	PE	Parity error 0: No parity error is detected 1: Parity error is detected. An interrupt will occur if the PEIE bit is set in USART_CTLR1. Set by hardware when a parity error occurs in receiver mode. Cleared by a software sequence.

17.4.2. USART data register (USART_DR)

Offset: 0x04

Reset value: Undefined

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved							DR[8:0]								
											rw				

Bits	Fields	Descriptions
31:9	Reserved	Forced by hardware to 0.
8:0	DR[8:0]	Data value
		The transmit data character or the received data character is contained in these bits.
		The value written or read in the MSB (bit 7 or bit 8 depending on the data length) will
		be replaced by the parity, when transmitting with the parity is enabled or receiving with
		the parity is enabled (PE bit set to 1 in the USART_CTLR1 register).

17.4.3. USART baud rate register (USART_BRR)

Address offset: 0x08

Reset value: 0x0000_0000

This register can not be written when the USART is enabled (UEN=1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BRR [15:4] BRR[3:0]														
rw													r١	N	

Bits	Fields	Descriptions
31:16	Reserved	Forced by hardware to 0.
15:4	BRR[15:4]	Integer of baud-rate divider
3:0	BRR [3:0]	Fraction of baud-rate divider

17.4.4. USART control register 1 (USART_CTLR1)

Address offset: 0x0C Reset value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	rved	UEN	WL	WM	PCEN	PM	PEIE	TBEIE	TCIE	RBNEIE	IDLEIE	TEN	REN	RWU	SBKCMD
		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
31:14	Reserved	Forced by hardware to 0.
13	UEN	USART enable
		0: USART prescaler and outputs disabled
		1: USART prescaler and outputs enabled
12	WL	Word length
		0: 8 Data bits,
		1: 9 Data bits
		This bit field can not be written when the USART is enabled (UEN=1)
11	WM	Wakeup method in mute mode
		0: Idle Line
		1: Address Mark
		This bit field can not be written when the USART is enabled (UEN=1)
10	PCEN	Parity control enable
		0: Parity control disabled
		1: Parity control enabled
		This bit field can not be written when the USART is enabled (UEN=1)
9	PM	Parity mode
		0: Even parity
		1: Odd parity
		This bit field can not be written when the USART is enabled (UEN=1)
8	PEIE	Parity error interrupt enable
		0: Parity error interrupt is disabled
		1: An interrupt will occur whenever the PE bit is set in USART_STR.
7	TBEIE	Transmitter register empty interrupt enable
		0: Interrupt is inhibited
		1: An interrupt will occur whenever the TBE bit is set in USART_STR
6	TCIE	Transmission complete interrupt enable
		0: Transmission complete interrupt is disabled
		1: An interrupt will occur whenever the TC bit is set in USART_STR.
5	RBNEIE	Read data buffer not empty interrupt and overrun error interrupt enable
		0: Read data register not empty interrupt and overrun error interrupt disabled

		1: An interrupt will occur whenever the ORE bit is set or the RBNE bit is set in USART_STR.
4	IDIE	IDLE line detected interrupt enable
		0: IDLE line detected interrupt disabled
		1: An interrupt will occur whenever the IDLEF bit is set in USART_STR.
3	TEN	Transmitter enable
		0: Transmitter is disabled
		1: Transmitter is enabled
2	REN	Receiver enable
		0: Receiver is disabled
		1: Receiver is enabled and begins searching for a start bit
1	RWU	Receiver wakeup from mute mode.
		This bit is used to indicate if the USART is in mute mode.
		0: Receiver in active mode
		1: Receiver in mute mode
		It is cleared/set by hardware when a wakeup/mute sequence (address or IDLE)is
		recognized, which is selected by the WAKE bit in the USART_CTLR1 register.
0	SBKCMD	Send break command
		0: No break character is transmitted
		1: Break character will be transmitted

17.4.5. USART control register 2 (USART_CTLR2)

Address offset: 0x10

	Reset value:	0x0000	0000
--	--------------	--------	------

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	LMEN	STB	[1:0]	CKEN	CPL	CPH	LBCP	Res.	LBDIE	LBDL	Res		ADD	[3:0]	
	rw	rv	N	rw	rw	rw	rw		rw	rw					

Bits	Fields	Descriptions
31:15	Reserved	Forced by hardware to 0.
14	LMEN	LIN mode enable
		0: LIN mode disabled
		1: LIN mode enabled
		This bit field can not be written when the USART is enabled (UEN=1)
13:12	STB[1:0]	STOP bits length
		00: 1 Stop bit
		01: 0.5 Stop bits

		10: 2 Stop bits11: 1.5 Stop bitThis bit field can not be written when the USART is enabled (UEN=1)
11	CKEN	CK pin enable 0: CK pin disabled 1: CK pin enabled This bit field can not be written when the USART is enabled (UEN=1)
10	CPL	Clock polarity 0: Steady low value on CK pin outside transmission window in synchronous mode. 1: Steady high value on CK pin outside transmission window in synchronous mode. This bit field can not be written when the USART is enabled (UEN=1)
9	СРН	Clock phase 0: The first clock transition is the first data capture edge in synchronous mode. 1: The second clock transition is the first data capture edge in synchronous mode. This bit field can not be written when the USART is enabled (UEN=1)
8	LBCP	Last bit clock pulse 0: The clock pulse of the last data bit (MSB) is not output to the CK pin in synchronous mode 1: The clock pulse of the last data bit (MSB) is output to the CK pin in synchronous mode This bit field can not be written when the USART is enabled (UEN=1)
7	Reserved	Forced by hardware to 0
6	LBDIE	LIN break detection interrupt enable 0: LIN break detection interrupt is disabled 1: An interrupt will occur whenever the LBDF bit is set in USART_STR.
5	LBDL	LIN break detection length 0: 10 bit break detection 1: 11 bit break detection This bit field can not be written when the USART is enabled (UEN=1)
4	Reserved	Forced by hardware to 0
3:0	ADD[3:0]	Address of the USART node This is used in multiprocessor communication during mute mode, for wake up with
		addressmark detection.

17.4.6. USART control register 3 (USART_CTLR3)

Address offset: 0x14 Reset value: 0x0000_0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
									rw	r١	N		rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					CTRIE	CTSEN	DTOEN	DENT	DENR	SCEN	NACK		ם ום	IDEN	ERI
	r	<i>Leseiveu</i>			CISIE	CISEN	RISEN	DENT	DENK	SCEN	NACK	NDEN	IKLF	IKEN	Е
					rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
31:23	Reserved	Forced by hardware to 0.
10	CTSIE	CTS interrupt enable
		0: CTS interrupt is disabled
		1: An interrupt will occur whenever the CTS bit is set in USART_STR.
9	CTSEN	CTS enable
		0: CTS hardware flow control disabled
		1: CTS hardware flow control enabled
		This bit field can not be written when the USART is enabled (UEN=1)
8	RTSEN	RTS enable
		0: RTS hardware flow control disabled
		1: RTS hardware flow control enabled, data can be requested only when there is space in the
		receive buffer.
		This bit field can not be written when the USART is enabled (UEN=1)
7	DENT	DMA enable for transmission
		0: DMA mode is disabled for transmission
		1: DMA mode is enabled for transmission
6	DENR	DMA enable for reception
		0: DMA mode is disabled for reception
		1: DMA mode is enabled for reception
5	SCEN	Smartcard mode enable
		0: Smartcard Mode disabled
		1: Smartcard Mode enabled
		This bit field can not be written when the USART is enabled (UEN=1)
4	NACK	NACK enable in Smartcard mode
		0: Disable NACK transmission when parity error
		1: Enable NACK transmission when parity error
		This bit field can not be written when the USART is enabled (UEN=1)
3	HDEN	Half-duplex enable
		0: Half duplex mode is disabled
		1: Half duplex mode is enabled

This bit field can not be written when the USART is enabled (UEN=1)

2	IRLP	IrDA low-power
		0: Normal mode
		1: Low-power mode
		This bit field can not be written when the USART is enabled (UEN=1)
1	IREN	IrDA mode enable
		0: IrDA disabled
		1: IrDA enabled
		This bit field can not be written when the USART is enabled (UEN=1)
		This bit is reserved in USART2
0	ERIE	Error interrupt enable in multibuffer Communication
		0: Error interrupt disabled
		1: An interrupt will occur whenever the FE bit or the ORE bit or the NE bit is set in USART_STR in
		multibuffer communication.

17.4.7. USART guard time and prescaler register (USART_GTPR)

Address offset: 0x1C Reset value: 0x0000_0000 This register can not be written when the USART is enabled (UEN=1) This register is reserved in USART2

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Resen															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GT[7:0]											PS	C[7:0]			
rw												rw			

Bits	Fields	Descriptions
31:16	Reserved	Forced by hardware to 0.
15:8	GT[7:0]	Guard time value in Smartcard mode

GigaD	b evice	GD32F10x User Manual							
7:0	PSC[7:0]	Prescaler value for dividing the system clock to achieve the low-power frequency in							
		IrDA Low-power mode. The division factor is the prescaler value.							
		00000000: Reserved - do not program this value							
		0000001: divides the source clock by 1							
		00000010: divides the source clock by 2							
		Prescaler value in IrDA normal mode							
		00000001: can be set this value only							
		Prescaler value for dividing the system clock in smartcard mode, the division factor is							
		twice as the prescaler value.							
		00000: Reserved - do not program this value							
		00001: divides the source clock by 2							
		00010: divides the source clock by 4							
		00011: divides the source clock by 6							

18. MCU Debug (MCUDBG)

18.1. Introduction

The MCUDBG module helps debugger to debug low-power mode,TIMER, I2C, bxCAN,WWDGand IWDG. When corresponding bits are set, the MCUDBG module provides clock when in low-power mode or holds the state for timer, wwdg, iwdg, bxCAN or I2C.

18.2. Function description

18.2.1. Debug support for low-power mode

When STDBY_HOLD bit in MCUDBG control register (MCUDBG_CTLR) is set and entering the standby mode, the clock of AHB bus and system clock are provided by CK_HSI, and the debugger can debug in standby mode. When exiting the standby mode, a system reset generated.

When DEEPSLEEP_HOLD bit in MCUDBG control register (MCUDBG_CTLR) is set and entering the deepsleep mode, the clock of AHB bus and system clock are provided by CK_HSI, and the debugger can debug in stop mode.

When SLEEP_HOLD bit in MCUDBG control register (MCUDBG_CTLR) is set and entering the sleep mode, the clock of AHB bus for CPU are not closed, and the debugger can debug in sleep mode.

18.2.2. Debug support for timer, i2c,bxCAN, wwdg and iwdg

When the core halted and the corresponding bit in MCUDBG control register (MCUDBG_CTLR) is set, the following behaved:

For timer, the timer counters stopped and hold for debug.

For I2C, SMBUS timeout hold for debug.

For wwdg or iwdg, the counter clock stopped for debug.

For CAN, the receive register stopped counting for debug.

18.3. MCUDBG registers

18.3.1. MCUDBG ID code register (MCUDBG_IDR)

Address: 0xE004 2000 32 bits access, read only

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ID_CODE[31:16]														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ID_CODE[15:0]														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits	Fields	Descriptions
31:0	ID_CODE	MCUDBG ID code register

These bits are read by software, These bits are unchanged constant

18.3.2. MCUDBG control register (MCUDBG_CTLR)

Address offset: 0xE004 2004

Reset value: 0x0000 0000; power reset only

31	30	29	28	27	26	25	24	23	22		21	20	19	18	17	16
Reserv ed	TIMER 11_ HOLD	TIMER 10_ HOLD	TIMER 9_ HOLD	TIMER 14_ HOLD	TIMER 13_ HOLD	TIMER 12_ HOLD	R	Reser	eserved		CAN2 _HOLD	TIMER 8_ HOLD	TIMER 7_ HOLD	TIMER 6_ HOLD	TIMER 5_ HOLD	I2C2 _HOLD
	rw	rw	rw	rw	rw	rw					rw	rw	rw	rw	wr	rw
15	14	13	12	11	10	9	8	7	6		5	4	3	2	1	0
I2C1_ HOLD	CAN1_ HOLD	TIMER 4_ HOLD	TIMER 3_ HOLD	TIMER 2_ HOLD	TIMER 1_ HOLD	WWDG_ HOLD	IWDG _HOLD		TRACE _MODE [1:0]		TRACE _IOEN	Reserved		STDBY _HOLD	DEEP SLEEP _HOLD	SLEEP_ HOLD
rw	rw	rw	rw	rw	rw	rw	rw		rw		rw			rw	rw	rw

Bits	Fields	Descriptions
31	Reserved	
30	TIMER11_HOLD	Timer 11 hold register
		This bit is set and reset by software
		0: no effect
		1: hold the Timer 11 counter for debug when core halted
29	TIMER10_HOLD	Timer 10 hold register
		This bit is set and reset by software
		0: no effect
		1: hold the Timer 10 counter for debug when core halted
28	TIMER9_HOLD	Timer 9 hold register
		This bit is set and reset by software
		0: no effect
		1: hold the Timer 9 counter for debug when core halted

GiggDe		GD32F10x User Manual						
27	TIMER14_HOLD	Timer 14 hold register						
		This bit is set and reset by software 0: no effect 1: hold the Timer 14 counter for debug when core halted						
26	TIMER13_HOLD	Timer13 hold register						
		This bit is set and reset by software 0: no effect 1: hold the Timer 13 counter for debug when core halted						
25	TIMER12_HOLD	Timer 12 hold register						
		This bit is set and reset by software 0: no effect 1: hold the Timer 12 counter for debug when core halted						
24:22	Reserved							
21	CAN2_HOLD	CAN2 hold register						
		This bit is set and reset by software 0: no effect 1: the receive register of CAN2 stops receiving data when core halted						
20	TIMER8_HOLD	Timer 8 hold register						
		This bit is set and reset by software 0: no effect 1: hold the Timer 8 counter for debug when core halted						
19	TIMER7_HOLD	Timer 7 hold register						
		This bit is set and reset by software 0: no effect 1: hold the Timer 7 counter for debug when core halted						
18	TIMER6_HOLD	Timer 6 hold register						
		This bit is set and reset by software 0: no effect 1: hold the Timer 6 counter for debug when core halted						
17	TIMER5_HOLD	Timer 5 hold register						
		This bit is set and reset by software 0: no effect 1: hold the Timer 5 counter for debug when core halted						
17	TIMER5_HOLD	Timer 5 hold register						
		This bit is set and reset by software						

E	$\overline{\mathcal{F}}$	GD32E10y User Manual
Gigab	e v I C e	0: no effect 1: hold the Timer 5 counter for debug when core halted
16	I2C2_HOLD	I2C2 hold register
		This bit is set and reset by software 0: no effect 1: hold the I2C2 SMBUS timeout for debug when core halted
15	I2C1_HOLD	I2C1 hold register
		This bit is set and reset by software 0: no effect 1: hold the I2C1 SMBUS timeout for debug when core halted
14	CAN1_HOLD	CAN1 hold register
		This bit is set and reset by software 0: no effect 1: the receive register of CAN1 stops receiving data when core halted
13	TIMER4_HOLD	Timer 4 hold register
		This bit is set and reset by software 0: no effect 1: hold the Timer 4 counter for debug when core halted
12	TIMER3_HOLD	Timer 3 hold register
		This bit is set and reset by software 0: no effect 1: hold the Timer 3 counter for debug when core halted
11	TIMER2_HOLD	Timer 2 hold register
		This bit is set and reset by software 0: no effect 1: hold the Timer 2 counter for debug when core halted
10	TIMER1_HOLD	Timer 1 hold register
		This bit is set and reset by software 0: no effect 1: hold the Timer 1 counter for debug when core halted
9	WWDG_HOLD	WWDG hold register
		This bit is set and reset by software 0: no effect 1: hold the wwdg counter clock for debug when core halted
8	IWDG_HOLD	IWDG hold register

		This bit is set and reset by software 0: no effect 1: hold the iwdg counter clock for debug when core halted
7:6	TRACE_MODE[1:0]	Trace pin allocation mode
		This bit is set and reset by software 00: Trace pin used in asynchronous mode 01: Trace pin used in synchronous mode and the data length is 1
		10: Trace pin used in synchronous mode and the data length is 2
		11: Trace pin used in synchronous mode and the data length is 4
5	TRACE_IOEN	Trace pin allocation enable This bit is set and reset by software 0: Trace pin allocation disable 1: Trace pin allocation enable
4:3	Reserved	
2	STDBY_HOLD	Standby mode hold register
		This bit is set and reset by software0: no effect1: At the standby mode, the system clock and HCLK are provided by CK_HSI, a system reset generated when exit stanby mode
1	DEEPSLEEP_HOLD	Deepsleep mode hold register
		This bit is set and reset by software 0: no effect 1: At the deepsleep mode, the system clock and HCLK are provided by CK_HSI
0	SLEEP_HOLD	Sleep mode hold register
		This bit is set and reset by software 0: no effect 1: At the sleep mode, the HCLK is on

19. Universal serial bus full-speed device interface (USB 2.0 FS)

19.1. Introduction

The Universal Serial Bus (USB) is a four-wire bus that supports communication between the host and the function device implemented by the USB controller. The host controller allocates the USB bandwidth to attached devices through a token-based protocol. The bus supports hot plugging and dynamic configuration of the devices. All transactions are initiated by the host controller. Data transfer between the host PC and the system memory occurs through a dedicated data packet buffer of 512-byte SRAM memory accessed directly by the USB peripheral.

The USB peripheral interfaces with the USB host which is implemented by the USB controller, detecting token packets, handling data-transfer, and processing handshake packets as required by the USB standard. Transaction formatting is performed by the hardware, including CRC generation and checking. According to the USB protocol, each device can have a maximum of 16 logical or 32 physical endpoints. The USB controller supports up to 8 bidirectional endpoints or 16 mono-directional endpoints.

The USB controller offers special support to isochronous transfers and high throughput bulk transfers as it implements a double buffer usage, which allows isochronous endpoints or bulk endpoints to send and receive data packet continuously without waiting endpoints become valid. Because these endpoints always have an available buffer for the USB peripheral while the microcontroller uses the other one.

The USB module can be placed in low-power mode (SUSPEND mode) by writing in the control register whenever required. At this time, all static power dissipation is avoided and the USB clock can be slowed down or stopped. It will be resumed when detect activity at the USB bus while in low-power mode.

Note: The USB and CAN share the dedicated 512-byte SRAM memory.

19.2. Main features

- USB2.0 full-speed device controller
- Support up to 8 configurable endpoints
- Support double-buffered bulk/isochronous endpoints
- Each endpoint supports control, bulk, isochronous or interrupt transfer
- Support USB suspend/resume operations
- Shared dedicated 512 byte SRAM and CAN
- Integrated USB PHY

19.3. Implementation

Table 19-1 describes the USB implementation in GD32F10x devices.

	Table 19-	1 GD32F10x	USB im	plementation
--	-----------	------------	--------	--------------

USB features	GD32F10x USB
Number of endpoints	8 bidirectional / 16
	mono-directional endpoints
Size of dedicated data packet buffer (SRAM)	512 bytes
Dedicated data packet buffer access scheme	2×16bits ⁽¹⁾ / word

1. 32bits word space is not consecutive, first 16 bits is not used.

19.4. Signal Description

The USB controller requires a total of three signals (DP, DM, and VBUS) to operate in device mode. The pins DP and DM always are used to decide which kind of speed, low speed (1.5Mbps) mode or full speed (12Mbps) mode, is supported by the USB module. As such, their position on the chip is not user-selectable. These pins at reset are, by default, GPIOs. The signals USB bus voltage (VBUS) is not hardwired to any pin and not used.

The pins DP and DM don't need configure because they are connected to the USB internal transceiver automatically as soon as the USB is enabled.

The signal pins are shown in the table below:

Table 19-2 GD32F10x USB signal pins

USB pin	GPIO pin	GPIO configuration
USBDP	PA12	As soon as the USB is enabled, these pins are connected to the
USBDM	PA11	USB internal transceiver automatically.

19.5. Function description

19.5.1. Block Diagram

Figure 19-1 shows the block diagram of the USB peripheral

Figure 19-1 USB peripheral block diagram

19.5.2. General functions

The USB controller includes the following blocks:

- Built-in analog transceiver (ATX): The USB ATX connects to the USB pins USB_DP and USB_DM to send/receive the bi-directional signals of the USB bus.
- Serial interface engine (SIE): The SIE implements the entire USB protocol layer. It decodes and encodes the serial data and performs error correction, bit stuffing, and the other signaling level tasks required by USB. It is completely hardwired for speed and needs no software intervention. It handles transfer of data between the endpoint buffers in USB RAM and the USB bus.
- Timer: The timer generates a start-of-frame locked clock pulse and detects a global suspend (from the host) when no activity has occurred on the USB bus for 3ms.
- Packet buffer interface: This block use the dedicated 512-byte SRAM to implement a set of buffers in a flexible way, both for endpoints transmission and reception. It can choose

the proper buffer for endpoints according to requests coming from the SIE and locate them in the right memory addresses pointed by the endpoint registers. It increments the address after each exchanged byte until the end of data packet, keeping track of the number of exchanged bytes and preventing the buffer to overrun the maximum capacity.

- Endpoint control/status registers: Each endpoint has an associated register containing its controlling information and current status. For mono-directional/single-buffer endpoints, a single endpoint register can be used to implement two distinct endpoints. The number of registers is 8, allowing up to 16 mono-directional/single-buffer or 7 double-buffer endpoints in any combination. For example the USB peripheral can be programmed to have 2 double buffer endpoints and 12 mono-directional/single-buffer endpoints.
- Control registers: These registers contain information about the status and controlling of the whole USB peripheral.
- Interrupt flag registers: These registers contain the interrupt flag and records of the events. They can be used to inquire an interrupt reason, the interrupt status or to clear a pending interrupt.

The USB APB1 interface includes the following blocks:

- Data Packet Memory: This is the dedicated data packet memory which is actually local memory (SRAM). All USB endpoint data packet buffer locate in it. It can be used by the packet buffer interface, which creates the data structure and can be accessed directly by the application software. The size of it is 512 bytes, structured as 256 words by 16 bits.
- Arbiter: This block accepts memory requests coming from the APB1 bus and from the USB interface. It resolves the conflicts by giving priority to APB1 accesses, while always reserving half of the memory bandwidth to complete all USB transfers. This time-duplex scheme implements a virtual dual-port SRAM that allows memory access, while an USB transaction is happening. Multiword APB1 transfers of any length are also allowed by this scheme.
- Register Mapper: This block collects the various byte-wide and bit-wide registers of the USB peripheral in a structured 16-bit wide word set addressed by the APB1.
- APB1 Wrapper: This provides an interface to the APB1 for the memory and register. It also maps the whole USB peripheral in the APB1 address space.
- Interrupt Mapper: This block is used to select which interrupts the possible USB events can generate and map them to different lines of the NVIC.

19.5.3. Operation procedure

Buffer descriptor table

Buffer descriptor table is a data structure defining a buffer address and a buffer length. The USB peripheral use it to transmit and receive data. The first table entry is defined by the USB_BAR. A valid endpoint has usually two data packet buffer which are used for

transmission and reception respectively. Each table entry includes 4 16-bit words and is aligned to 8-byte boundary.

The relationship between buffer descriptor table entries and packet buffer areas is depicted in Figure 19-2.

Endpoint initialization

The USB endpoints must be initialized before they are used, initialization process is as follows:

- Initialize the TXARn/RXARn registers with transmission/reception data buffer address
- Configure The EP_CTL and EP_KCTL bits in the USB_EPnCSR register according to the endpoint usage

• For transmission, initiate the TXCNTn and enable TX_STA bits; for reception, initiate the RXCNTRn, BLKSIZ and BLKNUM bits, then enable RX_STA

For isochronous and double-buffered bulk endpoints, both transmission and reception fields are need to be initialized. Once the endpoint is enabled, register USB_EPnCSR, buffer address and COUNT filed should not be modified by the application software. When a transfer is completed, the application software will be notified by a STIF interrupt.

Data transmission (IN packets)

When a valid endpoint receives an IN token packet, it will send TXCNTn bytes, read from TXARn, and the CRC to the host, if the endpoint is not valid, a NAK or STALL handshake is sent according to the TX_STA value.

The USB peripheral transmit the data packet, indicated by TXARn,by LSB order.

When receiving the ACK sent from the host, then the USB peripheral will toggle the TX_DTG, set TX_STA='10 (NAK) and TX_ST bit. The application software can identify which endpoint has completed transfer by checking the EPNUM and DIR bits in the USB_IFR register. After filled the data packet memory with data, the application software can start next transfer by re-enable the endpoint by setting TX_STA='11 (VALID).

Data reception (OUT and SETUP packets)

The USB peripheral uses RXARn as buffer to store the received data, and updates RXCNTRn filed with actually received number of bytes. The values of BLKSIZ and BLKNUM are used to compute the BUF_COUNT, which is used to detect the buffer overrun. The USB peripheral receives the data from the host by LSB order and the computed CRC. When detecting the end of DATA packet, the computed CRC and received CRC are compared. If no errors occur, an ACK handshake packet is sent to the host.

If any error happens during reception, the USB peripheral set the ERRIF bit and still copy data into the packet memory buffer, but not send the ACK packet. The USB peripheral itself can recover from reception errors and continue to handle next transfer. The USB peripheral never override outside the packet memory buffer, which is defined by BLKSIZ and BLKNUM. The received 2-byte CRC is also copied to the packet memory buffer, immediately following data bytes. If the length of data is greater than the actually allocated length, the excess data are not copied. This is a buffer overrun condition. A STALL handshake is sent, and this transaction fails.

If an addressed endpoint is not valid, a NAK or STALL handshake packet is sent instead of the ACK, according to bits RX_STA in the USB_EPnCSR register and no data is written in the reception memory buffers. Reception memory buffer locations are written starting from the address contained in the RXARn for a number of bytes corresponding to the received data packet length, CRC included (i.e. data payload length + 2), or up to the last allocated memory location, as defined by BLKSIZ and BLKNUM, whichever comes first. In this way, the USB peripheral never writes beyond the end of the allocated reception memory buffer

area. If the length of the data packet payload (actual number of bytes used by the application) is greater than the allocated buffer, the USB peripheral detects a buffer overrun condition. In this case, a STALL handshake is sent instead of the usual ACK to notify the problem to the host, no interrupt is generated and the transaction is considered failed.

If no error happens, the USB peripheral send the ACK handshake packet to the host, toggle RX_DTG bit, set RX_STA='10 (NAK) and RX_ST bit. The application software examines the EPNUM and DIR bits in the USB_IFR register to determine which endpoint trigger the RX_ST. After handling the received data, the application software can initiate another transaction by setting RX_STA='11 (Valid).

Control transfers

Control transfers require that a SETUP transaction be started from the host to a device to describe the type of control access that the device should perform. The SETUP transaction is followed by zero or more control DATA transactions that carry the specific information for the requested access. Finally, a STATUS transaction completes the control transfer and allows the endpoint to return the status of the control transfer to the client software. After the STATUS transaction for a control transfer is completed, the host can advance to the next control transfer for the endpoint.

To initialize the control transfer, TX_DTG and RX_DTG bits are set to 1 and 0 respectively, and both TX_STA and RX_STA are set to '10 (NAK). According to the SETUP contents, the application software can determine if the next transactions are IN or OUT. When RX_ST event happens during control transfer, the SETUP bit must be first examined. If it is 1, it means a SETUP transaction, or else a normal OUT one. The USB peripheral is aware of the number and direction of data stages by interpreting the contents of SETUP transaction, and is required to set the unused direction to STALL except the last data stage.

At the last data stage, the application software set the opposite direction to NAK. This will keep the host waiting for the completion of the control operation. If the operation completes successfully, the software will change NAK to VALID, otherwise to STALL. If the status stage is an OUT, the STATUS_OUT bit should be set, so that a status transaction with non-zero data will be answered STALL to indicate an error happen.

When the RX_STA bits are set to '01 (STALL) or '10 (NAK) and a SETUP token is received, the USB accepts the data, performing the required data transfers and sends back an ACK handshake. If that endpoint has a previously issued RX_ST request not yet acknowledged by the application (i.e. RX_ST bit is still set from a previously completed reception), the USB discards the SETUP transaction and does not answer with any handshake packet regardless of its state, simulating a reception error and forcing the host to send the SETUP token again. This is done to avoid losing the notification of a SETUP transaction addressed to the same endpoint immediately following the transaction, which triggered the RX_ST interrupt.

Double-buffered endpoints

The double-buffered feature is used to improve bulk transfer performance. To implement the

new flow control scheme, the USB peripheral should know which packet buffer is currently in use by the application software, so to be aware of any conflict. Since in the USB_EPnCSR register, there are two DTOG bits but only one is used by USB peripheral for hardware data handling (due to the unidirectional constraint required by double-buffering feature) the other one can be used by the application software to show which buffer it is currently using. This new buffer flag is called SW_BUF. In the following table the correspondence between USB_EPnCSR register bits and DTOG/SW_BUF definition is explained.

Table 19-3 Double-buffering buffer flag definition

Buffer flag	Tx endpoint	Rx endpoint				
DTOG	TX_DTG (USB_EPnCSR bit 6)	RX_DTG (USB_EPnCSR bit 14)				
SW_BUF	USB_EPnCSR bit 14	USB_EPnCSR bit 6				

The DTOG bit and the SW_BUF bit are responsible for the flow control. When a transfer completes, the USB peripheral toggle the DTOG bit; when the data have been copied, the application software need to toggle the SW_BUF bit. Except the first time, if the value of DTOG bit equal to the SW_BUF's, the transfer will pause, and the host is NAKed. When the two bit do not equal, the transfer resume.

To enable the double-buffered feature, EP_CTL bit and EP_KCTL need to be configured:

- Setting EP_CTL = 00
- Setting EP_KCTL = 1

Table 19-4 Double buffer usage

Endpoint	DTOG	SW_	Packet buffer used by the USB	Packet buffer used by the		
Туре		BUF	peripheral	application software		
	0	1	RXARn_0 / COUNRn_RX_0	RXARn_1 / RXCNTRn_1 buffer		
ОШТ	0	1	buffer description table locations.	description table locations.		
001	1	0	RXARn_1 / RXCNTRn_1 buffer	RXARn_0 / RXCNTRn_0 buffer		
	I		description table locations.	description table locations.		
	0	1	TXARn_0 / TXCNTn_0 buffer	TXARn_1 / TXCNTn_1 buffer		
INI	0	I	description table locations.	description table locations.		
	1	0	TXARn_1 / TXCNTn_1 buffer	TXARn_0 / TXCNTn_0 buffer		
	I	U	description table locations.	description table locations.		

19.5.4. USB Interrupts

The USB controller has three interrupt lines: USB low-priority interrupt, USB high-priority interrupt and USB wakeup interrupt. Software can program the corresponding bit in the USB interrupt routing register to route the interrupt condition to one of these entries in the NVIC table. An interrupt is generated by the hardware if both the interrupt status bit and the corresponding interrupt enable bit are set. The interrupt status bit is set by hardware if the interrupt condition occurs (irrespective of the interrupt enable bit setting).

• USB low-priority interrupt (Channel 20): triggered by all USB events

- USB high-priority interrupt (Channel 19): triggered only by a correct transfer event for isochronous and double-buffer bulk transfer
- USB wakeup interrupt (Channel 42): triggered by the wakeup events.

19.5.5. Isochronous transfers

Isochronous transfers can guarantee constant data rate and bounded latency, but do not support data retransmission in response to errors on the bus. A receiver can determine that a transmission error occurred. The low-level USB protocol does not allow handshakes to be returned to the transmitter of an isochronous pipe. Normally, handshakes would be returned to tell the transmitter whether a packet was successfully received or not. Consequently, the isochronous transaction does not have a handshake phase, and have no ACK packet after the data packet. Data toggling is not supported, and only DATA0 PID is used to start a data packet.

The endpoint is defined as isochronous endpoint by setting the EP_CTL bits to '10. The STAT bits have two possible values: 00 (Disabled) and 11 (Valid), any other value is illegal. The application software can implement double-buffering to improve performance. By swapping transmission and reception data packet buffer on each transaction, the application software can copy the data into or out of a buffer, at the same time the USB peripheral handle the data transmission or reception of data in another buffer. The DTOG bit indicates that the USB peripheral is currently using which buffer.

The application software initializes the DTOG according to the first buffer to be used. At the end of each transaction, the RX_ST or TX_ST bit is set, depending on the enabled direction regardless of CRC errors or buffer-overrun conditions(if errors happen, the ERRIF bit will be set). At the same time, The USB peripheral will toggle the DTOG bit, but not affect the STAT bits.

19.5.6. Reset events

System and power-on reset

Upon system and power-on reset, the application software should first provide all required clock to the USB module and interface, then de-assert its reset signal so to be able to access its registers, last switch on the analog part of the device related to the USB transceiver.

The USB firmware should do as follows:

- Reset CLOSE bit in CTLR register
- Wait for the internal reference voltage stability time
- Clear SETRST bit in CTLR register
- Clear the IFR register to remove the spurious pending interrupt and then enable other unit

USB reset (RESET interrupt)

When this event occurs, the USB peripheral status is the same as system reset.

The USB firmware should do as follows:

- Set USBEN bit in AR register to enable USB module in 10ms
- Initialize the EP0CSR register and its related packet buffers

19.5.7. Suspend/Resume events

According to the USB protocol insists on power management by the USB device. This becomes even more important if the device draws power from the bus (bus-powered device). The following constraints should be met by the bus-powered device.

- A device in the non-configured state should draw a maximum of 100mA from the USB bus.
- A configured device can draw only up to what is specified in the Max Power field of the configuration descriptor. The maximum value is 500mA.
- A suspended device should draw a maximum of 500uA.

A device will go into the SUSPEND state if there is no activity on the USB bus for more than 3ms. A suspended device wakes up, if RESUME signaling is detected. The USB peripheral also supports software initiated remote wakeup. To initiate remote wakeup, the application software must enable all clocks and clear the suspend bit. This will cause the hardware to generate a remote wakeup signal upstream.

Setting the SETSPS bit to 1 enables the SUSPEND mode, and it will disable the check of SOF reception. Setting the LOWM bit to 1 will shut down the static power consumption in the analog USB transceivers, but the resume signal is still able to be detected.

19.6. USB registers

19.6.1. USB control register (USB_CTLR)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
STIE	PMOUIE	ERRIE	WKUPIE	SPSIE	RSTIE	SOFIE	ESOFIE	R	leserv	e	RSREQ	SETSPS	LOWM	CLOSE	SETRST
rw	rw	rw	rw	rw	rw	rw	rw				rw	rw	rw	rw	rw

Address offset: 0x40

Reset value: 0x0003

 Bits
 Fields
 Descriptions

 15
 STIE
 Successful transfer interrupt enable.

0: Successful transfer interrupt disabled.

		1: Interrupt generated when STIF bit in USB_IFR register is set.
14	PMOUIE	Packet memory overrun/underrun interrupt enable.
		0: No interrupt generated when packet memory overrun / underrun. 1: Interrupt generated when PMOUIF bit in USB_IFR register is set.
13	ERRIE	Error interrupt enable.
		0: Error interrupt disabled 1: Interrupt generated when ERRIF bit in USB_IFR register is set.
12	WKUPIE	Wakeup interrupt enable
		0: Wakeup interrupt disabled 1: Interrupt generated when WKUPIF bit in USB_IFR register is set.
11	SPSIE	Suspend state interrupt enable
		0: Suspend state interrupt disabled 1: Interrupt generated when SPSIF bit in USB_IFR register is set.
10	RSTIE	USB reset interrupt enable.
		0: USB reset interrupt disabled 1: Interrupt generated when RSTIF bit in USB_IFR register is set.
9	SOFIE	Start of frame interrupt enable
		0: Start of frame interrupt disabled 1: Interrupt generated when SOFIF bit in USB_IFR register is set.
8	ESOFIE	Expected start of frame interrupt enable
		0: Expected start of frame interrupt disabled 1: Interrupt generated when ESOFIF bit in USB_IFR register is set.
4	RSREQ	Resume request
		The software set a resume request to the USB host, and the USB host should drive the resume sequence according the USB specifications
		0: No resume request 1: Send resume request.
3	SETSPS	Set suspend
		The software should set suspend state when SPSIF bit in USB_IFR register is set.
		0: Not set suspend state. 1: Set suspend state.
2	LOWM	Low-power mode
		When set this bit, the USB goes to low-power mode at suspend state. If resume from

606

suspend state, the hardware reset this bit.

		0: No effect 1: Go to low-power mode at suspend state.
1	CLOSE	Close state
		When this bit set, the USB goes to close state, and completely close the USB and disconnected from the host.
		0: Not in close state 1: In close state.
0	SETRST	Set reset When this bit set, the USB peripheral should be reset. 0: No reset 1: A reset generated.

19.6.2. USB interrupt Flag register (USB_IFR)

Address offset: 0x44

Reset value: 0x0000 0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
STIF	PMOUIF	ERRIF	WKUPIF	SPSIF	RSTIF	SOFIF	ESOFIF	Reserved		DIR		EPNU	M[3:0]		
r	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0				r	r	r	r	

Bits	Fields	Descriptions
15	STIF	Successful transfer interrupt flag
		This bit set by hardware when a successful transaction completes
14	PMOUIF	Packet memory overrun/underrun interrupt flag
		This bit set by hardware to indicate that the packet memory is inadequate to hold
		transfer data. The software writes 0 to clear this bit.
13	ERRIF	Error interrupt flag
		This bit set by hardware when an error happens during transaction. The software
		writes 0 to clear this bit.
12	WKUPIF	Wakeup interrupt flag
		This bit set by hardware in the SUSPEND state to indicate that activity is detected. The
		software writes 0 to clear this bit.
11	SPSIF	Suspend state interrupt flag
		When no traffic happen in 3 ms, hardware set this bit to indicate a SUSPEND request.
		The software writes 0 to clear this bit.
10	RSTIF	USB reset interrupt flag
		Set by hardware when the USB RESET signal is detected. The software writes 0 to

9	SOFIF	Start of frame interrupt flag Set by hardware when a new SOF packet arrives, The software writes 0 to clear this bit.
8	ESOFIF	Expected start of frame interrupt flag Set by the hardware to indicate that a SOF packet is expected but not received. The software writes 0 to clear this bit.
4	DIR	Direction of transaction Set by the hardware to indicate the direction of the transaction 0: OUT type 1: IN type
3:0	EPNUM[3:0]	Endpoint Number Set by the hardware to identify the endpoint which the transaction is directed to

19.6.3. USB Status register (USB_SR)

Address offset: 0x48

Reset value: 0x0XXX where X is undefined

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RX_DP	RX_DM	LOCK	SOFL	.N[1:0]		FCNT[10:0]									
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits	Fields	Descriptions
15	RX_DP	Receive data + line status
		Represent the status on the DP line
14	RX_DM	Receive data - line status
		Represent the status on the DM line
13	LOCK	Locked the USB
		Set by the hardware indicate that at the least two consecutive SOF have been
		received
12:11	SOFLN[1:0]	SOF lost number
		Increment every ESOFIF happens by hardware
		Cleared once the reception of SOF
10:0	FCNT[10:0]	Frame number counter
		The Frame number counter incremented every SOF received.

19.6.4. USB device address register (USB_AR)

Address offset: 0x4C

								rw	rw	rw	rw	rw	rw	rw	rw
	Reserved					USBEN			U	SBADDR[6:	0]				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	Reset	value	e: 0x00	000									

Bits	Fields	Descriptions
7	USBEN	USB device enable
		Set by software to enable the USB device
		0: The USB device disabled. No transactions handled.
		1: The USB device enabled.
6:0	USBADDR[6:0]	USB device address
		After bus reset, the address is reset to
		0x00. If the enable bit is set, the device will respond on packets
		for function address DEV_ADDR

19.6.5. USB Buffer address register (USB_BAR)

Address offset: 0x50

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	2 1	
					I	BAR[15:3]								Reserved	
rw	rw	rw	rw	rw	rw	rw									

Bits	Fields	Descriptions
15:3	BAR[15:3]	Buffer address
		Start address of the allocation buffer(512byte on-chip SRAM), used for buffer
		descriptor table, packet memory

19.6.6. USB endpoint n control/status register (USB_EPnCSR), n=[0..7]

	Re	set va	lue: 0x	0000											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RX_ST	RX_DTG	RX_S	RX_STA[1:0] SETUP		EP_C	TL[1:0]	EP_KCTL	TX_ST	TX_DTG	TX_ST	A[1:0]	EP_AR[3:0]			
rc_w0	t	t	t	r	rw	rw	rw	rc_w0	t	t	t	rw	rw	rw	rw

Bits	Fields	Descriptions
15	RX_ST	Reception successful transferred
		Set by hardware when a successful OUT/SETUP transaction complete
		Cleared by software by writing 0

Address offset: 0x00 to 0x1C

(\rightarrow)	•	
GigaDevic	e e	GD32F10x User Manual
14	RX_DTG	Reception data PID toggle
		This bit represent the toggle data bit (0=DATA0,1=DATA1)for non-isochronous
		endpoint
		Used to implement the flow control for double-buffered endpoint
		Used to swap buffer for isochronous endpoint
13:12	RX_STA[1:0]	Reception status bits
		Toggle by writing 1 by software
		Remain unchanged by writing 0
		Refer to the table below
11	SETUP	Setup transaction completed
		Set by hardware when a SETUP transaction completed.
10:9	EP_CTL[1:0]	Endpoint type control
		Refer to the table below
8	EP_KCTL	Endpoint kind control
		The exact meaning depends on the endpoint type
		Refer to the table below
7	TX_ST	Transmission successful transfer
		Set by hardware when a successful IN transaction complete
		Clear by software
6	TX_DTG	Transmission data PID toggle
		This bit represent the toggle data bit (0=DATA0,1=DATA1)for non-isochronous
		endpoint
		Used to implement the flow control for double-buffered endpoint
		Used to swap buffer for isochronous endpoint
5:4	TX_STA[1:0]	Status bits, for transmission transfers
		Refer to the table below
3:0	EP_AR	Endpoint address
		Used to direct the transaction to the target endpoint

Table 19-5 Reception status encoding

RX_STA[1:0]	Meaning
00	DISABLED: ignore all reception requests of this endpoint
01	STALL: STALL handshake status
10	NAK: NAK handshake status
11	VALID: enable endpoint for reception.

Table 19-6 Endpoint type encoding

EP_CTL[1:0]	Meaning
00	BULK
01	CONTROL

10	ISO
11	INTERRUPT

Table 19-7 Endpoint kind meaning

EP_C	;TL[1:0]	EP_KCTL Meaning
00	BULK	DBL_BUF
01	CONTROL	STATUS_OUT

Table 19-8 Transmission status encoding

TX_STA[1:0]	Meaning
00	DISABLED: ignore all transmission requests of this endpoint
01	STALL: STALL handshake status
10	NAK: NAK handshake status
11	VALID: enable this endpoint for transmission.

19.6.7. USB Transmission buffer address register n (USB_TXARn)

Address offset: [USB_BAR] + n*16

USB local address: [USB_BAR] + n*8

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TXARn[15:1]														TXARn0	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
15:1	TXARn[15:1]	Transmission buffer address
		Start address of the packet buffer containing data to be sent when receive next IN
		token
0	TXARn0	Must be set to 0

19.6.8. USB Transmission byte count register n (USB_TXCNTn)

Address offset: [USB_BAR] + n*16 + 4

USB local Address: [USB_BAR] + n*8 + 2

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										TXCN	Tn[9:0]				
							rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
9:0	TXCNTn[9:0]	Transmission byte count
		The number of bytes to be transmitted at next IN token

19.6.9. USB Reception buffer address register n (USB_RXARn)

Address offset: [USB_BAR] + n*16 + 8

USB local Address: [USB_BAR] + n*8 + 4

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RXARn[15:1]													RXARn0		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
15:1	RXARn[15:1]	Reception buffer address
		Start address of packet buffer containing the data
		received by the endpoint at the next OUT/SETUP token
0	RXARn0	Must be set to 0

19.6.10. USB Reception byte count register n (USB_RXCNTRn)

Address offset: [USB_BAR] + n*16 + 12

	US	SB loca	al Addr	ess: [L	JSB_BA	\R] + r	n*8 + 6							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
BLKSIZ	BLKNUM[4:0]					RXCNTRn[9:0]								
rw	rw	rw	rw	rw	rw	r	r	r	r	r	r	r	r	r

Bits	Fields	Descriptions
15	BLKSIZ	Block size
		0: block size is 2 bytes
		1: block size is 32 bytes
14:10	BLKNUM[4:0]	Block number
		The number of blocks allocated to the packet buffer
9:0	RXCNTRn[9:0]	Reception byte count
		The number of bytes to be received at next OUT/SETUP token

0

20. Real-time Clock(RTC)

20.1. Introduction

The RTC is usually used as a clock-calendar. The RTC circuits are located in two power supply domains. The ones in the Backup Domain consist of a 32-bit up-counter, an alarm, a prescaler, a divider and the RTC clock configuration register. That means the RTC settings and time are kept when the device resets or wakes up from Standby mode. While the circuits in the VDD domain only include the APB1 interface and a control register. In the following sections, the details of the RTC function will be described.

20.2. Main feature

- 32-bit programmable counter for counting elapsed time
- Programmable prescaler:
- Division factor up to 2²⁰
- Separate clocks:
- PCLK1 clock
- RTC clock (must be at least 4 times slower than the PCLK1 clock)
- RTC clock source:
- HSE clock divided by 128
- LSE oscillator clock
- LSI oscillator clock
- Maskable interrupt source:
- Alarm interrupt
- Seconds interrupt
- Overflow interrupt

20.3. Function Description

20.3.1. RTC overview

The RTC includes two major units, APB1 Interface and RTC Core.

APB1 Interface is connect with the APB1 bus. It includes a set of 16-bit registers, can be read or write from APB1 bus. In order to interface with the APB1 bus, the APB1 interface is clocked by the APB1 bus clock.

RTC Core includes two major blocks. One is the RTC prescaler block, which generates the RTC time base TR_CLK. TR_CLK can be programmed to have a period of up to 1 second. RTC prescaler block includes a 20-bit programmable divider (RTC Prescaler). If Second Interrupt is enabled in the RTC_CTLR register, the RTC will generates an interrupt in every TR_CLK period. Another block is a 32-bit programmable counter, which can be initialized with the value of current system time. If alarm interrupt is enabled in the RTC_CTLR register, the RTC will generate an alarm interrupt when the system time equals programmable date (stored in the RTC_ALRMR register),

Figure 20-1 Block diagram of RTC

20.3.2. RTC reset

The APB1 interface and the RTC_CTLR register are reset by system reset. The RTC Core (Prescaler, Divider, Counter and Alarm) is reset only by a Backup domain reset.

Steps to enable access to the Backup registers and the RTC after reset are as follows:

1. Set the PWREN and BKPEN bits in the RCC_APB1CCR register to enable the power and backup interface clocks;

2. Enable access to the Backup registers and RTC by setting the DBP bit in the Power Control Register (PWR_CR).

20.3.3. RTC reading

The APB1 Interface and RTC Core are located in two different power supply domains.

In the RTC Core, only counter and divider registers are readable registers. And the values in the two registers and the RTC flags are internally updated at each rising edge of the RTC clock, which is resynchronized by the APB1 clock.

When the APB1 interface is immediately enabled from a disable state, the read operation is not recommended, for the first internal update of the registers has not finished. That means, when a system reset, power reset, waking up from Standby mode or Stop mode occurs, the APB1 interface was disabled, but the RTC core has been kept running. In these cases, the correct read operation should first clear the RSF bit in the RTC _CTLRregister and wait for it to be set by hardware. While WFI and WFE have no effects on the RTC APB1 interface.

20.3.4. RTC configuration

The RTC_PLR, RTC_CNT and RTC_ALRMR registers in the RTC Core are writable. The values can be set only when the peripheral enter Configuration Mode. And the CMF bit in the RTC_CTLR register is used to indicate the Configuration Mode status. The write operation executes when the peripheral exit Configuration Mode, and it takes at least three RTCCLK cycles to complete. The value of the LWOFF bit in the RTC_CTLR register goes to '1', if the write operation finished. The new write operation should wait for the previous one finished.

The configuration steps are as follows:

- 1. Wait until the value of LWOFF bit in the RTC_CTLR register goes to '1';
- 2. Enter Configuration mode by Set the CMF bit in the RTC_CTLR register;
- 3. Write to the RTC registers;
- 4. Exit Configuration mode by clear the CMF bit in the RTC_CTLR register;
- 5. Wait until the value of LWOFF bit in the RTC_CTLR register goes to '1'.

20.3.5. RTC flag assertion

Before the update of the RTC Counter, the RTC Second flag (SF) is asserted on each RTCCLK cycle.

Before the counter increased by one equals the RTC Alarm value which stored in the Alarm register, the RTC Alarm flag (AF) is asserted on the last RTCCLK cycle.

Before the counter equals 0x0, the RTC Overflow flag (OVF) is asserted on the last RTCCLK cycle.

The RTC Alarm and Second flag write operation must be synchronized by using either of the

following sequences:

- Use the RTC alarm interrupt and update the RTC Alarm and/or RTC Counter registers inside the RTC interrupt routine;
- Update the RTC Alarm and/or the RTC Counter registers after the SF bit to be set in the RTC Control register.

Figure 20-2 RTC second and alarm waveform example (PR = 3, ALARM = 2)

Figure 20-3. RTC second and overflow waveform example (PR = 3)

20.4. RTC Register

20.4.1. RTC control register1(RTC_CTLR1)

	Address offset : 0x00														
Reset value: 0x0000															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved												OVIE	AIE	SIE

rw rw rw

Bits	Fields	Descriptions
15:3	Reserved	Forced by hardware to 0.
2	OVIE	Overflow interrupt enable
		0: Disable overflow interrupt
		1: Enable overflow interrupt
1	AIE	Alarm interrupt enable
		0: Disable alarm interrupt
		1: Enable alarm interrupt
0	SIE	Second interrupt enable
		0: Disable second interrupt .
		1: Enable second interrupt

20.4.2. RTC control register2(RTC_CTLR2)

Address offset : 0x04 Reset value :0x0020

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved											CMF	RSF	OVF	AF	SF
										r	rw	rc_w0	rc_w0	rc_w0	rc_w0

Bits	Fields	Descriptions
15:6	Reserved	Forced by hardware to 0.
5	LWOFF	Last write operation finished flag
		0: Last write operation on RTC registers did not finished.
		1: Last write operation on RTC registers finished.
		Only readable
4	CMF	Configuration mode flag
		0: Exit configuration mode.
		1: Enter configuration mode.
3	RSF	Registers synchronized flag
		0: Registers not yet synchronized with the APB1 clock.
		1: Registers synchronized with the APB1 clock.
		Readable and can be written to 0 only
2	OVF	Overflow flag
		0: Overflow event not detected
		1: Overflow event detected. An interrupt will occur if the OVIE bit is set in RTC_CTRL1.
		Set by hardware when the counter overflows.

readable and can be written to 0 only

1	AF	Alarm flag 0: Alarm event not detected 1: Alarm event detected. An interrupt will occur if the AIE bit is set in RTC_CTRL1. And the RTC Alarm interrupt will occur if the EXTI 17 is enabled in interrupt mode.
		readable and can be written to 0 only
0	SF	Second flag 0: Second event not detected. 1: Second event detected. An interrupt will occur if the SIE bit is set in RTC_CTRL1. Set by hardware when the divider reload the value in RTC_PLR, thus incrementing the RTC counter. readable and can be written to 0 only

20.4.3. RTC prescaler load register1 (RTC_PLR1)

Address offset: 0x08 Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved													PLR [19:16]	
												w	w	w	w

Bits	Fields	Descriptions
15:4	Reserved	Forced by hardware to 0.
3:0	PLR[19:16]	RTC prescaler value high

20.4.4. RTC prescaler load register2(RTC_PLR2)

		Addres Reset	ss offse value: (t: 0x0C 0x0000											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PLR[15:0]														
w	w	W	w	w	w	w	w	w	w	w	w	w	w	w	w
Bits		Fields		Descr	iptions										

15:0	PLR[15:0]	RTC prescaler value low
		The frequency of TR_CLK is the RTCCLK frequency divided by (PRL[19:0]+1).

 $32768 = 0 \times 8000$

20.4.5. RTC prescaler divider register1 (RTC_PREDIV1)

	Address offset: 0x10 Reset value: 0x0000															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Reserved												PREDIV[19:16]			
														r	r	

Bits	Fields	Descriptions
15:4	Reserved	Forced by hardware to 0.
3:0	PREDIV[19:16]	RTC divider value high

20.4.6. RTC prescaler divider register2 (RTC_PREDIV2)

Address offset: 0x14 Reset value: 0x8000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PREDIV[15:0]														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits	Fields	Descriptions
15:0	PREDIV[15:0]	RTC divider value low
		The RTC divider register is reloaded by hardware when the RTC prescaler or RTC
		counter register updated.

20.4.7. RTC counter register1(RTC_CNT1)

		Addres Reset	s offse value: (t: 0x18)x0000											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CNT[31:16]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits	F	Fields		Descri	ptions										

15:0 CNT[31:16] RTC counter value high

20.4.8. RTC counter register2 (RTC_CNT2)

		Addre	ss offs	et: 0x10	2										
		Reset	value	0x0000)										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CNT[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits	F	ields		Descri	ptions										
15:0	C	NT[15:	0]	RTC co	RTC counter value low										

20.4.9. RTC alarm register1(RTC_ALRMR1)

Address offset: 0x20
Reset value: 0xFFFF

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ALRMR[31:16]														
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

Bits	Fields	Descriptions
15:0	ALRMR[31:16]	RTC alarm value high

20.4.10. RTC alarm register2 (RTC_ALAMR2)

		Addre Reset	ss offse value:	et: 0x24 0xFFF	↓ =										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ALRMR[15:0]														
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
Bits		Fields		Descr	iptions										

15:0 ALRMR[15:0] RTC alarm value low

21. External memory controller (EXMC)

21.1. Introduction

The EXMC is an abbreviation of external memory controller. EXMC module is mainly used to access a variety of external memories, such as SRAM, ROM, NOR Flash, PSRAM and NAND Flash and PC card, etc. This module can provide a channel for internal CPUs and other bus master peripherals to access the external memories, but also can produce the appropriate access timing for the external memory. EXMC module is divided into four banks, and each bank supports a particular type of memory, and the user can control the bank's external memory by configuring registers of the relevant bank.

21.2. Main feature

- Supported external memory:
 - SRAM
 - PSRAM
 - ROM
 - Nor Flash
 - 8-bit or 16-bit NAND Flash
 - 16-bit PC Card
- Conversion interface between the AHB bus and the external device protocol
- Offer a variety of programmable timing parameters to meet user specific needs
- Each bank has a separate chip-select signal which can be configured independently
- Support independent configuration of reading and writing operation timing
- Provide ECC calculating hardware module for NAND Flash memory block
- Provide 8-bit or 16-bit data bus
- Support address and data bus multiplexing
- For some devices, write enable signal and byte select signal can be provided
- Automatic split AHB transaction if AHB bus data size is greater than external memory data size

21.3. Function description

21.3.1. EXMC Architecture

EXMC module includes five parts: AHB bus interface, EXMC configuration registers, NOR Flash memory controller, NAND Flash and PC Card controller, external device interface. Reference clock of EXMC module is the AHB clock (HCLK).

21.3.2. Basic regulation of EXMC access

EXMC provides the conversion interface between AHB bus and external device protocol. 32-bit of AHB read or write accesses can be split into several consecutive 8-bit or 16-bit read or write operations. In the process of transferring data, AHB access data width and memory data width may not be the same. In order to ensure consistency of data transmission,

EXMC's read and write accesses follow the basic regulation.

■ The data width of AHB bus is equal to the memory data width

There is no issue in this case.

■ The data width of AHB bus is greater than memory

The AHB accesses are automatically split into several contiguous memory data width of the transmission.

■ The data width of AHB bus is smaller than memory.

If the external memory devices have the byte selection function, such as SRAM, ROM, PSRAM, they can access the corresponding bytes through their byte lane BL [1: 0]. Otherwise, write operation is not allowed, but read is allowed. (See Table 21-3)

21.3.3. External device address mapping

Figure 21-2 EXMC memory banks

Address	Banks	Supported memory type
0x60000000 0x6FFF FFFF	Bank1(4x64M)	NOR/PSRAM
0x70000000 0x7FFF FFFF	Bank2(256M)	NAND FLASH
0x80000000 0x8FFF FFFF	Bank3(256M)	NAND FLASH
0x90000000 0x9FFF FFFF	Bank4(256M)	PC CARD

EXMC external memory can be divided into four banks. Each bank is 256 Mbytes. The first bank (Bank1) is divided into four region s, and each region is 64 Mbytes. Bank2 and bank3 each is divided into two sections, which are attribute memory space and common memory space. Bank4 is divided into three sections, which are attribute memory space, common memory space and I/O memory space.

Each bank or region has a separate chip-select control signal, and also can be

independently configured.

Bank1 is used for access to NOR or PSRAM devices.

Bank2 and bank3 are used to connect NAND Flash, and each bank can connect a NAND Flash only. Bank4 is used for connecting a PC card.

NOR/PSRAM address mapping

Figure 21-3 reflects the four regions of bank1 address mapping. Internal AHB address lines HADDR [27:26] bit are used to select one of the four regions.

Figure 21-3 Four regions of bank1 address mapping

HADDR is the byte address whereas the external memory may not be accessed by byte, so address inconsistencies will be caused. But according to specific rules, EXMC can adjust HADDR to accommodate the data width of the external memory.

The data width of the external memory is 8-bits

The HADDR [25: 0] is connected to EXMC_A [25: 0] and then the EXMC_A [25: 0] is connected to the external memory address lines.

The data width of the external memory is 16-bits

That is, the memory will be accessed by half-word address. HADDR byte address should be converted to half-word address by connecting the HADDR [25:1] with EXMC_A [24:0]. Then the EXMC_A is connected to the external memory address lines.

Wrap access support for NOR/PSRAM

NOR / PSRAM Flash wrap data access based on different access methods can be divided into synchronous and asynchronous mode wrap access.

Synchronous mode

Synchronous mode wrap data access can be divided into linear and nonlinear wrap data access.

For linear wrap data access, EXMC address signal is given only once, then burst data is transmitted in sequence according to the clock signal CLK. That fixed number of data words can be read from the continuous address which is mode for N (The value of N is 8 or 16 commonly, and it is set by configuring the NOR Flash memory register). In the case, the mode of the memory wrap data access can be the same as the AHB. For nonlinear wrap data access, the wrap access requests are split into two consecutive access operations.

Asynchronous mode

For asynchronous mode, there is no issue in this case as long as each data access has accurate address.

NAND/PC Card address mapping

Bank2 and bank3 each can be used to access NAND Flash, and bank4 can be used to access the PC card. Each bank is divided into several memory spaces as shown in Figure 21-4.

Figure 21-4 NAND/PC Card address mapping

NAND address mapping

For NAND FLASH, Common space and attribute space in the low 256K bytes of bank2 or bank3 space can be divided into three sections. Figure 25-5 is a partition diagram of bank2 common space. The attribute space of bank2, the common space and attribute space of bank3 are divided as well.

Figure 21-5 Diagram of bank2 common space

HADDR [17:16] bit are used to select one of the three area. HADDR [17:16]=00 selects the data area, HADDR[17:16]=01 selects the command area, and HADDR[17:16]=1X selects the address area. Application software uses the 3 area to access NAND FLASH. Operating rules are as follows:

- 1) Send a command to NAND FLASH memory: Software writes commands in the command area.
- 2) Specified the NAND FLASH operation address: Software writes the operation address in the address area. If the number of operation address bytes is excessive, the process of writing operation address should be split into several consecutive writes in the address section.
- 3) Read or write the data to NAND FLASH: The software reads or writes the data from or to NAND Flash data area. Since the NAND Flash memory will increase the operation address automatically, there is no need to increase the address of the data section manually to access consecutive memory locations.

21.3.4. NOR Flash/PSRAM controller

NOR/PSRAM memory controller of EXMC module can control the bank1, and bank 1 supports NOR Flash, PSRAM, SRAM, ROM, honeycomb RAM external memory, etc. EXMC outputs an chip-select signal for each region. In bank1 the chip-select signal is NE [x], which is used for chip selection in four region s, and the other signals are shared. Each region

has special registers.

Note:

In asynchronous mode, all output signals of controller will change on the rise edge of internal AHB bus clock (HCLK).

In synchronous mode, all output data of controller will change on the fall edge of extern memory device clock (EXMC_CLK).

NOR/PSRAM memory device interface function

Table 21-1 NOR Flash interface signals function

EXMC Pin	Direction	Mode	Functional description			
CLK	Output	Sync	Clock signal for sync			
Non-muxed A[25:0]	Output	Aouro/Suro				
Muxed A[25:16]	Output	Async/Sync	Address bus signal			
	Input/output	Async/Sync	Address/Data bus			
	mpul/output	(muxed)	Address/Data bus			
D[15:0]	Input/output	Async/Sync	Data bus			
	πραγοαιραί	(non-muxed)	Data bus			
NE[x]	Output	Async/Sync	Chip selection, x=1/2/3/4			
NOE	Output	Async/Sync	Read enable			
NWE	Output	Async/Sync	Write enable			
NWAIT	Input	Async/Sync	Wait input signal			
	Output	Aavra/Svra	Latch enable (memory			
INL(INADV)	Output	Async/Sync	signal name: NADV)			

Table 21-2 PSRAM no-muxed signal function

EXMC Pin	Direction	Mode	Functional description
CLK	Output	Sync	Clock signal for sync
A[25:0]	Output	Async/Sync	Address Bus
D[15:0]	Input/output	Async/Sync	Data Bus
NE[x]	Output	Async/Sync	Chip selection, x=1/2/3/4
NOE	Output	Async/Sync	Read enable
NWE	Output	Async/Sync	Write enable
NWAIT	Input	Async/Sync	Wait input signal
	Output	Δουτο/Εντρο	Latch enable (address valid enable,
NL(NADV)	Output	ASync/Sync	NADV)
NBL[1]	Output	Async/Sync	Upper byte enable
NBL[0]	Output	Async/Sync	Lower byte enable

Supported memory access mode

Table 3 below displays an example of the supported devices, access modes and transactions when the memory data bus is 16-bit for NOR, PSRAM and SRAM.

Memory	Access Mode	R/W	AHB Transaction Size	Memory Transaction Size	Comments
	Async	R	8	16	
	Async	R	16	16	
	Async	W	16	16	
NOR Flash	Async	R	32	16	Split into 2 EXMC accesses
	Async	W	32	16	Split into 2 EXMC accesses
	Sync	R	16	16	
	Sync	R	32	16	
	Async	R	8	16	
	Async	W	8	16	Use of byte lanes NBL[1:0]
	Async	R	16	16	
	Async	W	16	16	
	Async	R	32	16	Split into 2 EXMC accesses
PSRAM	Async	W	32	16	Split into 2 EXMC accesses
	Sync	R	16	16	
	Sync	R	32	16	
	Sync	W	8	16	Use of byte lanes NBL[1:0]
	Sync	W	16	16	
	Sync	W	32	16	Split into 2 EXMC accesses
	Async	R	8	8	
	Async	R	8	16	
	Async	R	16	8	Split into 2 EXMC accesses
	Async	R	16	16	
	Async	R	32	8	Split into 4 EXMC accesses
SRAM and	Async	R	32	16	Split into 2 EXMC accesses
ROM	Async	W	8	8	
	Async	W	8	16	Use of byte lanes NBL[1:0]
	Async	W	16	8	
	Async	W	16	16	
	Async	W	32	8	
	Async	W	32	16	

Table 21-3 EXMC bank 1 supports all transactions

NOR Flash/PSRAM controller timing

EXMC provides various programmable timing parameters and timing models for SRAM, ROM, PSRAM, NOR Flash and other external static memory to meet different types of memory and user requirement.

Parameter	Function	Access mode	Unit	Min	Max
CDIV	Sync Clock divide ratio	Sync	HCLK	2	16
DLAT	Data latency	Sync	CLK	2	17
BUSLAT	Bus latency	Async/Sync read	HCLK	1	16
DST	Data setup time	Async	HCLK	2	256
AHT	Address hold time	Async(muxed)	HCLK	1	16
AST	Address setup time	Async	HCLK	1	16

Table 21-4 NOR / PSRAM controller timing parameters

Table 21-5 EXMC timing models

Timing model		Description	Timing parameter
	Mode 1	SRAM/CRAM	DST、AST
	Mode A	SRAM/PSRAM (CRAM) OE toggling timing	DST、AST
	Mode 2	NOR FLASH read and write timing consistently	DST、AST
Aavaa	Mode B	NOR FLASH read and write timing independently	DST、AST
Async	Mode C	NOR FLASH OE toggling timing	DST、AST
	Mode D	Address hold time delay timing	DST、AHT、AST
Muxed		NOP ELASH address / data multiplayed timing	DST、AHT、AST、
	mode	NOR FLASH address / data multiplexed timing	BUSLAT
Sync burst		According to the synchronous clock CLK read	
		multiple consecutive address data	DLATA CDIV

As shown in Table 21-5, EXMC module NOR Flash / PSRAM controller can provide a variety of timing model. The user can modify the parameters listed in Table 21-4 to make them suitable for different type of external memory timings and to meet user requirements. When extended mode is enabled, reading and writing will be configured to separate timing. In other words, it is possible to mix modes A, B, C and D in read and write.

Asynchronous access timing diagram

Mode 1 - SPRAM/CRAM

Figure 21-6 Mode 1 read access

Figure 21-7 Mode 1 write access

Table 21-6 Mode 2	I related	registers	configuration
-------------------	-----------	-----------	---------------

-		
	EXMC_SCTLRx	

Bit Position	Bit Name	Reference Setting Value
31-16		0x0000
15	ASYNWAIT	Depends on memory
14-10		0x0
9	WSIGP	Meaningful only when the bit 15 is set to 1
8-6		0x0
5-4	EMWID	Depends on memory
3-2	EMTYP	Depends on memory
1	MULEN	0x0
0	BAKEN	0x1
		EXMC_STRx
31-16		0x0000
15-8	DHT	Depends on memory and user
7-4	AHT	0x0
3-0	AST	Depends on memory and user

Mode A - SRAM/PSRAM(CRAM) OE toggling

Figure 21-8 Mode A read access

Figure 21-9 Mode A write access

Table 21-7 Mode A related registers configuration

EXMC_SCTLRx		
Bit Position	Bit Name	Reference Setting Value
31-16		0x0000
15	ASYNWTEN	Depends on memory
14	EXMODEN	0x1
13-10		0x0
9	WSIGP	Meaningful only when the bit 15 is set to 1
8-6		0x0
5-4	EMWID	Depends on memory
3-2	EMTYP	Depends on memory
1	MULEN	0x0
0	BAKEN	0x1
EXMC_STRx(Read)		
31-30		0x0000
29-28	ASYNMOD	00
15-8	DHT	Depends on memory and user
7-4	AHT	0x0
3-0	AST	Depends on memory and user
EXMC_SWTRx(Write)		
31-30		0x0000
29-28	ASYNMOD	00
15-8	DHT	Depends on memory and user

7-4	AHT	0x0
3-0	AST	Depends on memory and user

Mode 2/B——NOR FLASH

Figure 21-10 Mode 2/B read access

Figure 21-11 Mode 2 write access

Figure 21-12 Mode B write access

Table 21-8 Mode 2/B related registers configuration

	EXMC_S	CTLRx(Mode 2, Mode B)
Bit Position	Bit Name	Reference Setting Value
31-16		0x0000
15	ASYNWTEN	Depends on memory
14	EXMODEN	Mode 2: 0x0, Mode B: 0x1
13-10		0x0
9	WSIGP	Meaningful only when the bit 15 is set to 1
8-7		0x0
6	NOREN	0x1
5-4	EMWID	Depends on memory
3-2	EMTYP	10, NOR FLASH
1	MULEN	0x0
0	BAKEN	0x1
	EXMC_STRx(Read a	and write in mode 2, read in mode B)
31-30		0x0000
29-28	ASYNMOD	Mode B:01
15-8	DHT	Depends on memory and user
7-4	AHT	0x0
3-0	AST	Depends on memory and user
	EXMC_S	WTRx(Write in mode B)
31-30		0x0000
29-28	ASYNMOD	Mode B:01

15-8	DHT	Depends on memory and user
7-4	AHT	0x0
3-0	AST	Depends on memory and user

Mode C - NOR FLASH OE toggling

Figure 21-13 Mode C read access

Figure 21-14 Mode C write access

EXMC_SCTLRx			
Bit Position	Bit Name	Reference Setting Value	
31-16		0x0000	
15	ASYNWT	Depends on memory	
14	EXMODEN	0x1	
13-10		0x0	
9	WSIGP	Meaningful only when the bit 15 is set to 1	
8-7		0x0	
6	NOREN	0x1	
5-4	EMWID	Depends on memory	
3-2	EMTYP	10, NOR FLASH	
1	MULEN	0x0	
0	BAKEN	0x1	
	EXMC_STRx		
31-30		0x0000	
29-28	ASYNMOD	Mode C: 10	
15-8	DHT	Depends on memory and user	
7-4	AHT	0x0	
3-0	AST	Depends on memory and user	
		EXMC_SWTRx	
31-30		0x0000	
29-28	ASYNMOD	Mode C: 10	
15-8	DHT	Depends on memory and user	
7-4	AHT	0x0	
3-0	AST	Depends on memory and user	

Table 21-9 mode C related registers configuration

Figure 21-15 Mode D read access

Figure 21-16 Mode D write access

	B rolatou rogiotoro o	omgalation
	E	XMC_SCTLRx
Bit Position	Bit Name	Reference Setting Value
31-16		0x0000
15	ASYNWTEN	Depends on memory
14	EXMODEN	0x1
13-10		0x0
9	WSIGP	Meaningful only when the bit 15 is set to 1
8-7		0x0
6	NOREN	Depends on memory
5-4	EMWID	Depends on memory
3-2	EMTYP	Depends on memory
1	MULEN	0x0
0	BAKEN	0x1
		EXMC_STRx
31-30		0x0000
29-28	ASYNMOD	Mode D: 11
15-8	DHT	Depends on memory and user
7-4	AHT	Depends on memory and user
3-0	AST	Depends on memory and user
	E	XMC_SWTRx
31-30		0x0000
29-28	ASYNMOD	Mode D: 11
15-8	DHT	Depends on memory and user
7-4	AHT	Depends on memory and user
3-0	AST	Depends on memory and user

Table 21-10 Mode D related registers configuration

Multiplex mode - NOR FLASH address / data bus multiplexing

Figure 21-17 Multiplex mode read access

Figure 21-18 Multiplex mode write access

Table 21-11 multiplex mode related registers configuration

EXMC_SCTLRx			
Bit Position	Bit Name	Reference Setting Value	
31-16		0x0000	

15	ASYNWTEN	Depends on memory		
14-10	0x0			
9	WSIGP	Meaningful only when the bit 15 is set to 1		
8-7		0x0		
6	NOREN	0x1		
5-4	EMWID	Depends on memory		
3-2	EMTYP	10, NOR FLASH		
1	MULEN	0x1		
0	BAKEN	0x1		
	E	EXMC_STRx		
31-20		0x0000		
19-16	BUSLAT	Depends on memory and user		
15-8	DHT	Depends on memory and user		
7-4	AHT	Depends on memory and user		
3-0	AST	Depends on memory and user		

Wait timing of asynchronous communication

Wait feature is controlled by the bit ASYNCWAIT in register EXMC_BCR. During the EXMC block accesses extern memory, the data setup phase will be automatically extended if the ASYNCWAIT bit is set. The extend time is calculated as below:

If the memory wait signal is aligned to NOE/NWE:

DATA_SETUP time >= MAX_WAIT_ASSERTION_TIME + 4HCLK

- If the memory wait signal is aligned to NE:
 - ◆ If MAX_WAIT_ASSERTION_TIME > (ADDRESS_PHASE + HOLD_PHASE)

DATA_SETUP time >= (MAX_WAIT_ASSERTION_TIME -

ADDRESS_PHASE - HOLD_PHAE) + 4HCLK

Otherwise

DATA_SETUP time >= 4HCLK

Figure 21-19 Read access timing diagram under asy-wait signal assertion

Figure 21-20 Write access timing diagram under asy-wait signal assertion

Synchronous burst access mode

Relations of memory clock CLK and HCLK clock as follows:

CLK = HCLK / (CDIV+1)

The CDIV is synchronous clock divider ratio, and the value is set by configuring CDIV bit of register EXMC_STRx.

Data latency and NOR flash latency

The data latency is the number of cycles to wait before sampling the data. The relationship between data latency and NOR flash latency as follows:

■ Some NOR flashs latency is calculated

NOR flash latency = DLATE + 2

• Other NOR flashs latency is calculated include the NADV Low cycle:

NOR flash latency = DLATE + 3

Data wait

NWAIT signal enable: Configure WSIGEN bit of register EXMC_SCTLRx

NWAIT signal configuration: Configure WSIGCFG bit of register EXMC_SCTLRx

NWAIT signal polarity: Configure WSIGP bit of register EXMC_SCTLRx

In NOR Flash synchronous burst access mode, if the WSIGEN bit of EXMC_SCTLRx is set, NWAIT signal will be detected after the data latency. If the NWAIT signal detected is valid, wait cycles will be inserted until NWAIT becomes invalid.

The valid polarity of NWAIT:

WSIGP= 1: valid level of NWAIT signal is high.

WSIGP= 0: valid level of NWAIT signal is low.

■ In synchronous burst mode, NWAIT signal has two kinds of configurations:

WSIGCFG = 1: NWAIT signal is valid during the wait state.

WSIGCFG = 0: NWAIT signal is valid in one data cycle before the waiting state. This is the default state after reset.

During wait-state inserted via the NWAIT signal, the controller continues to send clock pulses to the memory, keep the chip select and output signals availably, and ignore the invalid data signal.

Synchronous burst transmission

For synchronous burst transmission, if the needs data of AHB is 16-bit, EXMC will perform a burst transmission whose length is 1. If the needs data of AHB is 32-bit, EXMC will make the

transmission divided into two 16-bit transmissions, that is, EXMC performs a burst transmission whose length is 2.

Compared with asynchronous transmission, synchronous burst transmission is not the most effective transmission mode in efficiency. But a random asynchronous access also needs to take a long time to configure the memory access mode again. Users can select access mode according to their specific needs.

Synchronous burst read timing-NOR, PSRAM(CRAM)

Figure 21-21 Synchronous burst read timing

EXMC_SCTLRx				
Bit Position	Bit Name	Reference Setting Value		
31-15		0x0000		
14	EXMODEN	0x0		
13	WSIGEN	Depends on memory		
12	WREN	0x0		
11	WSIGCFG	Depends on memory		
9	WSIGP	Depends on memory		

8	BMODEN	0x1, brust read enable	
6	NOREN	Depends on memory	
5-4	EMWID	Depends on memory	
3-2	EMTYP	Depends on memory, 01/10	
1	1 MULEN 0x1, Depends on use		
0	BAKEN	0x1	
	EXMC	STRx(Read)	
31-28	EXMC	C_STRx(Read) 0x0000	
31-28 27-24	EXMC SYNDHT	_STRx(Read) 0x0000 Data hold time	
31-28 27-24 23-20	EXMC SYNDHT CDIV	C_STRx(Read) 0x0000 Data hold time The figure above: 0001,CLK=2HCLK	
31-28 27-24 23-20 19-16	EXMC SYNDHT CDIV BUSLAT	C_STRx(Read) 0x0000 Data hold time The figure above: 0001,CLK=2HCLK No effect	

Synchronous burst write timing—PSRAM(CRAM)

Figure 21-22 Synchronous burst write timing

Table 21-13 Timing configurations of synchronous multiplexed write mode

EXMC_SCTLRx				
Bit Position	Bit Name	Reference Setting Value		
31-20		0x0000		
19	WRMOD	0x1, synchronous write enable		
18-15		0x0		
14	EXMODEN	0x0		
13	WSIGEN	Depends on memory		
12	WREN	0x1		

11	WSIGCFG	0x0(Here must be zero)
9	WSIGP	Depends on memory
8-7		0x0
6	NOREN	Depends on memory
5-4	EMWID	Depends on memory
3-2	EMTYP	0x1
1	MULEN	0x1, Depends on users
0	BAKEN	0x1
	EXMC_S	TRx(Write)
31-28		0x0000
27-24	SYNDHT	Data hold time
23-20	CDIV	The figure above: 0001,CLK=2HCLK
19-16	BUSLAT	No effect
15-0		No effect

21.3.5. Nand Flash or PC Card controller

Nand Flash or PC Card controller of EXMC Module can control bank2, bank3 and bank4. Bank2 and bank3 support Nand Flash, while bank4 supports PC Card devices. EXMC provides specialized registers to configure these banks, so appropriate signal timing can be provided for 8-bit or 16-bit Nand flash or 16-bit PC card devices. For Nand Flash, EXMC also provides ECC calculation module.

Nand flash or PC card interface function

Table 21-14 8-bit or 16-bit nand flash interface signal

EXMC Pin	Dirtection	Functional description		
A[17]	Output	NAND Flash address latch (ALE)		
A[16]	Output	NAND Flash command latch (CLE)		
D[7:0]/ D[15:0] lu	lutput /Output	8-bit multiplexed, bidirectional address/data bus		
		16-bit multiplexed, bidirectional address/data bus		
NCE[x]	Output	Chip select, $x = 2, 3$		
NOE(NRE)	Output	Output enable		
NWE	Output	Write enable		
NWAIT/INTx	lutput	NAND Flash ready/busy input signal to the EXMC, x=2		

Table 21-15 16-bit PC card interface signal

EXMC Pin	EXMC Pin Dirtection Functional description	
A[10:0]	Output	Address bus of PC card
NIOS16 Iu	lutout	Only for 16-bit I/O space data transmission width (Must be
	. atp at	shorted to GND)

NIORD	Output	I/O space output enable
NIOWD	Output	I/O space write enable
NREC	Output	Register signal indicating if access is in Common or
INREG	Output	Attribute space
D[15:0]	lutput/Output	Bidirectional data bus
NCE4_x	Output	Chip select(x=1、2)
NOE	Output	Output enable
NWE	Output	Write enable
NWAIT	lutput	PC Card wait input signal to the EXMC
INTR	lutput	PC Card interrupt input signal
CD	Output	PC Card presence detection. Active high.

Supported memory access mode

Memory	Mode	R/W	AHB transaction size	Comments
	Async	R	8	
	Async	W	8	
8-bit	Async	R	16	Automatically split into 2 EXMC
NAND	Async	W	16	accesses
	Async	R	32	Automatically split into 4 EXMC
	Async		32	accesses
	Async	R	8	
	Async	W	8	Not support this operation
16-bit	Async	R	16	
NAND/PC card	Async	W	16	
	Async	R	32	Automatically split into 2 EXMC
	Async	W	32	accesses

Nand flash or PC card controller timing

EXMC can generate the appropriate signal timing for NAND Flash, PC cards and other devices. Each bank has a corresponding register to manage and control the external memory, such as EXMC_CTLR, EXMC_SIR, EXMC_COMTR, EXMC_ATTR, EXMC_IOTR, EXMC_ECCR. And each timing register contains four timing parameters which are configured according to user needs and the features of the external memory.

Programmable parameter	W/R	Unit	Functional description	Min	Max		
High impedance time of the memory data bus (HIZT)	W	HCLK	Time to keep the data bus high impedance after starting write operation	0	255		

Table 21-17 Nand flash or PC card programmable parameters

		HCLK	The number of HCLK clock cycles		
Momony hold time (HT)	W/R		to keep address valid after	1	255
			sending the command. In write		
			mode, it is also data hold time.		
Momony wait time (W/T)	W/R	HCLK	Minimum duration of sending	1	256
			command		
			The number of HCLK clock cycles		
Memory setup time (ST)	W/R	HCLK	to build address before sending	1	256
			command		

The figure below shows the programmable parameters which are defined in the common memory space operations. The programmable parameters of Attribute memory space or I/O memory space (only for PC card) are defined as well.

Figure 21-23 Access timing of common memory space of Nand flash or PC card Controller

Nand flash operation

When EXMC sends command or address to NAND Flash, it needs to use the command latch signal (A [16]) or address latch signal (A [17]), namely, the CPU needs to perform write operation in particular address.

Example: NAND Flash read operation steps:

- Configure EXMC_CTLR, EXMC_ATTR. If you need a pre-waiting, you need to configure EXMC_COMTR.
- 2) Send the command of NAND Flash read operation to the common space. Namely, during the valid period of an NCE, when CLE (A [16]) becomes valid (high level), the data on the I/O pins is regarded as a command by NAND flash.

- 3) Send the start address of read operation to the common space. Namely, during the valid period of an NCE, when ALE (A [17]) becomes valid (high level), the data on the I/O pins is regarded as an address by NAND flash.
- 4) Waiting for NAND ready signal. In this period, NAND controller will remain NCE valid.
- 5) Read data byte by byte from the data area of the common space.
- 6) If new commands or address haven't been written, the data of next page can be read out automatically. You can also read the data of next page by going to step 3 and then writing a new address or writing a new command and address at step 2.

NAND Flash pre-wait functionality

Some NAND Flash requires that the controller waits for NAND Flash ready after the last address byte is send, and some the NCE-sensitive NAND Flash also requires that the NCE must remain valid before it is ready.

Examples:

- 1) Write the command 0x00 to the bank2's common space
- 2) Write the A[7:0] bits of NAND Flash address to the bank2's common space
- 3) Write the A[16:9] bits of NAND Flash address to the bank2's common space
- 4) Write the A[24:17] bits of NAND Flash address to the bank2's common space
- 5) Write the A[25] bit of NAND Flash address to the bank2's attribute space

In the step 5, EXMC uses the operation timing defined in EXMC_ATTR. After the period of ATTHT time, NAND Flash waits for the R/NB signal to ready, and the time of ATTHT should be greater than the tWB (tWB is defined as the time from NWE high to R/NB low). For the NCE-sensitive NAND Flash, after the last address byte has input, NCE must remain low until

the B/NB goes from low to high. The ATTHT value of attribute space can be set in EXMC_ATTR to meet the timing requirements of tWB. The CPU can use the attribute space timing when writing the last address byte to the NAND Flash device. But at other times, the CPU must use the common space timing.

NAND flash ECC calculation module

Bank2 and bank3 in the EXMC module each have an ECC computing hardware module. The user can choose page size according to the ECCSZ bit of EXMC_CTLR, and through the calculation of ECC, one bit error can be corrected and two bits errors can be detected.

When the NAND memory blocks enabled, ECC module will detect D [15: 0], NCE, NWE signals. When ECCSZ sizes of data has been read or written, the software must read the result value of EXMC_ECCR. If you require starting ECC computation again, firstly, the software needs to clear the EXMC_ECCR value by setting the ECCEN bit of EXMC_CTLR to zero, and then restart ECCEN ECC calculation by setting the ECCEN bit of EXMC_CTLR to one.

21.4. EXMC registers

21.4.1. NOR/PSRAM controller registers

The peripheral registers have to be accessed by words (32-bit).

SRAM/NOR Flash chip select control registers (EXMC_SCTLRx)(x=1, 2, 3, 4)

Address offset: 0xA000 0000 + 8 *(x - 1) Reset value: 0x0000 30DX

31	30	29	28	27	26 2	25	24 23	22	21	20	19	9	18	17	16
				Rese	erved						WRN	10D		Reserve	d
											rw	1			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ASYNWTEN	EXMODEN	WSIGEN	WREN	WSIGCFG	WRAPEN	WSIGP	BMODEN	Reserved	NOREN	EMWI	D[1:0]	EMT	YP[1:0]	MULEN	BAKEN
rw	rw	rw	rw	rw	rw	rw	rw		rw	rv	v	1	w	rw	rw

Bits	Fields	Description
31:20	Reserved	Must be kept at reset value.
19	WRMOD	Select write mode
		0x0: Asynchronous write
		0x1: Synchronous write

GD32F10x User Manual

18:16	Reserved	Must be kept at reset value.
15	ASYNWTEN	Asynchronous wait feature enable
		0x0: Disable the asynchronous wait feature
		0x1: Enable the asynchronous wait feature
14	EXMODEN	Extended mode enable
		0x0: Disable extended mode
		0x1: Enable extended mode
13	WSIGEN	NWAIT signal enable
		For Flash memory access in burst mode, this bit enables/disables wait-state
		insertion via the NWAIT signal:
		0x0: Disable NWAI signal
		0x1: Enable NWAIT signal
12	WREN	Write enable
		0x0: Disabled write in the bank by the EXMC, otherwise an AHB error is reported
		0x1: Enabled write in the bank by the EXMC (default after reset)
11	WSIGCFG	NWAIT signal configuration, only work in synchronous mode
		0x0: NWAIT signal is active one data cycle before wait state
		0x1: NWAIT signal is active during wait state
10	WRAPEN	Wrapped burst mode enable
		0x0: Disable wrap burst mode support
		0x1: Enable wrap burst mode support
9	WSIGP	NWAIT signal polarity
		0x0: Low level is active of NWAIT
		0x1: High level is active of NWAIT
8	BMODEN	Synchronous burst mode enable
		0x0: Disable burst access mode
		0x1: Enable burst access mode
7	Reserved	Must be kept at reset value.
6	NOREN	NOR flash access enable
		0x0: Disable NOR flash access
		0x1: Enable NOR flash access
5:4	EMWID[1:0]	External memory data bus width
		0x0: 8 bits
		0x1: 16 bits(default after reset)
		0x2/0x3: Reserved

GigaDevice		GD32F10x User Manual
3:2	EMTYP[1:0]	External memory
		0x0: SRAM、ROM
		0x1: PSRAM (CRAM)
		0x2: NOR FLASH
		0x3: Reserved
1	MULEN	Address/data multiplexing enable bit
		0x0: Disable address/data multiplexing function
		0x1: Enable address/data multiplexing function
0	BAKEN	Memory bank enable
		0x0: Disable the corresponding memory bank
		0x1: Enable the corresponding memory bank

SRAM/NOR Flash chip select timing registers (EXMC_STRx) (x=1, 2, 3, 4)

Address offset: 0xA000 0000 + 0x04 + 8 * (x - 1) Reset value: 0x0FFF FFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserve	Reserved ASYNMOD[1:0]				DLA	Г[3:0]			CDI	/[3:0]		BUSLAT[3:0]			
		r	w		r	w			r	w			r١	N	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			DST[7:0]						AHT	[3:0]			AST	[3:0]	
	rw								r	w			r١	N	

Bits	Fields	Description
31:30	Reserved	Must be kept at reset value.
29:28	ASYNMOD[1:0]	Asynchronous access mode
		The bits are valid only when the EXMEN bit in the EXMC_SCTLRx register is 1.
		0x0: Mode A access
		0x1: Mode B access
		0x2: Mode C access
		0x3: Mode D access
27:24	DLAT[3:0]	Data latency for NOR flash. Only valid in synchronous access
		0x0: Data latency of first burst access is 2 CLK
		0x1: Data latency of first burst access is 3 CLK
		0xF: Data latency of first burst access is 17 CLK
23:20	CDIV[3:0]	Synchronous clock divide ratio. This filed is only effect in synchronous mode.
		0x0: Reserved

		0x1: EXMC_CLK period = 2 * HCLK period
		0xF: EXMC_CLK period = 16 * HCLK period
19:16	BUSLAT[3:0]	Bus latency
		The bits are defined in multiplexed read mode in order to avoid bus contention, and
		represent the data bus to return to a high impedance state's minimum.
		0x0: Bus latency = 1 * HCLK period
		0x1: Bus latency = 2 * HCLK period
		0xF: Bus latency = 16 * HCLK period
15:8	DST[7:0]	Data setup time
		This field is meaningful only in asynchronous access.
		0x00: Reserved
		0x01: Data setup time = 2 * HCLK period
		0x10: Data setup time = 3 * HCLK period
		0xFF: Data setup time = 256 * HCLK period
7:4	AHT[3:0]	Address hold time
		This field is used to set the time of address hold phase, which only used in mode D
		and multiplexed mode.
		0x0: Reserved
		0x1: Address hold time = 2 * HCLK
		0xF: Address hold time = 16 * HCLK
3:0	AST[3:0]	Address setup time
		This field is used to set the time of address setup phase.
		Note: meaningful only in asynchronous access of SRAM,ROM,NOR Flash
		0x0: Address setup time = 1 * HCLK
		0x1: Address setup time = 2 * HCLK
		0xF: Address setup time = 16 * HCLK

SRAM/NOR Flash write timing registers (EXMC_SWTRx) (x=1, 2, 3, 4)

Address offset: 0xA000 0000 + 0x104 + 8 * (x - 1) Reset value: 0x0FFF FFFF

This register is meaningful only when the EXTMOD bit in EXMC_BCR is set to 1.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved	ł	ASYNM	OD[1:0]		DLAT	[3:0]			CDIV	/[3:0]			Rese	rved	

GD32F10x User Manual

		r	w		r١	N			r	w					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					AHT[3:0]				AST[3:0]						
	rw								r	w			r	w	

Bits	Fields	Description
31:30	Reserved	Must be kept at reset value.
29:28	ASYNMOD[1:0]	Asynchronous access mode
		The bits are valid only when the EXMEN bit in the EXMC_SCTLRx register is 1.
		0x0: Mode A access
		0x1: Mode B access
		0x2: Mode C access
		0x3: Mode D access
27:24	DLAT[3:0]	Data latency for NOR flash. Only valid in synchronous access
		0x0: Data latency of first burst access is 2 CLK
		0x1: Data latency of first burst access is 3 CLK
		0xF: Data latency of first burst access is 17 CLK
23:20	CDIV[3:0]	Synchronous clock divide ratio. This filed is meaningful only in synchronous mode.
		0x0: Reserved
		0x1: EXMC_CLK period = 2 * HCLK period
		0xF: EXMC_CLK period = 16 * HCLK period
19:16	Reserved	Must be kept at reset value.
15:8	DST[7:0]	Data setup time
		This field is meaningful only in asynchronous access.
		0x00: Reserved
		0x01: Data setup time = 2 * HCLK period
		0x10: Data setup time = 3 * HCLK period
		0xFF: Data setup time = 256 * HCLK period
7:4	AHT[3:0]	Address hold time
		This field is used to set the time of address hold phase, which only used in mode D
		and multiplexed mode.
		0x0: Reserved
		0x1: Address hold time = 2 * HCLK
		0xF: Address hold time = 16 * HCLK
3:0	AST[3:0]	Address setup time
		This field is used to set the time of address setup phase.
		Note: Meaningful only in asynchronous access of SRAM,ROM,NOR Flash

0x0: Address setup time = 1 * HCLK 0x1: Address setup time = 2 * HCLK

0xF: Address setup time = 16 * HCLK

21.4.2. NAND Flash/PC card controller registers

.

NAND Flash/PC card control registers (EXMC_CTLRx) (x=2, 3, 4)

Address offset: 0xA000 0000 + 0x40 + 0x20 * (x-1) Reset value: 0x0000 0018

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	rved							ECCSZ[2:0)]	ATR[3]
													rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AT	[R[2:0]			CTR	[3:0]		Rese	erved	ECCEN	EMWI	D[1:0]	EMTYP	BAKEN	WSIGEN	Reserved
	rw			r	N				rw	r١	v	rw	rw	rw	

Bits	Fields	Description
19:17	ECCSZ[2:0]	ECC size
		0x0: 256 bytes
		0x1: 512 bytes
		0x2: 1024 bytes
		0x3: 2048 bytes
		0x4: 4096 bytes
		0x5: 8192 bytes
16:13	ATR[3:0]	ALE to RE delay
		0x0: ALE to RE delay = 1 * HCLK
		0x1: ALE to RE delay = 2 * HCLK
		0xF: ALE to RE delay = 16 * HCLK
12:9	CTR[3:0]	CLE to RE delay
		0x0: CLE to RE delay = 1 * HCLK
		0x1: CLE to RE delay = 2 * HCLK
		0xF: CLE to RE delay = 16 * HCLK
8:7	Reserved	Must be kept at reset value.
6	ECCEN	ECC enable
		0x0: Disable ECC, and reset EXMC_ECCR

0x1: Enable ECC

5:4	EMWID[1:0]	External memory Data bus width
		0x0: 8 bits
		0x1: 16 bits
		0x2/0x3: Reserved
3	EMTYP	External memory type
		0x0: PC card, CF card, PCMCIA
		0x1: NAND Flash
2	BAKEN	Memory bank enable
		0x0: Disable corresponding memory bank
		0x1: Enable corresponding memory bank
1	WSIGEN	Wait feature enable
		0x0: Disable wait feature
		0x1: Enable wait feature
0	Reserved	Must be kept at reset value.

FIFO status and interrupt registers (EXMC_SIRx) (x=2, 3, 4)

Address offset: 0xA000 0000 + 0x44 + 0x20 * (x-1) Reset value: 0x0000 0040

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Res	erved					FIFOE	INTFEN	INTHEN	INTREN	INTFS	INTHS	INTRS
									r	rw	rw	rw	rw	rw	rw

Bits	Fields	Description
31:7	Reserved	Must be kept at reset value.
6	FIFOE	FIFO empty flag
		0x0: FIFO is not empty.
		0x1: FIFO is empty.
5	INTFEN	Interrupt falling edge detection enable
		0x0: Disable interrupt falling edge detection
		0x1: Enable interrupt falling edge detection
4	INTHEN	Interrupt high-level detection enable

GD32F10x User Manual

		0x1: Enable interrupt high-level detection
3	INTREN	Interrupt rising edge detection enable bit
		0x0: Disable interrupt rising edge detection
		0x1: Enable interrupt rising edge detection
2	INTFS	Interrupt falling edge status
		0x0: Not detect interrupt falling edge
		0x0: Detect interrupt falling edge
1	INTHS	Interrupt high-level status
		0x0: Not detect interrupt high-level
		0x1: Not detect interrupt high-level
0	INTRS	Interrupt rising edge status
		0x0: Not detect interrupt rising edge
		0x1: Not detect interrupt rising edge

Common memory space timing register (EXMC_COMTRx) (x=2, 3, 4)

0x0: Disable interrupt high-level detection

Address offset: 0xA000 0000 + 0x48 + 0x20 * (x-1) Reset value: 0xFCFC FCFC

EXMC_COMTRx contain NAND flash memory, PC card and CF card operation timing parameters, these operations applicable to common memory space for 16-bit PC card, CF card and send NAND flash.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	COMHT[7:0]															
			rw								r	w				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	COMWT[7:0]									COMST[7:0]						
rw											r	w				

Bits	Fields	Description
31:24	COMHIZT[7:0]	Common memory data bus HiZ time
		The bits in the common space are defined as time of bus keep high impedance state after writing the data.
		0x00: COMHIZT for PC card = 0 * HCLK or COMHIZT for NAND = 1 * HCLK
		0x01: COMHIZT for PC card = 1 * HCLK or COMHIZT for NAND = 2 * HCLK
		 0xFF: COMHIZT for PC card = 255 * HCLK or COMHIZT for NAND = 256 * HCLK
23:16	COMHT[7:0]	Common memory hold time

GD32F10x User Manual

		After sending the address, the bits are defined as the address hold time. In write
		operation, they are also defined as the data signal hold time.
		0x00: Reserved
		0x01: COMHT = 1 * HCLK
		0xFF: COMHT = 255 * HCLK
15:8	COMWT[7:0]	Common memory wait time
		Define the minimum time to maintain command
		0x00: Reserved
		0x01: COMWT = 2 * HCLK
		0xFF: COMWT = 256 * HCLK
7:0	COMST[7:0]	Common memory wait time
		Define the minimum time to maintain command
		0x00: COMST for PC card = 1 * HCLK or COMST for NAND = 2 * HCLK
		0x01: COMST for PC card = 2 * HCLK or COMST for NAND = 3 * HCLK
		0xFF: COMST for PC card = 256 * HCLK or COMST for NAND = 257 * HCLK

Attribute memory space timing register (EXMC_ATTRx) (x=2, 3, 4)

Address offset: 0xA000 0000 + 0x4C + 0x20 * (x-1) Reset value: 0xFCFC FCFC

EXMC_ATTRx register contains the timing parameters for PC Card or NAND Flash memory bank. It is used for 8-bit accesses to the attribute memory space of the PC Card or to access the NAND Flash for the last address write access if the timing must differ from that of previous accesses.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ATTHT[7:0]														
			rw								r	w			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ATTWT[7:0]								ATTST[7:0]						
rw								rw							

Bits	Fields	Description
31:24	ATTHIZT[7:0]	Common memory data bus HiZ time
		The bits in the common space are defined as time of bus keep high impedance state after writing the data. 0x00: ATTHIZT for PC card = 0 * HCLK or ATTHIZT for NAND = 1 * HCLK 0x01: ATTHIZT for PC card = 1 * HCLK or ATTHIZT for NAND = 2 * HCLK

		0xFF: ATTHIZT for PC card = 255 * HCLK or ATTHIZT for NAND = 256 * HCLK
23:16	ATTHT[7:0]	Common memory hold time
		After sending the address, the bits are defined as the address hold time. In write
		operation, they are also defined as the data signal hold time.
		0x00: Reserved
		0x01: ATTHT = 1 * HCLK
		0xFF: ATTHT = 255 * HCLK
15:8	ATTWT[7:0]	Common memory wait time
		Define the minimum time to maintain command
		0x00: Reserved
		0x01: ATTWT = 2 * HCLK
		0xFF: ATTWT = 256 * HCLK
7:0	ATTST[7:0]	Common memory wait time
		Define the minimum time to maintain command
		0x00: ATTST for PC card = 1 * HCLK or ATTST for NAND = 2 * HCLK
		0x01: ATTST for PC card = 2 * HCLK or ATTST for NAND = 3 * HCLK
		0xFF: ATTST for PC card = 256 * HCLK or ATTST for NAND = 257 * HCLK

I/O memory space timing register (EXMC_IOTR4)

Address offset: 0xA000 0000 + 0Xb0 Reset value: 0xFCFC FCFC

.

The EXMC_IOTR4 read or write registers contain the timing parameters used to gain access to the I/O space of the 16-bit PC card or CF card.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	IOHT[7:0]														
			rw								r	w			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IOWT[7:0]								IOST[7:0]						
rw											r	w			

Bits	Fields	Description
31:24	IOHIZT[7:0]	Common memory data bus HiZ time
		The bits in the common space are defined as time of bus keep high impedance

state after writing the data.

		0x00: IOHIZT for PC card = 0 * HCLK or IOHIZT for NAND = 1 * HCLK 0x01: IOHIZT for PC card = 1 * HCLK or IOHIZT for NAND = 2 * HCLK
		0xFF: IOHIZT for PC card = 255 * HCLK or IOHIZT for NAND = 256 * HCLK
23:16	IOHT[7:0]	Common memory hold time
		After sending the address, the bits are defined as the address hold time. In write
		operation, they are also defined as the data signal hold time.
		0x00: Reserved
		0x01: IOHT = 1 * HCLK
		0xFF: IOHT = 255 * HCLK
15:8	IOWT[7:0]	Common memory wait time
		Define the minimum time to maintain command
		0x00: Reserved
		0x01: IOWT = 2 * HCLK
		0xFF: IOWT = 256 * HCLK
7:0	IOST[7:0]	Common memory wait time
		Define the minimum time to maintain command
		0x00: IOST for PC card = 1 * HCLK or IOST for NAND = 2 * HCLK
		0x01: IOST for PC card = 2 * HCLK or IOST for NAND = 3 * HCLK
		0xFF: IOST for PC card = 256 * HCLK or IOST for NAND = 257 * HCLK

NAND flash ECC result registers (EXMC_ECCRx) (x=2, 3)

Address offset: 0xA000 0000 + 0x54+0x20 * (x-1) Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ECCx[31:16]														
							r								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						E	ECCx[15:0	0]							
							r								
Bits	Field	s		Desc	ription										
31:0	ECCx[31:0]				result										

22. Controller Area Network (bxCAN)

22.1. Introduction

CAN bus (for controller area network) is a bus standard designed to allow microcontrollers and devices to communicate with each other without a host computer.

The Basic Extended CAN (bxCAN), interfaces the CAN network. It supports the CAN protocols version 2.0A and B. The bxCAN interface handles the transmission and the reception of CAN frames fully autonomously. The bxCAN provides 14 scalable/configurable identifier filter banks in GD32F103 and 28 filter banks in GD32F105 and GD32F107. The filters are for selecting the incoming messages the software needs and discarding the others. Three transmit mailboxes are provided to the software for setting up messages. The transmission Scheduler decides which mailbox has to be transmitted first. Three complete messages can be stored in each FIFO. The FIFOs are managed completely by hardware. Two receive FIFOs are used by hardware to store the incoming messages. The CAN controller also provides all hardware functions for supporting the time-triggered communication option for safety-critical applications.

22.2. Main features

- Supports CAN protocol version 2.0 A, B
- Baud rates up to 1 Mbit/s
- Supports the time-triggered communication
- Maskable interrupts

Transmission

- 3 transmit mailboxes
- Prioritization of messages
- Time Stamp on SOF transmission

Reception

- 2 receive FIFOs with 3 message deep
- 14 scalable/configurable identifier filter banks in GD32F103
- 28 scalable/configurable identifier filter banks in GD32F105 and GD32F107
- FIFO lock

Time-triggered communication

- Disable retransmission automatically
- 16-bit free timer
- Time Stamp on SOF reception
- Time Stamp sent in last two data bytes

Note: The CAN and USB cannot be used concurrently, because they share a dedicated 512-byteSRAM memory (unavailable for applications). They can be used in one application but not at the same time.

22.3. Function description

Figure below shows the CAN block diagram.

Figure 22-1 CAN module block diagram

22.3.1. Working mode

The bxCAN interface has three working modes:

- Sleep working mode
- Initial working mode
- Normal working mode

Sleep working mode

Sleep working mode is the default mode after reset. Also, Sleep working mode is in the low-power status while the bxCAN clock is stopped.

When SWM bit in CAN_CTLR register is set, the bxCAN enters the sleep working mode. Then the SWS bit in CAN_STR register is set.

To leave sleep working mode automatically: the AWK bit in CAN_CTLR register is set. To leave sleep working mode by software: clear the SWM bit in CAN_CTLR register.

Initial working mode

The bxCAN enters initial working mode whenever the options of CAN bus communication need to be changed.

Set IWM bit in CAN_CTLR register to enter initial working mode or clear it in order to leave.

Normal working mode

After initialization the bxCAN can enter normal working mode and is ready to communicate with other CAN communication nodes.

To enter normal working mode: clear IWM bit in CAN_ CTLR register.

22.3.2. Communication modes

The bxCAN interface has four communication modes:

- Silent communication mode
- Loopback communication mode
- Loopback and silent communication mode
- Normal communication mode

Silent communication mode

Silent communication mode means reception available and transmission disable.

The Rx pin of the bxCAN can get the signal from the network and the Tx pin always holds logical one.

When the SCM bit in CAN_BTR register is set, the bxCAN enters the silent communication mode. When it is cleared, the bxCAN leaves silent communication mode.

Silent communication mode is useful on monitoring the network messages.

Loopback communication mode

Loopback communication mode means the sending messages are transformed into the reception FIFOs.

Set LCM bit in CAN_BTR register to enter loopback communication mode or clear it to leave.

Loopback communication mode is useful on self-test.

Loopback and silent communication mode

Loopback and silent communication mode means the RX and TX pins are disconnected from the CAN network while the sending messages are transformed into the reception FIFOs.

Set LCM and SCM bit in CAN_BTR register to enter loopback and silent communication mode or clear them to leave.

Loopback and silent communication mode is useful on self-test. The TX pin holds logical one. The RX pin holds high impedance state.

Normal communication mode

Normal communication mode is the default communication mode unless the LCM or SCM bit in CAN_BTR register is set.

22.3.3. Data transmission

Transmission register

Three transmit mailboxes are transparent to the application. You can use transmit mailboxes through four registers: CAN_TMIR, CAN_TMPR, CAN_TMD0R and CAN_TMD1R. As shown in Figure below.

Transmit mailbox state

A transmit mailbox can be used when it is free: **empty** state. If the data is filled in the mailbox, setting CAN_TMIR.TE prepares to start the transmission: **pending** state. If more than one mailbox are in the pending state, they need schedule the transmission: **scheduled** state. A mailbox with priority enter **transmit** state and start transmitting the message. After the message has been sent, the mailbox is free: **empty** state. As shown in figure below.

Transmit status and error

The CAN_TSTR register includes the transmit status and error bits: MTF, MTFNE, MAL, MTE.

- MTF: mailbox transmit finished. Typically, MTF is set when the frame in the transmit mailbox has been sent.
- MTFNE: mailbox transmit finished and no error. MTFNE is set when the frame in the transmission mailbox has been sent.
- MAL: mailbox arbitration lost. MAL is set while the frame transmission is failed because of the arbitration lost.

MTE: mailbox transmit error. MTE is set while the frame transmission is failed because of the detection error of CAN bus.

Step of sending a frame

To send a frame through the bxCAN:

Step 1: Select one free transmit mailbox.

Step 2: Fill four registers with the application's acquirement.

Step 3: Set CAN_TMIR.TE.

Step 4: Check the transmit status. Typically, MTF and MTFNE are set if transmission is successful.

Transmission options

Abort

Setting CAN_TSTR.MST can abort the transmission.

If the transmission mailbox's state is **pending** or **scheduled**, the abort of transmission can be done immediately.

In the state of **transmit** the abort of transmission has two results. In case of transmission successful, the TMFNE and TMF in CAN_TSTR are set and state changes to **empty**. In case of transmission failed, the state changes to be **scheduled** and then the abort of transmission can be done immediately.

Priority

When more than one transmit mailbox is pending, the transmission order is given by the TFO bit in CAN_CTLR register.

In case of TFO is 1, the three transmit mailboxes work as FIFO.

In case of TFO is 0, the transmit mailbox with lowest identifier has the highest priority of transmission. If the identifiers are equal, the lower mailbox number will be scheduled first.

22.3.4. Data reception

Reception register

Two receive FIFOs are transparent to the application. You can use receive FIFOs through five registers: CAN_RFR, CAN_RFMIR, CAN_RFMPR, CAN_RFMD0R and CAN_RFMD1R. FIFO's status and operation can be handled by CAN_RFR register. Reception frame data can be achieved through the registers: CAN_RFMIR, CAN_RFMPR, CAN_RFMPR, CAN_RFMD0R and CAN_RFMD1R.

Each FIFO consists of three receive mailboxes. As shown in figure below.

Figure 22-4 Reception register

Receive FIFO

Receive FIFO has three mailboxes. The reception frames are stored in the mailbox ordered by the arriving sequence of the frames. First arrived frame can be accessed by application firstly.

The number of frames in the receive FIFO and the status can be accessed by the register CAN_RFR0 and CAN_RFR1.

If at least one frame has been stored in the receive FIFO0, set CAN_RFR0.RFD to read one frame from receive FIFO. The frame data is placed in the registers (CAN_RFMIR0, CAN_RFMPR0, CAN_RFMD0R0, CAN_RFMD1R0) until the RFD bit in CAN_RFR0 register is cleared.

Receive FIFO status

RFL bit in CAN_RFR register: receive FIFO length. It is 0 when no frame is stored in the reception FIFO and 3 when full.

RFF bit in CAN_RFR register: the FIFO holds three frames.

RFO bit in CAN_RFR register: one new frame arrived while the FIFO has hold three frames.

Step of receiving a message

Step 1: check the number of frames in the receive FIFO.

Step 2: set the RFD bit in CAN_RFR register.

Step 3: wait for reading CAN_RFMIR, CAN_RFMPR, CAN_RFMD0R and CAN_RFMD1R until the RFD bit is cleared.

22.3.5. Filtering Function

The bxCAN would receive frames from the CAN bus. If the frame is passed through the filter, it is copied into the receive FIFOs. Otherwise, the frame will be discarded without intervention by the software.

The identifier of frame from the CAN bus takes part in the matching of the filter.

Scale

In GD32F103, the filter consists of 14 banks: bank0 to bank13. In GD32F105 and GD32F107, the filter consists of 28 banks: bank0 to bank27. Each bank has two 32-bit registers: CAN_FDR0 and CAN_FDR1.

Each filter bank can be configured 32-bit or 16-bit.

32-bit: SFID[10:0], EFID[17:0], FF and FT bits. As shown in figure below.

Figure 22-5 32-bit filter

	FDR[31:21]	FDR[20:3]		FDR[2:0]		
2		/	/			7
	SFID[10:0]	EFID[17:0] 1	FF	FT	0	

16-bit: SFID [10:0], FT, FF and EFID[17:15] bits. As shown in figure below.

Figure 22-6 16-bit filter

Mask mode

In mask mode the identifier registers are associated with mask registers specifying which bits of the identifier are handled as "must match" or as "don't care". 32-bit mask mode example is shown in figure below.

Figure 22-7 32-bit mask mode filter

List mode

The filter consists of frame identifiers. The filter can decide whether a frame will be discarded or not. When one frame arrived, the filter will check which member can match the identifier of the frame.

32-bit list mode example is shown in figure below.

Figure 22-8 32-bit list mode filter

[FD0R[31:21]	FD0R[20:3]		FDOR	2:0)]
[FD1R[31:21]	FD1R[20:3]		FDIR	2:0)]
			/			7
	SFID[10:0]	EFID[17:0]	FF	FT	0	

Filter number

Each filter within a filter bank is numbered from 0 to a maximum dependent on the mode and the scale of each of the filter banks.

For example, there are two filter banks. Bank 0 is configured as 32-bit mask mode. Bank 1 is configured as 16-bit list mode. The filter number is shown in figure below.

Figure 22-9 32-bit filter number

Filter Bank	Filter Data Register	Filter Number
0	F0D0R-32bit-ID F0D1R-32bit-Mask	0
	F1D0R-32bit-ID	1
1	F1D1R-32bit-ID	2

Associated FIFO

28 banks can associate to FIFO0 or FIFO1. If the bank associated FIFO0, the frames passed through the bank will fill the FIFO0.

Active

The filter bank needs to be configured activation if the application wants the bank working and while filters not used by the application should be left deactivated.

Filtering index

Each filter number corresponds to a filtering rule. When the frame from the CAN bus passes the filters, a filter number must associate with the frame. The filter number is called filtering index. It stores in the CAN_RFMPR.FI when the frame is read by the application.

Each FIFO numbers the filters within the banks associated with the FIFO itself whatever the bank is active or not.

The example about filtering index is shown in figure below.

Figure 22-10 Filtering index

Filter	FIEOA	Antina	Filter		Filter	
Bank	FIFO0	Active	Number		Bank	
0	F0D0R-32bit-ID	Vee		1		F2
•	F0D1R-32bit-Mask	ies	0			F2
	F1D0R-32bit-ID	Vee	1		2	F2
1	F1D1R-32bit-ID	ies	2]		F2
	F3D0R[15:0]-16bit-ID		2			F2
-	F3D0R[31:16]-16bit-Mask		2		4	F4
د	F3D1R[15:0]-16bit-ID	NO		1	-	F:
	F3D1R[31:16]-16bit-Mask	1	4		2	F
	F7D0R[15:0]-16bit-ID		5			F
7	F7D0R[31:16]-16bit-ID		6		6	F
	F7D1R[15:0]-16bit-ID	NO	7			F
	F7D1R[31:16]-16bit-ID		8]		F
	F8D0R[15:0]-16bit-ID		9			F1
	F8D0R[31:16]-16bit-ID	V	10	1	10	F1
8	F8D1R[15:0]-16bit-ID	res	11	1	10	F1
	F8D1R[31:16]-16bit-ID		12]		F1
	F9D0R[15:0]-16bit-ID		12			F1
	F9D0R[31:16]-16bit-Mask	Ver	15			F1
9	F9D1R[15:0]-16bit-ID	res	14		11	F1
	F9D1R[31:16]-16bit-Mask		14			F
12	F12D0R-32bit-ID	Ver	15		12	F1
12	F12D1R-32bit-Mask	res	10		15	F1

Filter	FIF01	Activa	Filter
Bank	THO	Active	Number
	F2D0R[15:0]-16bit-ID		0
	F2D0R[31:16]-16bit-Mask	v	•
2	F2D1R[15:0]-16bit-ID	res	
	F2D1R[31:16]-16bit-Mask	1	1
	F4D0R-32bit-ID		-
4	F4D1R-32bit-Mask	No	2
-	F5D0R-32bit-ID	27-	3
2	F5D1R-32bit-ID	No	4
	F6D0R[15:0]-16bit-ID	1	5
6	F6D0R[31:16]-16bit-ID	v	6
	F6D1R[15:0]-16bit-ID	res	7
	F6D1R[31:16]-16bit-ID	1	8
	F10D0R[15:0]-16bit-ID	1	0
10	F10D0R[31:16]-16bit-Mask	27-	9
10	F10D1R[15:0]-16bit-ID	NO	10
	F10D1R[31:16]-16bit-Mask	1	10
	F11D0R[15:0]-16bit-ID		11
	F11D0R[31:16]-16bit-ID	27-	12
11	F11D1R[15:0]-16bit-ID	NO	13
	F11D1R[31:16]-16bit-ID		14
12	F13D0R-32bit-ID	V	15
15	F13D1R-32bit-ID	res	16

Priority

The filters have the priority:

- 1. 32-bit mode is higher than 16-bit mode.
- 2. List mode is higher than mask mode.
- 3. Smaller filter index value has the higher priority.

22.3.6. Time-triggered communication

The time-triggered CAN protocol is a higher layer protocol on top of the CAN (Controller Area Network) data link layer. Time-triggered communication means that activities are triggered by the elapsing of time segments. In a time-triggered communication system all points of time of message transmission are defined during the development of a system. A time-triggered communication system is ideal for applications in which the data traffic is of a periodic nature.

In this mode, the 16-bit internal counter of the CAN hardware is activated and used to generate the time stamp value stored in the CAN_RFMPR and CAN_TMPR registers for reception and transmission respectively. The internal counter is incremented each CAN bit time. The internal counter is captured on the sample point of the SOF (Start Of Frame) bit in both reception and transmission.

The automatic retransmission is disabling in the time-triggered CAN communication.

22.3.7. Communication parameters

Nonautomatic retransmission mode

This mode has been implemented in order to fulfill the requirement of the time-triggered communication option of the CAN standard. To configure the hardware in this mode the ARD bit in the CAN_CTLR register must be set.

In this mode, each transmission is started only once. If the first attempt fails, due to an arbitration loss or an error, the hardware will not automatically restart the frame transmission.

At the end of the first transmission attempt, the hardware considers the request as finished and sets the MTF bit in the CAN_TSTR register. The result of the transmission is indicated in the CAN_TSTR register by the MTFNE, MAL and MTE bits.

Bit time

On the bit-level the CAN protocol uses synchronous bit transmission. This enhances the transmitting capacity but also means that a sophisticated method of bit synchronization is required. While bit synchronization in a character-oriented transmission (asynchronous) is performed upon the reception of the start bit available with each character, a synchronous transmission protocol there is just one start bit available at the beginning of a frame. To enable the receiver to correctly read the messages, continuous resynchronization is required. Phase buffer segments are therefore inserted before and after the nominal sample point within a bit interval.

The CAN protocol regulates bus access by bit-wise arbitration. The signal propagation from sender to receiver and back to the sender must be completed within one bit-time. For synchronization purposes a further time segment, the propagation delay segment, is needed in addition to the time reserved for synchronization, the phase buffer segments. The propagation delay segment takes into account the signal propagation on the bus as well as signal delays caused by transmitting and receiving nodes.

The normal bit time simplified by the bxCAN from the CAN protocol has three segments as follows:

Synchronization segment (SYNC_SEG): a bit change is expected to occur within this time segment. It has a fixed length of one time quantum $(1 \times t_{CAN})$.

Bit segment 1 (BS1): defines the location of the sample point. It includes the *Propagation delay segment* and *Phase buffer segment 1* of the CAN standard. Its duration is programmable between 1 and 16 time quanta but may be automatically lengthened to compensate for positive phase drifts due to differences in the frequency of the various nodes of the network.

Bit segment 2 (BS2): defines the location of the transmit point. It represents the *Phase buffer segment 2* of the CAN standard. Its duration is programmable between 1 and 8 time

quanta but may also be automatically shortened to compensate for negative phase drifts.

The bit time is shown as in the figure below.

The reSynchronization Jump Width (SJW) defines an upper bound to the amount of lengthening or shortening of the bit segments. It is programmable between 1 and 4 time quanta.

A valid edge is defined as the first transition in a bit time from dominant to recessive bus level provided the controller itself does not send a recessive bit.

If a valid edge is detected in BS1 instead of SYNC_SEG, BS1 is extended by up to SJW so that the sample point is delayed.

Conversely, if a valid edge is detected in BS2 instead of SYNC_SEG, BS2 is shortened by up to SJW so that the transmit point is moved earlier.

Baud Rate

The bxCAN's clock derives from the APB1 bus. The bxCAN calculates its baud rate as follow:

$$BaudRate = \frac{1}{Normal Bit Time}$$

Normal Bit Time = $t_{SYNC_SEG} + t_{BS1} + t_{BS2}$

with:

 $t_{SYNC_SEG} = 1 \times t_q$ $t_{BS1} = (1 + BTR.TS1) \times t_q$ $t_{BS2} = (1 + BTR.TS2) \times t_q$ $t_q = (1 + BTR.BRP) \times t_{PCLK1}$

22.3.8. Error flags

The error management as described in the CAN protocol is handled entirely by hardware using a Transmit Error Counter (TEC value, in CAN_ER register) and a Receive Error Counter (REC value, in the CAN_ER register), which get incremented or decremented according to the error condition. For detailed information about TEC and REC management, please refer to the CAN standard.

Both of them may be read by software to determine the stability of the network.

Furthermore, the CAN hardware provides detailed information on the current error status in CAN_ER register. By means of the CAN_IER register (EIE bit, etc.), the software can configure the interrupt generation on error detection in a very flexible way.

Bus-Off recovery

The Bus-Off state is reached when TEC is greater than 255. This state is indicated by BOE bit in CAN_ER register. In Bus-Off state, the bxCAN is no longer able to transmit and receive messages.

Depending on the ABOR bit in the CAN_CTLR register bxCAN will recover from Bus-Off (becomes error active again) either automatically or on software request. But in both cases the bxCAN has to wait at least for the recovery sequence specified in the CAN standard (128 occurrences of 11 consecutive recessive bits monitored on CANRX).

If ABOR is set, the bxCAN will start the recovering sequence automatically after it has entered Bus-Off state.

If ABOR is cleared, the software must initiate the recovering sequence by requesting bxCAN to enter and to leave initialization mode.

22.3.9. bxCAN interrupts

Four interrupt vectors are dedicated to bxCAN. Each interrupt source can be independently enabled or disabled by means of the CAN Interrupt Enable Register (CAN_IER).

The interrupt sources can be classified into:

- transmit interrupt
- FIFO 0 interrupt
- FIFO 1 interrupt
- error and status change interrupt

Transmit interrupt

The transmit interrupt can be generated by the following events:

- Transmit mailbox 0 becomes empty, MTF0 bit in the CAN_TSTR register set.
- Transmit mailbox 1 becomes empty, MTF1 bit in the CAN_TSTR register set.
- Transmit mailbox 2 becomes empty, MTF2 bit in the CAN_TSTR register set.

FIFO 0 interrupt

The FIFO 0 interrupt can be generated by the following events:

- Reception of a new message, RFL0 bits in the CAN_RFR0 register are not '00'.
- FIFO0 full condition, RFF0 bit in the CAN_RFR0 register set.
- FIFO0 overrun condition, RFO0 bit in the CAN_RFR0 register set.

FIFO 1 interrupt

The FIFO 1 interrupt can be generated by the following events:

- Reception of a new message, RFL1 bits in the CAN_RFR1 register are not '00'.
- FIFO1 full condition, RFF1 bit in the CAN_RFR1 register set.
- FIFO1 overrun condition, RFO1 bit in the CAN_RFR1 register set.

Error and status change interrupt

The error and status change interrupt can be generated by the following events:

- Error condition, for more details on error conditions please refer to the CAN Error register (CAN_ER).
- Wakeup condition, SOF monitored on the CAN Rx signal.
- Enter into Sleep mode.

22.4. bxCAN registers

22.4.1. CAN control register (CAN_CTLR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserve	d							DFZ
															rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SR			F	Reserved				TTC	ABOR	AWK	ARD	RFOD	TFO	SWM	IWM
rs								rw	rw	rw	rw	rw	rw	rw	rw

Address offset: 0x00 Reset value: 0x0001 0002

Bits	Fields	Descriptions
31:17	Reserved	Keep the reset value
16	DFZ	Debug freeze
		0: CAN reception and transmission working during debug
		1: CAN reception and transmission stop working during debug
15	SR	Software reset
		0: Normal operation.
		1: Reset CAN with working mode of sleep. This bit is automatically reset to 0.
14:8	Reserved	Keep the reset value
7	TTC	Time-triggered communication
		0: Disable time-triggered communication
		1: Enable time-triggered communication
6	ABOR	Automatic bus-off recovery
		0: The bus-off state is left manually by software
		1: The bus-off state is left automatically by hardware
5	AWK	Automatic wakeup
		0: The sleeping working mode is left manually by software
		1: The sleeping working mode is left automatically by hardware
4	ARD	Automatic retransmission disable
		0: Enable Automatic retransmission
		1: Disable Automatic retransmission
3	RFOD	Receive FIFO overwrite disable
		0: Enable receive FIFO overwrite when receive FIFO is full and overwrite the FIFO with
		the incoming frame
		1: Disable receive FIFO overwrite when receive FIFO is full and discard the incoming
		frame
2	TFO	Transmit FIFO order
		0: Order with the identifier of the frame
		1: Order with first in and first out
1	SWM	Sleep working mode
		0: Disable sleep working mode
		1: Enable sleep working mode
0	IWM	Initial working mode
		0: Disable initial working mode
		1: Enable initial working mode

22.4.2. CAN status register (CAN_STR)

Address offset: 0x04 Reset value: 0x0000 0C02

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	rved		RX	LASTRX	RS	TS	Reserved			SEIF	WIF	EIF	SWS	IWS
				r	r	r	r				rc_w1	rc_w1	rc_w1	r	r

Bits	Fields	Descriptions
31:12	Reserved	Keep the reset value
11	RX	RX level
10	LASTRX	Last sample value of Rx pin
9	RS	Receiving state
		0: CAN is not working in the receiving state
		1: CAN is working in the receiving state
8	TS	Transmitting state
		0: CAN is not working in the transmitting state
		1: CAN is working in the transmitting state
7:5	Reserved	Keep the reset value
4	SEIF	Status change interrupt flag of sleep working mode entering
		0: CAN is not entering the sleep working mode
		1: CAN is entering the sleep working mode. This bit is set while the interrupt is
		enabling.
3	WIF	Status change interrupt flag of wakeup from sleep working mode
		0: Wakeup event is not coming
		1: Wakeup event is coming. This bit is set while the interrupt is enabling.
2	EIF	Error interrupt flag
		0: No error interrupt
		1: Any error interrupt has happened while the interrupt is enabling.
1	SWS	Sleep working state
		0: CAN is not the state of sleep working mode
		1: CAN is the state of sleep working mode
0	IWS	Initial working state
		0: CAN is not the state of initial working mode

1: CAN is the state of initial working mode

22.4.3. CAN transmit status register (CAN_TSTR)

Address offset: 0x08 Reset value: 0x1C00 0000

31	30	29	28	27	7	26	25	24	23	22	21	20	19	18	17	16
TMLS2	TMLS1	TMLS0	TME2	TM	E1 [.]	TME0	NUM[1:0]	MST2	R	eserve	d	MTE2	MAL2	MTFNE2	MTF2
r	r	r	r	r		r	r		rs				rc_w1	rc_w1	rc_w1	rc_w1
15	14	13	12	11	10	9	8		7	6	5	4	3	2	1	0
MST1	Re	served	Ν	ITE1	MAL1	MTFNE	1 M	TF1	MST0	R	eserve	d	MTE0	MAL0	MTFNE0	MTF0
rs			ro	c_w1	rc_w1	rc_w1	rc	_w1	rs				rc_w1	rc_w1	rc_w1	rc_w1

Bits	Fields	Descriptions
31	TMLS2	Transmit mailbox 2 last sending in transmit FIFO
		This bit is set by hardware when transmit mailbox 2 has the last sending order in the
		transmit FIFO with at least two frame are pending.
30	TMLS1	Transmit mailbox 1 last sending in transmit FIFO
		This bit is set by hardware when transmit mailbox 1 has the last sending order in the
		transmit FIFO with at least two frame are pending.
29	TMLS0	Transmit mailbox 0 last sending in transmit FIFO
		This bit is set by hardware when transmit mailbox 0 has the last sending order in the
		transmit FIFO with at least two frame are pending.
28	TME2	Transmit mailbox 2 empty
		0: Transmit mailbox 2 not empty
		1: Transmit mailbox 2 empty
27	TME1	Transmit mailbox 1 empty
		0: Transmit mailbox 1 not empty
		1: Transmit mailbox 1 empty
26	TME0	Transmit mailbox 0 empty
		0: Transmit mailbox 0 not empty
		1: Transmit mailbox 0 empty
25:24	NUM[1:0]	These bits are the number of the transmit FIFO mailbox in which the frame will be
		transmitted if at least one mailbox is empty.
		These bits are the number of the transmit FIFO mailbox in which the frame will be
		transmitted lastly if all mailboxes are full.
23	MST2	Mailbox 2 stop transmitting
		This bit is set by the software to stop mailbox 2 transmitting.

GD32F10x User Manual

This bit is reset by the hardware while the mailbox 2 is empty.

22:20	Reserved	Keep the reset value
19	MTE2	Mailbox 2 transmit error This bit is set while the transmit error is occurred.
18	MAL2	Mailbox 2 arbitration lost This bit is set while the arbitration lost is occurred.
17	MTFNE2	Mailbox 2 transmit finished and no error 0: Mailbox 2 transmit finished with error 1: Mailbox 2 transmit finished and no error
16	MTF2	Mailbox 2 transmit finished 0: Mailbox 2 transmit is progressing 1: Mailbox 2 transmit finished
15	MST1	Mailbox 1 stop transmitting This bit is set by the software to stop mailbox 1 transmitting. This bit is reset by the hardware while the mailbox 1 is empty.
14:12	Reserved	Keep the reset value
11	MTE1	Mailbox 1 transmit error This bit is set while the transmit error is occurred.
10	MAL1	Mailbox 1 arbitration lost This bit is set while the arbitration lost is occurred.
9	MTFNE1	Mailbox 1 transmit finished and no error 0: Mailbox 1 transmit finished with error 1: Mailbox 1 transmit finished and no error
8	MTF1	Mailbox 1 transmit finished 0: Mailbox 1 transmit is progressing 1: Mailbox 1 transmit finished
7	MST0	Mailbox 0 stop transmitting This bit is set by the software to stop mailbox 0 transmitting. This bit is reset by the hardware while the mailbox 0 is empty.
6:4	Reserved	Keep the reset value
3	MTEO	Mailbox 0 transmit error This bit is set while the transmit error is occurred.
2	MALO	Mailbox 0 arbitration lost This bit is set while the arbitration lost is occurred.
1	MTFNE0	Mailbox 0 transmit finished and no error 0: Mailbox 0 transmit finished with error

1: Mailbox 0 transmit finished and no error

0 MTF0 Mailbox 0 transmit finished 0: Mailbox 0 transmit is progressing 1: Mailbox 0 transmit finished

22.4.4. CAN receive FIFO0 register (CAN_RFR0)

Address offset: 0x0C Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					RFD0	RFO0	RFF0	Reserved	RF	L0
										rs	rc_w1	rc_w1		I	r

Bits	Fields	Descriptions
31:6	Reserved	Keep the reset value
5	RFD0	Receive FIFO 0 dequeue
		This bit is set by the software to start dequeuing a frame from receive FIFO 0.
		This bit is reset by the hardware while the dequeuing is done.
4	RFO0	Receive FIFO 0 overfull
		0: The receive FIFO 0 is not overfull.
		1: The receive FIFO 0 is overfull.
3	RFF0	Receive FIFO 0 full
		0: The receive FIFO 0 is not full.
		1: The receive FIFO 0 is full.
2	Reserved	Keep the reset value
1:0	RFL0	Receive FIFO 0 length
		These bits are the length of the receive FIFO0.

22.4.5. CAN receive FIFO1 register (CAN_RFR1)

		Addı Rese	ress off et value	set: 0> e: 0x00	(10)00 00(00									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

Reserved

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					RFD1	RFO1	RFF1	Reserved	RF	L1
										rs	rc_w1	rc_w1		I	r

Bits	Fields	Descriptions
31:6	Reserved	Keep the reset value
5	RFD1	Receive FIFO1 dequeue This bit is set by the software to start dequeuing a frame from receive FIFO1. This bit is reset by the hardware while the dequeuing is done.
4	RFO1	Receive FIFO1 overfull 0: The receive FIFO1 is not overfull. 1: The receive FIFO1 is overfull.
3	RFF1	Receive FIFO1 full 0: The receive FIFO1 is not full. 1: The receive FIFO1 is full.
2	Reserved	Keep the reset value
1:0	RFL1	Receive FIFO1 length These bits are the length of the receive FIFO1.

22.4.6. CAN interrupt enable register (CAN_IER)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								Reserved						SWIE	WIE
														rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EIE	R	eserve	ed	ENIE	BOIE	EPIE	EWIE	Reserved	RFOIE1	RFFIE1	RFNEIE1	RFOIE0	RFFIE0	RFNEIE0	TMIIE
rw				rw	rw	rw	rw		rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
31:18	Reserved	Keep the reset value
17	SWIE	Sleep working interrupt enable
		0: Sleep working interrupt disable.

1: Sleep working interrupt enable.

16	WIE	Wakeup interrupt enable
		0: Wakeup interrupt disable.
		1: Wakeup interrupt enable.
15	EIE	Error interrupt enable
		0: Error interrupt disable.
		1: Error interrupt enable.
14:12	Reserved	Keep the reset value
11	ENIE	Error number interrupt enable
		0: Error number interrupt disable.
		1: Error number interrupt enable.
10	BOIE	Bus-off interrupt enable
		0: Bus-off interrupt disable.
		1: Bus-off interrupt enable.
9	EPIE	Error passive interrupt enable
		0: Error passive interrupt disable.
		1: Error passive interrupt enable.
8	EWIE	Error warning interrupt enable
		0: Error passive interrupt disable.
		1: Error passive interrupt enable.
7	Reserved	Keep the reset value
6	RFOIE1	Receive FIFO1 overfull interrupt enable
		0: Receive FIFO1 overfull interrupt disable.
		1: Receive FIFO1 overfull interrupt enable.
5	RFFIE1	Receive FIFO1 full interrupt enable
		0: Receive FIFO1 full interrupt disable.
		1: Receive FIFO1 full interrupt enable.
4	RFNEIE1	Receive FIFO1 not empty interrupt enable
		0: Receive FIFO1 not empty interrupt disable.
		1: Receive FIFO1 not empty interrupt enable.
3	RFOIE0	Receive FIFO0 overfull interrupt enable
		0: Receive FIFO0 overfull interrupt disable.
		1: Receive FIFO0 overfull interrupt enable.
2	RFFIE0	Receive FIFO0 full interrupt enable
		0: Receive FIFO0 full interrupt disable.
		1: Receive FIFO0 full interrupt enable.
1	RFNEIE0	Receive FIFO0 not empty interrupt enable
		0: Receive FIFO0 not empty interrupt disable.

1: Receive FIFO0 not empty interrupt enable.

0 TMEIE Transmit mailbox empty interrupt enable 0: Transmit mailbox empty interrupt disable. 1: Transmit mailbox empty interrupt enable.

22.4.7. CAN error register (CAN_ER)

Address offset: 0x18 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			REC	[7:0]							TE	EC[7:0]			
			r									r			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Reserved	l					EN[2:0]		Reserved	BOE	PE	WE
										rw			r	r	r

Bits	Fields	Descriptions
31:24	REC[7:0]	Receive Error Count
23:16	TEC[7:0]	Transmit Error Count
15:7	Reserved	Keep the reset value
6:4	EN[2:0]	Error number
		These bits indicate the error status of bit transformation. They are updated by the
		hardware. While the bit transformation is successful, they are equal to 0. Software can
		set these bits to 0b111.
		000: No Error
		001: Stuff Error
		010: Form Error
		011: Acknowledgment Error
		100: Bit recessive Error
		101: Bit dominant Error
		110: CRC Error
		111: Set by software
3	Reserved	Keep the reset value
2	BOE	Bus-off error
		Whenever the bxCAN enters buf-off state, the bit will be set by the hardware.
1	PE	Passive error
		Whenever the TEC or REC is greater than 127, the bit will be set by the hardware.

WE

0

Warning error

Whenever the TEC or REC is greater than or equal to 96, the bit will be set by the hardware.

22.4.8. CAN bit timing register (CAN_BTR)

Address offset: 0x1C Reset value: 0x0123 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
SCM	LCM	Reserved				SJW	SJW[1:0] Reserved BS2[2:0]					BS[3:0]				
rw	rw					rw				rw		rw				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Reserved							BRP[9:0]									
										rw						

Bits	Fields	Descriptions
31	SCM	Silent communication mode
		0: Silent communication disable
		1: Silent communication enable
30	LCM	Loopback communication mode
		0: Loopback communication disable
		1: Loopback communication enable
29:26	Reserved	Keep the reset value
25:24	SJW[1:0]	Resynchronization jump width
		Resynchronization jump width time quantum= SJW[1:0]+1
23	Reserved	Keep the reset value
22:20	BS2[2:0]	Bit segment 2
		Bit segment 2 time quantum=BS2[2:0]+1
19:16	BS1[3:0]	Bit segment 1
		Bit segment 1 time quantum=BS1[3:0]+1
15:10	Reserved	Keep the reset value
9:0	BRP[9:0]	Baud rate prescaler
		The CAN baud rate prescaler

22.4.9. CAN transmit mailbox identifier register (CAN_TMIRx) (x=0..2)

Address offset: 0x180, 0x190, 0x1A0 Reset value: 0xXXXX XXXX (bit0=0)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SFID[10:0]/EFID[28:18]												E	FID[17:13	8]	
	rw												rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EFID[12:0]													FF	FT	TE
rw													rw	rw	rw

Bits	Fields	Descriptions								
31:21	SFID[10:0]/EFID[28:18]	The frame identifier								
		STID[10:0]: Standard format frame identifier								
		EXID[28:18]: Extended format frame identifier								
20:16	EFID[17:13]	The frame identifier								
		EXID[17:13]: Extended format frame identifier								
15:3	EFID[12:0]	The frame identifier								
		EXID[12:0]: Extended format frame identifier								
2	FF	Frame format								
		0: Standard format frame								
		1: Extended format frame								
1	FT	Frame type								
		0: Data frame								
		1: Remote frame								
0	TE	Transmit enable								
		0: Transmit disable								
		1: Transmit enable								
		This bit is set by the software when one frame will be transmitted and reset by the								
		hardware when the transmit mailbox is empty.								

22.4.10. CAN transmit mailbox property register (CAN_TMPRx) (x=0..2)

Address offset: 0x184, 0x194, 0x1A4 Reset value: 0xXXXX XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TS[15:0]															

	rw														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved							TSE		Rese	erved			FDL	[3:0]	
rw											rv	N			

Bits	Fields	Descriptions
31:16	TS[15:0]	Time stamp
		The time stamp of frame in transmit mailbox.
15:9	Reserved	Keep the reset value
8	TSE	Time stamp enable
		0: Time stamp disable
		1: Time stamp enable. The TS[15:0] will be transmitted in the DATA6 and DATA7 in
		DL.
		This bit is available while the TTC bit in CAN_CTRL is set.
7:4	Reserved	Keep the reset value
3:0	DLC[3:0]	Data length code
		DLC[3:0] is the number of bytes in a frame.

22.4.11. CAN transmit mailbox data0 register (CAN_TMD0Rx) (x=0..2)

Address offset: 0x188, 0x198, 0x1A8 Reset value: 0xXXXX XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16					
			DB3	[7:0]							DB2	[7:0]								
			n	w							r١	N								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
			DB1	[7:0]							DB0	[7:0]			1 0					
rw											r١	N								

Bits	Fields	Descriptions
31:24	DB3[7:0]	Data byte 3
23:16	DB2[7:0]	Data byte 2
15:8	DB1[7:0]	Data byte 1
7:4	DB0[7:0]	Data byte 0

22.4.12. CAN transmit mailbox data1 register (CAN_TMD1Rx) (x=0..2)

Address offset: 0x18C, 0x19C, 0x1AC Reset value: 0xXXXX XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			DB7	[7:0]							DB6	[7:0]			
rw											n	N			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			DB5	5[7:0]							DB4	[7:0]			
rw											r	N			

Bits	Fields	Descriptions
31:24	DB7[7:0]	Data byte 7
23:16	DB6[7:0]	Data byte 6
15:8	DB5[7:0]	Data byte 5
7:4	DB4[7:0]	Data byte 4

22.4.13. CAN receive FIFO mailbox identifier register (CAN_RFMIRx) (x=0..1)

Address offset: 0x1B0, 0x1C0 Reset value: 0xXXXX XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
	SFID[10:0]/EFID[28:18]												EFID[17:	:13]					
	r																		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
	EFID[12:0]												FF	FT	Reserved				
r													r	r					

Bits	Fields	Descriptions
31:21	SFID[10:0]/EFID[28:18]	The frame identifier
		SFID[10:0]: Standard format frame identifier
		EFID[28:18]: Extended format frame identifier
20:16	EFID[17:13]	The frame identifier
		EFID[17:13]: Extended format frame identifier
15:3	EFID[12:0]	The frame identifier
		EFID[12:0]: Extended format frame identifier
2	FF	Frame format

		0: Standard format frame
		1: Extended format frame
1	FT	Frame type
		0: Data frame
		1: Remote frame
0	Reserved	Keep the reset value

22.4.14. CAN receive FIFO mailbox property register (CAN_RFMPRx) (x=0..1)

Address offset: 0x1B4, 0x1C4 Reset value: 0xXXXX XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	TS[15:0]																	
r																		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
TSE[7:0]									Rese	erved			DLC	[3:0]				
				r														

Bits	Fields	Descriptions
31:16	TS[15:0]	Time stamp
		The time stamp of frame in transmit mailbox.
15:8	FI[7:0]	Filtering index
		The index of the filter by which the frame is passed.
7:4	Reserved	Keep the reset value
3:0	DLC[3:0]	Data length code
		DLC[3:0] is the number of bytes in a frame.

22.4.15. CAN receive FIFO mailbox data0 register (CAN_RFMD0Rx) (x=0..1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
DB3[7:0]									DB2[7:0]									
rw											rv	v						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
DB1[7:0]										DB0	[7:0]							

Address offset: 0x1B8, 0x1C8 Reset value: 0xXXXX XXXX

rw

rw

Bits	Fields	Descriptions
31:24	DB3[7:0]	Data byte 3
23:16	DB2[7:0]	Data byte 2
15:8	DB1[7:0]	Data byte 1
7:4	DB0[7:0]	Data byte 0

22.4.16. CAN receive FIFO mailbox data1 register (CAN_RFMD1Rx) (x=0..1)

Address offset: 0x1BC, 0x1CC Reset value: 0xXXXX XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
DB7[7:0]									DB6[7:0]									
rw									rw									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
DB5[7:0]									DB4[7:0]									
rw									rw									

Bits	Fields	Descriptions
31:24	DB7[7:0]	Data byte 7
23:16	DB6[7:0]	Data byte 6
15:8	DB5[7:0]	Data byte 5
7:4	DB4[7:0]	Data byte 4

22.4.17. CAN filter control register (CAN_FCTLR)

Address offset: 0x200 Reset value: 0x2A1C 0E01

The filter control register with GD32F103: Reserved Reserved FLD

rw

The filter control register with GD32F105 and GD32F107:															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved			HBC2	2F[5:0]						Reserved				FLD
															rw

Bits	Fields	Descriptions
31:14	Reserved	Keep the reset value
13:8	HBC2F[5:0]	Header bank of CAN2 filter
7:1	Reserved	Keep the reset value
0	FLD	Filter lock disable
		0: Filter lock enable
		1: Filter lock disable

22.4.18. CAN filter mode register (CAN_FMR)

Address offset: 0x204 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved			FM27	FM26	FM25	FM24	FM23	FM22	FM21	FM20	FM19	FM18	FM17	FM16	
				rw	rw										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FM15	FM14	FM13	FM12	FM11	FM10	FM9	FM8	FM7	FM6	FM5	FM4	FM3	FM2	FM1	FM0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
31:28	Reserved	Keep the reset value
27:0	FMx	Filter mode
		0: Filter x with Mask mode
		1: Filter x with List mode

22.4.19. CAN filter scale register (CAN_FSR)

Address offset: 0x20C Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Rese	erved		FS27	FS26	FS25	FS24	FS23	FS22	FS21	FS20	FS19	FS18	FS17	FS16
				rw											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FS15	FS14	FS13	FS12	FS11	FS10	FS9	FS8	FS7	FS6	FS5	FS4	FS3	FS2	FS1	FS0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
31:28	Reserved	Keep the reset value
27:0	FSx	Filter scale
		0: Filter x with 16-bit scale
		1: Filter x with 32-bit scale

22.4.20. CAN filter associated FIFO register (CAN_FAFR)

Address offset: 0x214 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved				FAF27	FAF26	FAF25	FAF24	FAF23	FAF22	FAF21	FAF20	FAF19	FAF18	FAF17	FAF16
				rw											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FAF15	FAF14	FAF13	FAF12	FAF11	FAF10	FAF9	FAF8	FAF7	FAF6	FAF5	FAF4	FAF3	FAF2	FAF1	FAF0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
31:28	Reserved	Keep the reset value
27:0	FAFx	Filter associated FIFO
		0: Filter x associated with FIFO0
		1: Filter x associated with FIFO1

22.4.21. CAN filter working register (CAN_FWR)

Address offset: 0x21C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved				FW27	FW26	FW25	FW24	FW23	FW22	FW21	FW20	FW19	FW18	FW17	FW16
				rw											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FW15	FW14	FW13	FW12	FW11	FW10	FW9	FW8	FW7	FW6	FW5	FW4	FW3	FW2	FW1	FW0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits	Fields	Descriptions
31:28	Reserved	Keep the reset value
27:0	FWx	Filter working 0: Filter x working disable

Reset value: 0x0000 0000

1: Filter x working enable

22.4.22. CAN filter x data y register (CAN_FxDyR) (x=0..27, y=0..1)

Address offset: 0x240..0x31C Reset value: 0xXXXX XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
FD31	FD30	FD29	FD28	FD27	FD26	FD25	FD24	FD23	FD22	FD21	FD20	FD19	FD18	FD17	FD16
rw															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FD15	FD14	FD13	FD12	FD11	FD10	FD9	FD8	FD7	FD6	FD5	FD4	FD3	FD2	FD1	FD0
rw															

Bits	Fields	Descriptions
31:28	Reserved	Keep the reset value
27:0	FDx	Filter data
		Mask mode
		0: Mask match disable
		1: Mask match enalbe
		List mode
		0: List identifier bit is 0
		1: List identifier bit is 1

23. Secure digital input/output interface (SDIO)

This section applies to GD32F103xx high density devices only.

23.1. SDIO main features

The SD/SD I/O /MMC card host interface (SDIO) provides an interface between the AHB peripheral bus and MultiMediaCard (MMC), SD memory cards, SD I/O cards and CE-ATA devices.

The MultiMediaCard system specifications are available through the MultiMediaCard Association website at <u>www.jedec.org</u>, published by the JEDEC SOLID STATE TECHNOLOGY ASSOCIATION.

SD memory card and SD I/O card system specifications are available through the SD card Association website at <u>www.sdcard.org</u>.

CE-ATA system specifications are available through the CE-ATA workgroup website at <u>www.ce-ata.org</u>.

The SDIO features include the following:

- Full compliance with MultiMediaCard System Specification Version 4.2(and previous versions). Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit
- Full compliance with SD Memory Card Specifications Version 2.0
- Full compliance with SD I/O Card Specification Version 2.0: card support for two different databus modes: 1-bit (default) and 4-bit
- Full support of the CE-ATA features (full compliance with CE-ATA digital protocol Version 1.1)
- Data transfer up to 416 Mbit/sec for the 8 bit mode(the maximum frequency of MMC4.2 is 52MHz)
- Data and command output enable signals to control external bidirectional drivers.
- Interrupt and DMA request to processor.
- Completion Signal enables and disable feature (CE-ATA).

Note: SDIO supports only one SD/SD I/O /MMC4.2 card or CE-ATA device at any one time and a stack of MMC4.1 or previous.

23.2. SDIO bus topology

After a power-on reset, the host must initialize the card by a special message-based bus

protocol.

Each message is represented by one of the following tokens:

Command: a command is a token which starts an operation. A command is sent from the host to a card. A command is transferred serially on the CMD line.

Response: a response is a token which is sent from the card to the host as an answer to a previously received command. A response is transferred serially on the CMD line.

Data: data can be transferred from the card to the host or vice versa. Data is transferred via the data lines. The number of data lines used for the data transfer can be 1(DAT0), 4(DAT0-DAT3) or 8(DAT0-DAT7).

The structure of commands, responses and data blocks is described in chapter 23.4. Data transfers are composed of these tokens. One data transfer is a bus operation.

There are different types of operations. Addressed operations always contain a command and a response token. In addition, some operations have a data token; the others transfer their information directly within the command or response structure. In this case no data token is present in an operation. The bits on the DAT0-DAT7 and CMD lines are transferred synchronous to the host clock.

Two types of data transfer commands are defined:

- Stream commands: These commands initiate a continuous data stream; they are terminated only when a stop command follows on the CMD line. This mode reduces the command overhead to an absolute minimum (only MMC supports).
- Block-oriented commands: These commands send a data block succeeded by CRC bits. Both read and write operations allow either single or multiple block transmission. A multiple block transmission is terminated when a stop command follows on the CMD line similarly to the sequential read.

The basic transaction on the bus is the command/response transaction (refer to Figure 23-1). This type of bus transaction transfers their information directly within the command or response structure. In addition, some operations have a data token. Data transfers to/from the Card/Device are done in blocks.

Figure 23-1 SDIO "no response" and "no data" operations

Note that the Multiple Block operation mode is faster than Single Block operation. A multiple block transmission is terminated when a stop command follows on the CMD line. Data transfer can be configured by the host to use single or multiple data lines. Figure 23-2 is the multiple blocks read operation and Figure 23-3 is the multiple block write operation. The block write operation uses a simple busy signal of the write operation duration on the data (DAT0) line. CE-ATA device has an optional busy before it is ready to receive the data.

Figure 23-2 SDIO multiple blocks read operation

Data transfers to/from SD memory cards, SD I/O cards(both IO only card and combo card) and CE-ATA device are done in data blocks. Data transfers to/from MMC are done in data blocks or streams. Figure and Figure 23-5 are the stream read and write operation.

Figure 23-4 SDIO sequential read operation

Figure 23-5 SDIO sequential write operation

23.3. SDIO functional description

The SDIO has two parts:

- The SDIO adapter block handles the card protocols for the MMC/SD/SD I/O /CE-ATA such as the clock management, command and data transfer.
- The AHB interface accesses the SDIO adapter registers, control data read/write, and generates interrupt and DMA request signals.

Figure 23-6 SDIO block diagram

23.3.1. SDIO adapter

The default bus width after power up is 1 bit bus width, the host can change the data bus width after initialization in the data transfer mode.

If a MMC is connected to the bus, data transfer can be configured by the host to use SDIO_DAT0, SDIO_DAT[3:0] or SDIO_DAT[7:0]. MMC V3.31 or previous, supports only 1 bit of data so only SDIO_DAT0 can be used. If an SD or SD I/O card is connected to the bus, data transfer can be configured by the host to use SDIO_DAT0 or SDIO_DAT[3:0]. All data lines are operating in push-pull mode.

The SD/SD I/O /MMC/CE-ATA transfers data via a configurable number of data bus signals. The communication signals are:

SDIO_CLK: SDIO_CLK is the clock to the card. Each cycle of this signal directs a one bit transfer on the command and on all the data lines. The clock frequency can vary between 0 MHz and 20 MHz for a MultiMediaCard V3.31, between 0 and 52 MHz for a MultiMediaCard V4.2, or between 0 and 25 MHz for an SD/SD I/O card.

The SDIO uses two clock signals: SDIO adapter clock (SDIO_CLK = HCLK) and AHB bus clock (HCLK/2)

SDIO_CMD: This signal is a bidirectional command channel used for card initialization and transfer of commands. Commands are sent from the SDIO controller to the card and responses are sent from the card to the host. The CMD signal has two operation modes: open-drain for initialization (only for MMC3.31 or previous), and push-pull for command transfer (SD/SD I/O card MMC4.2 use push-pull drivers also for initialization).

SDIO_DAT[7:0]: These are bidirectional data channels. The DAT signals operate in push-pull mode. Only the card or the host is driving these signals at a time. By default, after power up or reset, only DAT0 is used for data transfer. A wider data bus can be

configured for data transfer, using either DAT0-DAT3 or DAT0-DAT7 (just for MMC4.2), by the SDIO controller. The SDIO includes internal pull ups for data lines DAT1-DAT7. Right after entering to the 4bit mode the card disconnects the internal pull ups of lines DAT1 and DAT2 (DAT3 internal pull up is left connected due to the SPI mode CS usage). Correspondingly right after entering to the 8bit mode the card disconnects the internal pull ups of lines pull ups of lines DAT1, DAT2 and DAT4-DAT7.

Table 23-1 SDIO I/O definitions

Pin function	Direction	Description
SDIO_CLK	0	SD/SD I/O /MMC clock
SDIO_CMD	I/O	Command input/output
SDIO_DAT[7:0]	I/O	Data input/output for data lines DAT[7:0]

The SDIO adapter is an interface to SD/SD I/O /MMC/CE-ATA. It consists of five subunits:

Register block: The register block which contains all system registers generates the signals to control the communication between the controller and card.

Control unit: The control unit contains the power management functions and the clock divider for the memory card clock.

Command unit: The command unit sends commands to and receives responses from the cards.

Data unit: The data subunit transfers data to and from cards.

Data FIFO: The data FIFO unit has a data buffer, uses as transmit and receive FIFO. The FIFO contains a 32-bit wide, 32-word deep data buffer.

23.3.2. AHB interface

The AHB interface can generate interrupt and DMA request, access data FIFO and SDIO adapter registers. It includes a data unit, registers decoder, and the interrupt / DMA logic.

The interrupt logic generates interrupt when at least one of the selected status flags is high. A interrupt enable register is provided to allow the logic to generate an corresponding interrupt.

The DMA interface provides a method for fast data transfers between the SDIO data FIFO and memory. The following describes how to implement this method:

- 1. Completes the card identification process
- 2. Increase the SDIO_CLK frequency
- 3. Send CMD7 to select the card and configure the bus width

4. Configure the DMA2 as follows:

Enable DMA2 controller and clear any pending interrupts. Configure the DMA2_Channel4 source address register with the memory base address and DMA2_Channel4 destination address register with the SDIO_FIFO register address. Program DMA2_Channel4 control register (memory increment, not peripheral increment, peripheral and source width is word size, M2M disable).

5. Send CMD24 (WRITE_BLOCK) as follows:

Write the data size in bytes in the DTLEN register. Write the block size in bytes (DTBLKSIZE) in the DTCTLR register; the host sends data in blocks of size DTBLKSIZE each. Program SDIO_PARA register with the data address, where data should be written. Program the SDIO command register: CMDIndex with 24, WAITRESP with 1 (SDIO card host waits for a short response); CPSMEN with '1' (enable to send a command). Other fields are their reset value.

When the CMDREND flag is set, program the SDIO data control register: DTEN with 1 (enable to send data); DTDIR with 0 (from controller to card); DTMODE with 0 (block data transfer); DMAEN with 1 (DMA enabled); DBLOCKSIZE with 0x9 (512 bytes). Other bits don't care.

Wait for DBCKEND flag is set. Check that no channels are still enabled by polling the DMA Interrupt Status register.

23.3.3. SDIO state machine

The SDIO state machine describes the required SDIO behavior for the host. The physical layer is decomposed into a command state machine and a data state machine. The command state machine is responsible for the CMD line on the bus and is in control of the physical layer. The data state machine is responsible for the DATx lines on the bus. The data state machine performs operations as requested by the command state machine and primarily acts as a data movement engine.

SDIO Command State Machine

CS_Idle		After reset, ready to s	end comr	nand.	
	1.CSM enabled and WAITPD enabled	k	\rightarrow	CS_Pend	
	2.CSM enabled and WAITPD disabled			CS_Send	
	3.CSM disabled			CS_Idle	
	Note: The state machine remains in the Idle state for at least eight SDIO_CLK periods to meet				
	the N_{CC} and N_{RC} timing constraints. N_{CC} is the minimum delay between two host commands,				
	and N_{pc} is the minimum delay between the host command and the response				

CS_Pend		Waits for the end of data transfer			
	1.The data transfer complete		\rightarrow	CS_Send	

GD32F10x User Manual

2.CSM disabled

CS_Idle

 \rightarrow

CS_Send		Sending the command	d	
	1.The command transmitted has response		\rightarrow	CS_Wait
	2. The command transmitted doesn't have response			CS_Idle
	3.CSM disabled		\rightarrow	CS_Idle

CS	_Wait	Wait for the start bit o	onse.	
	1.Receive the response(detected the start bit)		\rightarrow	CS_Receive
	2.Timeout is reached without receivin	g the response	\rightarrow	CS_ldle
	3.CSM disabled		\rightarrow	CS_Idle
Note: The command timeout has a fixed value of 64 SDIO_CLK clock periods.				ock periods.

CS_Receive		Receive the response and check the CRC		
	1. Response Received in CE-ATA	mode and interrupt	\rightarrow	CS_Waitcompl
	disabled and wait for CE-ATA Comma	and Completion signal		
	enabled			
	2.Response Received in CE-ATA mode and interrupt			CS_Pend
	disabled and wait for CE-ATA Command Completion signal			
	disabled			
	3.CSM disabled		\rightarrow	CS_Idle
	4.Response received			CS_Idle
	5.Command CRC failed			CS_Idle

CS_Waitcompl		Wait for the Command Completion signal		tion signal
	1.CE-ATA Command Completion sign	nal received	\rightarrow	CS_Idle
	2.CSM disabled		\rightarrow	CS_Idle
	3.Command CRC failed		\rightarrow	CS_Idle

SDIO Data State Machine

DS_	Idle	The data unit is inactive, waiting for send and receive		
	1.DSM enabled and data transfer direction is from host to			DS_WaitS
	card			
	2.DSM enabled and data transfer direction is from card to			DS_WaitR
	host			
	3.DSM enabled and Read Wait Started and SD I/O mode		\rightarrow	DS_Readwait
	enabled			

DS_WaitS	Wait until the data FIFO empty flag is deasserted or data transfer
	ended

1.Data transfer ended	\rightarrow	DS_Idle
2.DSM disabled	\rightarrow	DS_Idle
3.Data FIFO empty flag is deasserted	\rightarrow	DS_Send

DS_	Send	Transmit data to the c	ard	
	1.Data block transmitted		\rightarrow	DS_Busy
	2.DSM disabled		\rightarrow	DS_Idle
	3.Data FIFO underrun error occurs		\rightarrow	DS_Idle
	4. Internal CRC error		\rightarrow	DS_Idle

DS_	Busy	Waits for the CRC sta	atus flag						
	1.Receive a positive CRC status	\rightarrow	DS_WaitS						
	1.Receive a negative CRC status	\rightarrow	DS_Idle						
	2.DSM disabled		\rightarrow	DS_Idle					
	3.Timeout occurs	\rightarrow	DS_Idle						
	Note: The command timeout programmed in the data timer register (SDIO_DTTR).								

DS_WaitR	Wait for the start bit of the rec	eive data							
1.Data receive ended	\rightarrow	DS_Idle							
2.DSM disabled	\rightarrow	DS_Idle							
3.Data timeout reached	\rightarrow	DS_Idle							
4.Receives a start bit before timeout	\rightarrow	DS_Receive							
Note: The command timeout programmed in the data timer register (SDIO_DTTR).									

DS_	Receive	Receive data from the card and write it to the data FIFO			
	1.Data block received	\rightarrow	DS_WaitR		
	2.Data transfer ended	\rightarrow	DS_WaitR		
	3.Data FIFO overrun error occurs		\rightarrow	DS_Idle	
	4.Data received and Read Wait Start	ted and SD I/O mode	\rightarrow	DS_Readwait	
	enabled				
	5. DSM disabled or CRC fails	\rightarrow	DS_Idle		

DS_	Readwait	Wait for the read wait stop conmmand		
	1. ReadWait stop enabled		\rightarrow	DS_WaitR
	2.DSM disabled		\rightarrow	DS_Idle

23.4. Card functional description

23.4.1. Card registers

Within the card interface registers are defined: OCR, CID, CSD, EXT_CSD, RCA, DSR and SCR. These can be accessed only by corresponding commands. The OCR, CID, CSD and SCR registers carry the card/content specific information, while the RCA and DSR registers are configuration registers storing actual configuration parameters. The EXT_CSD register carries both, card specific information and actual configuration parameters. For specific information, please refer to the relevant specifications.

OCR register: The 32-bit operation conditions register (OCR) stores the VDD voltage profile of the card and the access mode indication (MMC). In addition, this register includes a status information bit. This status bit is set if the card power up procedure has been finished. The register is a little different between MMC and SD card. The host can use CMD1 (MMC), ACMD41 (SD memory), CMD5 (SD I/O) to get the content of this register.

CID register: The Card Identification (CID) register is 128 bits wide. It contains the card identification information used during the card identification phase. Every individual Read/Write (RW) card shall have a unique identification number. The host can use CMD2 and CMD10 to get the content of this register.

CSD register: The Card-Specific Data register provides information regarding access to the card contents. The CSD defines the data format, error correction type, maximum data access time, data transfer speed, whether the DSR register can be used, etc. The programmable part of the register can be changed by CMD27. The host can use CMD9 to get the content of this register.

Extended CSD Register: Just MMC4.2 has this register. The Extended CSD register defines the card properties and selected modes. It is 512 bytes long. The most significant 320 bytes are the Properties segment, which defines the card capabilities and cannot be modified by the host. The lower 192 bytes are the Modes segment, which defines the configuration the card is working in. These modes can be changed by the host by means of the SWITCH command. The host can use CMD8 (just MMC supports this command) to get the content of this register.

RCA register: The writable 16-bit relative card address register carries the card address that is published by the card during the card identification. This address is used for the addressed host-card communication after the card identification procedure. The default value of the RCA register is 0x0001. The value 0x0000 is reserved to set all cards into the Stand-by State with CMD7. The host can use CMD3 to ask the card to publish a new relative address (RCA).

DSR register (Optional): The 16-bit driver stage register can be optionally used to improve the bus performance for extended operating conditions (depending on

parameters like bus length, transfer rate or number of cards). The CSD register carries the information about the DSR register usage. The default value of the DSR register is 0x404. The host can use CMD4 to get the content of this register.

SCR register: Just SD/SD I/O (if has memory port) have this register. In addition to the CSD register, there is another configuration register named SD CARD Configuration Register (SCR), which is only for SD card. SCR provides information on the SD Memory Card's special features that were configured into the given card. The size of SCR register is 64 bits. This register shall be set in the factory by the SD Memory Card manufacturer. The host can use ACMD51 to get the content of this register.

23.4.2. Commands

Commands types

There are four kinds of commands defined to control the Card:

- Broadcast commands (bc), no response
- Broadcast commands with response (bcr) response from all cards simultaneously
- Addressed (point-to-point) commands (ac) no data transfer on DAT
- Addressed (point-to-point) data transfer commands (adtc) data transfer on DAT

Command format

All commands have a fixed code length of 48 bits, needing a transmission time of 1.92µs (25 MHz) 0.96µs(50 MHz) and 0.92us(52 MHz).

Bit position 47		46	[45:40]	[19:8]	[7:1]	0
Width	1	1	6	32	7	1
Value	'0'	'1'	x	х	х	'1'
Description	start bit	transmission bit	command index	argument	CRC7	end bit

Table 23-2 Command format

A command always starts with a start bit (always 0), followed by the bit indicating the direction of transmission (host = 1). The next 6 bits indicate the index of the command, this value being interpreted as a binary coded number (between 0 and 63). Some commands need an argument (e.g. an address), which is coded by 32 bits. A value denoted by 'x' in the table above indicates this variable is dependent on the command. All commands are protected by a CRC7.Every command codeword is terminated by the end bit (always 1).

Command classes

The command set of the Card system is divided into several classes (See Table xxx). Each class supports a set of card functionalities. Table 23-3 determines the setting of

CCC from the card supported commands.

For SD cards, Class 0, 2, 4, 5 and 8 are mandatory and shall be supported. Class 7 except CMD40 is mandatory for SDHC. The other classes are optional. The supported Card Command Classes (CCC) are coded as a parameter in the card specific data (CSD) register of each card, providing the host with information on how to access the card.

For MMC cards, Class 0 is mandatory and shall be supported. The other classes are either mandatory only for specific card types or optional. By using different classes, several configurations can be chosen (e.g. a block writable card or a stream readable card). The supported Card Command Classes (CCC) are coded as a parameter in the card specific data (CSD) register of each card, providing the host with information on how to access the card.

For CE-ATA device, the device shall support the MMC commands required to achieve the transfer state during device initialization. Other interface configuration settings, such as bus width, may require additional MMC commands also be supported. See the MMC reference. CE-ATA makes use of the following MMC commands: CMD0 - GO_IDLE_STATE, CMD12 - STOP_TRANSMISSION, CMD39 - FAST_IO, CMD60 - RW_MULTIPLE_REGISTER, CMD61 - RW_MULTIPLE_BLOCK. GO_IDLE_STATE (CMD0), STOP_TRANSMISSION (CMD12), and FAST_IO (CMD39) are as defined in the MMC reference. RW_MULTIPLE_REGISTER (CMD60) and RW_MULTIPLE_BLOCK (CMD61) are MMC commands defined by CE-ATA.

	Card comm and class(CCC)	0	1	2	3	4	5	6	7	8	9	10	11
Supported command	Class descri ption	bas ic	Stre am rea d	Blo ck rea d	Stre am writ e	Blo ck writ e	era se	writ e prot ecti on	Lo ck car d	appl icati on spe cific	I/O mo de	swit ch	reser ved
CMD0	М	+											
CMD1	М	+											
CMD2	М	+											
CMD3	М	+											
CMD4	М	+											
CMD5	0										+		
CMD6	М											+	
CMD7	М	+											
CMD8	М	+											
CMD9	М	+											

Table 23-3 Card Command Classes (CCCs)

CMD10	М	+											
CMD11	М		+										
CMD12	М	+											
CMD13	М	+											
CMD14	М	+											
CMD15	М	+											
CMD16	М			+		+			+				
CMD17	М			+									
CMD18	М			+									
CMD19	М	+											
CMD20	М				+								
CMD23	М			+		+							
CMD24	М					+							
CMD25	М					+							
CMD26	М					+							
CMD27	М					+							
CMD28	М							+					
CMD29	М							+					
CMD30	М							+					
CMD32	М						+						
CMD33	М						+						
CMD34	0											+	
CMD35	0											+	
CMD36	0											+	
CMD37	0											+	
CMD38	М						+						
CMD39											+		
CMD40											+		
CMD42									+				
CMD50	0											+	
CMD52	0										+		
CMD53	0										+		
CMD55	М									+			
CMD56	М									+			
CMD57	0											+	
CMD60	М									+			
CMD61	М									+			
ACMD6	М									+			
ACMD13	М									+			
ACMD22	М									+			
ACMD23	М									+			
ACMD41	М									+			

ACMD42	М					+		
ACMD51	М					+		

Note: 1.CMD1, CMD11, CMD14, CMD19, CMD20, CMD23, CMD26, CMD39 and CMD40 are only available for MMC.CMD5, CMD32-34, CMD50, CMD52, CMD53, CMD57 and ACMDx are only available for SD card. CMD60, CMD61 are only available for CE-ATA device.

2. All the ACMDs shall be preceded with APP_CMD command (CMD55).

3. CMD8 has different meaning for MMC and SD memory.

Detailed command description

The following tables describe in detail all bus commands. The responses R1-R7 are defined in Chapter 23.4.3. The registers CID, CSD and DSR are described in Chapter 24.3. The card shall ignore stuff bits and reserved bits in a argument.

Cmd index	type	argument	Respo nse forma t	Abbreviation	Description
CMD0	bc	[31:0] stuff bits	-	GO_IDLE_STATE	Resets all cards to idle state
CMD1	bc	[31:0] OCR without busy	R3	SEND_OP_COND	Asks the card, in idle state, to send its Operating Conditions Register contents in the response on the CMD line.
CMD2	bcr	[31:0] stuff bits	R2	ALL_SEND_CID	Asks any card to send the CID numbers on the CMD line (any card that is connected to the host will respond)
CMD3	bcr	[31:0] stuff bits	R6	SEND_RELATIVE_ ADDR	Ask the card to publish a new relative address (RCA)
CMD4	bc	[31:16] DSR [15:0] stuff bits	-	SET_DSR	Programs the DSR of all cards
CMD5	bcr	[31:25]reserved bits [24]S18R [29:24]reserved bits [23:0] I/O OCR	R4	IO_SEND_OP_CON D	Only for I/O cards. It is similar to the operation of ACMD41 for SD memory cards, used to inquire about the voltage range needed by the I/O card.

Table 23-4 Basic Commands (class 0)

GD32F10x User Manual

٦

CMD6	ac	[31:26] Set to 0 [25:24] Access [23:16] Index [15:8] Value [7:3] Set to 0 [2:0] Cmd Set	R1b	SWITCH	Only for MMC. Switches the mode of operation of the selected card or modifies the EXT_CSD registers.
CMD7	ac	[31:16] RCA [15:0] stuff bits	R1b	SELECT/DESELEC T_CARD	Command toggles a card between the stand-by and transfer states or between the programming and disconnects states. In both cases the card is selected by its own relative address and gets deselected by any other address; address 0 deselects the card.
CMD8	bcr	[31:12]reserved bits [11:8]supply voltage(VHS) [7:0]check pattern	R7	SEND_IF_COND	Sends SD Memory Card interface condition, which includes host supply voltage information and asks the card whether card supports voltage. Reserved bits shall be set to '0'.
CMD8	adtc	[31:0] stuff bits	R1	SEND_EXT_CSD	For MMC only. The card sends its EXT_CSD register as a block of data.
CMD9	ac	[31:16] RCA [15:0] stuff bits	R2	SEND_CSD	Addressed card sends its card-specific data (CSD) on the CMD line.
CMD10	ac	[31:16] RCA [15:0] stuff bits	R2	SEND_CID	Addressed card sends its card identification (CID) on CMD the line.
CMD12	ac	[31:0] stuff bits	R1b_	STOP TRANSMISSION	Forces the card to stop transmission
CMD13	ac	[31:16] RCA [15:0] stuff bits	R1	SEND_STATUS	Addressed card sends its status register.
CMD14	adtc	[31:0] stuff bits	R1	BUSTEST_R	A host reads the reversed bus testing data pattern from a card.
CMD15	ac	[31:16] RCA [15:0] reserved bits	-	GO_INACTIVE_ STATE	Sends an addressed card into the Inactive State. This command is used when the host explicitly wants to deactivate a card.
CMD19	adtc	[31:0] stuff bits	R1	BUSTEST_W	A host sends the bus test data pattern to a card.

Table 23-5 Block-Oriented Read Commands (class 2)

Cmd	type	orgumont	Respo	Abbroviation	Description
index	type	argument	nse	Abbreviation	Description

			forma				
			t				
CMD16	ac	[31:0] block length	R1	SET_BLOCKLEN	In the case of a Standard Capacity SD and MMC, this command sets the block length (in bytes) for all following block commands (read, write, lock). Default is 512 Bytes.Set length is valid for memory access commands only if partial block read operation are allowed in CSD. In the case of a High Capacity SD Memory Card, block length set by CMD16 command does not affect the memory read and write commands. Always 512 Bytes fixed block length is used.In both cases, if block length is set larger than 512Bytes, the card sets the BLOCK_LEN_ERROR bit.		
CMD17	adtc	[31:0] data address	R1	READ_SINGLE_BL OCK	SD and MMC, this command, this command reads a block of the size selected by the SET_BLOCKLEN command. In the case of a High Capacity Card, block length is fixed 512 Bytes regardless of the SET_BLOCKLEN command.		
CMD18	adtc	[31:0] data address	R1 _	READ_MULTIPLE_ BLOCK	Continuously transfers data blocks from card to host until interrupted by a STOP_TRANSMISSION command. Block length is specified the same as READ_SINGLE_BLOCK command.		
NOTE: The	e transfe	rred data must not cr	oss a phy	rsical block boundary, נ	Inless READ_BLK_MISALIGN is set in		
the CSD re	the CSD register						

Table 23-6 Stream read commands (class 1) and Stream write commands (class 3)

			Respo		
Cmd	tuno		nse	Abbroviation	Description
index	type	argument	forma	ADDIEVIATION	Description
			t		

CMD11	adtc	[31:0] data address	R1	READ_DAT_UNTIL _STOP	Reads data stream from the card, starting at the given address, until a STOP_TRANSMISSION follows.			
CMD20	adtc	[31:0] data address	R1	WRITE_DAT_UNTI L_STOP	Writes data stream from the host, starting at the given address, until a STOP_TRANSMISSION follows.			
NOTE: The transferred data must not cross a physical block boundary, unless READ_BLK_MISALIGN is set in the CSD register								

Table 23-7 Block-Oriented Write Commands (class 4)

Cmd index	type	argument	Respo nse forma t	Abbreviation	Description
CMD16	ac	[31:0] block length	R1	SET_BLOCKLEN	See description in Table 004
CMD23	ас	[31:16] set to 0 [15:0] number of blocks	R1	SET_BLOCK_ COUNT	Defines the number of blocks which are going to be transferred in the immediately succeeding multiple block read or write command. If the argument is all 0s, the subsequent read/write operation will be openended.
CMD24	adtc	[31:0] data address	R1	WRITE_BLOCK	In the case of a Standard Capacity SD, this command writes a block of the size selected by the SET_BLOCKLEN command. In the case of a SDHC, block length is fixed 512 Bytes regardless of the SET_BLOCKLEN command.
CMD25	adtc	[31:0] data address	R1	WRITE_MULTIPLE _BLOCK	Continuously writes blocks of data until a STOP_TRANSMISSION follows. Block length is specified the same as WRITE_BLOCK command.
CMD26	adtc	[31:0] stuff bits	R1	PROGRAM_CID	Programming of the card identification register. This command shall be issued only once. The card contains hardware to prevent this operation after the first programming. Normally this command is reserved for the manufacturer.

CMD27	adtc	[31:0] stuff bits	R1 PRO		Programming of the programmable			
				FRUGRAWI_COD	bits of the CSD.			
Note: 1. The data transferred shall not cross a physical block boundary unless WRITE_BLK_MISALIGN is set in								
the CSD. Ir	n the cas	e that write partial blo	cks is not	supported, then the blo	ck length=default block length (given in			
CSD).								
2. Data address is in byte units in a Standard Capacity SD Memory Card and in block (512 Byte) units in a High								

Capacity SD Memory Card.

Cmd index	type	argument	Respo nse forma t	Abbreviation	Description
CMD32	ac	[31:0] data address	R1	ERASE_WR_BLK_ START	Sets the address of the first write block to be erased.(SD)
CMD33	ac	[31:0] data address	R1	ERASE_WR_BLK_ END	Sets the address of the last write block of the continuous range to be erased.(SD)
CMD35	ac	[31:0]data address	R1	ERASE_GROUP_ START	Sets the address of the first erase group within a range to be selected for erase.(MMC)
CMD36	ac	[31:0]data address	R1	ERASE_GROUP_E ND	Sets the address of the last erase group within a continuous range to be selected for erase.(MMC)
CMD38	ac	[31:0] stuff bits	R1b	ERASE	Erases all previously selected write blocks.

Table 23-8 Erase Commands (class 5)

Note: 1.CMD34 and CMD37 are reserved in order to maintain backwards compatibility with older versions of the MMC.

2. Data address is in byte units in a Standard Capacity SD Memory Card and in block (512 Byte) units in a High Capacity SD Memory Card.

Table 23-9 Block Oriented Write Protection Commands (class 6)

Cmd index	type	argument	Respo nse forma t	Abbreviation	Description
CMD28	ac	[31:0] data address	R1b	SET_WRITE_PROT	If the card has write protection features, this command sets the write protection bit of the addressed group. The properties of write protection are coded

1	1		I		
					in the card specific data
					(WP_GRP_SIZE).
					A High Capacity SD Memory Card
					does not support this command.
					If the card provides write protection
CMD00		[31:0] data	D4h	CLR_WRITE_PROT	features, this command clears the
CMD29	ac	address	RID		write
	address			protection bit of the addressed group.	
					If the card provides write protection
		[21,0] write protect			features, this command asks the
CMD30	adtc	[31.0] while protect	R1	SEND_WRITE_PR	card to send the status of the write
		data address		01	protection
					bits.
Note: 1. H	igh Capa	city SD Memory Card	does not	support these three cor	nmands.

Table 23-10 Lock Card (class 7)

Cmd index	type	argument	Respo nse forma t	Abbreviation	Description
CMD16	ac	[31:0] block length	R1	SET_BLOCK_LEN	See description in Table 004
CMD42	adtc	[31:0] Reserved bits (Set all 0)	R1	LOCK_UNLOCK	Used to set/reset the password or lock/unlock the card. The size of the data block is set by the SET_BLOCK_LEN command. Reserved bits in the argument and in Lock Card Data Structure shall be set to 0.

Table 23-11 Application-specific Commands (class 8)

Cmd index	type	argument	Respo nse format	Abbreviation	Description
ACMD41	bcr	[31]reserved bit [30]HCS [29:24]reserved bits [23:0]VDD Voltage Window(OCR[23:	R3	SD_SEND_OP_CO ND	Sends host capacity support information (HCS) and asks the accessed card to send its operating condition register (OCR) content in the response. HCS is effective when card receives SEND_IF_COND command. CCS bit

		0])			is assigned to OCR[30].
ACMD42	ac	[31:1] stuff bits [0]set_cd	R1	SET_CLR_CARD_D ETECT	Connect[1]/Disconnect[0] the 50K pull-up resistor on CD/DAT3 (pin 1) of the card.
ACMD51	adtc	[31:0] stuff bits	R1	SEND_SCR	Reads the SD Configuration Register (SCR).
CMD55	ac	[31:16] RCA [15:0] stuff bits	R1	APP_CMD	Indicates to the card that the next command is an application specific command rather than a standard command.
CMD56	adtc	[31:1] stuff bits. [0]: RD/WR	R1	GEN_CMD	Used either to transfer a data block to the card or to get a data block from the card for general purpose/application specific command. The host sets RD/WR=1 for reading data from the card and sets to 0 for writing data to the card.
CMD60	adtc	[31]WR [23:18] Address [7:2] Byte Count Other bits are reserved bits.	R1(rea d)/R1b (write)	RW_MULTIPLE_RE GISTER	Read or write register in address range.
CMD61	adtc	[31]WR [15:0] Data Unit Count Other bits are reserved bits	R1(rea d)/R1b (write)	RW_MULTIPLE_BL OCK	Read or write data block in address range.
Note: 1.ACA	//Dx is Ap CMD61 al	plication-specific Con re Application-specific	nmands fo : Commar	or SD memory. Ids for CE-ATA device.	

Table	23-12	I/O	Mode	Commands	(class	9)
				••••••••••••	10.000	~,

Cmd index	type	argument	Respo nse forma t	Abbreviation	Description
CMD39	ac	[31:16] RCA [15:15] register write flag [14:8] register address [7:0] register data	R4	FAST_IO	Used to write and read 8 bit (register) data fields. The command addresses a card and a register and provides the data for writing if the write flag is set. The R4 response contains data read from the addressed register if the write flag is cleared to 0. This

					command accesses application
					dependent registers which are not
					defined in the MMC standard.
CMD40	bcr	[31:0] stuff bits	R5	GO_IRQ_STATE	Sets the system into interrupt mode
CMD52	adtc	 [31] R/W Flag [30:28] Function Number [27] RAW Flag [26] Stuff Bits [25:9] Register Address [8] Stuff Bits [7:0] Write Data/Stuff Bits 	R5	IO_RW_DIRECT	The IO_RW_DIRECT is the simplest means to access a single register within the total 128K of register space in any I/O function, including the common I/O area (CIA). This command reads or writes 1 byte using only 1 command/response pair. A common use is to initialize registers or monitor status values for I/O functions. This command is the fastest means to read or write single I/O registers, as it requires only a single command/response pair.
CMD53	adtc	[31] R/W Flag [30:28] Function Number [27]Block Mode [26] OP code [25:9] Register Address [8:0] Byte/Block Count		IO_RW_EXTENDE D	This command allows the reading or writing of a large number of I/O registers with a single command.
Note: 1.CA	MD39, Cl	MD40 are only for MM	IC.		
2. CMD52,	CMD53	are only for SD I/O ca	ard.		

Table 23-13 Switch Function Commands (class 10)

Cmd index	type	argument	Res pon se form at	Abbreviation	Description
CMD6	adtc	 [31] Mode 0:Check function 1:Switch function [30:24] reserved [23:20] reserved for function group 6 (0h or Fh) 	R1	SWITCH_FUNC	Only for SD memory and SD I/O. Checks switchable function (mode 0) and switch card function (mode 1).

	[19:16] reserved for		
	function group 5 (0h		
	or Fh)		
	[15:12] reserved for		
	function group 4 (0h		
	or Fh)		
	[11:8] reserved for		
	function group 3 (0h		
	or Fh)		
	[7:4] function group		
	2 for command		
	system		
	[3:0] function group		
	1 for access mode		

23.4.3. Responses

All responses are sent on the CMD line. The response transmission always starts with the left bit of the bit string corresponding to the response codeword. The code length depends on the response type.

A response always starts with a start bit (always 0), followed by the bit indicating the direction of transmission (card = 0). A value 'x' in the tables below indicates a variable entry. All responses except for the type R3 are protected by a CRC. Every command codeword is terminated by the end bit (always 1).

R1 (normal response command)

Code length is 48 bits. The bits 45:40 indicate the index of the command to be responded to, this value being interpreted as a binary coded number (between 0 and 63). The status of the card is coded in 32 bits. Note that if a data transfer to the card is involved, then a busy signal may appear on the data line after the transmission of each block of data. The host shall check for busy after data block transmission. The card status is described in Chapter 23.4.4.

Bit position	47	46	[45:40]	[39:8]	[7:1]	0
Width	1	1	6	32	7	1
Value	ʻ0'	ʻ0'	х	х	х	'1'
description	start hit	transmission bit	command	card status	CRC7	end hit
description	Start Dit	transmission bit	index	card status	0107	end bit

Table 23-14 Response R1

R1b

R1b is identical to R1 with an optional busy signal transmitted on the data line DAT0. The card may become busy after receiving these commands based on its state prior to the command reception. The Host shall check for busy at the response.

R2 (CID, CSD register)

Code length is 136 bits. The contents of the CID register are sent as a response to the commands CMD2 and CMD10. The contents of the CSD register are sent as a response to CMD9. Only the bits [127...1] of the CID and CSD are transferred, the reserved bit [0] of these registers is replaced by the end bit of the response.

Table	23-15	Respons	e R2
		neepene	

Bit position	135	134	[133:128]	[127:1]	0
Width	1	1	6	127	1
Value	ʻ0'	ʻ0'	'111111'	x	'1'
description	start bit	Transmission bit	reserved	CID or CSD register and internal CRC7	end bit

R3 (OCR register)

Code length is 48 bits. The contents of the OCR register are sent as a response to ACMD41 (SD memory), CMD1 (MMC). The response of different cards may have a little different.

Table 23-16 Response R3

Bit position	47	46	[45:40]	[39:8]	[7:1]	0
Width	1	1	6	32	7	1
Value	ʻ0'	ʻ0'	'111111'	х	'1111111'	'1'
description	start bit	Transmission bit	reserved	OCR register	reserved	End bit

R4 (Fast I/O)

For MMC only. Code length 48 is bits. The argument field contains the RCA of the addressed card, the register address to be read out or written to, and its contents. The status bit in the argument is set if the operation was successful.

Bit position	47	46	[45:40]	[39:8] Arç	[39:8] Argument field				
Width	1	1	6	16	1	7	8	7	1
Value	'0'	ʻ0'	'100111'	х	х	х	х	х	'1'
description	start	transmission	CMD39	RCA	stat	register	read	CR	end

Table 23-17 Response R4 for MMC

	bit	bit	[31:16]	us	address	register	С	bit
				[15]	[14:8]	contents	7	
						[7:0]		

R4b

For SD I/O only. Code length is 48 bits. The SDIO card receive the CMD5 will respond with a unique SD I/O response R4.

Table 23-18 Response R4 for SD I/O

Bit positio n	47	46	[45:40]	39	[38:36]	35	[34:32]	31	[30:8]	[7:1]	0
Width	1	1	6	1	3	1	3	1	24	7	1
Value	·0'	ʻ0'	'11111 1'	x	x	x	'000'	x	x	'11111 11'	1
descri ption	start bit	transmi ssion bit	Reserv ed	С	Numbe r of I/O functio ns	Memor y Presen t	Stuff Bits	S18A	I/O OCR	Reserv ed	end bit

R5 (Interrupt request)

For MMC only. Code length is 48 bits. If the response is generated by the host, the RCA field in the argument will be 0x0.

Table 23-19 Response R5 for MMC

Bit position	47	46	[45:40]	[39:8] Argument field		[7:1]	0
Width	1	1	6	16	16	7	1
Value	'0'	'0'	'101000'	x	x	х	'1'
description	start bit	transmission bit	CMD40	RCA [31:16] of winning card or of the host	[15:0] Not defined. May be used for IRQ data	CR C7	end bit

R5b

For SD I/O only. The SDIO card's response to CMD52 and CMD53 is R5. If the communication between the card and host is in the 1-bit or 4-bit SD mode, the response shall be in a 48-bit response (R5).

Table 23-20 Response R	5 for	SD	I/O
------------------------	-------	----	-----

Bit position	47	46	[45:40]	[39:24]	[23:16]	[15:8]	[7:1]	0
Width	1	1	6	16	8	8	7	1
Value	'0'	'0'	ʻ11010x'	'0'	х	х	х	'1'

						Read		
description	start	transmission	CMD52/52	Stuff	Response	or	CRCZ	end
description	bit	bit	CIVID02/03	Bits	Flags	Write	CRC7	bit
						Data		

R6 (Published RCA response)

Code length is 48 bit. The bits [45:40] indicate the index of the command to be responded to (CMD3). The 16 MSB bits of the argument field are used for the Published RCA number.

Table 23-21 Response R6

Bit position	47	46	[45:40]	[39:8] Argument	[7:1]	0	
Width	1	1	6	16	16	7	1
Value	'0'	ʻ0'	'000011'	x	х	х	'1'
description	start bit	transmission bit	CMD3	New published RCA of the card	card status bits:23,22,19,12:0	CRC7	end bit

R7 (Card interface condition)

For SD memory only. Code length is 48 bits. The card support voltage information is sent by the response of CMD8. Bits 19-16 indicate the voltage range that the card supports. The card that accepted the supplied voltage returns R7 response. In the response, the card echoes back both the voltage range and check pattern set in the argument.

		_		
Table	23-22	Respo	onse	R7

Bit position	47	46	[45:40]	[39:20]	[19:16]	[15:8]	[7:1]	0
Width	1	1	6	20	4	8	7	1
Value	'0'	ʻ0'	'001000'	'00000h'	х	х	х	'1'
description	start bit	transmission bit	CMD8	Reserved bits	Voltage accepted	echo-back of check pattern	CRC7	End bit

23.4.4. Two status fields of the card

The SD Memory supports two status fields and others just support the first one:

Card Status: Error and state information of a executed command, indicated in the response

SD Status: Extended status field of 512 bits that supports special features of the SD Memory Card and future Application-Specific features.

Card Status

The response format R1 contains a 32-bit field named card status. This field is intended to transmit the card's status information (which may be stored in a local status register) to the host. If not specified otherwise, the status entries are always related to the previous issued command.

The type and clear condition fields in the table are abbreviated as follows:

Type:

•E:Error bit. Send an error condition to the host. These bits are cleared as soon as the response (reporting the error) is sent out.

•S:Status bit. These bits serve as information fields only, and do not alter the execution of the command being responded to. These bits are persistent, they are set and cleared in accordance with the card status.

•R:Exceptions are detected by the card during the command interpretation and validation phase (Response Mode).

•X:Exceptions are detected by the card during command execution phase (Execution Mode).

Clear Condition:

•A: According to current state of the card.

•B: Always related to the previous command. Reception of a valid command will clear it (with a delay of one command).

•C: Clear by read

Bits	Identifier	Туре	Value	Description	Clear
					Condition
31	OUT_OF_RANGE	ERX	'0'= no error	The command's argument was out of	С
			'1'= error	the allowed range for this card.	
30	ADDRESS_ERROR	ERX	'0'= no error	A misaligned address which did not	С
			'1'= error	match the block length was used in	
				the command.	
29	BLOCK_LEN_ERROR	ERX	'0'= no error	The transferred block length is not	С
			'1'= error	allowed for this card, or the number of	
				transferred bytes does not match the	
				block length.	
28	ERASE_SEQ_ERROR	ER	'0'= no error	An error in the sequence of erase	С
			'1'= error	commands occurred.	
27	ERASE_PARAM	ERX	'0'= no error	An invalid selection of write-blocks for	С
			'1'= error	erase occurred.	

Table 23-23 Card Status

26	WP_VIOLATION	ERX	'0'= not protected	Set when the host attempts to write to	С
			'1'= protected	a protected block or to the temporary	
				or permanent write protected card.	
25	CARD_IS_LOCKED	SX	'0' = card unlocked	When set, signals that the card is	А
			'1' = card locked	locked by the host	
24	LOCK_UNLOCK_FAILE	ERX	'0'= no error	Set when a sequence or password	С
	D		'1'= error	error has been detected in lock/unlock	
				card command.	
23	COM_CRC_ERROR	ER	'0'= no error	The CRC check of the previous	В
			'1'= error	command failed.	
22	ILLEGAL_COMMAND	ER	'0'= no error	Command not legal for the card state.	В
			'1'= error		
21	CARD_ECC_FAILED	ERX	'0'= success	Card internal ECC was applied but	С
			'1'= failure	failed to correct the data.	
20	CC_ERROR	ERX	'0'= no error	Internal card controller error.	С
			'1'= error		
19	ERROR	ERX	'0'= no error	A general or an unknown error	С
			'1'= error	occurred during the operation.	
18	UNDERRUN	ERX	'0'= no error	Only for MMC. The card could not	С
			'1'= error	sustain data transfer in stream read	
				mode.	
17	OVERRUN	ERX	'0'= no error	Only for MMC. The card could not	С
			'1'= error	sustain data programming in stream	
				write mode.	
16	CID/ CSD_OVERWRITE	ERX	'0'= no error	Can be either one of the following	С
			'1'= error	errors:	
				- The read only section of the CSD	
				does not match the card content.	
				- An attempt to reverse the copy (set	
				as original) or permanent	
				WP(unprotected) bits was made.	
15	WP_ERASE_SKIP	ERX	'0'= not protected	Set when only partial address space	С
			'1'= protected	was erased due to existing write	
				protected blocks or the temporary or	
				permanent write protected card was	
				erased.	
14	CARD_ECC_DISABLED	SX	'0'= enabled	The command has been executed	A
			'1'= disabled	without using the internal ECC.	
13	ERASE_RESET	SR	'0'= cleared	An erase sequence was cleared	С
			'1'= set	before executing because an out of	
				erase sequence command was	
				received.	
[12:9]	CURRENT_STATE	SX	0 = idle	The state of the card when receiving	В

			1 = ready	the command. If the command	
			2 = identification	execution causes a state change, it	
			3 = stand by	will be visible to the host in the	
			4 = transfer	response to the next command. The	
			5 = send data	four bits are interpreted as a binary	
			6 = receive data	coded number between 0 and 15.	
			7 = programming		
			8 = disconnect		
			9-14 = reserved		
			15 = reserved for		
			I/O mode		
8	READY_FOR_DATA	SX	'0'= not ready	Corresponds to buffer empty signaling	А
			'1'= ready	on the bus.	
7	SWITCH_ERROR	EX	'0'= no error	If set, the card don't switch to the	В
			'1'= switch error	expected mode as requested by the	
				SWITCH command.	
6	Reserved				
5	APP_CMD	SR	'0'= enabled	The card will expect ACMD, or an	С
			'1'= disabled	indication that the command has been	
				interpreted as ACMD.	
4	Reserved				
3	AKE_SEQ_ERROR	ER	'0'= no error	Only for SD memory. Error in the	С
			'1'= error	sequence of the authentication	
				process.	
2	Reserved for application sp	pecific co	mmands.		
[1:0]	Reserved for manufacturer	test mod	de.		

Note: 18, 17, 7 bits are only for MMC. 14, 3 bits are only for SD memory.

SD status register

The SD Status contains status bits that are related to the SD Memory Card proprietary features and may be used for future application-specific usage. The size of the SD Status is one data block of 512 bit. The content of this register is transmitted to the Host over the DAT bus along with a 16-bit CRC. The SD Status is sent to the host over the DAT bus as a response to ACMD13 (CMD55 followed with CMD13). ACMD13 can be sent to a card only in 'transfer state' (card is selected). The SD Status structure is described in below.

The same abbreviation for 'type' and 'clear condition' were used as for the Card Status above.

|--|

Bits	Identifier	Туре	Value	Description	Clear
					Condition

[511:	DAT_BUS_WIDTH	SR	'00'= 1 (default)	Shows the currently defined data bus	A
110]			'01'= reserved	width that was defined by	
			'10'= 4 bit width	SET_BUS_WIDTH command	
			'11'= reserved		
509	SECURED_MODE	SR	'0'= Not in the mode	Card is in Secured Mode of operation	А
			'1'= In Secured	(refer to the "SD Security	
			Mode	Specification").	
[508:	reserved				
496]					
[495:	SD_CARD_TYPE	SR	The following cards	In the future, the 8 LSBs will be used	А
480]			are currently	to define different variations of an SD	
			defined:	Memory Card (Each bit will define	
			'0000'= Regular SD	different SD Types). The 8 MSBs will	
			RD/WR Card.	be used to define SD Cards that do	
			'0001'= SD ROM	not comply with current SD Physical	
			Card	Layer Specification.	
			'0002'= OTP		
[479:	SIZE_OF_PROTECT	SR	Size of protected	(See below)	А
448]	ED_AREA		area		
[447:	SPEED_CLASS	SR	Speed class of the	(See below)	А
440]			card		
[439:	PERFORMANCE_M	SR	Performance of	(See below)	А
432]	OVE		move indicated by 1		
			[MB/s] step.		
[431:	AU_SIZE	SR	Size of AU	(See below)	А
428]					
[427:	reserved				
424]					
[423:	ERASE_SIZE	SR	Number of AUs to	(See below)	А
408]			be erased at a time		
[407:	ERASE_TIMEOUT	SR	Timeout value for	(See below)	А
402]			erasing areas		
			specified by		
			UNIT_OF_ERASE_		
			AU		
[401:	ERASE_OFFSET	SR	Fixed offset value	(See below)	А
400]			added to erase time.		
[399:	reserved				
312]					
[311:	reserved for manufacturer				
0]					

SIZE_OF_PROTECTED_AREA

Setting this field differs between SDSC and SDHC/SDXC.

In case of SDSC Card, the capacity of protected area is calculated as follows:

Protected Area = SIZE_OF_PROTECTED_AREA_* MULT * BLOCK_LEN.

SIZE_OF_PROTECTED_AREA is specified by the unit in MULT*BLOCK_LEN.

In case of SDHC and SDXC Cards, the capacity of protected area is calculated as follows:

Protected Area = SIZE_OF_PROTECTED_AREA

SIZE_OF_PROTECTED_AREA is specified by the unit in byte.

SPEED_CLASS

This 8-bit field indicates the Speed Class.

00h: Class 0

01h: Class 2

02h: Class 4

03h: Class 6

04h: Class 10

05h-FFh: Reserved

PERFORMANCE_MOVE

This 8-bit field indicates Pm and the value can be set by 1 [MB/sec] step. If the card does not move used RUs, Pm should be considered as infinity. Setting to FFh means infinity. The minimum value of Pm is defined by in Table 23-25.

	Table 23-25	Performance	Move Field
--	-------------	-------------	------------

PERFORMANCE_MOVE	Value Definition
00h	Sequential Write
01h	1 [MB/sec]
02h	2 [MB/sec]
FEh	254 [MB/sec]
FFh	Infinity

AU_SIZE

This 4-bit field indicates AU Size and the value can be selected from 16 KB.

AU_SIZE	Value Definition
Oh	Not Defined
1h	16 KB
2h	32 KB
3h	64 KB
4h	128 KB
5h	256 KB
6h	512 KB
7h	1 MB
8h	2 MB

Table 23-26 AU_SIZE Field

GD32F10x User Manual

9h	4 MB
Ah	8 MB
Bh	12 MB
Ch	16 MB
Dh	24 MB
Eh	32 MB
Fh	64 MB

The maximum AU size, depends on the card capacity, is defined in Table 23-26. The card can set any AU size specified in Table 23-27 that is less than or equal to the maximum AU size. The card should set smaller AU size as much as possible.

Table 23-27 Maximum AU size

Card Capacity	up to 64MB	up to 256MB	up to 512MB	up to 32GB	up to 2TB		
Maximum AU Size	512 KB	1 MB	2 MB	4 MB1	64MB		

ERASE_SIZE

This 16-bit field indicates NERASE. When NERASE numbers of AUs are erased, the timeout value is specified by ERASE_TIMEOUT (Refer to ERASE_TIMEOUT). The host should determine proper number of AUs to be erased in one operation so that the host can indicate progress of erase operation. If this field is set to 0, the erase timeout calculation is not supported.

ERASE_SIZE	Value Definition
0000h	Erase Time-out Calculation is not supported.
0001h	1 AU
0002h	2 AU
0003h	3 AU
FFFFh	65535 AU

Table 23-28 Erase Size Field

ERASE_TIMEOUT

This 6-bit field indicates the TERASE and the value indicates erase timeout from offset when multiple AUs are erased as specified by ERASE_SIZE. The range of ERASE_TIMEOUT can be defined as up to 63 seconds and the card manufacturer can choose any combination of ERASE_SIZE and ERASE_TIMEOUT depending on the implementation. Once ERASE_TIMEOUT is determined, it determines the ERASE_SIZE. The host can determine timeout for any number of AU erase by the equation below.

$$\label{eq:error} Erase time \ out \ of \ X \ AU = \ \frac{T_{ERASE}}{N_{ERASE}} * X + T_{OFFSET}$$

Table 23-29 Erase Timeout Field

ERASE_TIMEOUT	Value Definition
00	Erase Time-out Calculation is not supported.
01	1 [sec]
02	2 [sec]
03	3 [sec]
63	63 [sec]

If ERASE_SIZE field is set to 0, this field shall be set to 0.

ERASE_OFFSET

This 2-bit field indicates the TOFFSET and one of four values can be selected. This field is meaningless if ERASE_SIZE and ERASE_TIMEOUT fields are set to 0.

ERASE_OFFSET	Value Definition
0h	0 [sec]
1h	1 [sec]
2h	2 [sec]
3h	3 [sec]

Table 23-30 Erase Offset Field

23.5. Programming sequence

23.5.1. Card identification

The host will be in card identification mode after reset and while it is looking for new cards on the bus. While in card identification mode the host resets all the cards, validates operation voltage range, identifies cards and asks them to publish Relative Card Address (RCA). This operation is done to each card separately on its own CMD line. All data communication in the Card Identification Mode uses the command line (CMD) only.

During the card identification process, the card shall operate in the clock frequency of the identification clock rate f_{OD} (400 kHz).

Card reset

The command GO_IDLE_STATE (CMD0) is the software reset command and sets MMC and SD memory card into Idle State regardless of the current card state. The reset command (CMD0) is only used for memory or the memory portion of Combo cards. In order to reset an I/O only card or the I/O portion of a combo card, use CMD52 to write a 1 to the RES bit in the CCCR. Cards in Inactive State are not affected by this command.

After power-on by the host, all cards are in Idle State, including the cards that have been in Inactive State before. After power-on or CMD0, all cards' CMD lines are in input mode,

waiting for start bit of the next command. The cards are initialized with a default relative card address (RCA=0x0001) and with a default driver strength with 400 KHz clock frequency.

Operating voltage range validation

At the start of communication between the host and the card, the host may not know the card supported voltage and the card may not know whether it supports the current supplied voltage. To verify the voltage, the following commands are defined in the related specification.

The SEND_OP_COND (CMD1 for MMC), SD_SEND_OP_COND (ACMD41 for SD memory), IO_SEND_OP_COND (CMD5 for SD I/O) command is designed to provide hosts with a mechanism to identify and reject cards which do not match the V_{DD} range desired by the host. This is accomplished by the host sending the required V_{DD} voltage window as the operand of this command. If the card cannot perform data transfer in the specified range it must discard itself from further bus operations and go into Inactive State. Otherwise, the card shall respond sending back its V_{DD} range.

If the card can operate on the supplied voltage, the response echoes back the supply voltage and the check pattern that were set in the command argument.

If the card cannot operate on the supplied voltage, it returns no response and stays in idle state. It is mandatory to issue CMD8 prior to ACMD41 to initialize SDHC Card. Receipt of CMD8 makes the cards realize that the host supports the Physical Layer Version 2.00 and the card can enable new functions.

Card identification process

The card identification process differs for different cards. The card can be of the type MMC, CE-ATA, SD, or SD I/O. All types of SD I/O cards are supported, that is, SDIO_IO_ONLY, SDIO_MEM_ONLY, and SDIO COMBO cards. The identification process sequence includes the following steps:

- 1. Check if the card is connected.
- 2. Identify the card type; that is, SD, MMC(CE-ATA), or SD I/O.
- Send CMD5 first. If a response is received, then the card is SD I/O
- If not, send ACMD41; if a response is received, then the card is SD.
- Otherwise, the card is an MMC or CE-ATA.
- 3. Initialization the card according to the card type.

Use a clock source with a frequency = Fod (that is, 400 KHz) and use the following command sequence:

- SD card - Send CMD0, ACMD41, CMD2, CMD3.

- SDHC card - send CMD0, CMD8, ACMD41, CMD2, CMD3.

- SD I/O - Send CMD52, CMD0, CMD5, if the card doesn't have memory port, send CMD3; Otherwise send ACMD41, CMD11 (optional), CMD2, and CMD3.

- MMC/CE-ATA - Send CMD0, CMD1, CMD2, CMD3.

4. Identify the MMC/CE-ATA device.

CPU should query the byte 504 (S_CMD_SET) of EXT_CSD register by sending CMD8. If bit 4 is set to 1, then the device supports ATA mode.

– If ATA mode is supported, the CPU should select the ATA mode by setting the ATA bit (bit 4) of the EXT_CSD register slice 191(CMD_SET) to activate the ATA command set for use. The CPU selects the command set using the SWITCH (CMD6) command.

– In the presence of a CE-ATA device, the FAST_IO (CMD39) and RW_MULTIPLE_REGISTER (CMD60) commands will succeed and the returned data will be the CE-ATA reset signature.

23.5.2. No Data Commands

To send any non-data command, the software needs to program the SDIO_CMD register and the SDIO_PARA register with appropriate parameters. Using these two registers, the host forms the command and sends it to the command bus. The host reflects the errors in the command response through the error bits of the SDIO_STR register.

When a response is received the host sets the CMDREND (CRC check passed) or CCRCFAIL(CRC check failed) bit in the SDIO_STR register. A short response is copied in SDIO_RESP1, while a long response is copied to all four response registers. The SDIO_RESP4 bit 31 represents the MSB, and the SDIO_RESP1 bit 0 represents the LSB of a long response.

23.5.3. Single Block or Multiple Block write

During block write (CMD24 - 27) one or more blocks of data are transferred from the host to the card. The block consists of start bits(1 or 4 bits LOW), data block, CRC and end bits(1 or 4 bits HIGH). If the CRC fails, the card indicates the failure on the SDIO_DAT line and the transferred data are discarded and not written, and all further transmitted blocks are ignored.

If the host uses partial blocks whose accumulated length is not block aligned, block misalignment is not allowed (CSD parameter WRITE_BLK_MISALIGN is not set), the card will detect the block misalignment error before the beginning of the first misaligned block. The card shall set the ADDRESS_ERROR error bit in the status register, and while ignoring all further data transfer. The write operation will also be aborted if the host tries to write data on a write protected area. In this case, however, the card will set the WP_VIOLATION bit (in the status register).

GD32F10x User Manual

Programming of the CID and CSD registers does not require a previous block length setting. The transferred data is also CRC protected. If a part of the CSD or CID register is stored in ROM, then this unchangeable part must match the corresponding part of the receive buffer. If this match fails, then the card reports an error and does not change any register contents.

Some cards may require long and unpredictable times to write a block of data. After receiving a block of data and completing the CRC check, the card will begin writing and hold the DAT0 line low if its write buffer is full and unable to accept new data from a new WRITE_BLOCK command. The host may poll the status of the card with a SEND_STATUS command (CMD13) at any time, and the card will respond with its status. The status bit READY_FOR_DATA indicates whether the card can accept new data or whether the write process is still in progress). The host may deselect the card by issuing CMD7 (to select a different card) which will displace the card into the Disconnect State and release the DAT line without interrupting the write operation. When reselecting the card, it will reactivate busy indication by pulling DAT to low if programming is still in progress and the write buffer is unavailable.

For SD card. Setting a number of write blocks to be pre-erased (ACMD23) will make a following Multiple Block Write operation faster compared to the same operation without preceding ACMD23. The host will use this command to define how many number of write blocks are going to be send in the next write operation.

Steps involved in a single-block or multiple-block write are:

1. Write the data size in bytes in the DTLEN register.

2. Write the block size in bytes (DTBLKSIZE) in the DTCTLR register; the host sends data in blocks of size DTBLKSIZE each.

3. Program SDIO_PARA register with the data address to which data should be written.

4. Program the SDIO_CMD register. For SD memory and MMC cards, use CMD24 for a single-block write and CMD25 for a multiple-block Write. For SD I/O cards, use CMD53 for both single-block and multiple-block transfers. For CE-ATA, first use CMD60 to write the ATA task file, then use CMD 61 to write the data. After writing to the CMD register, host starts executing a command, when the command is sent to the bus, the CMDREND flag is set.

5. Write data to SDIO_FIFO.

6. Software should look for data error interrupts. If required, software can terminate the data transfer by sending the STOP command (CMD12).

7. When a DATAEND interrupt is received, the data transfer is over. For an open-ended block transfer, if the byte count is 0, the software must send the STOP command. If the byte count is not 0, then upon completion of a transfer of a given number of bytes, the host should send the STOP command.

23.5.4. Single Block or Multiple Block read

Block read is block oriented data transfer. The basic unit of data transfer is a block whose maximum size is defined in the CSD (READ_BL_LEN), it is always 512 bytes. If READ_BL_PARTIAL(in the CSD) is set, smaller blocks whose starting and ending address are entirely contained within 512 bytes boundary may be transmitted.

CMD17 (READ_SINGLE_BLOCK) initiates a block read and after completing the transfer, the card returns to the Transfer state. CMD18 (READ_MULTIPLE_BLOCK) starts a transfer of several consecutive blocks.CRC is appended to the end of each block, ensuring data transfer integrity.

Block Length set by CMD16 can be set up to 512 bytes regardless of READ_BL_LEN.

Blocks will be continuously transferred until a STOP_TRANSMISSION command (CMD12) is issued. The stop command has an execution delay due to the serial command transmission. The data transfer stops after the end bit of the stop command.

When the last block of user area is read using CMD18, the host should ignore OUT_OF_RANGE error that may occur even the sequence is correct.

If the host uses partial blocks whose accumulated length is not block aligned and block misalignment is not allowed, the card shall detect a block misalignment at the beginning of the first misaligned block, set the ADDRESS_ERROR error bit in the status register, abort transmission and wait in the Data State for a stop command.

Steps involved in a single block or multiple block read are:

1. Write the data size in bytes in the DTLEN register.

2. Write the block size in bytes (DTBLKSIZE) in the DTCTLR register. The host expects data from the card in blocks of size DTBLKSIZE each.

3. Program the SDIO_PARA register with the data address of the beginning of a data read.

4. Program the CMD. For SD and MMC cards, use CMD17 for a single-block read and CMD18 for a multiple-block read. For SD I/O cards, use CMD53 for both single-block and multiple-block transfers. For CE-ATA, first use CMD60 to write the ATA task file, then use CMD 61 to read the data. After writing to the CMD register, the host starts executing the command, when the command is sent to the bus, the CMDREND flag is set.

5. Software should look for data error interrupts. If required, software can terminate the data transfer by sending a STOP command.

6. The software should read data from the FIFO and make space in the FIFO for receiving more data.

7. When a DATAEND interrupt is received, the software should read the remaining data in the FIFO.

23.5.5. Stream write and Stream read (MMC only)

Stream write

Stream write (CMD20) starts the data transfer from the host to the card beginning from the starting address until the host issues a stop command. If partial blocks are allowed (if CSD parameter WRITE_BL_PARTIAL is set) the data stream can start and stop at any address within the card address space, otherwise it shall start and stop only at block boundaries. Since the amount of data to be transferred is not determined in advance, CRC cannot be used.

If the host provides an out of range address as an argument to CMD20, the card will reject the command, remain in Tran state and respond with the ADDRESS_OUT_OF_RANGE bit set.

Note that the stream write command works only on a 1 bit bus configuration (on DAT0). If CMD20 is issued in other bus configurations, it is regarded as an illegal command.

In order for the card to sustain data transfer in stream mode, the time it takes to receive the data (defined by the bus clock rate) must be lower than the time it takes to program it into the main memory field (defined by the card in the CSD register). Therefore, the maximum clock frequency for the stream write operation is given by the following formula:

max write frequence = min
$$\left(\text{TRAN}_{\text{SPEED}}, \frac{8 * 2^{\text{WRITE}_{\text{BL}_{\text{LEN}}} - 100 * \text{NSAC}}{\text{TAAC} * \text{R2W}_{\text{FACTOR}}} \right)$$

TRAN_SPEED: Max bus clock frequency.

WRITE_BL_LEN: Max write data block length.

NASC: Data read access-time 2 in CLK cycles.

TAAC: Data read access-time 1.

R2W_FACTOR: Write speed factor.

All the parameters are defined in CSD register. If the host attempts to use a higher frequency, the card may not be able to process the data and will stop programming, and while ignoring all further data transfer, wait (in the Receive-data-State) for a stop command. As the host sends CMD12, the card will respond with the TXURE bit set and return to Transfer state

Stream read

There is a stream oriented data transfer controlled by READ_DAT_UNTIL_STOP (CMD11). This command instructs the card to send its data, starting at a specified address, until the host sends a STOP_TRANSMISSION command (CMD12). The stop command has an execution delay due to the serial command transmission. The data

transfer stops after the end bit of the stop command.

If the host provides an out of range address as an argument to CMD11, the card will reject the command, remain in Transfer state and respond with the ADDRESS_OUT_OF_RANGE bit set.

Note that the stream read command works only on a 1 bit bus configuration (on DAT0). If CMD11 is issued in other bus configurations, it is regarded as an illegal command.

If the end of the memory range is reached while sending data, and no stop command has been sent yet by the host, the contents of the further transferred payload is undefined. As the host sends CMD12 the card will respond with the ADDRESS_OUT_OF_RANGE bit set and return to Tran state.

In order for the card to sustain data transfer in stream mode, the time it takes to transmit the data (defined by the bus clock rate) must be lower than the time it takes to read it out of the main memory field (defined by the card in the CSD register). Therefore, the maximum clock frequency for stream read operation is given by the following formula:

max read frequence = min
$$\left(\text{TRAN}_{\text{SPEED}}, \frac{8 * 2^{\text{READ}} - \text{BL}_{\text{LEN}} - 100 * \text{NSAC}}{\text{TAAC} * \text{R2W}_{\text{FACTOR}}} \right)$$

TRAN_SPEED: Max bus clock frequency.

READ_BL_LEN: Max read data block length.

NASC: Data read access-time 2 in CLK cycles.

TAAC: Data read access-time 1.

R2W_FACTOR: Write speed factor.

All the parameters are defined in CSD register. If the host attempts to use a higher frequency, the card may not be able to process the data and will stop programming, and while ignoring all further data transfer, wait (in the Receive-data-State) for a stop command. As the host sends CMD12, the card will respond with the RXORE bit set and return to Transfer state

23.5.6. Erase

The erasable unit of the MMC/SD memory is the "Erase Group"; Erase group is measured in write blocks which are the basic writable units of the card. The size of the Erase Group is a card specific parameter and defined in the CSD.

The host can erase a contiguous range of Erase Groups. Starting the erase process is a three steps sequence. First the host defines the start address of the range using the ERASE_GROUP_START (CMD35) command, next it defines the last address of the range using the ERASE_GROUP_END (CMD36) command and finally it starts the erase process by issuing the ERASE (CMD38) command. The address field in the erase commands is an Erase Group address in byte units. The card will ignore all LSB's below

the Erase Group size, effectively rounding the address down to the Erase Group boundary.

If an erase command (CMD35, CMD36, and CMD38) is received out of the defined erase sequence, the card shall set the ERASE_SEQ_ERROR bit in the status register and reset the whole sequence.

If the host provides an out of range address as an argument to CMD35 or CMD36, the card will reject the command, respond with the ADDRESS_OUT_OF_RANGE bit set and reset the whole erase sequence.

If an 'non erase' command (neither of CMD35, CMD36, CMD38 or CMD13) is received, the card shall respond with the ERASE_RESET bit set, reset the erase sequence and execute the last command.

If the erase range includes write protected blocks, they shall be left intact and only the non protected blocks shall be erased. The WP_ERASE_SKIP status bit in the status register shall be set.

As described above for block write, the card will indicate that an erase is in progress by holding DAT0 low. The actual erase time may be quite long, and the host may issue CMD7 to deselect the card.

23.5.7. Bus width selection

After the host has verified the functional pins on the bus it should change the bus width configuration.

For MMC, using the SWITCH command (CMD6). The bus width configuration is changed by writing to the BUS_WIDTH byte in the Modes Segment of the EXT_CSD register (using the SWITCH command to do so). After power-on or software reset, the contents of the BUS_WIDTH byte is 0x00. If the host tries to write an invalid value, the BUS_WIDTH byte is not changed and the SWITCH_ERROR bit is set. This register is write only.

For SD memory, using SET_BUS_WIDTH command (ACMD6) to change the bus width. The default bus width after power-up or GO_IDLE_STATE command (CMD0) is 1 bit. SET_BUS_WIDTH (ACMD6) is only valid in a transfer state, which means that the bus width can be changed only after a card is selected by SELECT/DESELECT_CARD (CMD7).

23.5.8. Protection management

In order to allow the host to protect data against erase or write, three methods for the cards are supported in the card:

CSD register for card protection (optional)

The entire card may be write protected by setting the permanent or temporary write

GD32F10x User Manual

protect bits in the CSD. Some cards support write protection of groups of sectors by setting the WP_GRP_ENABLE bit in the CSD. It is defined in units of WP_GRP_SIZE erase groups as specified in the CSD. The SET_WRITE_PROT command sets the write protection of the addressed write protect group, and the CLR_WRITE_PROT command clears the write protection of the addressed write protect group.

The High Capacity SD Memory Card does not support Write Protection and does not respond to write protection commands (CMD28, CMD29 and CMD30).

Write protect switch on the card (SD memory and SD I/O card)

A mechanical sliding tablet on the side of the card will be used by the user to indicate that a given card is write protected or not. If the sliding tablet is positioned in such a way that the window is open it means that the card is write protected. If the window is close the card is not write protected

Password Card Lock/Unlock Operation

The Password Card Lock/Unlock protection is described in the chapter 22.5.9.

23.5.9. Card Lock/Unlock Operation

The password protection feature enables the host to lock a card while providing a password, which later will be used for unlocking the card. The password and its size are kept in a 128-bit PWD and 8-bit PWD_LEN registers, respectively. These registers are non-volatile so that a power cycle will not erase them.

Locked cards respond to (and execute) all commands in the basic command class (class 0), ACMD41, CMD16 and lock card command class (class 7). Thus, the host is allowed to reset, initialize, select, query for status, but not to access data on the card. If the password was previously set (the value of PWD_LEN is not 0), the card will be locked automatically after power on.

Similar to the existing CSD register write commands, the lock/unlock command is available in "transfer state" only. This means that it does not include an address argument and the card shall be selected before using it.

The card lock/unlock command has the structure and bus transaction type of a regular single block write command. The transferred data block includes all the required information of the command (password setting mode, PWD itself, card lock/unlock etc.). Table 23-31 describes the structure of the command data block.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	Reser	ved(all s	set to 0)		ERASE	LOCK_UNLOCK	CLR_PWD	SET_PWD			
1	PWDS_LEN										
2	Decou										
	Password data(PWD)										

Table 23-31 Lock card data structure

PWDS_LEN+1

ERASE: 1 Defines Forced Erase Operation. In byte 0, bit 3 will be set to 1 (all other bits shall be 0). All other bytes of this command will be ignored by the card.

LOCK/UNLOCK: 1 = Locks the card. 0 = Unlock the card (note that it is valid to set this bit together with SET_PWD but it is not allowed to set it together with CLR_PWD).

CLR_PWD: 1 = Clears PWD.

SET_PWD: 1 = Set new password to PWD

PWDS_LEN: Defines the following password(s) length (in bytes). In case of a password change, this field includes the total password lengths of old and new passwords. The password length is up to 16 bytes. In case of a password change, the total length of the old password and the new password can be up to 32 bytes.

Password data: In case of setting a new password, it contains the new password. In case of a password change, it contains the old password followed by the new password.

Setting the Password

- Select a card (CMD7), if not previously selected.
- Define the block length (CMD16), given by the 8-bit card lock/unlock mode, the 8-bits password size (in bytes), and the number of bytes of the new password. In the case that a password replacement is done, then the block size shall consider that both passwords-the old and the new one-are sent with the command.
- Send the Card Lock/Unlock command with the appropriate data block size on the data line including the 16-bit CRC. The data block shall indicate the mode (SET_PWD), the length (PWDS_LEN) and the password itself. In the case that a password replacement is done, then the length value (PWDS_LEN) shall include both passwords (the old and the new one) and the password data field shall include the old password (currently used) followed by the new password. Note that the card shall handle the calculation of the new password length internally by subtracting the old password length from PWDS_LEN field.
- In the case that the sent old password is not correct (not equal in size and content), then the LOCK_UNLOCK_FAILED error bit will be set in the status register and the old password does not change. In the case that the sent old password is correct (equal in size and content), then the given new password and its size will be saved in the PWD and PWD_LEN registers, respectively.

Reset the Password

- Select a card (CMD7), if not previously selected.
- Define the block length (CMD16), given by the 8-bit card lock/unlock mode, the 8-bit password size (in bytes), and the number of bytes of the currently used password.

GD32F10x User Manual

Send the card lock/unlock command with the appropriate data block size on the data line including the 16-bit CRC. The data block shall indicate the mode CLR_PWD, the length (PWDS_LEN), and the password itself. If the PWD and PWD_LEN content match the sent password and its size, then the content of the PWD register is cleared and PWD_LEN is set to 0. If the password is not correct, then the LOCK_UNLOCK_FAILED error bit will be set in the status register.

Locking a card

- Select a card (CMD7), if not previously selected.
- Define the block length (CMD16), given by the 8-bit card lock/unlock mode, the 8-bit password size (in bytes), and the number of bytes of the currently used password.
- Send the card lock/unlock command with the appropriate data block size on the data line including the 16-bit CRC. The data block shall indicate the mode LOCK, the length (PWDS_LEN) and the password itself.

If the PWD content is equal to the sent password, then the card will be locked and the card-locked status bit will be set in the status register. If the password is not correct, then the LOCK_UNLOCK_FAILED error bit will be set in the status register.

Unlocking the card

- Select a card (CMD7), if not previously selected.
- Define the block length (CMD16), given by the 8-bit card lock/unlock mode, the 8-bit password size (in bytes), and the number of bytes of the currently used password.
- Send the card lock/unlock command with the appropriate data block size on the data line including the 16-bit CRC. The data block shall indicate the mode UNLOCK, the length (PWDS_LEN) and the password itself.

If the PWD content is equal to the sent password, then the card will be unlocked and the card-locked status bit will be cleared in the status register. If the password is not correct, then the LOCK_UNLOCK_FAILED error bit will be set in the status register.

23.6. Specific operations

23.6.1. SD I/O specific operations

The SD I/O only card and SD I/O combo card support these specific operations:

Read wait operation

Suspend/resume operation

Interrupts

The SD I/O supports these operations only if the SDIO_DTCTLR[11] bit is set, except for

read suspend that does not need specific hardware implementation.

SD I/O Read Wait Operation

The optional Read Wait (RW) operation is defined only for the SD 1-bit and 4-bit modes. The read Wait operation allows a host to signal a card that is executing a read multiple (CMD53) operation to temporarily stall the data transfer while allowing the host to send commands to any function within the SD I/O card. To determine if a card supports the Read Wait protocol, the host shall test SRW capability bit in the Card Capability byte of the CCCR. The timing for Read Wait is based on the Interrupt Period. If a card does not support the Read Wait protocol, the only means a host has to stall (not abort) data in the middle of a read multiple command is to control the SDIO_CLK. The limitation of this method is that with the clock stopped, the host cannot issue any commands, and so cannot perform other operations during the delay time. Read wait support is mandatory for the card to support suspend/resume. Figure 23-7 and Figure 23-8 show the read wait mode about stop the SDIO_CLK and use SDIO_DAT2.

Figure 23-7 Read wait control by stopping SDIO_CLK

Figure 23-8 Read Wait operation using SDIO_DAT2

We can start the Read Wait interval before the data block is received: when the data unit is enabled (SDIO_DTCTLR [0] bit set), the SD I/O specific operation is enabled (SDIO_DTCTLR [11] bit set), Read Wait starts (SDIO_DTCTLR [10] =0 and SDIO_DTCTLR[8] =1) and data direction is from card to SD I/O (SDIO_DTCTLR[1] = 1), the DSM directly moves from Idle to Read Wait. In Read Wait the DSM drives SDIO_DAT2 to 0 after 2 SDIO_CLK clock cycles. In this state, when you set the RWSTOP bit (SDIO_DTCTLR[9]), the DSM remains in Wait for two more SDIO_CLK clock cycles to drive SDIO_D2 to 1 for one clock cycle. The DSM then starts waiting again until it receives data from the card. The DSM will not start a Read Wait interval while receiving a block even if read wait start is set: the Read Wait interval will start after

the CRC is received. The RWSTOP bit has to be cleared to start a new Read Wait operation. During the Read Wait interval, the SDIO can detect SD I/O interrupts on SDIO_D1.

SD I/O suspend/resume operation

Within a multi-function SD I/O or a Combo card, there are multiple devices (I/O and memory) that share access to the SD bus. In order to allow the sharing of access to the host among multiple devices, SD I/O and combo cards can implement the optional concept of suspend/resume. If a card supports suspend/resume, the host may temporarily halt a data transfer operation to one function or memory (suspend) in order to free the bus for a higher priority transfer to a different function or memory. Once this higher-priority transfer is complete, the original transfer is re-started where it left off (resume).

Figure 23-9 shows a condition where the first suspend request is not immediately accepted. The host then checks the status of the request with a read and determines that the bus has now been released (BS=0). At this time, a read to function 2 is started. Once that single block read is complete, the resume is issued to function, causing the data transfer to resume (DF=1).

Figure 23-9 Function2 read cycle inserted during Function1 multiple read cycle

When the host sends data to the card, the host can suspend the write operation. The SDIO_CMD[11] bit is set and indicates to the CSM that the current command is a suspend command. The CSM analyzes the response and when the response is received from the card (suspend accepted), it acknowledges the DSM that goes Idle after receiving the CRC token of the current block.

To suspend a read operation, the DSM waits in the WaitR state, when the function to be suspended sends a complete packet just before stopping the data transaction. The application should continue reading receive FIFO until the FIFO is empty, and the DSM goes Idle state automatically.

Interrupts

In order to allow the SD I/O card to interrupt the host, an interrupt function is added to a pin on the SD interface. Pin number 8, which is used as DAT[1] when operating in the 4-bit SD mode, is used to signal the card's interrupt to the host. The use of interrupt is optional for each card or function within a card. The SD I/O interrupt is "level sensitive", that is, the interrupt line shall be held active (low) until it is either recognized and acted upon by the host or de-asserted due to the end of the Interrupt Period. Once the host has serviced the interrupt, it is cleared via some function unique I/O operation.

When set the SDIO_DTCTLR[11] bit SD I/O interrupts can detect on the SDIO_D1 line.

Figure 23-10 shows the timing of the interrupt period for single data transaction read cycles.

Figure 23-10 Read Interrupt Cycle Timing

Figure 23-11 Write Interrupt Cycle Timing

When transferring multiple blocks of data in the 4-bit SD mode, a special definition of the interrupt period is required. In order to allow the highest speed of communication, the interrupt period is limited to a 2-clock interrupt period. Card that wants to send an interrupt signal to the host shall assert DAT1 low for the first clock and high for the second clock. The card shall then release DAT1 into the hi-Z State. Figure 23-12 shows the operation for an interrupt during a 4-bit multi-block read and Figure 23-13 shows the operation for an interrupt during a 4-bit multi-block write

Figure 23-12 Multiple Block 4-Bit Read Interrupt Cycle Timing

Figure 23-13 Multiple Block 4-Bit Write Interrupt Cycle Timing

SDIO_CLK

23.6.2. CE-ATA specific operations

The CE-ATA device supports these specific operations:

Receive command completion signal

Send command completion disable signal

The SDIO supports these operations only when SDIO_CMD[14] is set.

Command completion signal

CE-ATA defines a command completion signal that the device uses to notify the host upon normal ATA command completion or when ATA command termination has occurred due to an error condition the device has encountered.

If the 'enable CMD completion' bit SDIO_CMD[12] is set and the 'not interrupt Enable' bit SDIO_CMD[13] is reset, the CSM waits for the command completion signal in the Waitcompl state.

When start bit is received on the CMD line, the CSM enters the Idle state. No new command can be sent for 7 bit cycles. Then, for the last 5 cycles (out of the 7) the CMD line is driven to '1' in push-pull mode.

After the host detects a command completion signal from the device, it should issue a FAST_IO (CMD39) command to read the ATA Status register to determine the ending status for the ATA command.

Command completion disable signal

The host may cancel the ability for the device to return a command completion signal by issuing the command completion signal disable. The host shall only issue the command completion signal disable when it has received an R1(b) response for an outstanding RW_MULTIPLE_BLOCK (CMD61) command.

Command completion signal disable is sent 8 bit cycles after the reception of a short response if the 'enable CMD completion' bit, SDIO_CMD[12] is not set and the 'not interrupt Enable' bit SDIO_CMD[13] is reset.

23.7. HW flow control

The HardWare flow control functionality is used to avoid FIFO underrun and overrun errors. When the FIFO cannot receive or transmit data, the host will stop the SDIO_CLK and freeze SDIO state machines to avoid the corresponded error. Only state machines are frozen, the AHB interface is still alive. The FIFO can thus be filled or emptied even if flow control is activated. To enable HW flow control, the SDIO_CLKCTLR[14] register bit must be set to 1. After reset Flow Control is disabled.

23.8. SDIO registers

23.8.1. SDIO power register (SDIO_POWER)

Address offset: 0x00

Reset value: 0x0000 0000

Rite		Field	ds	г	Descript	tions								r١	v
	Reserved										PWRST	ATE[1:0]			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

Bits	Fields	Descriptions
31:2	Reserved	Must be kept at reset value
0	PWRSTATE[1:0]	Power supply bits. These bits define the state of the card clock.
		00: Power-off: the clock to card is stopped.
		01: Reserved
		10: Reserved
		11: Power-on: the card is clocked.

NOTE: Between Two write accesses to this register, seven clocks are needed.

23.8.2. SDIO clock control register (SDIO_CLKCTLR)

Address offset: 0x04

Reset value: 0x0000 0000

	This register controls the output clock SDIO_CLK.														
31	30	29 2	8 27	26	25	24	23	22	21	20	19	18	17	16	
					Res	erve									
15	14	13	12 11	10	9	8	7	6	5	4	3	2		1 0	
	HWFL_E	N CLKPH	BUSMODE[2:11]	1 BYPASS	PWRSA V	CLKE N				DIV[7:0]					
	rw	rw	rw	rw	rw	rw				rw					
Bits		Fields	Des	scriptions											
31:15	5	Reserved	Mu	Must be kept at reset value											
14		HWFL_EN	l Hai	Hardware Flow Control enable bit											
			0: H	0: HW Flow control is disabled											
			1: H	W Flow con	trol is enab	led									
13		CLKPH	SD	O_CLK dept	hase selec	tion bit									
			0: 8		enerated a	t the risi	ng eag	e of the	SDIOCL	K(contr	oller c				
			1: 8	SDIO_CLK ge	enerated a	t the fall	ing eag	ge of the	SDIOCL	K(conti	oller	CIOCK)			
12:1	l	BUSMODE	E[1:0] Bus	Bus mode control bit											
			00:	1-wide bus r	node enab	led									
			01:	01: 4-wide bus mode enabled											
			10:	10: 8-wide bus mode enabled(MMC only)											
10		BYPASS	Clo	Clock divider bypass enable bit											
			0: [0: Disable bypass: SDIOCLK is divided according to the DIV value before driving the											
			SD	SDIO_CLK output signal.											
			1: E	1: Enable bypass: SDIOCLK directly drives the SDIO_CLK output signal.											
9		PWRSAV	Pov	Power saving configuration bit											
-			For	For power saving to this bit is set, the SDIO CLK clock output can be stopped when											
			the	the bus is idle:											
			0: 5	0: SDIO_CLK clock is always enabled											
			1: \$	1: SDIO_CLK is only enabled when the bus is active											
8		CLKEN	Clo	ck enable bit											
0		OLIVEIN	0.3		disabled										
			1.5	SDIO_CLK is	enabled										
7:0		DIV[7:0]	Clo	ck division											
			Thi	s field defines	s the divisi	on betwo	een the	e input cl	ock (SD	IOCLK)	and t	he ou	tput c	lock	
			SD	O_CLK frequ	uency = SI	DIOCLK	/ [DIV	+ 2].							

23.8.3. SDIO parameter register (SDIO_PARA)

Address offset: 0x08

Reset value: 0x0000 0000

This register contains a 32 bit argument, which will be used as part of the command (bit 45 to bit 8).

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CMDPAR	A[31:16]							
							rw	/							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CMDPAF	RA[15:0]							
							rv	/							

Bits	Fields	Descriptions
31:0	CMDPARA[31:0]	Command parameter
		Command parameter sent to a card as part of a command message(bits [39:8]). If a
		command contains an argument, it must be loaded into this register before writing a
		command to the command register.

23.8.4. SDIO command register (SDIO_CMD)

Address offset: 0x0C

Reset value: 0x0000 0000

The SDIO_CMD register contains the command index and command type bits.

31	30	29	28	27 26 25 24 23 22 21 20 19 18 17							17	16					
						R	eserved										
						_	_	_	_	_		_	_		_		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	ATACMD	nIEN	ENCMDC	SDIO Suspend	CSM EN	WAIT PD	WAIT INT	WAITRE	SP[7:6]	CMDIndex[5:0]							
	rw	rw	rw	rw rw rw rw rw							N		J				
Bits	F	ields	Descriptions														
31:15	R	eserve	d	Nust be kept at reset value													
14	A	TACM	D	CE-ATA command enable(CE-ATA only) If ATACMD is set, the host enter the CE-ATA mode, the CSM transfers CMD61.													
13	nl	IEN		not CE-ATA Interrupt Enable(CE-ATA only) If this bit is 0, CE-ATA interrupt is enabled.													
12	E	NCMD	С	Enable Cl	MD con	npletior	n signal	(CE-ATA	A only)								
				If this bit is	s set, th	ne comi	mand c	ompletic	on signa	l is ena	abled.						
11	S	DIOSu	spend	SD I/O su	spend	comma	nd(SD	I/O only))								
				If this bit is	s set, th	ne comi	mand to	be sen	t is a su	ispend	comm	and.					
10	С	SMEN		Command	d state i	machin	e (CSN	l) enable	e bit								
				If this bit is set, the CSM is enabled.													
9	W	/AITPE)	CSM Wai	ts for er	nds of c	lata tra	nsfer.									

If this bit is set, the CSM sends command only if the data transfer ended.

8	WAITINT	CSM waits for interrupt request If this bit is set, the CSM disables command timeout and waits for an interrupt request.
7:6	WAITRESP[1:0]	Wait for response bits These bits are used to configure whether the CSM is to wait for a response, and which kind of response. 00: No response, expect CMDSENT flag 01: Short response, expect CMDREND or CCRCFAIL flag 10: No response, expect CMDSENT flag 11: Long response, expect CMDREND or CCRCFAIL flag
5:0	CMDIndex[5:0]	Command index The command index is sent to the card as part of a command message (bits[45:40]).

NOTE: Between Two write accesses to this register, seven clocks are needed.

23.8.5. SDIO command response register (SDIO_RESPCMD)

Address offset: 0x10

Reset value: 0x0000 0000

This register contains the command index of the last command response received. If the response doesn't have the command index (long response and short response of R3), the content of this register is unknown.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved							RESPC	MD[5:0]		
												r			
Bits		Fields		Des	criptior	าร									
31:6		Reserve	əd	Mus	t be kep	ot at res	et value	;							
5:0		RESPCMD[5:0] Last response command index													

Read-only bits field. The command index of the last command response received.

23.8.6. SDIO response register (SDIO_RESPx x=1-4)

Address offset: 0x10+(4*x), x=1-4

Reset value: 0x0000 0000

These register contains the state of the card, they are part of the last received response.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						C	CARDSTA	TEx[31:16	6]						
								r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						(CARDSTA	ATEx[15:0]]						
								r							

Bits	Fields	Descriptions
31:0	CARDSTATEx[31:0]	Card state. The content of the response, see table 24-32

The short response is 32 bits, the long response is 127 bits (bit 128 is the end bit 0).

Table 23-32 response type and SDIO_RESPx register

Register	Short response	Long response
SDIO_RESP1	Card State[31:0]	Card State[127:96]
SDIO_RESP2	reserved	Card State[95:64]
SDIO_RESP3	reserved	Card State[63:32]
SDIO_RESP4	reserved	Card State[31:1]

23.8.7. SDIO data timeout register (SDIO_DTTR)

Address offset: 0x24

Reset value: 0x0000 0000

When the DSM enter the state WaitR and BUSY, the internal counter which loads from this register starts decrement, if it reaches 0, the DSM enter the state Idle and set the DTTMOUT flag.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DTTIM	E[31:16]							
							r	w							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DTTIM	E[15:0]							
							r	w							
Bits		Fields		Des	scriptio	ns									
31:0		DTTIME	[31:0]	0] Data timeout period											

Data timeout period

Data timeout period expressed in card bus clock periods.

Note: A data transfer must be written to the data timer register and the data length register before being written to the data control register.

23.8.8. SDIO data length register (SDIO_DTLEN)

Address offset: 0x28

Reset value: 0x0000 0000

This register contains the number of bytes to be transferred, when data transfer starts, the content of this register is loaded into the data counter register (SDIO_DTCNT).

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Reserved	I						D	FLEN[24:10	6]			
											rw				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DTLE	N[15:0]							
								rw							
Bits		Fields		Des	cription	s									
31:25		Reserv	/ed	Mus	st be kei	ot at res	et valu	Э							

24:0 DTLEN[24:0] Data length value Number of data bytes to be transferred.

Note: For a block data transfer, the value in the data length register must be a multiple of the block size (see SDIO_DTCTLR). A data transfer must be written to the data timer register and the data length register before being written to the data control register.

23.8.9. SDIO data control register (SDIO_DTCTLR)

Address offset: 0x2C

Reset value: 0x0000 0000

This register controls the DSM.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved		SDIOEN	RWMODE	RWSTOP	RWSTART			DTBLKSIZE[7:4]		DMAEN	DTTMODE	DTTDIR	DTTEN
				rw	rw	rw	rw			rw		rw	rw	rw	rw

Bits	Fields	Descriptions
31:12	Reserved	Must be kept at reset value
11	SDIOEN	SD I/O specific function enable(SD I/O only)
		If this bit is set, the DSM performs an SD I/O-card-specific operation.
10	RWMODE	Read wait mode(SD I/O only)
		0: Read Wait control using SDIO_DAT2
		1: Read Wait control by stopping SDIO_CLK
9	RWSTOP	Read wait stop(SD I/O only)
		0: Read wait in progress if RWSTART bit is set

1: Stop the read wait process if RWSTART bit is set

8	RWSTART	Read wait start(SD I/O only)
		If this bit is set, read wait operation starts
7:4	DTBLKSIZE[3:0]	Data block size Define the data block length of the host when the block data transfer mode is selected: 0000: block length = $2^0 = 1$ byte 0001: block length = $2^1 = 2$ bytes 0010: block length = $2^2 = 4$ bytes 0011: block length = $2^3 = 8$ bytes 0100: block length = $2^4 = 16$ bytes 0100: block length = $2^5 = 32$ bytes 0110: block length = $2^6 = 64$ bytes 0111: block length = $2^7 = 128$ bytes 1000: block length = $2^8 = 256$ bytes 1001: block length = $2^9 = 512$ bytes 1001: block length = $2^{10} = 1024$ bytes 1011: block length = $2^{11} = 2048$ bytes 1101: block length = $2^{12} = 4096$ bytes 1101: block length = $2^{13} = 8192$ bytes 1101: block length = $2^{14} = 16384$ bytes
3	DMAEN	1111: reserved DMA enable bit 0: DMA disabled. 1: DMA enabled.
2	DTTMODE	Data transfer mode 0: Block data transfer 1: Stream or SDIO multibyte data transfer
1	DTTDIR	Data transfer direction 0: From host to card. 1: From card to host.
0	DTTEN	Data transfer enabled bit Data transfer starts if 1 is written to the DTEN bit. Depending on the direction bit, DTDIR, the DSM moves to the WaitS, WaitR state or Readwait if RWSTART is set immediately at the beginning of the transfer. It is not necessary to clear the enable bit after the end of a data transfer but the SDIO_DTCTLR must be updated to enable a new data transfer

NOTE: Between Two write accesses to this register, seven clocks are needed.

23.8.10. SDIO data counter register (SDIO_DTCNT)

Address offset: 0x30

Reset value: 0x0000 0000

This register is read only. When the DSM from Idle to WaitR or WaitS, it loads value from data length register (SDIO_DTLEN). It decrements with the data transferred, when it reaches 0, the flag DTEND is set.

Reserved DTCNT[24:16]	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
r				Reserved					DTCNT[24:16]								
												r					
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
DTCNT[15:0]								DTCN	T[15:0]								

r

Bits	Fields	Descriptions
31:25	Reserved	Must be kept at reset value
24:0	DTCNT[24:0]	Data count value Read-only bits field. When these bits are read, the number of remaining data bytes to
		be transferred is returned.

23.8.11. SDIO status register (SDIO_STR)

Address offset: 0x34

Reset value: 0x0000 0000

This register is read only. It contains two types of flag:

Static flags [23:22, 10:0]: these flags are asserted until they are cleared by writing 1 to the interrupt clear register (SDIO_INTCR).

Dynamic flags [21:11]: these flags are changing depend on the logic.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved				ATAEND	SDIOINT	RXDTVAL	TXDTVAL	RXFIFOE	TXFIFOE	RXFIFOF	TXFIFOF
								r	r	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RXFIFOHF	TXFIFOHE	RXRUN	TXRUN	CMDRUN	DTBLKEND	STBITE	DTEND	CMDSENT	CMDREND	RXORE	TXURE	DTTMOUT	CMDTMOUT	DTCRCFAIL	CCRCFAIL
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
Bits		Fields		Des	cription	าร									

31:24	Reserved	Must be kept at reset value
23	ATAEND	CE-ATA command completion signal received (only for CMD61)
22	SDIOINT	SD I/O interrupt received
21	RXDTVAL	Data is valid in receive FIFO
20	TXDTVAL	Data is valid in transmit FIFO
19	RXFIFOE	Receive FIFO is empty
18	TXFIFOE	Transmit FIFO is empty When HW Flow control is enabled, TXFIFOE signals becomes activated when the FIFO contains 2 words.
17	RXFIFOF	Receive FIFO is full When HW Flow control is enabled, RXFIFOF signals becomes activated 2 words before the FIFO is full.
16	TXFIFOF	Transmit FIFO is full
15	RXFIFOHF	Receive FIFO is half full: at least 8 words can be read in the FIFO
14	TXFIFOHE	Transmit FIFO is half empty: at least 8 words can be written into the FIFO
13	RXRUN	Data reception in progress
12	TXRUN	Data transmission in progress
11	CMDRUN	Command transmission in progress
10	DTBLKEND	Data block sent/received (CRC check passed)
9	STBITE	Start bit error in the bus.
8	DTEND	Data end (data counter, SDID_DTCNT, is zero)
7	CMDSENT	Command sent (no response required)
6	CMDREND	Command response received (CRC check passed)
5	RXORE	Received FIFO overrun error occurs
4	TXURE	Transmit FIFO underrun error occurs
3	DTTMOUT	Data timeout The data timeout period depends on the SDIO_DTTR register.
2	CMDTMOUT	Command response timeout The command timeout period has a fixed value of 64 SDIO_CLK clock periods.
1	DTCRCFAIL	Data block sent/received (CRC check failed)
0	CCRCFAIL	Command response received (CRC check failed)

23.8.12. SDIO interrupt clear register (SDIO_ICR)

Address offset: 0x38

Reset value: 0x0000 0000

This register is write only. Writing 1 to the bit can clear the corresponding bit in the SDIO_STR register.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
			Rese	rved				ATAENDC	SDIOINTC			Rese	erved				
								w	w								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Reserved					DTBLKENDC	STBITEC	DTENDC	CMDSENTC	CMDRENDC	RXOREC	TXUREC	DTTMOUTC	CMDTMOUTC	DTCRCFAILC	CCRCFAILC		
					w	w	w	w	w	w	w	w	w	w	w		
Bits		Fields		Des	criptior	IS											
31:24		Reserv	ed	Mus	t be kep	ot at res	et value	;									
23		ATAEN	IDC	ATA	END fla	ig clear	bit										
				Writ	e 1 to th	nis bit to	clear th	ne flag.									
2 2		SDIOIN	ITC	201			hit										
22 SDIOINTC				Writ		is hit to	clear th	ne flag									
				vviit													
21:11		Reserv	ed	Mus	t be kep	ot at res	et value	9									
10		DTBLK	ENDC	DTB	DTBLKEND flag clear bit												
				Writ	Write 1 to this bit to clear the flag.												
9		STRITE	=C	STB	STRITE flag clear hit												
Ū		010110		Writ	e 1 to th	his bit to	clear th	ne flag.									
•		DTENE		DTE			.,	U									
8		DIENL		DIE Writ	ND flag	clear b	olt Selear ti	o flog									
				vvnu			clear ti	ie nag.									
7		CMDSE	ENTC	CME	DSENT	flag clea	ar bit										
				Writ	e 1 to th	nis bit to	clear th	ne flag.									
6		CMDRI	ENDC	CME	DREND	flag cle	ar bit										
				Writ	e 1 to th	nis bit to	clear th	ne flag.									
5		RXORE	EC	RXC	ORE flac	a clear b	oit										
				Writ	e 1 to th	nis bit to	clear th	ne flag.									
4				T 1/1		ala - " '	:.	-									
4		IXURE	:U	IXU	KE flag	clear b	π										

Write 1 to this bit to clear the flag.

3	DTTMOUTC	DTTMOUT flag clear bit Write 1 to this bit to clear the flag.
2	CMDTMOUTC	CMDTMOUT flag clear bit Write 1 to this bit to clear the flag.
1	DTCRCFAILC	DTCRCFAIL flag clear bit Write 1 to this bit to clear the flag.
0	CCRCFAILC	CCRCFAIL flag clear bit Write 1 to this bit to clear the flag.

23.8.13. SDIO interrupt enable register (SDIO_IER)

Address offset: 0x3C

Reset value: 0x0000 0000

This register enables the corresponding interrupt in the SDIO_STR register.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
			Rese	erved				ATAENDIE	SDIOINTIE	RXDTVALIE	TXDTVALIE	RXFIFOEIE	TXFIFOEIE	RXFIFOFIE	TXFIFOFIE		
								rw	rw	rw	rw	rw	rw	rw	rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
RXFIFOHFIE	TXFIFOHEIE	RXRUNIE	TXRUNIE	CMDRUNIE	DTBLKENDIE	STBITEIE	DTENDIE	CMDSENTIE	CMDRENDIE	RXOREIE	TXUREIE	DTTMOUTIE	CMDTMOUTIE	DTCRCFAILIE	CCRCFAILIE		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		
Bits		Fields		Des	criptior	าร											
31:24		Reserv	ed	Mus	Must be kept at reset value												
23		ATAEN	IDIE	CE-/ Write	ATA cor e 1 to th	mmand iis bit to	comple enable	tion sigr the inte	nal rece errupt.	ived inte	errupt e	nable					
22		SDIOIN	ITIE	SD I Write	/O inter e 1 to th	rupt rec iis bit to	eived ir enable	nterrupt the inte	enable errupt.								
21		RXDTV	ALIE	Data Write	a valid ir e 1 to th	n receive nis bit to	e FIFO enable	interrup the inte	t enable errupt.	9							
20		TXDTV	ALIE	Data Write	a valid ir e 1 to th	n transm iis bit to	nit FIFO enable	interrup the inte	ot enabl errupt.	е							
19		RXFIFC	DEIE	Rec	Receive FIFO empty interrupt enable												

Write 1 to this bit to enable the interrupt.

18	TXFIFOEIE	Transmit FIFO empty interrupt enable Write 1 to this bit to enable the interrupt.
17	RXFIFOFIE	Receive FIFO full interrupt enable Write 1 to this bit to enable the interrupt.
16	TXFIFOFIE	Transmit FIFO full interrupt enable Write 1 to this bit to enable the interrupt.
15	RXFIFOHFIE	Receive FIFO half full interrupt enable Write 1 to this bit to enable the interrupt.
14	TXFIFOHEIE	Transmit FIFO half empty interrupt enable Write 1 to this bit to enable the interrupt.
13	RXRUNIE	Data reception interrupt enable Write 1 to this bit to enable the interrupt.
12	TXRUNIE	Data transmission interrupt enable Write 1 to this bit to enable the interrupt.
11	CMDRUNIE	Command transmission interrupt enable Write 1 to this bit to enable the interrupt.
10	DTBLKENDIE	Data block end interrupt enable Write 1 to this bit to enable the interrupt.
9	STBITEIE	Start bit error interrupt enable Write 1 to this bit to enable the interrupt.
8	DTENDIE	Data end interrupt enable Write 1 to this bit to enable the interrupt.
7	CMDSENTIE	Command sent interrupt enable Write 1 to this bit to enable the interrupt.
6	CMDRENDIE	Command response received interrupt enable Write 1 to this bit to enable the interrupt.
5	RXOREIE	Received FIFO overrun error interrupt enable Write 1 to this bit to enable the interrupt.
4	TXUREIE	Transmit FIFO underrun error interrupt enable Write 1 to this bit to enable the interrupt.
3	DTTMOUTIE	Data timeout interrupt enable Write 1 to this bit to enable the interrupt.
2	CMDTMOUTIE	Command response timeout interrupt enable Write 1 to this bit to enable the interrupt.

1	DTCRCFAILIE	Data CRC fail interrupt enable
		Write 1 to this bit to enable the interrupt.
0	CCRCFAILIE	Command response CRC fail interrupt enable Write 1 to this bit to enable the interrupt.

23.8.14. SDIO FIFO counter register (SDIO_FIFOCNT)

Address offset: 0x48

Reset value: 0x0000 0000

This register is read only, it contains the remaining words to be written to or read from the FIFO. When DTTEN is setting, it loads value from data length register (SDIO_DTLEN). If data length is not word aligned, the remaining bytes are regarded as a word.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Reser	ved							FIFOCN	IT[23:16]			
												r			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							FIFOCN	T[15:0]							
							r								

Bits	Fields	Descriptions
31:24	Reserved	Must be kept at reset value
23:0	FIFOCNT[23:0]	Remaining number words to be written or read from the FIFO.

23.8.15. SDIO FIFO data register (SDIO_FIFO)

		Rese	t value	: 0x00	00 000	00										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
							FIFOD	[31:16]								
rw																
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
							FIFOD	T[15:0]								
							r	w								
Bits	Fields			Descriptions												
31:0	FIFODT[31:0] Receive and transmit FIFO data															
	The FIFO data occupies 32 entries of 32-bit words, from address:															
	(SDIO base + 0x080) to (SDIO base + 0Xfc).															

Address offset: 0x80

24. Universal serial bus on-the-go Full-Speed interface (USB OTG_FS)

24.1. Introduction

USB On-The-Go Full-Speed (OTG_FS) controller is fully compliant with the On-The-Go Supplement to the USB 2.0 Specification which can augment the capability of communicating with existing mobile devices and USB peripherals by adding host functionality. It can operate as device-only function controller which only supports Full-Speed (FS, 12Mbits/s) transfers or host-only function controller which supports Full-Speed (FS, 12Mbits/s) and Low-Speed (LS, 1.5Mbits/s) transfers. The controller is actually a dual-role device (DRD) controller which can operate as host or device during point-to-point communications with USB Host, Device, or OTG equipment. It fully supports the OTG standard's session request protocol (SRP) and host negotiation protocol (HNP).

24.2. Main features

The main features include three categories: general, host-mode and device-mode features.

24.2.1. General features

- Fully compliant with the On-The-Go Supplement to the USB 2.0 Specification
- In PHY, it includes fully support for the optional protocol detailed in the On-The-Go Supplement Rev 1.3 specification
 - Supports the insertion A-B type device identification (USB ID line)
 - Supports Host Negotiation Protocol (HNP) and Session Request Protocol (SRP)
 - Allows host to turn V_{BUS} off to conserve battery power in OTG applications
 - Supports V_{BUS} level detection with internal comparators
 - Supports dynamic switching between host and device roles
- It can be configured by software to operate as:
 - USB OTG_FS dual role device (host or device)
 - USB FS/LS host (A-device)
 - USB FS Peripheral (B-device)
- It supports SOF (at FS) and keep-alive (at LS) by

- SOF pulse PAD connectivity
- SOF pulse internal connection to TIMER2
- Configurable framing period
- Configurable end of frame (EOF) interrupt
- It provides a dedicated RAM of 1.25 KB with advanced FIFO control for flexible and efficient use of RAM:
 - Configurable partitioning of RAM space into different FIFOs
 - Each FIFO can hold multiple packets
 - Dynamic and contiguous memory allocation
- It guarantees max USB bandwidth for up to 1 frame via hardware and needs no system intervention
- It provides power saving features during USB suspend:
 - Stop system
 - Switch off clock domains internal to the digital core, PHY and FIFO power management
- It supports suspend and resume

24.2.2. Host-mode features

- Needs an external charge pump or 5V power for V_{BUS} voltage generation
- Provides one port which supports Full-Speed mode and Low-Speed mode
- Up to 8 host channels: each channel is dynamically configured in control, interrupt, bulk or isochronous transfer type
- Built-in hardware scheduler, it holds two hardware queues:
 - Up to 8 periodic transfer (interrupt or isochronous) requests in the periodic hardware queue
 - Up to 8 non-periodic transfer (control or bulk) requests in the non-periodic hardware queue
- In order to use the USB data RAM efficiently, it is allocated as a shared Rx FIFO, a periodic Tx FIFO and a non-periodic Tx FIFO to manage

24.2.3. Device-mode features

1 bidirectional control endpoint (endpoint 0)

- 3 IN endpoints and 3 OUT endpoints configurable to support bulk, interrupt or isochronous transfers
- Management of a shared Rx FIFO and up to 4 dedicated Tx FIFOs (one for each active IN endpoint) for efficient usage of the USB data RAM and less load on the application
- Support the soft disconnect feature
- Can be bus-powered or self-powered

24.3. Function description

Figure 24-1 USB OTG full-speed block diagram

24.3.1. USB 2.0 OTG Full-Speed core

The USB OTG_FS controller requires the 48 MHz \pm 0.25% clock, which is the USB Full-Speed generic clock generated from the reset and clock controller (RCC), via the external oscillators or internal oscillators. The USB clock is used to generate a 12MHz Full-Speed bit clock for transmitting and receiving USB differential data. Before configuring the OTG_FS core, the clock must be enabled.

The controller can be programmed through the OTG_FS core register interface. They can be accessed by the CPU through the AHB peripheral bus. The OTG_FS interface provides a single USB OTG interrupt line connected to the interrupt controller. It will inform the CPU of USB events.

The OTG FS controller provides dedicated locations to store data which the CPU needs to send or receive. When the CPU needs to send data, it will write 32-bit word to the dedicated Tx data locations which called push registers and the sending data are then automatically stored into Tx FIFOs. When the CPU receives data from USB, the receiving data will be automatically retrieved from the shared Rx FIFO to the dedicated Rx locations which called pop registers and the CPU reads 32-bit word from pop registers. The Tx FIFOs and the shared Rx FIFO are configured within the 1.25KB USB data RAM. There is one Tx FIFO

push register for each IN endpoint (device mode) or OUT channel (host mode) and one Rx FIFO pop register for each OUT endpoint (device mode) and IN channel (host mode).

The USB protocol layer is driven by the serial interface engine (SIE) and serialized over the USB by the full-/low-speed transceiver module within the on-chip physical layer (PHY).

24.3.2. OTG Full-Speed PHY

The OTG FS core controls the embedded Full-Speed OTG PHY. The PHY conveys USB control and data signals through the Full-Speed subset of the UTMI+ Bus (UTMIFS) and provides the physical support to USB connectivity.

The Full-Speed OTG PHY includes the following components:

- USB On-The-Go (OTG) transceiver module that supports USB 12Mb/s Full-Speed and USB 1.5Mb/s low-speed (LS) through a UTMI+ interface. The module directly drives transmission and reception on the single-ended USB lines.
- Optimized One-Port operation at Low-Speed (1.5 Mbps) and Full-Speed (12 Mbps).
- Integrated ID pull-up resistor used to sample the ID line for A/B device identification.
- DP/DM integrated pull-up and pull-down resistors controlled by the OTG_FS core are used as part of the protocol signaling to support role switching. In device mode, when V_{BUS} is sensed to be at a valid level (B-session valid), the core connects the pull-up resistor on DP to signal Full-Speed peripheral connections. In host mode, internal pull-down resistors are connected on both DP and DM. Pull-up and pull-down resistors are dynamically switched when the device's role is changed via the host negotiation protocol (HNP).
- Integrated V_{BUS} sensing comparators with hysteresis are used to detect V_{BUS} valid, A-B Session valid and session-end voltage thresholds. The voltage thresholds are used to drive the session request protocol (SRP), detect valid startup and end-of-session conditions, and constantly monitor the V_{BUS} supply during USB operations.
- V_{BUS} pulsing method circuit used to charge/discharge V_{BUS} through resistors during the SRP (weak drive).
- Pull-up/pull-down resistor ECN circuit. The DP pull-up consists of 2 resistors controlled separately from the OTG_FS as per the resistor Engineering Change Notice applied to USB Rev2.0. The dynamic trimming of the DP pull-up strength allows for better noise rejection and Tx/Rx signal quality.

24.4. OTG_FS operation

The OTG_FS core can operate in USB OTG mode, USB Host mode and USB peripheral mode.

24.4.1. OTG mode

In USB OTG mode, the core will become an OTG_FS dual role device (DRD).

OTG_FS dual role device (DRD)

An OTG_FS dual role device supports both USB host and device functionality. It uses a micro-AB receptacle. This allows a micro-A/B plug to be attached. Both the micro-A and micro-B plugs have an additional ID pin to signify which plug type was connected. The plug type connected to the receptacle determines the default role of the host or device.

Figure 24-2 OTG A-B device connection

Table 24-1 I/O Lines description

I/0 port	Description	Туре	Active Level
VBUS	Bus power measurement port	Input	High
DM	Differential data line - port	Input/Output	N/A
DP	Differential data line + port	Input/Output	N/A
ID	USB identification: Mini connector identification port	Input	Low: micro-A plug
			High Z: micro-B plug

ID line detection

After hardware reset, the USB OTG core is disabled. When enabled, it can default to being either Host or Peripheral, depending on the USB ID input pin. The ID line status is depending on which type of plug (Micro-A plug for Host, Micro-B plug for Peripheral) is connected to the

micro-AB receptacle.

- If the micro-A plug is connected with a grounded ID, the OTG_FS generates a connector ID pin status change interrupt (CIDPSC bit in OTG_FS_GIFR) for host software initialization, and automatically switches to the host role. In this configuration the OTG_FS complies with the standard FSM described by section 6.8.1: On-The-Go A-device of the On-The-Go Specification Rev1.3 supplement to the USB2.0.
- If the micro-B plug is connected with a floating ID wire, the integrated pull-up resistor detects a high ID level and the default peripheral role is engaged. In this configuration the OTG_FS complies with the standard FSM described by section 6.8.2: On-The-Go B-device of the On-The-Go Specification Rev1.3 supplement to the USB2.0.

SRP dual role device

According to the session request protocol (SRP), a device with the SRP capability can start a session (B-device) or respond to SRP (A-device). The SRP capability can enable the OTG_FS core to switch off the generation of V_{BUS} for the A-device to save power. To set the SRP capable bit in the global USB control and status register (SRPCAP bit in OTG_FS_GUSBCSR) can enable this capability.

Note: A-device is always in charge of driving V_{BUS} regardless of the host or peripheral role of the OTG_FS.

HNP dual role device

According to the host negotiation protocol (HNP), the OTG_FS core can dynamically change its role between A-host and A-peripheral or between B-peripheral and B-host by setting the HNP capable bit in the global USB control and status register (HNPCAP bit in OTG_FS_GUSBCSR). The current device status can be read by the combined values of the connector ID pin status bit in the global OTG control and status register (CIDPS bit in OTG_FS_GOTGCSR) and the current operation mode bit in the global interrupt flag register (COPM bit in OTG_FS_GIFR).

24.4.2. Host mode

The OTG_FS works as a USB host in the following conditions:

OTG host

In this case, the ID line is present and functional

- OTG A-host without HNP capability

When the micro-A plug is connected and the HNP-capable bit is cleared in the global USB control and status register (HNPCAP bit in OTG_FS_GUSBCSR). Integrated pull-down resistors are automatically set on the DP/DM lines.

- OTG A-host with HNP capability

When the micro-A plug is connected and the HNP-capable bit is not cleared.

OTG B-host

When the micro-B plug is connected and the HNP-capable bit is not cleared, OTG B-device switching to the host role via HNP

• Host only (see figure 24-3: USB host-only connection).

In this case, the USB ID line is ignored even if present on the USB connector and integrated pull-down resistors are automatically set on the DP/DM lines.

Setting the force host mode bit in the global USB control and status register (FHM bit in OTG_FS_GUSBCSR) will force the OTG_FS core to work as a USB host-only.

Figure 24-3 USB host-only connection

SRP-capable host

By setting the SRP capable bit in the global USB control and status register (SRPCAP bit in $OTG_FS_GUSBCSR$), the SRP feature is enabled for the host to save power by switching off the V_{BUS} power while the USB session is suspended.

USB host states

Host port power

A basic power switch must be added externally to drive the 5V V_{BUS} line if 5V are available on the application board or an external charge pump is required for the reason that on-chip 5V V_{BUS} generation is not supported. The external charge pump can be driven by any GPIO output. When the application uses the chosen GPIO to power on V_{BUS} , it must also set the port power bit in the host port control and status register (PP bit in OTG_FS_HPCSR).

V_{BUS} valid

In OTG host mode, the V_{BUS} sensing pin (PA9) should be connected to V_{BUS}. The V_{BUS} input ensures that valid V_{BUS} levels are supplied by the charge pump during USB operations. When V_{BUS} voltage drops below the V_{BUS} valid threshold (4.25 V), it will trigger an OTG interrupt by the session end bit (SE bit in OTG_FS_GOTGIFR). Then, it is required the application to remove the V_{BUS} power and clear the port power bit.

In host-only mode, the V_{BUS} sensing pin (PA9) is just used as GPIO and needs not be connected to V_{BUS} .

The charge pump over-current output can be input to any configured GPIO to prevent electrical damage. The over-current ISR must promptly disable the V_{BUS} generation and clear the port power bit as soon as the over-current events take place.

Host detection of a peripheral connection

In OTG host mode, if V_{BUS} has always not been over its session valid threshold (4.75v), whenever USB peripherals or B-device are attached on the USB bus, they will not be detected by the OTG_FS core. When V_{BUS} is at a valid level and a remote B-device is attached, the OTG_FS core will detect the device.

In host-only mode, USB peripherals or B-device are detected as soon as they are connected.

When the OTG_FS detects the device, it will generate a host port interrupt triggered by the port connected bit in the host port control and status register (PCD bit in OTG_FS_HPCSR).

Host detection of a peripheral disconnection

The peripheral disconnection event will trigger the disconnection interrupt (DISCIF bit in OTG_FS_GIFR).

Host enumeration

The host must start the enumeration process by sending USB reset signal and configuration commands to the new peripheral after detecting a peripheral connection.

Due to the attachment of a pull-up resistor on DP (FS) or DM (LS), the electrical debounce causes the instability of the bus. When the bus is stable again, the core will generate an OTG interrupt triggered by the debounce finish bit (DF) and then the application can start to drive a USB reset.

The application drives a USB reset signal (single-ended zero) by setting the port reset bit in the host port control and status register (PRST bit in OTG_FS_HPCSR) and keeping it between 10ms and 20ms. The application need take care of the timing count and clear the port reset bit in time.

The host port interrupt is triggered by the port enable/disable change bit (PEDC bit in OTG_FS_HPCSR) when the USB reset sequence has completed. After that, the application can read the speed of the enumerated peripheral from the port speed field in the host port control and status register (PS bit in OTG_FS_HPCSR) and the host is starting to drive SOF

(FS) or keep-alive (LS). Now, the host is ready to complete the peripheral enumeration by sending configuration commands to the peripheral.

Host suspend

By setting the port suspend bit in the host port control and status register (PSP bit in OTG_FS_HPCSR), the application can suspend the activity on the USB bus. After that, the OTG_FS core stops sending SOFs and enters the suspended state.

The suspended state can be exited in the following two conditions:

Host initiative

In this case, the application must:

- Firstly set the port resume bit to start resume signaling on the host port
- Then time the resume window
- Finally clear the port resume bit in time
- Remote device's initiative (remote wakeup)

In this case, when the core detects a remote wakeup signaling, the remote wakeup interrupt (WKUPIF bit in OTG_FS_GIFR) is generated, the port resume bit in the host port control and status register (PREM bit in OTG_FS_HPCSR) self-sets, and resume signaling is automatically driven over the USB. The application must

- Firstly time the resume window
- Then clear the port resume bit to exit the suspended state
- Finally restart the SOF

Host channels

The OTG_FS core is able to instantiate 8 host channels. Each of them supports an USB host transfer. The host is not able to support more than 8 transfer requests at the same time. If more than 8 transfer requests are pending from the application, the host controller driver (HCD) must re-allocate channels when they become re-available after receiving the transfer completed and channel halted interrupts.

Each host channel can be configured to support any type of periodic/non-periodic transaction in IN/OUT direction by using proper control registers (OTG_FS_HCnCTLR), transfer length registers (OTG_FS_HCnXLEN) and interrupt flag registers (OTG_FS_HCnIFR) with associated interrupt enableregisters (OTG_FS_HCnIEN).

Host channel control

The following host channel controls are available to the application through the host channel-n control register (OTG_FS_HCnCTLR):

• Program the maximum packet length (MPL)

- Program the endpoint number of target USB peripheral
- Program the endpoint transfer direction (IN/OUT)
- Program the FS/LS speed of target USB peripheral
- Program the endpoint transfer type (control, isochronous, bulk, interrupt)
- Program the address of target USB peripheral
- Program the periodic transfer to be executed during odd/even frames
- Channel enable/disable

Host channel transfer

The application can program the transfer size parameters and read the transfer status in the host channel transfer length registers (OTG_FS_HCnXLEN). But the programming must be done before setting the channel enable bit in the host channel characteristics register. Once the channel is enabled, these fields are read-only as the OTG_FS core updates it according to the current transfer status.

The following transfer parameters can be programmed:

- Data PID
- Packet count which make up of the overall transfer size
- Transfer size in bytes

Host channel status/interrupt

When the host channels interrupt flag bit in the global interrupt flag register (HCIF bit in OTG_FS_GIFR) is set, the application must first read the host all channels interrupt register (OTG_FS_HACINT) to get the exact channel number for the host channel-n interrupt flag register, then it must read the host channel-n interrupt flag register (OTG_FS_HCNIFR) which indicates the status of a channel with respect to USB- and AHB- related events. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_FS_HACINT and OTG_FS_GIFR registers. The interrupt enable bits for each interrupt source of each channel are also available in the OTG_FS_HCNIEN register.

The host core provides the following status checks and interrupts:

- Transfer completed interrupt, indicating that the data transfer is complete on both the application (AHB) and USB sides
- Channel has halted due to transfer completed abnormally, USB transaction error or disable command from the application
- STALL response received
- NAK response received
- ACK response received

- USB transaction error due to CRC failure, timeout, bit stuff error or false EOP
- Babble error
- Frame overrun
- Data toggle error

Host scheduler

Built-in host hardware scheduler is able to autonomously re-order and manage the USB transaction requests posted by the application. In order to achieve the higher level of priority granted to the isochronous and interrupt transfer types by the USB specification, at the beginning of each frame the host executes the periodic (isochronous and/or interrupt) transactions first, followed by the non-periodic (control and/or bulk) transactions.

The host scheduler holds two request queues (one for periodic and one for non-periodic) to process the USB transactions. Each request queue can hold up to 8 entries which represent 8 pending transaction requests from the application and each of them holds the IN or OUT channel number along with other information to perform a transaction on the USB. The sequence of the transactions on the USB interface depends on the order in which the requests are written to the queue.

If an isochronous or interrupt transaction scheduled for the current frame is still pending at the end of the current frame, the host generates an incomplete periodic transfer interrupt (IPXIF bit in OTG_FS_GIFR). The OTG FS core is fully responsible for the management of the periodic and non-periodic request queues. The application can read the status of each request queue from the read-only registers periodic/non-periodic Tx FIFO and queue status register (OTG_FS_HPTXFQSTR/OTG_FS_HNPTXFQS). These statuses contain:

- Free space currently available in the periodic/non-periodic Tx FIFO (OUT-transactions)
- The number of free entries currently available in the periodic/non-periodic request queue (8 max)
- IN/OUT token, host channel number and other status information.

As each request queue can hold a maximum of 8 entries, the application can push host transactions to scheduler in advance when they physically reach the USB for a maximum of 8 pending non-periodic and 8 pending periodic transactions.

- To post a periodic (non-periodic) OUT transaction request to the host scheduler (queue) the application must do as follows:
 - Configure transfer parameters for host channels
 - Enable the configured channel
 - Check that there is at least 1 entry available in the periodic (non-periodic) request queue by reading the PTXFS (NPTXFS) bits in the OTG_FS_HPTXFQSTR (OTG_FS_HNPTXFQS) register

- Load the data into the corresponding FIFO (push register). Each channel will be configured to have a push register. The data will be loaded into the corresponding periodic or non-periodic Tx FIFO depending upon the EPTYPE bit in the OTG_FS_HCnCTLR register. When the last 32-bit word to be written into the FIFO, a request will be inserted into the end of the queue to wait for scheduling.
- To post a periodic (non-periodic) IN transaction request to the host scheduler (queue) the application must do as follows:
 - Configure transfer parameters for host channels
 - Enable the configured channel will make a request be inserted into the end of the queue to wait for scheduling

24.4.3. Peripheral mode

The OTG_FS works as an USB peripheral in the following conditions:

• OTG Peripheral

In this case, the ID line is present and functional

- OTG B-device without HNP capability

When the micro-B plug is connected and the HNP-capable bit in the global USB control and status register (HNPCAP bit in OTG_FS_GUSBCSR) is cleared

OTG B-device with HNP capability

When the micro-B plug is connected and the HNP-capable bit is not cleared

- OTG A-device

When the micro-A plug is connected and the HNP-capable bit is not cleared, OTG A-device switches its default state (host mode) to its peripheral role

• Peripheral only

In this case, the USB ID line is ignored even if present on the USB connector.

When the force device mode bit in the global USB control and status register (FDM in OTG_FS_GUSBCSR) is set, the OTG_FS core will be forced to work as a USB peripheral-only.

Figure 24-4 USB peripheral-only connection

Note: An external regulator has to be added that generates the V_{DD} chip-supply from V_{BUS} to build a bus-powered device implementation with the B-device or peripheral-only configuration.

SRP-capable peripheral

By setting the SRP capable bit in the global USB control and status register (SRPCAP bit in OTG_FS_GUSBCSR), the OTG_FS can support the session request protocol (SRP). With this capability, the remote A-device is able to save power by switch off V_{BUS} while the USB session is suspended.

Peripheral states

Powered state

The OTG_FS will automatically enable pull-up resistor connection on DP to signal full-speed device connection to the host and generates the session request interrupt (SRQIF bit in GIFR) to notify that the USB peripheral will enter the powered state when the V_{BUS} input detects the B-Session valid voltage.

In the powered state, the host must send reset signaling to the OTG_FS. When the OTG_FS receives a reset signaling, the reset interrupt (RST in OTG_FS_GIFR) is generated. After the reset signaling is complete, the enumeration finish interrupt (ENUMF bit in OTG_FS_GIFR) is generated. At this time, the OTG_FS will enter the default state.

The V_{BUS} input constantly monitors V_{BUS} levels which are supplied by the host to ensure valid V_{BUS} during USB operations. If V_{BUS} drops below B-session valid voltage (for instance because of a power disturbance or if the host port has been switched off), the OTG_FS automatically disconnects and cause the session end detected (SE bit in OTG_FS_GOTGIFR) interrupt to notify that the OTG_FS has exited the powered state.

Soft disconnect

Setting the soft disconnect bit in the device control register (SD bit in OTG_FS_DCSR) will enable the soft disconnect feature. With this feature is enabled, the OTG_FS make the DP pull-up resistor be disconnected which causing a device disconnect detection interrupt on the host side even though the USB cable was not really removed from the host port.

Default state

In the default state, the host will send a SET_ADDRESS command. When the core decode a valid SET_ADDRESS command on the USB, the application writes the corresponding address into the device address field in the device configuration register (DAR bit in OTG_FS_DCG). The OTG_FS then enters the address state and is ready to response host transactions at the configured USB address.

Suspended state

If the OTG_FS peripheral constantly counting 3 ms of USB idleness, the early suspend interrupt (ESP bit in OTG_FS_GIFR) is generated, and confirmed 3 ms later, if appropriate, by the suspend interrupt (SP bit in OTG_FS_GIFR). The device suspend bit is then automatically set in the device status register (SPST bit in OTG_FS_DSTR) and the OTG_FS enters the suspended state.

The suspended state can be exit by following means:

• Exit by the device itself

In this case, the application sets the remote wakeup signaling bit in the device control register (RWS bit in OTG_FS_DCTLR) and clears it after 1 to 15ms.

• Exit by a resume signaling

In this case, when the device receives a resume signaling on the USB from the host, the resume interrupt (WKUPIF bit in OTG_FS_GIFR) is generated and the device suspend bit is automatically cleared.

Peripheral endpoints

The OTG_FS core supports the following USB endpoints:

- Default control endpoint 0:
 - Bidirectional and handles control information only
 - Separate set of registers to handle IN and out transactions
 - Separate set of control and status, interrupt and transfer configuration registers which slightly differ from that of other endpoints
- 3 IN and 3 OUT endpoints:
 - Can be configured with the transfer types isochronous, bulk or interrupt

- Each of them has independent control and status, transfer configuration, and interrupt registers
- The Device IN/OUT endpoints common interrupt enable register (OTG_FS_DIEPIEN/DOEPIEN) is available to enable/disable a single kind of endpoint interrupt source on all of the IN/OUT endpoints (endpoint0 included)
- Support incomplete isochronous IN/OUT transfer interrupt (IISOIX/IISOOX bit in OTG_FS_GIFR), asserted when there is at least one isochronous IN/OUT endpoint on which the transfer is not completed in the current frame. This interrupt is asserted along with the end of periodic frame interrupt (EOPF bit in OTG_FS_GINTSTS).

Endpoint control

The device endpoint-n control registers (OTG_FS_DIEPnCTLR/DOEPnCTLR) allow the application to program:

- Supported maximum packet length
- Endpoint activate in current configuration
- The even/odd frame during which the transaction is received or transmitted (isochronous only)
- The NAK bit to always negative-acknowledge the host regardless of the FIFO status (optional)
- Endpoint transfer type (control, isochronous, bulk, interrupt)
- The STALL bit to always stall host tokens to that endpoint (optional)
- Tx FIFO number associated with the IN endpoint
- The expected or transmitted data0/data1 PID (bulk/interrupt only)
- The SNOOP mode for OUT endpoint not to check the CRC field of received data (optional)
- Endpoint enable/disable

Endpoint transfer

The device endpoint-n transfer length registers (OTG_FS_DIEPnXLEN/DOEPnXLEN) are used by the application to program the transfer size parameters and read the transfer status. Programming must be done before setting the endpoint enable bit in the endpoint control register. Once the endpoint is enabled, these fields are read-only. Then only the OTG FS core can update them with the current transfer status.

The following transfer parameters can be programmed:

• Packet count that constitute the overall transfer size

• Transfer size in bytes

Endpoint status/interrupt

When the OUT endpoint interrupt bit or the IN endpoint interrupt bit in the global interrupt flag register (OEPIF or IEPIF bit in OTG_FS_GIFR respectively) is set, the application must first read the device all endpoints interrupt (OTG_FS_DAEPINT) register to get the exact endpoint number for the device endpoint-x interrupt register. Then the application must read the corresponding device endpoint-n interrupt registers (OTG_FS_DIEPnIFR/DOEPnIFR) which indicate the status of an endpoint with respect to USB- and AHB-related events. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_FS_DAEPINT and OTG_FS_GIFR registers.

The peripheral core provides the following status bits and interrupts:

- Transfer completed interrupt, indicating that data transfer was completed on both the application (AHB) and USB sides
- Endpoint disable by application is effective
- Setup phase has been done (control-out only)
- OUT token received when endpoint was disabled
- More than 3 back-to-back setup packets were received (control-out only)
- Timeout condition detected (control-in only)
- IN token received when Tx FIFO was empty (bulk-in/interrupt-in only)
- Associated transmit FIFO is half or completely empty (in endpoints)
- NAK acknowledge has been transmitted to the host (isochronous-in only)
- Endpoint NAK by application is effective (isochronous-in only)

24.5. USB OTG_FS FIFO

Figure 24-5 USB OTG core

BIUS: Bus interface units; AIU: Application interface unit; PFC: Packet FIFO controller; MAC: Medial access controller; WPC: Wakeup and power controller; PIU: PHY interface unit; SIE: Serial interface controller

The USB system uses a sophisticated FIFO control mechanism to manage the 1.25 KB of dedicated RAM. The packet FIFO controller (PFC) module in the OTG_FS core organizes the dedicated RAM space into Tx FIFOs and a single shared Rx FIFO. The Tx FIFOs are used for the application pushes the data to be temporarily stored before the USB transmission. The single shared Rx FIFO is used for temporarily storing the data received from the USB before retrieval (popped) by the application. The number of instructed FIFOs and how these are organized inside the dedicated RAM depends on the device's role.

24.5.1. Host FIFO architecture

Figure 24-6 Host-mode FIFO address mapping and AHB FIFO access mapping

Host Rx FIFO

The host just uses one shared Rx FIFO as a receive buffer to hold the received data (payload of the received packet) from the USB until it is transferred to the system memory. It is not only for all periodic transactions, but also for all non-periodic transactions. If the FIFO has no free space available, the core will stack packets received from any remote IN endpoint back-to-back. The FIFO will store the status of each received packet with the host channel destination, byte count, data PID and validity of the received data. By writing the receive FIFO length register (OTG_FS_GRXFLEN), the application can configure the size of the receive FIFO.

It is the single shared Rx FIFO architecture which let all configured IN host channels share the same RAM buffer that makes it highly efficient for the USB host to fill in the receive data buffer. The OTG FS core can fill in the receive FIFO up to the limit for any sequence of IN tokens driven by the host software

The RXFEL bit will be set and kept to trigger the Rx FIFO not-empty interrupt as long as there is at least one packet available for download. When the application receives the interrupt, it will read the packet information from the receive status read and pop register and finally pops the data off the receive FIFO.

Host Tx FIFOs

There are two transmit FIFOs to be used by the host for all OUT transactions. One for all non-periodic (control and bulk), the other for all periodic (isochronous and interrupt). The application push the data (payload of the transmit packet) to be transmitted over the USB into these FIFOs which are used as transmit buffers to hold data. By writing the host periodic/non-periodic transmit FIFO size register (OTG_FS_HPTXFLEN/HNPTXFLEN), the application can configure the size of the periodic/non-periodic Tx FIFO.

In order to grant the higher priority to the periodic type of traffic over the USB frame, the core implements the two Tx FIFOs so that the built-in host scheduler can process the periodic request queue in periodic Tx FIFO first and next process the non-periodic request queue in non-periodic Tx FIFO at the beginning of each frame.

It is the two transmit FIFO architecture which let all host channels configured to support 768

periodic (non-periodic) transactions in the OUT direction share the same RAM buffer that provides the USB host with separate optimization for periodic and non-periodic transmit data buffer management. The OTG FS core can fill in the periodic (non-periodic) transmit FIFO up to the limit for any sequence of OUT tokens driven by the host software

The OTG_FS core generates the periodic/non-periodic Tx FIFO empty interrupt (PTXFEIF/NPTXFEIF bit in OTG_FS_GIFR) as long as the periodic/non-periodic Tx FIFO is half or completely empty, depending on the value of the periodic/non-periodic Tx FIFO empty level bit in the global AHB control and status register (PTXFEL/TXFEL bit in OTG_FS_GAHBCSR). The application can push the transmission data in advance as long as free space is available in the periodic/non-periodic Tx FIFO and the periodic/non-periodic request queue. The host periodic/non-periodic transmit FIFO and queue status register (OTG_FS_HPTXFQSTR/HNPTXFQS) can be read to know how much space is available.

24.5.2. Peripheral FIFO architecture

Figure 24-7 Device-mode FIFO address mapping and AHB FIFO access mapping

Peripheral Rx FIFO

The OTG peripheral receives the data directed to all OUT endpoints into a single shared Rx FIFO. Before the Rx FIFO has free space available, the core will stack received packets back-to-back. The core stores the status of the received packet (the OUT endpoint destination number, the byte count, the data PID and the validity of the received data) will be written by the PFC on top of the data payload. The OTG peripheral will return host transactions with a NACK and cause an interrupt on the addressed endpoint when no more space is available. By writing the receive FIFO length register (OTG_FS_GRXFLEN), the application can configure the size of the receive FIFO.

It is the single shared Rx FIFO architecture which let all OUT endpoints share the same RAM

buffer that makes it more efficient for the USB peripheral to fill in the receive RAM buffer. The OTG FS core can fill in the receive FIFO up to the limit for any host sequence of OUT tokens

The Rx FIFO non-empty interrupt (RXFNEIF bit in OTG_FS_GIFR) is constantly generated as long as there is at least one packet available for application to download. When the application receives the interrupt, then it will keep it and read the packet information from the receive status read and pop register (OTG_FS_GRXSRP) and finally pops data off the receive FIFO by reading from the endpoint-related pop address.

Peripheral Tx FIFOs

The single shared Rx FIFO architecture is not suitable for IN transfer, only know the host request order ahead of time or predict the processing procedure of process will packets from all endpoints are transmitted to the same Tx FIFO in sequence. So, the core configures one dedicated Tx FIFO for each IN endpoint. The application configures FIFO sizes by writing the non-periodic transmit FIFO length register (OTG_FS_DIEPOTXFLEN) for IN endpoint0 and the device IN endpoint transmit FIFOx registers (OTG_FS_DIEPnTXFLEN) for IN endpoint0 and endpoint-n.

The dedicated Tx FIFO architecture is very flexible and can greatly reduce the load application. These Tx FIFOs have not a request queue, there is no need to predict access sequence when the USB host access the non-periodic endpoint.

According to the TXFEL bit in the general AHB configuration register (TXFEL bit in OTG_FS_GAHBCSR), the OTG_FS core will generate the transmit FIFO empty interrupt (PTXFEIF/NPTXFEIF bit in OTG_FS_GIFR) to indicate the Tx FIFO of the corresponding IN endpoint is half empty or complete empty. The application will obtain IN service endpoint number first by reading equipment all endpoint interrupt register (OTG_FS_DAEPINT), and then check whether FIFO has enough free space by reading device IN endpoint n (OTG_FS_DIEPnTXFSTR), finally send Tx FIFO-n data by writing the corresponding endpoint PUSH register.

24.5.3. FIFO RAM allocation

Host mode

Receive FIFO RAM allocation

In addition to each received packet, each received packet's status information is written to the FIFO. Therefore, a minimum space of (Largest Packet Size / 4) + 1 must be allocated to receive packets. Typically, if multiple isochronous channels are enabled, then at least two (Largest Packet Size / 4) + 1 spaces must be allocated to receive back-to-back packets so that when the previous packet is being transferred to the CPU, the USB can receive the subsequent packet.

Transfer complete status information is also pushed to the FIFO along with the last packet in the host channel. So, additional one location must be allocated.

Transmit FIFO RAM allocation

For the host Non-periodic Transmit FIFO, the minimum amount of RAM required is the largest maximum packet size among all supported non-periodic OUT channels.

Typically, two Largest Packet Sizes worth of space is recommended, so that when the current packet is under transfer to the USB, the CPU can get the next packet.

The minimum amount of RAM required for host periodic Transmit FIFO is the largest maximum packet size out of all the supported periodic OUT channels. If there is at least one Isochronous OUT endpoint, then the space must be at least two times the maximum packet size of that channel.

Note: More space allocated in the Transmit Non-periodic FIFO results in better performance on the USB.

Device mode

Receive FIFO RAM allocation

The application should allocate RAM for SETUP Packets: 10 locations must be reserved in the receive FIFO to receive SETUP packets on control endpoint. The core does not use these locations, which are reserved for SETUP packets, to write any other data. One location is to be allocated for Global OUT NAK. Status information is written to the FIFO along with each received packet. Therefore, a minimum space of (Largest Packet Size / 4) + 1 must be allocated to receive packets. If multiple isochronous endpoints are enabled, then at least two (Largest Packet Size / 4) + 1 spaces must be allocated to receive back-to-back packets. Typically, two (Largest Packet Size / 4) + 1 spaces are recommended so that when the previous packet is being transferred to the CPU, the USB can receive the subsequent packet.

Along with the last packet for each endpoint, transfer complete status information is also pushed to the FIFO. Typically, one location for each OUT endpoint is recommended

Transmit FIFO RAM allocation

The minimum RAM space required for each IN Endpoint Tx FIFO is the maximum packet size for that particular IN endpoint.

Note: More space allocated in the Tx IN Endpoint FIFO results in better performance on the USB.

24.6. SOF trigger

Figure 24-8 SOF connectivity

The OTG FS core provides following means to operate SOF:

- Monitor, track and configure SOF framing in the host and peripheral mode
- SOF pulse output connectivity feature.

As the audio peripheral needs to synchronize to the isochronous stream provided by the PC, or the host needs to trim its framing rate according to the requirements of the audio peripheral, so these utilities are especially useful for adaptive audio clock generation techniques.

An SOF pulse signal is generated at any SOF start token and with a width of 12 system clock cycles, which has following connections:

- Can be made available externally on the SOF pin using the SOFOUTEN bit in the global control and configuration register.
- Can be internally connected to the input trigger of TIMER2, this connection is enabled by register

So the SOF pulse can trigger:

• The input capture feature

- The output compare feature
- The timer (TIMER2)

24.6.1. Host SOFs

In host mode, the application can control over the SOF framing period by programming the number of PHY clocks occurring between the generation of two consecutive SOF (FS) or keep-alive (LS) tokens in the host frame interval register (OTG_FS_HFIR). By setting the SOF bit in OTH_FS_GIFR, the core generates an interrupt which is triggered at any start of frame. The current frame number and the time remaining until the next SOF are tracked in the host frame number register (OTG_FS_HFINF).

24.6.2. Peripheral SOFs

In device mode, each time the core receives an SOF token on the USB will trigger the start of frame interrupt by setting the SOF bit in OTG_FS_GIFR. Next, the application can read the corresponding frame number from the device status register (FNRSOF bit in OTG_FS_DSTR).

The periodic frame interval can be programmed in the device configuration register (PFI bit in OTG_FS_DCFG). When 80%, 85%, 90% or 95% of the time frame interval elapsed will trigger the end of periodic frame interrupt (EOPF bit in OTG_FS_GIFR) to notify the application. This feature can be used to determine if all of the isochronous traffic for that frame is complete.

24.7. Power options

The general core configuration register has three bits to control power consumption of the OTG PHY:

• A-V_{BUS} sensing enable (OTG_FS_GCCG/VBUSADEN)

It switches on/off the V_{BUS} comparators associated with A-device operations. It must be set when in A-device (USB host) mode and during HNP.

• B-V_{BUS} sensing enable (OTG_FS_GCCG/VBUSBDEN)

It switches on/off the V_{BUS} comparators associated with B-device operations. It must be set when in B-device (USB peripheral) mode and during HNP.

• PHY power down (OTG_FS_GCCG/PDWN)

It switches on/off the full-speed transceiver module of the PHY. It must be preliminarily set to allow any USB operation.

When the USB session is not yet valid or the device is disconnected, following power reduction techniques are available while the core is in the USB suspended state.

- Stop PHY clock (SPHYCLK bit in OTG_FS_PCCTLR)
 - The application can switch off most of the 48 MHz clock domain internal to the OTG Full-Speed core by clock gating when setting the stop PHY clock bit in the clock gating control register. The dynamic power consumption due to the USB clock switching activity is cut even if the 48 MHz clock input is kept running by the application.
 - Most of the transceiver is also disabled, and only the part in charge of detecting the asynchronous resume or remote wakeup event is kept alive.
- Gate HCLK (GHCLK bit in OTG_FS_PCCTLR)
 - The application can switch off most of the system clock domain internal to the OTG_FS core by clock gating when setting the Gate HCLK bit in the clock gating control register. Only the register reading and writing interface is kept alive. The dynamic power consumption due to the USB clock switching activity is cut even if the system clock is kept running by the application for other purposes.
- USB system stop
 - When the OTG_FS is in the USB suspended state, the application may decide to drastically reduce the overall power consumption by a complete shutting down of all the clock sources in the system. USB System Stop is activated by first setting the Stop PHY clock bit and then configuring the system deep sleep mode in the power control system module (PWR).
 - The OTG_FS core automatically reactivates both system and USB clocks by asynchronous detect of remote wakeup (as a host) or resume (as a device) signaling on the USB.

To save dynamic power, the USB data FIFO is clocked only when accessed by the OTG_FS core.

24.8. OTG_FS interrupts

Two interrupt vectors are assigned to the OTG_FS interface. One is OTG wakeup interrupt which is used to wake up the OTG_FS controller. The other is the OTG_FS core interrupt which is used to handle all interrupts.

All interrupts are classified four kinds: general interrupts, OTG mode interrupts, host mode interrupts and device mode interrupts.

The general interrupts are:

- Mode mismatch interrupt (MMIS)
- Connector ID status change interrupt (CIDSC)
- Power and clock interrupts

The OTG mode interrupts are:

- Session-related interrupts
- HNG-related interrupts

The host mode interrupts are:

- Channel-related interrupts
- Port-related interrupts
- FIFO-related interrupts

The device mode interrupts are:

- Endpoints-related interrupts
- Transfer-related interrupts
- FIFO-related interrupts

Figure 24-9 Interrupt hierarchy

24.9. USB system performance

It is the large RAM buffers and the flexible, effective FIFO architecture and, especially, the advanced FIFO control mechanism that make the best USB system performance be achieved. Indeed, this mechanism allows the OTG_FS to fill in the available RAM space at best regardless of the current USB sequence. With these features:

Optimize the CPU bandwidth usage, the application reduce its payload without USB intervention:

- When transmission data are sent over the USB efficiently, the application can accumulate large amounts of transmission data in advance
- The application benefits from having a large time to download data from the single receive FIFO
- Compared with application intervention, the USB Core can maintain its full operating rate, that is to provide maximum Full-Speed bandwidth with a great margin of autonomy:
 - It can autonomously manage the sending of data over the USB from the buffer by a large data transmission buffer
 - It can autonomously fill in the buffer with the data coming from the USB by a large data receive buffer

The USB system can withstand the maximum Full-Speed data rate for up to 1 frame without any CPU intervention as the OTG_FS core can fill in the 1.25 KB RAM buffer which is more than enough to cover a Full-Speed frame very efficiently.

24.10. OTG_FS registers

The OTG_FS registers (OTG_FSRs) can be accessed directly by the MCU; the application can read from and write to them through the AHB slave interface to control the OTG_FS controller. All registers are 32 bit wide and aligned in the word address boundaries. The peripheral registers have to be accessed by words (32 bits).

OTG_FSRs are classified as follows:

- Global control and status registers (GCSRs)
- Host control and status registers (HCSRs)
- Device control and status registers (DCSRs)
- Power and clock registers (PCRs)
- FIFO access registers (FARs)

The Global control and status, Power and clock and FIFO access registers are used in both host and device modes. Host control and status registers only are used in host mode and Device control and status registers only are used in device mode. When the OTG_FS controller is operating in host mode, the application must not access registers from device mode and vice versa. If an illegal access occurs, a mode mismatch interrupt is generated and reflected in the global interrupt flag register (MMISIF bit in OTG_FS_GIFR). When the core switches from one mode to the other, the registers in the new mode of operation must be reprogrammed as they would be after a power-on reset.

24.10.1. OTG_FSRs memory map

All OTG_FS registers are located in the AHB clock domain. Each register group occupies different addresses. All addresses given are relative to the USB-OTG base address of 0x5000 0000.

Figure 24-10 OTG_FSRs memory map

n = 3 in device mode and n = 7 in host mode

24.10.2. USB OTG_FS global registers

Global registers do not need to be re-initialized when switching between host mode and device mode. They can be accessed in both host and device modes.

OTG_FS Global OTG control and status register (OTG_FS_GOTGCSR)

Address offset: 0x0000

Reset value: 0x0000 0800

The register controls the USB OTG operation and reflects the status of the OTG function of the core.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	erved						BSV	ASV	DI	CIDPS
												r	r	r	r

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved		DHNPEN	HHNPEN	HNPREQ	HNEGS			Rese	erved			SREQ	SREQS
				rw	rw	rw	r							rw	r

Bits	Fields	Descriptions
19	BSV	B-session valid
		B-device mode transceiver status.
		0: B-session is not valid
		1: B-session is valid
		In OTG mode, setting this bit will determine if the B-device is connected or
		disconnected.
		Note: Only accessible in device mode.
18	ASV	A- session valid
		A-host mode transceiver status.
		0: A-session is not valid
		1: A-session is valid
		The A-device is default host at the start of a session.
		Note: Only accessible in host mode.
17	DI	Debounce interval
		Debounce interval of a detected connection.
		0: Long debounce interval, used for physical connections (100 ms + 2.5µs)
		1: Short debounce interval, used for soft connections (2.5µs)
		Note: Only accessible in host mode.
16	CIDPS	Connector ID pin status
		Connector ID pin status on a connect event.
		0: The OTG_FS controller is in A-device mode
		1: The OTG_FS controller is in B-device mode
		Note: Accessible in both device and host modes.
11	DHNPEN	Device HNP enable
		Set by the application when it has successfully received a SetFeature.SetHNPEnable
		command from the connected USB host.
		0: HNP is not enabled

		1: HNP is enabled
		Note: Only accessible in device mode.
10	HHNPEN	Host HNP enable
		Set by the application when it has successfully enabled HNP (using the
		SetFeature.SetHNPEnable command) on the connected device.
		0: HNP is not enabled
		1: HNP is enabled
		Note: Only accessible in host mode.
9	HNPREQ	HNP request
		Set by the application when it needs to send an HNP request to the connected USB
		host.
		Cleared by the application by clearing host negotiation status change bit (HNEGSC) in
		the OTG_FS_GOTGIFR register.
		0: No HNP request
		1: HNP request
		Note: Only accessible in device mode.
8	HNEGS	Host negotiation success
		Set by the core when host negotiation is successful.
		Cleared by the core when the HNP request bit (HNPREQ) is set.
		0: Host negotiation failure
		1: Host negotiation success
		Note: Only accessible in device mode.
1	SREQ	Session request
		Set by the application to initiate a session request on the USB.
		Cleared by the application by clearing the session request status change bit
		(SREQSC) in the OTG_FS_GOTGIFR register.
		If you use the USB 1.1 full-speed serial transceiver interface to initiate the session
		request, the application must wait until V_{BUS} discharges to 0.2 V, after the B-session
		valid bit (BSV) is cleared. This discharge time varies between different PHYs and can
		be obtained from the PHY vendor.
		0: No session request
		1: Session request
		Note: Only accessible in device mode.
0	SREQS	Session request success
		Set by the core when a session request initiation is successful.
		0: Session request failure
		1: Session request success
		Note: Only accessible in device mode.

OTG_FS Global OTG interrupt flag register (OTG_FS_GOTGIFR)

Address offset: 0x0004

Reset value: 0x0000 0000

The application reads this register to determine which event has caused an OTG interrupt and clears the bits in this register to clear the associated OTG interrupt.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	erved						DF	ADTO	HNEGREQ	
												rc_	rc_	rc_	
												w1	w1	w1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Reserved	HNEGSC	SREQSC	Reserved	SE	Reserved
	rc_	rc_		rc_	
	w1	w1		w1	

Bits	Fields	Descriptions
19	DF	Debounce finish
		Set by the core when the debounce is finished after the device is connected. The
		application can initiate USB reset signal after detecting this interrupt. This bit is only
		valid when the HNP Capable or SRP Capable bit is set in the OTG_FS_GUSBCSR
		register (HNPCAP or SRPCAP bit).
		Note: Only accessible in host mode.
18	ADTO	A-device timeout
		Set by the core to indicate that the A-device has timed out while waiting for the
		B-device to connect.
		Note: Accessible in both device and host modes.
17	HNEGREQ	Host negotiation request
		Set by the core when the core detects a host negotiation request on the USB.
		Note: Accessible in both device and host modes.
9	HNEGSC	Host negotiation status change
		Set by the core when a host negotiation request status is changed. The application
		must read the host negotiation success bit (HNEGS bit) of the OTG_FS_GOTGCSR
		register to check for success or failure.

Note: Accessible in both device and host modes.

8	SREQSC	Session request status change
		Set by the core when a session request status is changed. The application must read
		the session request success bit (SREQS bit) in the OTG_FS_GOTGCSR register to
		check for success or failure.
		Note: Accessible in both device and host modes.
2	SE	Session end
		Indicates that the level of the voltage on V_{BUS} is no longer valid for a B-Peripheral
		session when V_{BUS} < 0.8 V.

OTG_FS Global AHB control and status register (OTG_FS_GAHBCSR)

Address offset: 0x0008

Reset value: 0x0000 0000

This register mainly contains AHB system-related configuration parameters. In core initialization need to program the register after power-on or mode switching. Do not change this register after the core initialization. The application must program this register before starting any transactions on either the AHB or the USB.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	arved							
							Rese	liveu							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Reserved	I			PTXFEL	TXFEL			Rese	erved			GINTEN
							rw	rw							rw

Bits	Fields	Descriptions
8	PTXFEL	Periodic Tx FIFO empty level
		Indicates when the periodic transmit FIFO empty interrupt (PTXFEIF bit) in the
		OTG_FS_GIFR register is triggered.
		0: The periodic transmit FIFO is half empty
		1: The periodic transmit FIFO is completely empty
		Note: Only accessible in host mode.
7	TXFEL	Tx FIFO empty level
		In device mode, this bit indicates when IN endpoint transmit FIFO empty interrupt

(TXFEIF bit in OTG_FS_DIEPnIFR.) is triggered.

- 0: The IN endpoint transmit FIFO is half empty
- 1: The IN endpoint transmit FIFO is completely empty

In host mode, this bit indicates when the non-periodic transmit FIFO empty interrupt

- (NPTXFEIF bit in OTG_FS_GIFR) is triggered:
- 0: The non-periodic transmit FIFO is half empty
- 1: The non-periodic transmit FIFO is completely empty

0 GINTEN Global interrupt enable Set by the application to enable or disable all interrupts. The core updates the interrupt status registers irrespective of this bit's setting. 0: Disable all interrupts. 1: Enable all interrupts.

Note: Accessible in both device and host modes.

OTG_FS Global USB control and status register (OTG_FS_GUSBCSR)

Address offset: 0x000C

Reset value: 0x0000 0A00

This register contains USB and USB-PHY related configuration parameters. In core initialization need to program the register after power-on or mode switching. Do not change this register after the core initialization. The application must program this register before starting any transactions on either the AHB or the USB.

The application must wait at least 25 ms for the change taking effect after setting the

		force bit.
		Note: Accessible in both device and host modes.
29	FHM	Force host mode
		Setting this bit will force the core to host mode irrespective of the OTG_FS ID input pin.
		0: Normal mode
		1: Host mode
		The application must wait at least 25 ms for the change taking effect after setting the
		force bit.
		Note: Accessible in both device and host modes.
13:10	UTT	USB turnaround time
		Sets the turnaround time in PHY clocks.
		Note: Only accessible in device mode.
9	HNPCAP	HNP-capable
		Set by application to control the OTG_FS controller's HNP capabilities.
		0: HNP capability is disabled
		1: HNP capability is enabled
		Note: Accessible in both device and host modes.
8	SRPCAP	SRP-capable
		Set by application to control the OTG_FS controller's SRP capabilities. If the core
		operates as a B-device without SRP capability, it cannot request the connected
		A-device (host) to activate V_{BUS} and start a session.
		0: SRP capability is disabled
		1: SRP capability is enabled
		Note: Accessible in both device and host modes.
7	FSSTS	Full Speed serial transceiver select
		This bit is always 1 with read-only access.
2:0	TOC	FS timeout calibration
		To account for any additional delays introduced by the PHY, the application can
		configure the Full-Speed inter packet timeout duration in the core by setting this field.
		The value of this field is in terms of PHY.
		This can be required, because the delay introduced by the PHY in generating the line
		state condition can vary from one PHY to another.
		The USB standard timeout value for full-speed operation is 16 to 18 (inclusive) bit
		times. The application sets this filed based on the speed of enumeration. The number
		of bit times added per PHY clock is 0.25 bit times.

OTG_FS Global reset control register (OTG_FS_GRSTCTLR)

Address offset: 0x0010

Reset value: 0x8000 0000

The application uses this register to reset various hardware features inside the core.

		-	-	-		-	-
Reserved	TXFNUM	TXFF	RXFF	Res.	HFCRST	HCSRST	CSRST
	rw	rs	rs		rs	rs	rs

Bits	Fields	Descriptions
31	AHBMIDL	AHB master idle
		Indicates that the AHB master module is in the Idle condition. This bit is always 1.
		Note: Accessible in both device and host modes.
10:6	TXFNUM	Tx FIFO number
		Indicates which Tx FIFO must be flushed using the Tx FIFO Flush bit. Only when the
		core cleared the transmit FIFO Flush bit, the application can modify this field. 00000:
		 Non-periodic Tx FIFO flush in host mode
		 Tx FIFO 0 flush in device mode
		00001:
		 Periodic Tx FIFO flush in host mode
		 Tx FIFO 1 flush in device mode
		00010: Tx FIFO 2 flush in device mode
		00011: Tx FIFO 3 flush in device mode
		1xxxx: Flush all the transmit FIFOs in device or host mode.
		Note: Accessible in both device and host modes.
5	TXFF	Tx FIFO flush
		Set by the application to selectively flush a single or all transmit FIFOs, but cannot do
		so if the core is in the midst of a transaction.
		When the core is reading from or writing to the Tx FIFO, the application must not set
		this bit. Verify using these registers:
		Read—NAK Effective Interrupt ensures the core is not reading from the FIFO
		Note: Accessible in both device and host modes.
4	RXFF	Rx FIFO flush
		Set by the application to flush the entire Rx FIFO, but cannot do so if the core is in the
		middle of a transaction.

When the core is reading from or writing to the Rx FIFO, the application must not set this bit. The application must wait until the bit is cleared before performing any other operations. This bit requires 8 clocks (slowest of PHY or AHB clock) to clear. Note: Accessible in both device and host modes. 2 HFCRST Host frame counter reset Set by the application to reset the frame number counter inside the core. When the frame counter is reset, the core sends out the subsequent SOF which has a frame number of 0. Note: Only accessible in host mode. 1 HCSRST HCLK soft reset Set by the application to flush the control logic except for FIFOS in the AHB Clock domain. Only AHB Clock Domain pipelines are reset. According to the protocol, all state machines in the AHB clock domain are reset to the Idle state after terminating the transactions on the AHB. CSR control bits used by clearing the AHB clock domain state machines. To clear this interrupt, status enable bits that control the interrupt status and are generated by the AHB clock domain state machine are cleared. Because interrupt status bits are not cleared, the application can get the status of any core events that occurred after it set this bit. This is a self-clearing bit that the core clears after all necessary logic is reset in the core. This can take several clocks, depending on the core's current state. Note: Accessible in both device and host modes. 0 CSRST Core soft reset Resets the HCLK and PCLK domains as follows: Clears the interrupts and all the CSR register bits except for the following bits: SPHYCLK bit in OTG_FS_PCCTLR FSLSPCS bit in OTG_FS_HCTLR _ DS bit in OTG_FS_DCFG All module state machines (except for the AHB slave unit) are reset to the Idle state, and all the transmit FIFOs and the receive FIFO are flushed. Any transactions on the AHB Master are terminated as soon as possible, after completing the last data phase of an AHB transfer. Any transactions on the USB are terminated immediately. The application can write to this bit any time it wants to reset the core. This is a self-clearing bit and the core clears this bit after all the necessary logic is reset in the core, which can take several clocks, depending on the current state of the core. Once this bit has been cleared, the software must wait at least 3 PHY clocks before accessing the PHY domain (synchronization delay). The software must also check that bit 31 in this register is set to 1 (AHB Master is Idle) before starting any operation. Typically, the software reset is used during software development and also when you dynamically change the PHY selection bits in the above listed USB configuration

registers.

When you change the PHY, the corresponding clock for the PHY is selected and used in the PHY domain. Once a new clock is selected, the PHY domain has to be reset for proper operation.

Note: Accessible in both device and host modes.

OTG_FS Global interrupt flag register (OTG_FS_GIFR)

Address offset: 0x0014

Reset value: 0x0400 0021

This register reflects system-level events which interrupt the application for in the device mode or host mode.

This register can indicate the current mode. Some of the bits in this register are valid only in host mode, while others are valid in device mode only. To clear the interrupt status bits of the rc_w1 type, the application must write 1 into the bit.

The FIFO status interrupts are read-only; once software reads from or writes to the FIFO while servicing these interrupts, FIFO interrupt conditions are cleared automatically.

The application must clear the register at initialization before disable the interrupt bit to avoid any interrupts generated prior to initialization.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
WKUPIF	SESIF	DISCIF	CIDPSC	Res.	PTXFEIF	HCIF	HPIF	Rese	erved	IPXIF/IISOOX	IISOIX	OEPIF	IEPIF	Rese	rved
rc_	rc_	rc_	rc_		r	r	r			rc_	rc_	r	r		
w1	w1	w1	w1			I	I			w1	w1	I			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EOPFIF	ISOOPDIF	ENUMF	RST	SP	ESP	Rese	Reserved		GINAK	NPTXFEIF	RXFNEIF	SOF	OTGIF	MMISIF	СОРМ
rc_	rc_	rc_	rc_	rc_	rc_			r	r	r	r	rc_w1	r	rc_w1	r
w1	w1	w1	w1	w1	w1										

Bits	Fields	Descriptions
31	WKUPIF	Wakeup interrupt flag

This interrupt is triggered when a resume signal (in device mode) or a remote wakeup signal (in host mode) is detected on the USB.

Note: Accessible in both device and host modes.

6
GigaDevice

30	SESIF	Session interrupt flag
		This interrupt is triggered when a session request is detected from the device (in host
		mode) or V_{BUS} is in the valid range for a B-peripheral device (in device mode).
		Note: Accessible in both device and host modes.
29	DISCIF	Disconnect interrupt flag
		This interrupt is triggered when detect a device disconnection.
		Note: Only accessible in host mode.
28	CIDPSC	Connector ID pin status change
		Set by the core when connector ID status is changed.
		Note: Accessible in both device and host modes.
26	PTXFEIF	Periodic Tx FIFO empty interrupt flag
		This interrupt is triggered when the periodic transmit FIFO is either half or completely
		empty and there is space for at least one entry to be written in the periodic request
		queue. The empty level is determined by the periodic Tx FIFO empty level bit
		(PTXFEL) in the OTG_FS_GAHBCSR register.
		Note: Only accessible in host mode.
25	HCIF	Host channels interrupt flag
		Set by the core to indicate that an interrupt is pending on one of the channels of the
		core (in host mode). The application must read the OTG_FS_HACINT register to
		determine the exact number of the channel on which the interrupt occurred, and then
		read the corresponding OTG_FS_HCnIFR register to determine the exact cause of the
		interrupt. The application must clear the appropriate status bit in the OTG_FS_HCnIFR
		register to clear this bit.
		Note: Only accessible in host mode.
24	HPIF	Host port interrupt flag
		Set by the core to indicate a change in port status of the OTG_FS core in host mode.
		The application must read the OTG_FS_HPCSR register to determine the exact event
		that caused this interrupt. The application must clear the appropriate status bit in the
		OTG_FS_HPCSR register to clear this bit.
		Note: Only accessible in host mode.
21	IPXIF	Incomplete periodic transfer interrupt flag
		In host mode, the core sets this interrupt flag bit when there are incomplete periodic
		transactions still pending, which are scheduled for the current frame.
	IISOOX	Incomplete isochronous OUT transfer
		In device mode, this interrupt flag bit is set by the core to indicate that there is at least
		one isochronous OUT endpoint on which the transfer is not completed in the current
		frame. This interrupt is generated along with the end of periodic frame interrupt (EOPF)
		bit in this register.
20	IISOIX	Incomplete isochronous IN transfer
		Set by the core to indicate that there is at least one isochronous IN endpoint on which

the transfer is not completed in the current frame. This interrupt is generated along with the end of periodic frame interrupt (EOPF) bit in this register. *Note: Only accessible in device mode.*

19	OEPIF	OUT endpoint interrupt flag
		Indicate that an interrupt is pending on one of the OUT endpoints of the core (in device
		mode). The application must read the OTG_FS_DAEPINT register to determine the
		exact number of the OUT endpoint on which the interrupt occurred, and then read the
		corresponding OTG_FS_DOEPnIFR register to determine the exact cause of the
		interrupt. The application must clear the appropriate status bit in the corresponding
		OTG_FS_DOEPnIFR register to clear this bit.
		Note: Only accessible in device mode.
18	IEPIF	IN endpoint interrupt flag
		Indicate that an interrupt is pending on one of the IN endpoints of the core (in device
		mode). The application must read the OTG_FS_DAEPINT register to determine the
		exact number of the IN endpoint on which the interrupt occurred, and then read the
		corresponding OTG_FS_DIEPnIFR register to determine the exact cause of the
		interrupt. The application must clear the appropriate status bit in the corresponding
		OTG_FS_DIEPnIFR register to clear this bit.
		Note: Only accessible in device mode.
15	EOPFIF	End of periodic frame interrupt flag
		Indicates that the period specified in the periodic frame interval field of the
		OTG_FS_DCFG register (PFI bit in OTG_FS_DCFG) has been reached in the current
		frame.
		Note: Only accessible in device mode.
14	ISOOPDIF	Isochronous OUT packet dropped interrupt flag
		Set by the core when it fails to write an isochronous OUT packet into the Rx FIFO
		because the Rx FIFO does not have enough space to accommodate a maximum size
		packet for the isochronous OUT endpoint.
		Note: Only accessible in device mode.
13	ENUMF	Enumeration finished
		Indicates that speed enumeration is finished. The application must read the
		OTG_FS_DSTR register to obtain the enumerated speed.
		Note: Only accessible in device mode.
12	RST	USB reset
		Indicates that a reset is detected on the USB.
		Note: Only accessible in device mode.
11	SP	USB suspend
		Indicates that a suspend signal was detected on the USB. The core enters the
		suspended state when there is no activity on the USB bus for 3ms.
		Note: Only accessible in device mode.

GigaDevic	: e	GD32F10x User Manual
10	ESP	Early suspend Indicates that an Idle state has been detected on the USB for 3ms. Note: Only accessible in device mode.
7	GONAK	Global OUT NAK effective Indicates that the set global OUT NAK bit (SGONAK) in the OTG_FS_DCTLR register, set by the application, has taken effect in the core. This bit can be cleared by writing the clear global OUT NAK bit (CGONAK) in the OTG_FS_DCTLR register. <i>Note: Only accessible in device mode.</i>
6	GINAK	Global IN non-periodic NAK effective Indicates that the set global non-periodic IN NAK bit (SGINAK) in the OTG_FS_DCTLR register, set by the application, has taken effect in the core. That is, the core has sampled the global IN NAK bit set by the application. This bit can be cleared by clearing the clear global non-periodic IN NAK bit (CGINAK) in the OTG_FS_DCTLR register. This interrupt does not necessarily mean that a NAK handshake is sent out on the USB. The STALL bit takes precedence over the NAK bit. <i>Note: Only accessible in device mode.</i>
5	NPTXFEIF	Non-periodic Tx FIFO empty interrupt flag This interrupt is triggered when the non-periodic Tx FIFO is either half or completely empty, and there is space for at least one entry to be written to the non-periodic transmit request queue. The empty level is determined by the non-periodic Tx FIFO empty level bit (TXFEL) in the OTG_FS_GAHBCSR register. <i>Note: Accessible in host mode only.</i>
4	RXFNEIF	Rx FIFO non-empty interrupt flag Indicates that there is at least one packet pending to be read from the Rx FIFO. <i>Note: Accessible in both host and device modes.</i>
3	SOF	Start of frame In host mode, the core sets this bit to indicate that an SOF (FS) or Keep-Alive (LS) is transmitted on the USB. This bit is set to 1 by the application will clear the interrupt. In device mode, the core sets this bit to indicate that an SOF token has been received on the USB. The application can read the Device Status register to get the current frame number. This interrupt is triggered only when the device is operating at Full-Speed. <i>Note: Accessible in both host and device modes.</i>
2	OTGIF	OTG interrupt flag Set by the core to indicate an OTG protocol event. The application must read the global OTG Interrupt flag (OTG_FS_GOTGIFR) register to determine the exact event that caused this interrupt. The application must clear the appropriate status bit in the OTG_FS_GOTGIFR register to clear this bit. <i>Note: Accessible in both host and device modes.</i>

6
GigaDevice

1	MMISIF	Mode mismatch interrupt flag
		Set by the core when the application is trying to access:
		 A host mode register, when the core is operating in device mode
		 A device mode register, when the core is operating in host mode
		The register access is completed on the AHB with an OKAY response, but is ignored
		by the core internally and does not affect the operation of the core.
		Note: Accessible in both host and device modes.
0	СОРМ	Current operation mode
		0: Device mode
		1: Host mode
		Note: Accessible in both host and device modes.

OTG_FS Global interrupt enable register (OTG_FS_GIEN)

Address offset: 0x0018

Reset value: 0x0000 0000

This register works with the global interrupt flag register (OTG_FS_GIFR) to interrupt the application. When an interrupt enable bit is disabled, the interrupt associated with that bit is not generated. However, the global Interrupt flag register bit corresponding to that interrupt is still set.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
WKUPIE	SESIE	DISCIE	CIDSCIE	Res.	PTXFEIE	HCIE	HPIE	Rese	erved	IPXIE/ISOOX IE	IISOIXIE	OEPIE	IEPIE	EPMISIE	Res
rw	rw	rw	rw		rw	rw	r			rw	rw	rw	rw	rw	

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EOPFIE	ISOOPDIE	ENUMFIE	RSTIE	SPIE	ESPIE	Rese	erved	GONAKEIE	GINAKEIE	NPTXFEIE	RXFNEIE	SOFIE	OTGIE	MMISIE	Res
rw	rw	rw	rw	rw	rw			rw	rw	rw	rw	rw	rw	rw	

Bits	Fields	Descriptions
31	WKUPIE	Wakeup interrupt enable
		0: Disable wakeup interrupt
		1: Enable wakeup interrupt
		Note: Accessible in both host and device modes.
30	SESIE	Session interrupt enable
		0: Disable session interrupt

		1: Enable session interrupt Note: Accessible in both host and device modes.
29	DISCIE	Disconnect interrupt enable
		0: Disable disconnect interrupt
		1: Enable disconnect interrupt
		Note: Only accessible in device mode.
28	CIDPSCIE	Connector ID pin status change interrupt enable
		0: Disable connector ID pin status interrupt
		1: Enable connector ID pin status interrupt
		Note: Accessible in both host and device modes.
26	PTXFEIE	Periodic Tx FIFO empty interrupt enable
		0: Disable periodic Tx FIFO empty interrupt
		1: Enable periodic Tx FIFO empty interrupt
		Note: Only accessible in host mode.
25	HCIE	Host channels interrupt enable
		0: Disable host channels interrupt
		1: Enable host channels interrupt
		Note: Only accessible in host mode.
24	HPIE	Host port interrupt enable
		0: Disable host port interrupt
		1: Enable host port interrupt
		Note: Only accessible in host mode.
21	IPXIE	Incomplete periodic transfer interrupt enable
		0: Disable incomplete periodic interrupt
		1: Enable incomplete periodic interrupt
		Note: Only accessible in host mode.
	IISOOXIE	Incomplete isochronous OUT transfer interrupt enable
		0: Disable incomplete isochronous OUT transfer interrupt
		1: Enable incomplete isochronous OUT transfer interrupt
		Note: Only accessible in device mode.
20	IISOIXIE	Incomplete isochronous IN transfer interrupt enable
		0: Disable incomplete isochronous IN transfer interrupt
		1: Enable incomplete isochronous IN transfer interrupt
		Note: Only accessible in device mode.
19	OEPIE	OUT endpoints interrupt enable
		0: Disable OUT endpoints interrupt
		1: Enable OUT endpoints interrupt
		Note: Only accessible in device mode.
18	IEPIE	IN endpoints interrupt enable

		0: Disable IN endpoints interrupt
		1: Enable IN endpoints interrupt
		Note: Only accessible in device mode.
17	EMISIE	Endpoint mismatch interrupt enable
		0: Disable endpoint mismatch interrupt
		1: Enable endpoint mismatch interrupt
		Note: Only accessible in device mode.
15	EOPFIE	End of periodic frame interrupt enable
		0: Disable end of periodic frame interrupt
		1: Enable end of periodic frame interrupt
		Note: Only accessible in device mode.
14	ISOOPDIE	Isochronous OUT packet dropped interrupt enable
		0: Disable isochronous OUT packet dropped interrupt
		1: Enable isochronous OUT packet dropped interrupt
		Note: Only accessible in device mode.
13	ENUMFIE	Enumeration finish enable
		0: Disable enumeration finish interrupt
		1: Enable enumeration finish interrupt
		Note: Only accessible in device mode.
12	RSTIE	USB reset interrupt enable
		0: Disable USB reset interrupt
		1: Enable USB reset interrupt
		Note: Only accessible in device mode.
11	SPIE	USB suspend interrupt enable
		0: Disable USB suspend interrupt
		1: Enable USB suspend interrupt
		Note: Only accessible in device mode.
10	ESPIE	Early suspend interrupt enable
		0: Disable early suspend interrupt
		1: Enable early suspend interrupt
		Note: Only accessible in device mode.
7	GONAKEIE	Global OUT NAK effective interrupt enable
		0: Disable global OUT NAK interrupt
		1: Enable global OUT NAK interrupt
		Note: Only accessible in device mode.
6	GINAKEIE	Global non-periodic IN NAK effective interrupt enable
		0: Disable global non-periodic IN NAK effective interrupt
		1: Enable global non-periodic IN NAK effective interrupt
		Note: Only accessible in device mode.
6		

GigaDevice		

5	NPTXFEIE	Non-periodic Tx FIFO empty interrupt enable
		0: Disable non-periodic Tx FIFO empty interrupt
		1: Enable non-periodic Tx FIFO empty interrupt
		Note: Only accessible in Host mode.
4	RXFNEIE	Receive FIFO non-empty interrupt enable
		0: Disable receive FIFO non-empty interrupt
		1: Enable receive FIFO non-empty interrupt
		Note: Accessible in both device and host modes.
3	SOFIE	Start of frame interrupt enable
		0: Disable start of frame interrupt
		1: Enable start of frame interrupt
		Note: Accessible in both device and host modes.
2	OTGIE	OTG interrupt enable
		0: Disable OTG interrupt
		1: Enable OTG interrupt
		Note: Accessible in both device and host modes.
1	MMISIE	Mode mismatch interrupt enable
		0: Disable mode mismatch interrupt
		1: Enable mode mismatch interrupt
		Note: Accessible in both device and host modes.

OTG_FS Global receive status read/receive status read and pop registers (OTG_FS_GRXSR/OTG_FS_GRXSRP)

Address offset for Read: 0x001C

Address offset for Pop: 0x0020

Reset value: 0x0000 0000

A read to the receive status read register returns the contents of the top of the Receive FIFO. A read to the Receive status read and pop register additionally pops the top data entry out of the Rx FIFO.

The receive status contents must be interpreted differently in host and device modes. The core ignores the receive status pop/read when the Rx FIFO is empty and returns a value of 0x0000 0000. The application must only pop the Receive Status FIFO when Receive FIFO non-empty interrupt flag bit of the global interrupt flag register (RXFNEIF bit in OTG_FS_GIFR) is asserted

Host mode:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Reserved							RPC	CKST		DPID
													r		r

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DPID						BCOUNT							CN	UM	
r						r							r	r	

Bits	Fields	Descriptions
20:17	RPCKST	Received packet status
		0010: IN data packet received
		0011: IN transfer completed (triggers an interrupt)
		0101: Data toggle error (triggers an interrupt)
		0111: Channel halted (triggers an interrupt)
		Others: Reserved
16:15	DPID	Data PID
		Indicates the Data PID of the received packet
		00: DATA0
		10: DATA1
		01: DATA2
		11: MDATA
14:4	BCOUNT	Byte count
		Indicates the byte count of the received IN data packet.
3:0	CNUM	Channel number
		Indicates the channel number to which the current received packet belongs.

Device mode:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Reserved					FN	UM			PCł	KST		DPID
									r			1	r		r

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DPID						BCOUNT							EPN	IUM	
r						r							r		

Bits	Fie	lds		Des	criptior	S									
24:21	FN	UM		Fran	ne numl	ber									
				This	is the le	east sig	nificant	4 bits o	f the fra	me num	nber in v	vhich the	e packe	t is rece	eived
				on th	ne USB.										
				Sup	ported c	nly by i	sochron	ious Ol	JT endp	oints					
20:17	RP	CKST		Rece	eived pa	acket st	atus								
				0001	I: Globa	I OUT I	NAK (tri	ggers a	n interru	upt)					
				0010): OUT	data pa	cket rec	eived							
				0011	I: OUT	ransfer	comple	ted (trig	ggers ar	n interru	pt)				
				0100): SETU	P trans	action c	omplet	ed (trigg	jers an i	interrupt	t)			
				0110): SETU	P data	packet	receive	d						
				Othe	ers: Res	erved									
16:15	16:15 DPID Data PID Indicates the Data PID of the received OUT data packet														
				00: [DATA0										
				10: [DATA1										
				01: [DATA2										
				11: N	MDATA										
14:4	BC	OUNT		Byte	count										
				Indic	ates the	e byte c	ount of	the rec	eived da	ata pack	et.				
3:0	EP	NUM		End	ooint nu	mber									
				Indic	ates the	e endpo	oint num	ber to v	vhich th	e currer	nt receiv	ed pack	ket beloi	ngs.	
			F0 0				0.1			(OTO	50.0				
	Ĺ		F2 G	Iopai	receiv	/e FIF	O leng	gth re	gister		_F5_G	RXFL	EN)		
	Ą	ddres	s offs	et: 0x()24										
	F	Reset	value:	0x000	00 020)									
	т	he ap	plicat	ion ca	n progr	am the	RAM	size th	at must	t be allo	ocated	to the F	Rx FIFC	Э.	
31	30 2	29	28	27	26	25	24	23	22	21	20	19	18	17	16

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX	FD							

r/rw

Bits	Fields	Descriptions
15:0	RXFD	Rx FIFO depth
		In terms of 32-bit words.
		16≤RXFD≤140

OTG_FS Host non-periodic transmit FIFO length register (OTG_FS_HNPTXFLEN)/Device IN endpoint 0 transmit FIFO length (OTG_FS_DIEP0TXFLEN)

Address offset: 0x028

Reset value: 0x0200 0200

r/rw

Host Mode:

Bits	Fields	Descriptions
31:16	NPTXFD	Non-periodic Tx FIFO depth
		In terms of 32-bit words.
		16≤NPTXFD≤140
15:0	NPTXRSAR	Non-periodic Tx RAM start address This field contains the start address for non-periodic transmit FIFO RAM.

Device Mode:

Bits	Fields	Descriptions
31:16	EP0TXFD	Endpoint 0 Tx FIFO depth
		In terms of 32-bit words.
		16≤EP0TXFD≤140
15:0	EP0TXRSAR	Endpoint 0 Tx RAM start address This field contains the start address for the endpoint0 transmit FIFO RAM.

OTG_FS Host non-periodic transmit FIFO/queue status register (OTG_FS_HNPTXFQS)

Address offset: 0x002C

Reset value: 0x0008 0200

Note: In Device mode, this register is not valid.

This read-only register provides the free space information for the non-periodic Tx FIFO and the non-periodic transmit request queue.

	;	NPTXRQS	NPT		es NPTXRQTOP									Res
		r								r				
1 0	3 2	4 3	4	5	6	7	8	9	10	11	12	13	14	15
						XFS	NPT							
	3 2	r 4 3	4	5	6	7 XFS	8 NPT	9	10	r 11	12	13	14	15

r

Bits	Fields	Descriptions
30:24	NPTXRQTOP	Top of the non-periodic Tx request queue
		Entry in the non-periodic transmit request queue that is currently being processed by
		the MAC.
		Bits 30:27: Channel/endpoint number
		Bits 26:25:
		– 00: IN/OUT token

		 – 01: Zero-length transmit packet (device IN/host OUT)
		– 11: Channel halt command
		Bit 24: Terminate (last entry for selected channel/endpoint)
23:16	NPTXRQS	Non-periodic Tx request queue space
		Indicates the amount of free space available in the non-periodic transmit request queue.
		This queue holds both IN and OUT requests in host mode.
		00: Non-periodic transmit request queue is full
		01: 1 location available
		10: 2 locations available
		bxn: n locations available (0 \leq n \leq 8)
		Others: Reserved
15:0	NPTXFS	Non-periodic Tx FIFO space
		Indicates the amount of free space available in the non-periodic transmit FIFO.
		In terms of 32-bit words.
		00: Non-periodic transmit FIFO is full
		01: 1 word available
		10: 2 words available
		0xn: n words available (where $0 \leq n \leq NPTXFD$)
		Others: Reserved

OTG_FS Global core configuration register (OTG_FS_GCCG)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Reserved						SOFOUTEN	VBUSBDEN	VBUSADEN	Res	PDWN
											rw	rw	rw		rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Rese	erved							

Address offset: 0x0038

Reset value: 0x0000 0000

1: SOF pulse available on PAD

19	VBUSBDEN	Enable the V _{BUS} sensing "B" device 0: V _{BUS} sensing "B" device disabled 1: V _{BUS} sensing "B" device enabled
18	VBUSADEN	Enable the V _{BUS} sensing "A" device 0: V _{BUS} sensing "A" device disabled 1: V _{BUS} sensing "A" device enabled
16	PDWN	Power down Used to activate the transceiver in transmission/reception 0: Power down active 1: Power down deactivated ("Transceiver active")

OTG_FS Core ID register (OTG_FS_CID)

Address offset: 0x003C

Reset value: 0x0000 1000

This register contains the Product ID.

Bits	Fields	Descriptions
31:0	PIDF	Product ID field
		Application-programmable ID field.

OTG_FS Host periodic transmit FIFO length register (OTG_FS_HPTXFLEN)

Address offset: 0x0100

Reset value: 0x0200 0600

r/rw

Bits	Fields	Descriptions
31:16	HPTXFD	Host periodic Tx FIFO depth
		In terms of 32-bit words.
		Minimum value is 16
15:0	HPTXFSAR	Host periodic Tx FIFO start address
		The power-on reset value of this register is the sum of the largest Rx FIFO depth and
		largest non-periodic Tx FIFO depth.

OTG_FS Device IN endpoint transmit FIFO length register (OTG_FS_DIEPnTXFLEN) (n = 1..3, where n is the FIFO_number)

Address offset: 0x0104 + (FIFO_number – 1) × 0x04

Reset value: 0x0200 0400

Bits	Fields	Descriptions
31:16	IEPTXFD	IN endpoint Tx FIFO depth
		In terms of 32-bit words.
		Minimum value is 16
15:0	IEPTXRSAR	IN endpoint FIFOx Tx RAM start address
		This field contains the start address for IN endpoint transmit FIFOx. The address must
		be aligned with a 32-bit memory location.

24.10.3. Host control and status registers

OTG_FS Host control register (OTG_FS_HCTLR)

Address offset: 0x0400

Reset value: 0x0000 0000

This register configures the core after power-on in host mode. Do not modify it after host initialization.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reser	ved							
							110001	, ou							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserved							FSLSOS	FSLS	PCS
													r	r١	N

Bits	Fields	Descriptions
2	FSLSOS	FS- and LS-only support
		This bit is used to control the core's enumeration speed. The application can use this
		bit to make the core enumerate as an FS host, even if the connected device supports
		HS traffic. Do not change this field after initial programming.
		1: FS/LS-only, even if the connected device can support HS (read-only)
1:0	FSLSPCS	FS/LS PHY clock select
		When the core operates in FS/LS host mode, this field indicates the selected PHY
		clock.
		01: Select 48 MHz PHY clock frequency
		Others: Reserved
		Note: The FSLSPCS must be set on a connection event according to the speed of the

connected device (after changing this bit, a software reset must be performed).

OTG_FS Host frame interval register (OTG_FS_HFIR)

Address offset: 0x0404

Reset value: 0x0000 BB80

This register sets the frame interval for the current enumerating speed when OTG_FS controller is enumerating.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reser	ved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							FF	RI							

rw

Bits	Fields	Descriptions
15:0	FRI	Frame interval
		The application set this field to specify the required frame interval which is constituted
		in terms of PHY clocks between two consecutive SOFs (FS) or Keep-Alive tokens
		(LS). The application can set this register only after the Port enable bit of the host port
		control and status register (PEN bit in OTG_FS_HPRT) has been set. If no value is
		programmed, the core calculates the value based on the PHY clock specified in the
		FS/LS PHY Clock Select field (FSLSPCS) of the host configuration register. Do not
		change the value of this field after the initial configuration. 1 ms $ imes$ (PHY clock
		frequency)

OTG_FS Host frame information remaining register (OTG_FS_HFINF)

Address offset: 0x408

Reset value: 0xBB80 0000

This register indicates the current frame information. It includes the current frame number and the time remaining (in terms of the number of PHY clocks) in the current frame.

Bits	Fields	Descriptions
31:16	FTR	Frame time remaining
		Indicates the time remaining in the current frame, in terms of PHY clocks. The field
		decrements on each PHY clock. When it reaches zero, this field is reloaded with the
		value in the Frame interval register and a new SOF is transmitted on the USB.
15:0	FRNUM	Frame number
		The field increments when each new SOF is transmitted on the USB, and is cleared to
		0 when it reaches 0x3FFF.

OTG_FS Host periodic transmit FIFO/queue status register (OTG_FS_HPTXFQSTR)

Address offset: 0x0410

Reset value: 0x0008 0200

This read-only register provides the free space information for the periodic Tx FIFO and the periodic transmit request queue.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
PTXREQT									PIXREQS								
				r								r					

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								(50							
							PD	(F5							
							I								

Bits	Fields	Descriptions
31:24	PTXREQT	Top of the periodic transmit request queue
		Indicates the entry in the periodic transmit request queue that is currently being
		processed by the MAC.
		This register is used for debugging.
		Bit 31: Odd/Even frame
		– 0: send in even frame
		– 1: send in odd frame
		Bits 30:27: Channel/endpoint number
		Bits 26:25: Type
		– 00: IN/OUT
		– 01: Zero-length packet
		- 11: Disable channel command
		Bit 24: Terminate (last entry for the selected channel/endpoint)
23:16	PTXREQS	Periodic transmit request queue space
		Indicates the number of free locations available to be written in the periodic transmit
		request queue which holds both IN and OUT requests.
		00: Periodic transmit request queue is full
		01: 1 location available
		10: 2 locations available
		bxn: n locations available (0 \leq n \leq 8)
		Others: Reserved
15:0	PTXFS	Periodic Tx FIFO space
		Indicates the number of free locations available to be written in the periodic transmit
		FIFO.
		In terms of 32-bit words
		0000: Periodic transmit FIFO is full
		0001: 1 word available
		0010: 2 words available
		bxn: n words available (0≤n≤PTXFD)
		Others: Reserved

OTG_FS Host all channels interrupt register (OTG_FS_HACINT)

Address offset: 0x0414

Reset value: 0x0000 0000

A significant event occurs on a channel will make the register interrupts the application by using the host channels interrupt flag bit (HCIF) of the global flag interrupt register. There is one interrupt bit per channel, up to a maximum of 16 bits. Bits in this register are set and cleared when the application sets and clears bits in the corresponding host channel-n interrupt register.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	ved							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CII	NT							
							01	••							

r

Bits	Fields	Descriptions
15:0	CINT	Channel interrupts
		One bit per channel: Bit 0 for channel 0, bit 15 for channel 15

OTG_FS Host all channels interrupt enable register (OTG_FS_HACIEN)

Address offset: 0x0418

Reset value: 0x0000 0000

This register works with the host all channels interrupt register to enable/disable interrupt the application when an event occurs on a channel. There is one interrupt enable bit per channel, up to a maximum of 16 bits.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CIN	TEN							
							r١	N							

Bits	Fields	Descriptions
15:0	CINTEN	Channel interrupt enable
		0: Disable channel-n interrupt
		1: Enable channel-n interrupt
		One bit per channel: bit 0 for channel 0, bit 15 for channel 15

OTG_FS Host port control and status register (OTG_FS_HPCSR)

Address offset: 0x0440

Reset value: 0x0000 0000

This register is available only when the core operates in host mode. Currently, the OTG host supports only one port.

The single register holds USB port-related information such as USB reset, enable, suspend, resume and connect status for the port. The rc_w1 bits in this register can trigger an interrupt to the application through the host port interrupt flag bit (HPIF) of the global interrupt flag register (OTG_FS_GIFR). On a Port Interrupt, the application must read this register and clear the bit that caused the interrupt. For the rc_w1 bits, the application must write a 1 to the bit to clear the interrupt.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	Reserved												PS	PS		
													I	r		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Reserved		РР	PL	.ST	Res	PRST	PSP	PREM	POCC	PCA	PEDC	PE	PCD	PCST	
			rw	I	r		rw	rs	rw	rc_ w1	r	rc_ w1	rc_ w1	rc_ w1	r	

Bits	Fields	Descriptions
------	--------	--------------

\mathbf{C}	5	
GigaDev	ice	GD32F10x User Manual
18:17	PS	Port speed Indicates the speed of the device attached to this port. 01: Full speed 10: Low speed Others: Reserved
12	PP	Port power Set by the application to control power to this port Cleared by the core on an over-current condition 0: Power off 1: Power on
11:10	PLST	Port line status Indicates the current logic level USB data lines Bit 10: Logic level of OTG_FS DP line Bit 11: Logic level of OTG_FS DM line
8	PRST	Port reset Set by the application to start a reset sequence on this port. The application must time the reset period and clear this bit after the reset sequence is complete. 0: Port not in reset 1: Port in reset The application must set this bit for a minimum duration of at least 10 ms to start a reset on the port. The application can set it for another 10 ms in addition to the required minimum duration, before clearing the bit, even though there is no maximum limit set by the USB standard.
7	PSP	 Port suspend When setting this bit to put this port in suspend mode, the core only stops sending SOFs. To stop the PHY clock, the application must set the Port clock stop bit, which asserts the suspend input pin of the PHY. The read value of this bit reflects the current suspend status of the port. This bit is cleared by the core after: A remote wakeup signal is detected Port reset bit is set Vakeup interrupt flag bit is set in the global interrupt flag register. Disconnect interrupt flag bit is set in the global interrupt flag register. Port not in suspend mode Port in suspend mode
6	PREM	Port resume Set by the application to initialize resume signaling on the port. The core continues to drive the resume signal until the application clears this bit. If the core detects a USB remote wakeup sequence, as indicated by the Port wakeup interrupt flag bit of the global interrupt flag register (WKUPIF bit in

		 OTG_FS_GIFR), the core starts driving resume signaling without application intervention and clears this bit when it detects a disconnect condition. The read value of this bit indicates whether the core is currently driving resume signaling. 0: No resume driven 1: Resume driven
5	POCC	Port over-current change Set by the core when the status of the port over-current active bit (PCA) in this register changes.
4	PCA	Port over-current active Indicates the over-current condition of the port. 0: No over-current condition 1: Over-current condition
3	PEDC	Port enable/disable change Set by the core when the status of the Port enable bit 2 in this register changes.
2	PE	 Port enable A port is enabled only by the core after a reset sequence. The following events will disable a port: An over-current condition A disconnect condition The application clearing this bit The application cannot set this bit by a register write. This bit does not trigger any interrupt to the application. O: Port disabled 1: Port enabled
1	PCD	Port connect detected Set by the core when a device connection is detected to trigger an interrupt to the application using the host port interrupt flag bit in the global interrupt flag register (HPIF bit in OTG_FS_GIFR). The application must write a 1 to this bit to clear the interrupt.
0	PCST	Port connect status 0: No device is attached to the port 1: A device is attached to the port

OTG_FS Host channel-n control register (OTG_FS_HCnCTLR) (n = 0..7, where $n = channel_number$)

Address offset: 0x0500 + (channel_number × 0x20)

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CEN	CDIS	ODDFRM				DAR				Rese	rved	EPT	/PE	LSD	Res
rs	rs	rw				rw				r	w	r	w	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EPDIR	EPNUM									MPL					
rw		r	w							rw					

Fields	Descriptions
CEN	Channel enable
	Set by the application and cleared by the OTG host.
	0: Channel disabled
	1: Channel enabled
CDIS	Channel disable
	Set by the application to stop transmitting/receiving data on a channel, even before the
	transfer for that channel is complete. The application must wait for the channel
	disabled interrupt before treating the channel as disabled.
ODDFRM	Odd frame
	Set (reset) by the application to indicate that the OTG host must perform a transfer in
	an odd frame. This field is applicable for only periodic (isochronous and interrupt)
	transactions.
	0: Even frame
	1: Odd frame
DAR	Device address
	This field selects the specific device serving as the data source or sink.
EPTYPE	Endpoint type
	Indicates the transfer type.
	00: Control
	01: Isochronous
	10: Bulk
	11: Interrupt
LSD	Low-Speed device
	Indicates that this channel is communicating to a low speed device
EPDIR	Endpoint direction
	Fields CEN CDIS ODDFRM DAR EPTYPE LSD EPDIR

		Indicates the transaction direction.
		0: OUT
		1: IN
14:11	EPNUM	Endpoint number Indicates the endpoint number on the device serving as the data source or sink.
10:0	MPL	Maximum packet length Indicates the maximum packet length of the associated endpoint.

OTG_FS Host channel-n interrupt flag register (OTG_FS_HCnIFR) (n = 0..7, where n = channel number)

Address offset: 0x0508 + (channel_number × 0x20)

Reset value: 0x0000 0000

This register indicates the status of a channel with respect to USB- and AHB-related events. The application must read this register when the host channels interrupt flag bit in the global interrupt flag register (HPIF bit in OTG_FS_GIFR) is set. Before the application can read this register, it must first read the host all channels interrupt register (OTG_FS_HACINT) to get the exact channel number for the host channel-n interrupt register. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_FS_HACINT and OTG_FS_GIFR registers.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Poss	nod							
							Nese	iveu							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved				DTER	FRMOVR	BBER	TACER	Res	ACK	NAK	STALL	Res	СН	XF
					rc_	rc_	rc_	rc_		rc_	rc_	rc_		rc_	rc_
					w1	w1	w1	w1		w1	w1	w1		w1	w1

Bits	Fields	Descriptions
10	DTER	Data toggle error
9	FRMOVR	Frame overrun
8	BBER	Babble error

GigaDevic	c e	GD32F10x User Manual
7	TACER	Transaction error
		Indicates one of the following errors occurred on the USB:
		CRC check failure
		– Timeout
		– Bit stuff error
		- False EOP
5	ACK	ACK response received/transmitted interrupt
4	NAK	NAK response received interrupt
3	STALL	STALL response received interrupt
1	СН	Channel halted
		Indicates the transfer completed abnormally either because of any USB transaction
		error or in response to disable request by the application.
0	XF	Transfer finished
		Transfer completed normally without any errors.

OTG_FS Host channel-n interrupt enable register (OTG_FS_HCnIEN) (n = 0..7, where n = channel number)

Address offset: 0x050C + (channel_number × 0x20)

Reset value: 0x0000 0000

Writing a one to a bit in this register will set the corresponding bit in the previous register and will enable or disable the corresponding interrupt in one channel.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved				DTERIE	FRMOVRIE	BBERIE	TACERIE	Res.	ACKIE	NAKIE	STALLIE	Res	CHIE	XFIE	
					rw	rw	rw	rw		rw	rw	rw		rw	rw

Bits	Fields	Descriptions
10	DTERIE	Data toggle error interrupt enable
		0: Disable data toggle error interrupt

		1: Enable data toggle error interrupt
9	FRMOVRIE	Frame overrun interrupt enable 0: Disable frame overrun interrupt 1: Enable frame overrun interrupt
8	BBERIE	Babble error interrupt enable 0: Disable babble error interrupt 1: Enable babble error interrupt
7	TACERIE	Transaction error interrupt enable 0: Disable transaction error interrupt 1: Enable transaction error interrupt
5	ACKIE	ACK response received/transmitted interrupt enable 0: Disable ACK response received/transmitted interrupt 1: Enable ACK response received/transmitted interrupt
4	NAKIE	NAK response received interrupt enable 0: Disable NAK response received interrupt 1: Enable NAK response received interrupt
3	STALLIE	STALL response received interrupt enable 0: Disable STALL response received interrupt 1: Enable STALL response received interrupt
1	CHIE	Channel halted interrupt enable 0: Disable pipe halted interrupt 1: Enable pipe halted interrupt
0	XFIE	Transfer finished interrupt enable 0: Disable transfer finished interrupt 1: Enable transfer finished interrupt

- ..

OTG_FS Host channel-n transfer length register (OTG_FS_HCnXLEN) (n = 0..7, where n = channel number)

Address offset: 0x0510 + (channel_number × 0x20)

Reset value: 0x0000 0000

XLEN

rw

Bits	Fields	Descriptions
30:29	DPID	Data PID
		Indicates the type of PID to use for the initial transaction. The host maintains this field
		for the rest of the transfer.
		00: DATA0
		01: DATA2
		10: DATA1
		11: MDATA (non-control)/SETUP (control)
28:19	PCKCNT	Packet count
		Indicates the expected number of packets to be transmitted (OUT) or received (IN).
		The host decrements this count on every successful transmission or reception of an
		OUT/IN packet. Once this count reaches zero, the application is interrupted to indicate
		normal completion.
18:0	XLEN	Transfer length
		For an OUT, this field is the number of data bytes the host sends during the transfer.
		For an IN, this field is the buffer size that the application has reserved for the transfer.
		The application is expected to program this field as an integer multiple of the maximum
		packet size for IN transactions (periodic and non-periodic).
24.10.4.	Device cor	ntrol and status registers
		view configuration register (OTC, FC, DCC)

OTG_FS Device configuration register (OTG_FS_DCG)

Address offset: 0x0800

Reset value: 0x0000 0000

This register configures the core in device mode after power-on or after certain control commands or enumeration. Do not change this register after device initialization.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved			Ρ	FI				DAR				Res	NZLSOH	D	S
			r	w				rw					rw	rv	v

Bits	Fields	Descriptions
12:11	PFI	Periodic frame interval
		Indicates the percentage of end of periodic frame (EOPF) interrupt within a frame. This
		can be used to determine if all the isochronous traffic for that frame is complete.
		00: 80% of the frame interval
		01: 85% of the frame interval
		10: 90% of the frame interval
		11: 95% of the frame interval
10:4	DAR	Device address
		Programmed by the application after every Set Address control command.
2	NZLSOH	Non-zero-length status OUT handshake
		Used by the application to select the handshake the core sends on receiving a
		non-zero-length data packet during the OUT transaction of a control transfer's status
		Stage.
		and cond a handshake based on the NAK and STALL bits for the endpoint in the
		device endpoint control register
		1: Send a STALL handshake and do not send the received OUT packet to the
		annication
1:0	DS	Device speed
		Indicates the speed at which the application requires the core to enumerate, or the
		maximum speed the application can support. However, the actual bus speed is
		determined only after the chirp sequence is completed, and is based on the speed of
		the USB host to which the core is connected.
		11: Full speed (USB 1.1 transceiver clock is 48 MHz)
		Others: Reserved

OTG_FS Device control register (OTG_FS_DCTLR)

Address offset: 0x0804

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		POPRGF	CGONAK	SGONAK	CGINAK	SGINAK		Reserved		GONS	GINS	SD	RWS	
				rw	w	w	w	w				r	r	rw	rw

Bits	Fields	Descriptions
11	POPRGF	Power-on programming finished
		Used by the application to indicate that register programming is finished after a
		wakeup from power down mode.
10	CGONAK	Clear global OUT NAK
		A write to this field will clear the Global OUT NAK.
9	SGONAK	Set global OUT NAK
		A write to this field will set the Global OUT NAK.
		Used by the application to send a NAK handshake on all OUT endpoints. The
		application must make sure that the Global OUT NAK effective bit (GONAKE) in the
		general core interrupt flag register is cleared before setting this bit.
8	CGINAK	Clear global IN NAK
		A write to this field clears the Global IN NAK.
7	SGINAK	Set global IN NAK
		A write to this field sets the Global non-periodic IN NAK. The application uses this bit to
		send a NAK handshake on all non-periodic IN endpoints.
		The application must make sure that the Global IN NAK effective bit (GINAKE) in the
		general core interrupt flag register is cleared before setting this bit.
3	GONS	Global OUT NAK status
		0: A handshake is sent based on the FIFO Status and the NAK and STALL bit settings.
		1: No data is written to the Rx FIFO, irrespective of space availability. Sends a NAK
		handshake on all packets, except on SETUP transactions. All isochronous OUT
		packets are dropped.
2	GINS	Global IN NAK status
		0: A handshake is sent out based on the data availability in the transmit FIFO.
		1: A NAK handshake is sent out on all non-periodic IN endpoints, irrespective of the
		data availability in the transmit FIFO.

Giga	Device	GD32F10x User Manual
1	SD	Soft disconnect
		Used by the application to signal the USB OTG core to perform a soft disconnect. As
		long as this bit is set, the host does not detect that the device is connected, and the
		device does not receive any signals on the USB. The core stays in the disconnected
		state until the application clears this bit.
		0: Normal operation. When this bit is cleared after a soft disconnect, the core
		generates a device connect event to the USB host. When the device is reconnected,
		the USB host restarts device enumeration.
		1: The core generates a device disconnect event to the USB host.
0	RWS	Remote wakeup signaling
		When the application sets this bit, the core initiates remote signaling to wake up the
		USB host. The application must set this bit to instruct the core to exit the suspend
		state. As specified in the USB 2.0 specification, the application must clear this bit in
		1ms to 15ms after setting it.

Following table contains the minimum duration (according to device state) for which the Soft disconnect bit (SD) must be set for the USB host to detect a device disconnect. To accommodate clock jitter, it is recommended that the application add some extra delay to the specified minimum duration.

Operating speed	Device state	Minimum duration
Full speed	Suspended	1 ms + 2.5 us
Full speed	Idle	2.5 us
Full speed	Not idle or suspended (Performing transactions)	2.5 us

OTG_FS Device status register (OTG_FS_DSTR)

Address offset: 0x0808

Reset value: 0x0000 0000

This register indicates the status of the core which operates in device mode with respect to USB-related events. It must be read on interrupts from the device all endpoints interrupts register (OTG_FS_DAEPINT).

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved												FNR	SOF		

r

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			FNR	SOF					Rese	rved		ERER	E	S	SPST
				r								r		r	r

Bits	Fields	Descriptions
21:8	FNRSOF	Frame number of the received SOF
3	ERER	Erratic error
		Set by the core when erratic errors happen.
		Due to erratic errors, the core goes into suspended state and an interrupt is generated
		to the application with early suspend interrupt flag bit (ESP) of the OTG_FS_GIFR
		register. If the early suspend is asserted due to an erratic error, the application can
		only perform a soft disconnect recover.
2:1	ES	Enumerated speed
		Indicates the speed at which the core has selected after speed detection through a
		chirp sequence.
		11: Full speed (PHY clock is running at 48 MHz)
		Others: reserved
0	SPST	Suspend status
		In device mode, this bit is set as long as a suspend condition is detected on the USB.
		The core enters the suspended state when there is no activity on the USB for 3ms. The
		core exit from the suspend:
		 When there is an activity on the USB
		 When the application writes to the remote wakeup signaling bit (RWS) in the
		OTG_FS_DCTLR register.

OTG_FS Device IN endpoint common interrupt enable register (OTG_FS_DIEPCIEN)

Address offset: 0x810

Reset value: 0x0000 0000

This register works with each OTG_FS_DIEPnIFR register to generate an interrupt. The IN endpoint interrupt for a specific status in the OTG_FS_DIEPnIFR register can be enabled by writing to the corresponding bit in this register. Status bits are disabled by default.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Reserved					INEPNEIE	INTEPMIE	ITTXFEIE	TOIE	Res	EPDISIE	XFIE
									rw	rw	rw	rw		rw	rw

Bits	Fields	Descriptions
6	INEPNEIE	IN endpoint NAK effective interrupt enable
		0: Disable IN endpoint NAK effective interrupt
		1: Enable IN endpoint NAK effective interrupt
5	INTEPMIE	IN token received with endpoint mismatch interrupt enable
		0: Disable IN token received with endpoint mismatch interrupt
		1: Enable IN token received with endpoint mismatch interrupt
4	ITTXFEIE	IN token received when Tx FIFO empty interrupt enable
		0: Disable IN token received when Tx FIFO empty interrupt
		1: Enable IN token received when Tx FIFO empty interrupt
3	TOIE	Timeout condition(Non-isochronous endpoints) interrupt enable
		0: Disable timeout condition(Non-isochronous endpoints)interrupt
		1: Enable timeout condition(Non-isochronous endpoints) interrupt
1	EPDISIE	Endpoint disabled interrupt enable
		0: Disable endpoint disabled interrupt
		1: Enable endpoint disabled interrupt
0	XFIE	Transfer finished interrupt enable
		0: Disable transfer finished interrupt
		1: Enable transfer finished interrupt

OTG_FS Device OUT endpoint common interrupt enable register (OTG_FS_DOEPCIEN)

Address offset: 0x0814

Reset value: 0x0000 0000

This register works with each OTG_FS_DOEPnIFR register to generate an interrupt. The $$^{\rm 818}$$

OUT endpoint interrupt for a specific status in the OTG_FS_DOEPnIFR register can be enabled by writing into the corresponding bit in this register. Status bits are disabled by default.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
45		40	40		10			-		_					•
15	14	13	12	11	10	9	8	1	6	5	4	3	2	1	0

	-	-	-		-			-	
Reserved		BTBSTUPIE	Res	OTEPDIE	STUPIE	Res	EPDISIE	XFIE	
		rw		rw	rw		rw	rw	

Bits	Fields	Descriptions
6	BTBSTUPIE	Back-to-back SETUP packets received interrupt enable
		Applies to control OUT endpoint only.
		0: Disable the interrupt
		1: Enable the interrupt
4	OTEPDIE	OUT token received when endpoint disabled interrupt enable
		Applies to control OUT endpoints only.
		0: Disable the interrupt
		1: Enable the interrupt
3	STUPIE	SETUP phase finished interrupt enable
		Applies to control endpoints only.
		0: Disable the interrupt
		1: Enable the interrupt
1	EPDISIE	Endpoint disabled interrupt enable
		0: Disable the interrupt
		1: Enable the interrupt
0	XFIE	Transfer completed interrupt enable
		0: Disable the interrupt
		1: Enable the interrupt

OTG_FS Device all endpoints interrupt register (OTG_FS_DAEPINT)

Address offset: 0x0818

Reset value: 0x0000 0000

A significant event occurs on an endpoint make the register to interrupt the application by using the device OUT/IN endpoints interrupt bit of the OTG_FS_GIFR register (OEPIF or IEPIF in OTG_FS_GIFR, respectively). There is one interrupt bit per endpoint, up to a maximum of 16 bits for OUT endpoints and 16 bits for IN endpoints. For a bidirectional endpoint, the corresponding IN and OUT interrupt bits are both used. Bits in this register are set and cleared when the application sets and clears bits in the corresponding Device Endpoint-n interrupt register (OTG_FS_DIEPnIFR/OTG_FS_DOEPnIFR).

Bits	Fields	Descriptions
31:16	OEPITB	OUT endpoint interrupt bits
		One bit per OUT endpoint:
		Bit 16 for OUT endpoint 0, bit 19 for OUT endpoint 3.
15:0	IEPITB	IN endpoint interrupt bits
		One bit per IN endpoint:
		Bit 0 for IN endpoint 0, bit 3 for endpoint 3.

OTG_FS Device all endpoints interrupt enable register (OTG_FS_DAEPIEN)

Address offset: 0x081C

Reset value: 0x0000 0000

The register works with the device all endpoint interrupt register to interrupt the application when an event occurs on a device endpoint. However, the OTG_FS_DAEPINT register bit corresponding to that interrupt is still set.

rw

Bits	Fields	Descriptions
31:16	OEPIE	OUT endpoint interrupt enable bits
		One bit per OUT endpoint:
		Bit 16 for OUT EP 0, bit 19 for OUT EP 3
		0: Disable OUT endpoint interrupt
		1: Enable OUT endpoint interrupt
15:0	IEPIE	IN endpoint interrupt enable bits
		One bit per IN endpoint:
		Bit 0 for IN EP 0, bit 3 for IN EP 3
		0: Disable IN endpoint interrupt
		1: Enable IN endpoint interrupt

OTG_FS Device VBUS discharge time register (OTG_FS_DVBUSDTR)

Address offset: 0x0828

Reset value: 0x0000 17D7

This register specifies the V_{BUS} discharge time after V_{BUS} pulsing during SRP.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DVBI	ISDT							
							5.50								
							r١	N							

Bits	Fields	Descriptions
15:0	DVBUSDT	Device V _{BUS} discharge time
		Specifies the V_{BUS} discharge time after V_{BUS} pulsing during SRP. This value equals:
		V _{BUS} discharge time in PHY clocks / 1024
		Depending on your V_{BUS} load, this value may need adjusting.

OTG_FS Device VBUS pulsing time register (OTG_FS_DVBUSPULT)

Address offset: 0x082C

Reset value: 0x0000 05B8

This register specifies the V_{BUS} pulsing time during SRP.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved							DVBL	JSPT					
									rv	v					

Bits	Fields	Descriptions
11:0	DVBUSPT	Device V _{BUS} pulsing time
		Specifies the V_{BUS} pulsing time during SRP. This value equals:
		V _{BUS} pulsing time in PHY clocks / 1024

OTG_FS Device IN endpoint FIFO empty interrupt enable register (OTG_FS_DIEPFEIEN)

Address offset: 0x0834

Reset value: 0x0000 0000

This register is used to control the IN endpoint FIFO empty interrupt generation.

rw

Bits	Fields	Descriptions
3:0	IEPTXFEIE	IN endpoint Tx FIFO empty interrupt enable bits
		Act as enable bits for OTG_FS_DIEPnIFR.
		TXFE interrupt one bit per IN endpoint:
		Bit 0 for IN endpoint 0, bit 3 for IN endpoint 3
		0: Disable interrupt
		1: Enable interrupt

OTG_FS Device IN endpoint 0 control register (OTG_FS_DIEP0CTLR)

Address offset: 0x0900

Reset value: 0x0000 8000

This section describes the OTG_FS_DIEP0CTLR register. Non-zero control endpoints use registers for endpoints 1–3.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EPEN	EPD	Rese	erved	SNAK	CNAK	TXFNUM				STALL	Res	EPT	YPE	NAKS	Res
r	r			w	w	rw			rs		r	r	r		

GD32F10x User Manual 5 4 3 2 1 0

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
USBAEP					Reserved													
r														rw	1			
Bits		Fields		Des		s shla												
51		LFEN		Set I Clea –	boint ena by the ap red by the Endpoint Transfe	oplication ne core nt disal	on to sta before bled bleted	art trans setting	mitting of th	data on he follov	the end	point 0. errupts d	on this e	endpoint	:			
30		EPD		Endr Set I trans befo endr alrea	Endpoint disable Set by the application to stop transmitting data on an endpoint, even before the transfer is complete. The application must wait for the endpoint disabled interrupt before treating the endpoint as disabled. The core clears this bit before setting the endpoint disabled interrupt. The application must set this bit only if endpoint enable is already set for this endpoint.													
27		SNAK		Set I A wr Usin endp rece	Set NAK A write to this bit will set the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit for an endpoint after a SETUP packet is received on that endpoint.													
26		CNAK		Clea A wr	ir NAK ite to thi	s bit wi	ll clear ti	he NAk	C bit for t	he end	point.							
25:22		TXFNU	М	Tx F Indic	IFO num	nber Tx FIF	⁻ O numb	per that	is assig	ned to l	N endpo	pint 0.						
21		STALL		STA The rece alon	LL hand applicati ived for g with th	shake ion car this en is bit, t	i only se dpoint. If he STAL	t this bi f a NAk _L bit ta	t, and th (bit, a g akes prio	e core lobal IN prity.	clears it NAK or	when a global	SETUF OUT NA	P token i AK is set	s t			
19:18		EPTYP	E	End Harc	ooint typ Icoded te	e o '00' f	or contro	ol.										
17		NAKS		NAK status 0: The core is transmitting non-NAK handshakes based on the FIFO status 1: The core is transmitting NAK handshakes. When the application or core set this bit, the core stops transmitting data, even if there are data available in the Tx FIFO. Irrespective of this bit's setting, the core always responds to SETUP data packets with an ACK handshake.														
15		USBAE	Р	USB	active e	endpoir	nt											

This bit is always set to 1, indicating that control endpoint 0 is always active in all configurations and interfaces.

1:0 MPL Maximum packet length The application must program this field with the maximum packet length for the current logical endpoint. 00: 64 bytes 01: 32 bytes 10: 16 bytes

11: 8 bytes

OTG_FS Device IN endpoint-n control register (OTG_FS_DIEPnCTLR) (n = 1..3, where n = endpoint_number)

Address offset: 0x0900 + (endpoint_number × 0x20)

Reset value: 0x0000 0000

The application uses this register to control the behavior of each logical IN endpoint other than IN endpoint 0.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EPEN	EPD	SODDFRM	SD0PID/SEV NFRM	SNAK	CNAK		TXFI	NUM		STALL	Res	EPT	YPE	NAKS	EOFRM/DPID
rs	rs	w	w	w	w		r	w		rw/rs	rw			r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
USBAEP	Reserved								MPL						
rw										rw					

Bits	Fields	Descriptions
31	EPEN	Endpoint enable
		Set by the application to start transmitting data on an endpoint. The core clears this bit
		before setting any of the following interrupts on this endpoint:
		– SETUP phase done
		 Endpoint disabled
		– Transfer completed
30	EPD	Endpoint disable
		Set by the application to stop transmitting/receiving data on an endpoint, even before

the transfer is complete. The application must wait for the Endpoint disabled interrupt before treating the endpoint as disabled. The core clears this bit before setting the Endpoint disabled interrupt. The application must set this bit only if Endpoint enable is already set for this endpoint.

29	SODDFRM	Set odd frame Applies to isochronous IN endpoints only. A write to this field will set the Even/Odd frame (EOERM) field to odd frame.
28	SD0PID	Set DATA0 PID Applies to interrupt/bulk IN endpoints only. A write to this field will set the endpoint data PID (DPID) field in this register to DATA0. Set even frame
	SEVENFRM	Applies to isochronous IN endpoints only. A write to this field will set the Even/Odd frame (EOFRM) field to even frame.
27	SNAK	Set NAK A write to this bit will set the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit for OUT endpoints on a transfer completed interrupt, or after a SETUP is received on the endpoint.
26	CNAK	Clear NAK A write to this bit clears the NAK bit for the endpoint.
25:22	TXFNUM	Tx FIFO number This field specifies the FIFO number associated with this endpoint. Each active IN endpoint must be programmed to a separate FIFO number. This field is valid only for IN endpoints.
21	STALL	STALL handshake Applies to non-control, non-isochronous IN endpoints only (access type is rw). Set by the application to stall all tokens from the USB host to this endpoint. If a NAK bit, global IN NAK, or global OUT NAK is set along with this bit, the STALL bit takes priority. Only the application can clear this bit, never the core. Applies to control endpoints only (access type is rs). The application can only set this bit, and the core clears it, when a SETUP token is received for this endpoint. If a NAK bit, global IN NAK, or global OUT NAK is set along with this bit, the STALL bit takes priority. Irrespective of this bit's setting, the core always responds to SETUP data packets with an ACK handshake.
19:18	EPTYPE	Endpoint type Indicates the transfer type supported by this logical endpoint. 00: Control 01: Isochronous 10: Bulk 11: Interrupt

(\rightarrow)		
GigaDevic	e	GD32F10x User Manual
17	NAKS	NAK status
		0: The core is transmitting non-NAK handshakes based on the FIFO status.
		1: The core is transmitting NAK handshakes on this endpoint.
		When either the application or the core sets this bit:
		For non-isochronous IN endpoints: The core stops transmitting any data on an IN
		endpoint, even if there are data available in the Tx FIFO.
		For isochronous IN endpoints: The core sends out a zero-length data packet, even if
		there are data available in the Tx FIFO.
		Irrespective of this bit's setting, the core always responds to SETUP data packets with
		an ACK handshake
16	EOFRM	Even/odd frame
		Applies to isochronous IN endpoints only.
		Indicates the frame number in which the core transmits/receives isochronous data for
		this endpoint. The application must program the even/odd frame number in which it
		intends to transmit/receive isochronous data for this endpoint using the SEVENFRM
		and SODDFRM fields in this register.
		0: Even frame
		1: Odd frame
	DPID	Endpoint data PID
		Applies to interrupt/bulk IN endpoints only.
		Contains the PID of the packet to be received or transmitted on this endpoint. The
		application must program the PID of the first packet to be received or transmitted on
		this endpoint, after the endpoint is activated. The application uses the SD0PID register
		field to program either DATA0 or DATA1 PID.
		0: DATA0
		1: DATA1
15	USBAEP	USB active endpoint
		Indicates whether this endpoint is active in the current configuration and interface.
		After detecting a USB reset, the core clears this bit for all endpoints (other than EP 0).
		After receiving the SetConfiguration and SetInterface commands, the application must
		program endpoint registers accordingly and set this bit.
10:0	MPL	Maximum packet length
		The application must program this field with the maximum packet length for the current
		logical endpoint. This value is in bytes.

OTG_FS Device OUT endpoint 0 control register (OTG_FS_DOEP0CTLR)

Address offset: 0x0B00

Reset value: 0x0000 8000

This section describes the OTG_FS_DOEP0CTLR register. Non-zero control endpoints use registers for endpoints 1–3.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
EPEN	EPD	Re	es.	SNAK	CNAK	Reserved			STALL	SNPM	EPTYPE		NAKS	Res			
w	r			w	w					rs	rw	I	r	r			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
USBAEP					Reserved												
r Rite		Fields Descriptions															
31	EPEN Endpoint enable Set by the application to start transmitting data on endpoint 0. The core clears this bit before setting any of the following interrupts on this endpoint: - SETUP phase finished - Endpoint disabled - Transfer finished																
30		EPD		Endr The	Endpoint disable The application cannot disable control OUT endpoint 0.												
27		SNAK		Set f A wr Usin endp SET	NAK ite to th g this b point. Th UP is re	is bit wi it, the a ne core eceived	II set the oplication can also on the e	e NAK b on can c o set thi endpoin	it for the ontrol th s bit on t.	e endpo ne trans a Trans	int. mission fer com	of NAK pleted i	í handsl	nakes o	n an er a		
26		CNAK		Clea A wr	r NAK ite to th	is bit cle	ears the	NAK bi	t for the	endpoi	nt.						
21		STALL		The rece STA SET	applicat ived for LL bit ta UP data	tion can this end kes prid a packe	only se dpoint. I prity. Irre ts with a	et this bi f a NAK espectiv an ACK	t, and th bit or g ve of this handsha	e core o lobal Ol s bit's se ake.	clears it JT NAK etting, th	, when a (is set a ne core a	a SETU along wi always i	P token th this t respond	is bit, the ds to		
20		SNPM		Snoo This chec	op mode bit conf k the co	e ïgures t orrectne	he endp ss of O	ooint to UT pacł	Snoop r tets befo	node. Ir ore trans	n Snoop sferring	mode, them to	the core applica	e does r ation me	not emory.		
19:18		EPTYP	E	Endp Harc	ooint typ Icoded 1	oe to '00 fo	or contro	ol.									
17		NAKS		NAK 0: Tł	status ne core	is trans	mittina ı	non-NAI	۲ hands	hakes t	based o	n the FI	FO stat	us.			

1: The core is transmitting NAK handshakes on this endpoint. When either the application or the core sets this bit, the core stops receiving data, even if there is space in the Rx FIFO to accommodate the incoming packet. Irrespective of this bit's setting, the core always responds to SETUP data packets with an ACK handshake.

15	USBAEP	USB active endpoint This bit is always set to 1, indicating that a control endpoint 0 is always active in all configurations and interfaces.
10:0	MPL	Maximum packet length The maximum packet length for control OUT endpoint 0 is the same as what is programmed in control IN endpoint 0. 00: 64 bytes 01: 32 bytes 10: 16 bytes 11: 8 bytes

OTG_FS Device OUT endpoint-n control register (OTG_FS_DOEPnCTLR) (n =

1..3, where n = endpoint_number)

Address offset: 0x0B00 + (endpoint_number × 0x20)

Reset value: 0x0000 0000

The application uses this register to control the operations of each logical OUT endpoint other than OUT endpoint 0.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EPEN	EPD	SODDFRM/S D1PID	SEVNFRM/ SD0PID	SNAK	СЛАК		Rese	erved		STALL	SNPM	EPTYPE		NAKS	EOFRM/DPID
rs	rs	w	w	w	w					rw/rs	rw	r	w	r	r
15 USBA	14	13 Rese	12 erved	11	10	9	8	7	6	5 MPL	4	3	2	1	0
ΈΡ															
rw										rw					
Bits		Fields		Des	cription	s									

Dita	T ICIUS	Descriptions
31	EPEN	Endpoint enable
		Set by the application to start transmitting data on an endpoint.

Cleared by the core before setting any of the following interrupts on this endpoint:

- SETUP phase finished
- Endpoint disabled
- Transfer finished

30	EPD	Set by the application to stop transmitting/receiving data on an endpoint, even before the transfer for that endpoint is complete. The application must wait for the Endpoint disabled interrupt before treating the endpoint as disabled. The core clears this bit before setting the Endpoint disabled interrupt. The application must set this bit only if Endpoint enable is already set for this endpoint.
29	SD1PID SODDFRM	Set DATA1 PID Applies to interrupt/bulk OUT endpoints only. Writing to this field sets the endpoint data PID (DPID) field in this register to DATA1. Set odd frame Applies to isochronous IN and OUT endpoints only. Writing to this field sets the Even/Odd frame (EOERM) field to odd frame
28	SD0PID SEVNFRM	Set DATA0 PID Applies to interrupt/bulk OUT endpoints only. Writing to this field sets the endpoint data PID (DPID) field in this register to DATA0. Set even frame Applies to isochronous OUT endpoints only. Writing to this field sets the Even/Odd frame (EOFRM) field to even frame.
27	SNAK	Set NAK A write to this bit sets the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit on a Transfer completed interrupt, or after a SETUP is received on the endpoint.
26	CNAK	Clear NAK A write to this bit clears the NAK bit for the endpoint.
21	STALL	 STALL handshake Applies to non-control, non-isochronous OUT endpoints only (access type is rw). The application sets this bit to stall all tokens from the USB host to this endpoint. If a NAK bit, global IN NAK, or global OUT NAK is set along with this bit, the STALL bit takes priority. Only the application can clear this bit, never the core. Applies to control endpoints only (access type is rs). The application can only set this bit, and the core clears it, when a SETUP token is received for this endpoint. If a NAK bit, global IN NAK, or global OUT NAK is set along with this bit, the STALL bit takes priority. Irrespective of this bit's setting, the core always responds to SETUP data packets with an ACK handshake
20	SNPM	Snoop mode This bit configures the endpoint to Snoop mode. In Snoop mode, the core does not

GD32F10x User Manual

check the correctness of OUT packets before transferring them to application memory.

19:18	EPTYPE	Endpoint type Indicates the transfer type supported by this logical endpoint. 00: Control 01: Isochronous 10: Bulk 11: Interrupt
17	NAKS	NAK status Indicates the following: 0: The core is transmitting non-NAK handshakes based on the FIFO status. 1: The core is transmitting NAK handshakes on this endpoint. When either the application or the core sets this bit, the core stops receiving data, even if there is space in the Rx FIFO to accommodate the incoming packet. Irrespective of this bit's setting, the core always responds to SETUP data packets with an ACK handshake.
16	EOFRM	Even/odd frame Applies to isochronous IN and OUT endpoints only. Indicates the frame number in which the core transmits/receives isochronous data for this endpoint. The application must program the even/odd frame number in which it intends to transmit/receive isochronous data for this endpoint using the SEVENFRM and SODDFRM fields in this register. 0: Even frame 1: Odd frame Endpoint data PID
	DPID	Applies to interrupt/bulk OUT endpoints only. Contains the PID of the packet to be received or transmitted on this endpoint. The application must program the PID of the first packet to be received or transmitted on this endpoint, after the endpoint is activated. The application uses the SD0PID register field to program either DATA0 or DATA1 PID. 0: DATA0 1: DATA1
15	USBAEP	USB active endpoint This bit is always set to 1, indicating that a control endpoint 0 is always active in all configurations and interfaces.
10:0	MPL	Maximum packet length The maximum packet length for control OUT endpoint 0 is the same as what is programmed in control IN endpoint 0. 00: 64 bytes 01: 32 bytes 10: 16 bytes 11: 8 bytes

OTG_FS Device IN endpoint-n interrupt flag register (OTG_FS_DIEPnIFR) (n = 0..3, where n = endpoint_number)

Address offset: 0x0908 + (endpoint_number × 0x20)

Reset value: 0x0000 0080

This register indicates the status of an endpoint with respect to USB- and AHB-related events. The application must read this register when the IN endpoints interrupt flag bit of the global interrupt flag register (IEPIF in OTG_FS_GIFR) is set. Before the application can read this register, it must first read the device all endpoints interrupt (OTG_FS_DAEPINT) register to get the exact endpoint number. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_FS_DAEPINT and OTG_FS_GIFR registers.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved								TXFEIF	IEPNEIF	Res	ITTXFEIF	TOC	Res	EPDISIF	XFIF
								r	rc_w1		rc_	rc_		rc_	rc_w
									/rw		w1	w1		w1	1

Bits	Fields	Descriptions
7	TXFEIF	Transmit FIFO empty interrupt flag
		This interrupt is triggered when the Tx FIFO for this endpoint is either half or
		completely empty. The empty level is determined by the TxFIFO Empty Level bit
		(TXFEL) in the OTG_FS_GAHBCSR register.
6	IEPNEIF	IN endpoint NAK effective interrupt flag
		Cleared when the application clears the IN endpoint NAK by writing to the CNAK bit in
		OTG_FS_DIEPnCTLR.
		This interrupt indicates that the core has sampled the NAK bit set (either by the
		application or by the core) and the IN endpoint NAK bit set by the application has taken
		effect in the core.
		This interrupt does not guarantee that a NAK handshake is sent on the USB. A STALL
		bit takes priority over a NAK bit.
4	ITTXFEIF	IN token received when Tx FIFO is empty interrupt flag

Applies to non-periodic IN endpoints only.

This interrupt is triggered on a endpoint for which an IN token was received when the associated Tx FIFO (periodic/non-periodic) was empty.

3	TOC	Timeout condition
		Applies only to control IN endpoints.
		Indicates that the core has detected a timeout condition on the USB for the last IN
		token on this endpoint.
1	DPDISIF	Endpoint disabled interrupt flag
		Indicates that the endpoint is disabled according to the application's request.
0	XFIF	Transfer finished interrupt flag
		Indicates that the programmed transfer is finished on the AHB as well as on the USB
		for this endpoint.

OTG_FS Device OUT endpoint-n interrupt flag register (OTG_FS_DOEPnIFR) (n = 0..3, where n = endpoint_number)

Address offset: 0x0B08 + (endpoint_number × 0x20)

Reset value: 0x0000 0000

This register indicates the status of an endpoint with respect to USB- and AHB-related events. The application must read this register when the OUT endpoints Interrupt flag bit (OEPIF) of the OTG_FS_GIFR register is set. Before the application can read this register, it must first read the OTG_FS_DAEPINT register to get the exact endpoint number. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_FS_DAEPINT and OTG_FS_GIFR registers.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved								BTBSETUP	Res	OTREPD	SETUP	Res	EPDISIF	XFIF	
									rc_w1		rc_	rc_		rc_	rc_w
									/rw		w1	w1		w1	1

Bits	Fields	Descriptions
------	--------	--------------

6	BTBSETUP	Back-to-back SETUP packets received
		Applies to control OUT endpoint only.
		Indicates that the core has received more than three back-to-back SETUP packets for
		this particular endpoint
4	OTREPD	OUT token received when endpoint disabled
		Applies only to control OUT endpoints.
		Indicates that an OUT token was received when the endpoint was not yet enabled.
		This interrupt is asserted on the endpoint for which the OUT token was received.
3	SETUP	SETUP phase finished
		Applies to control OUT endpoint only.
		Indicates that the SETUP phase for the control endpoint is finished and no more
		back-to-back SETUP packets were received for the current control transfer. On this
		interrupt, the application can decode the received SETUP data packet.
1	EPDISIF	Endpoint disabled interrupt flag
		Indicates that the endpoint is disabled according to the application's request.
0	XFIF	Transfer finished interrupt flag
		Indicates that the programmed transfer is finished on the AHB as well as on the USB,
		for this endpoint.

OTG_FS Device IN endpoint 0 transfer length register (OTG_FS_DIEP0XLEN)

Address offset: 0x0910

Reset value: 0x0000 0000

The application must configure this register before endpoint 0 is enabled. Once endpoint 0 is enabled using the endpoint enable bit (EPEN) in the device control endpoint 0 control registers, just the core can modify only this register. The application can only read this register once the core has cleared the endpoint enable bit.

Non-zero endpoints use the registers for endpoints 1-3.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Reserved										PCK	CNT		Reserved			
										rw						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Reserved	XLEN

GD32F10x User Manual

rw

Bits	Fields	Descriptions								
20:19	PCKCNT	Packet count								
		Indicates the total number of USB packets that constitute the transfer size amount of								
		data for endpoint 0.								
		This field is decremented every time a packet (maximum size or short packet) is read								
		from the Tx FIFO.								
6:0	XLEN	Transfer size								
		Indicates the transfer size in bytes for endpoint 0. The core interrupts the application								
		only after it has exhausted the transfer size amount of data. The transfer size can be								
		set to the maximum packet size of the endpoint, to be interrupted at the end of each								
		packet. The core decrements this field every time a packet from the external memory								
		is written to the Tx FIFO.								
	OTG FS	Device OUT endpoint 0 transfer length register								

(OTG_FS_DOEP0XLEN)

Address offset: 0x0B10

Reset value: 0x0000 0000

The application must configure this register before endpoint 0 is enabled. Once endpoint 0 is enabled using the endpoint enable bit (EPEN) in the OTG_FS_DOEP0CTLR registers, just the core can modify only this register. The application can only read this register once the core has cleared the endpoint enable bit.

Non-zero endpoints use the registers for endpoints 1-3.

GigaDevi	c e	GD32F10x User Manual
30:29	SETUPCNT	SETUP packet count
		Specifies the number of back-to-back SETUP data packets the endpoint can receive.
		01: 1 packet
		10: 2 packets
		11: 3 packets
19	PCKCNT	Packet count
		This field is decremented to zero after a packet is written into the Rx FIFO.
6:0	XLEN	Transfer size
		Indicates the transfer size in bytes for endpoint 0. The core interrupts the application
		only after it has exhausted the transfer size amount of data. It can be set to the
		maximum packet size of the endpoint, to be interrupted at the end of each packet. The
		core decrements this field every time a packet is read from the Rx FIFO and written to
		the external memory.

OTG_FS Device IN endpoint-n transfer length register (OTG_FS_DIEPnTXLEN) (n = 1..3, where n = endpoint_number)

Address offset: 0x910 + (endpoint_number × 0x20)

Reset value: 0x0000 0000

The application must configure this register before the endpoint is enabled. Once the endpoint is enabled using the endpoint enable bit (EPEN) in the OTG_FS_DIEPnCTLR registers, just the core can modify only this register. The application can only read this register once the core has cleared the endpoint enable bit.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved						РСК	CNT						XLEN	
r/rw							r	w						rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							M								
							XL	EN							
							r	N							

Bits	Fields	Descriptions
28:19	PCKCNT	Packet count
		Indicates the total number of USB packets that constitute the transfer size amount of

data for this endpoint. This field is decremented every time a packet (maximum size or short packet) is read from the Tx FIFO.

18:0 XLEN Transfer size

Indicates the transfer size in bytes for the current endpoint. The core only interrupts the application after it has exhausted the transfer size amount of data. It can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. The core decrements this field every time a packet from the external memory is written to the Tx FIFO.

OTG_FS Device OUT endpoint-n transfer length register (OTG_FS_DOEPnXLEN) (n = 1..3, where n = endpoint_number)

Address offset: 0x0B10 + (endpoint_number × 0x20)

Reset value: 0x0000 0000

The application must configure this register before the endpoint is enabled. Once the endpoint is enabled using endpoint enable bit (EPEN) of the OTG_FS_DOEPnCTLR registers, just the core can only modify this register. The application can only read this register once the core has cleared the endpoint enable bit.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res	RXDPII PC	D/SETU NT					PCK	CNT						XLEN	
r/rw							r	w						rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							XL	EN							

rw

Fields	Descriptions
RXDPID	Received data PID
	Applies to isochronous OUT endpoints only.
	Specifies the data PID received in the last packet for the endpoint.
	00: DATA0
	01: Reserved
	10: DATA1
	11: Reserved
	Fields RXDPID

	SETUPCNT	SETUP packet count
		Applies to control OUT Endpoints only.
		Specifies the number of back-to-back SETUP data packets the endpoint can receive.
		01: 1 packet
		10: 2 packets
		11: 3 packets
28:19	PCKCNT	Packet count
		Indicates the total number of USB packets that constitute the transfer size amount of
		data for the endpoint.
		This field is decremented every time a packet (maximum size or short packet) is
		written to the Rx FIFO.
18:0	XLEN	Transfer size
		Indicates the transfer size in bytes for the current endpoint. The core only interrupts the
		application after it has exhausted the transfer size amount of data. It can be set to the
		maximum packet size of the endpoint, to be interrupted at the end of each packet.
		The core decrements this field every time a packet is read from the Rx FIFO and
		written to the external memory.

OTG_FS Device IN endpoint transmit FIFO status register (OTG_FS_DIEPnTXFSTR) (n = 0..3, where n = endpoint_number)

Address offset: 0x0918 + (endpoint_number × 0x20)

Reset value: 0x0000 0200

This read-only register contains the free space information for the device IN endpoint Tx FIFO.

15:0	IEPTFS	IN endpoint Tx FIFO space
		Indicates the amount of free space available in the endpoint Tx FIFO.
		In terms of 32-bit words:
		0x0: Endpoint Tx FIFO is full
		0x1: 1 word available
		0x2: 2 words available
		0xn: n words available
		Others: Reserved

24.10.5. OTG_FS Power and clock control register (OTG_FS_PCCTLR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserved						PHYSP	Rese	erved	GHCLK	SPHYCLK
											rw			rw	rw

Bits	Fields	Descriptions
4	PHYSP	PHY Suspended
		Indicates that the PHY has been suspended. This bit is set once the PHY is
		suspended after the SPHYCLK bit (bit 0) is set by the application.
1	GHCLK	Gate HCLK
		This bit is set by the application to configure gate HCLK for modules other than the
		AHB Slave and Master and wakeup logic when the USB is suspended or the session is
		not valid. It is cleared when the USB is resumed or a new session starts.
0	SPHYCLK	Stop PHY clock
		This bit is set to stop the PHY clock when the USB is suspended, the session is not
		valid, or the device is disconnected and is cleared when the USB is resumed or a new
		session starts.

Address offset: 0x0E00

Reset value: 0x0000 0000